Pricing and Risk Management for

Highly Cyclical Commodity Markets

by

Joe Maisano

A thesis submitted for the degree of Doctor of Philosophy

University of Technology Sydney

May 2016
Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:
Acknowledgments

For the chapter (and paper) titled *A Lognormal Model for PASA-Based Load Forecasting in the NEM* the authors would like to thank Ben Vanderwaal from Roam Consulting for helpful feedback on the draft of this paper and a fruitful discussion around the MTPASA process.

For the chapter (and paper) titled *A method of forecasting wholesale electricity market prices* the authors would like to thank Prof. Alex Novikov and Prof. Pavel Shevchenko¹ for proof reading and comments.

For the chapter (and paper) titled *An Analytical Model for Standard and Volumetric Cap Pricing in Electricity Markets* the authors would like to thank Dr. Igor Skryabin² for proof reading and comments.

For the chapter titled *Parametric Distributions for Price Simulation in Electricity Markets* the authors would like to express their gratitude to Prof. Alex Novikov for general guidance and feedback. We would also like to thank Mr. Mal Campbell, Senior Business Consultant, Energy One Ltd., for fruitful and robust discussions.

For this thesis as a whole, I would like to thank my supervisor, Prof. Alex Novikov (Professor of Mathematics at the Department of Mathematical Sciences, University of Technology Sydney). I would also like to thank the Australian Technology Network’s Industry Doctoral Training Centre (of which I have been a student while writing this thesis), it’s past directors Prof. Lee White, Prof. Murray Cameron and Dr. Matt Brown and the UTS IDTC Node Leader Associate Prof. Yakov Zinder. I thank the IDTC industry partner Trading Technology Australia Pty. Ltd. for partly funding this research, identifying the research problem and supplying a full-time employee (myself) for the duration of the research.

I would also like to personally thank my co-authors Dr. Alex Radchik, Dr. Igor Skryabin and Dr. Tim Ling for their work on the four papers which have been included in this thesis.

Finally I would especially like to thank my co-supervisor, Dr. Alex Radchik for providing the inspiration for many of the approaches we took, and his general hard work and patience over the years.

¹Senior Principal Research Scientist at CSIRO, Adjunct Professor, School of Mathematics and Statistics, University of NSW, Adjunct Professor, School of Mathematical Sciences, University of Technology Sydney.

²Business Development Managers, Centre for Sustainable Energy Systems at Australian National University.
Contents

1 Introduction

1.1 Abstract ... 1
1.2 Thesis Structure 2
1.3 Objectives and Scope 4
1.4 List of Publications 6

2 Market Overview and Literature Review 7

2.1 Market Overview 8
2.1.1 The Physical Market 8
2.1.2 The Spot Market 10

2.2 NEM Principles of Operation 11
2.2.1 Dispatch .. 13
2.2.2 Settlement residues 16

2.3 Electricity Risk Management 19
2.3.1 Types of Risk 19
2.3.2 Risk Measures 20
2.3.3 Earnings at Risk 21
2.3.4 Value at Risk 23
2.3.5 EaR and VaR as Risk Management Tools 24
2.3.6 How the NEM differs from Financial Markets 25

2.4 Hedging .. 29
2.4.1 Swaps ... 30

2.5 The Futures Market 35
5 An Analytical Model for Standard and Volumetric Cap Pricing in Electricity Markets

5.1 Introduction 109
5.2 Model 110
5.3 Results and Discussion 114
 5.3.1 1 Week Cap 115
 5.3.2 Quarterly Cap 117
 5.3.3 Cap Price Range 117
5.4 Volumetric Option 119
 5.4.1 Volumetric Floor 120
 5.4.2 Volumetric Cap 121
5.5 Results 122
5.6 Conclusions 123

6 Conclusion 125
 6.1 Major Findings 126
 6.2 Applications 127
 6.2.1 Portfolio management 127
 6.2.2 Renewable generation 128
 6.2.3 Demand side and storage 128
 6.3 Future directions 129

A Market Operators and Regulators 131
 A.1 Jurisdictions and Responsibilities 131
 A.2 AER .. 131
 A.3 AEMC .. 133
 A.4 NEMMCO 134
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>National Electricity Market Pool Model</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical Bid-stack (as of 18:00, 24/06/2003)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical Bid-stack (annotated)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>NEM Operational Cycle</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Inter-Regional Settlement</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Conceptual Earnings at Risk Distribution</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Conceptual VaR Distribution</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>VaR and the Expected Loss Distribution</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Conceptual Diagram of Electricity Swap Transaction</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Example Swap Transaction</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>Expected Portfolio Load (1% of State Load)</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>Expected Base Portfolio Load (1% of State Load)</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Expected Peak Portfolio Load (1% of State Load)</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Expected and 99% Upper Bound Peak Portfolio Load</td>
<td>43</td>
</tr>
<tr>
<td>2.15</td>
<td>Expected and 99% Upper Bound Base Portfolio Load</td>
<td>44</td>
</tr>
<tr>
<td>2.16</td>
<td>Typical week in Q3 2009 - Hedge position</td>
<td>46</td>
</tr>
<tr>
<td>2.17</td>
<td>Typical week in Q4 2009 - Hedge position</td>
<td>47</td>
</tr>
<tr>
<td>2.18</td>
<td>Typical week in Q1 2010 - Hedge position</td>
<td>47</td>
</tr>
<tr>
<td>2.19</td>
<td>Typical week in Q2 2010 - Hedge position</td>
<td>48</td>
</tr>
<tr>
<td>2.20</td>
<td>A taxonomy of electricity spot forecasting approaches</td>
<td>50</td>
</tr>
<tr>
<td>2.21</td>
<td>VIC Calendar Base 2012 Futures Settlement Prices</td>
<td>57</td>
</tr>
<tr>
<td>2.22</td>
<td>VIC Calendar Base 2012 Futures Settlement Prices</td>
<td>58</td>
</tr>
<tr>
<td>2.23</td>
<td>NSW State Demand and Spot Price</td>
<td>62</td>
</tr>
</tbody>
</table>
B.1 NEM as system of nodes and Directional Interconnectors 137

C.1 Second derivative for \(y_0 = 0 \) .. 142
C.2 Second derivative for \(y_0 = \sqrt{3} \) .. 142
C.3 Second derivative for \(y_0 = -\sqrt{3} \) 142
C.4 ‘Phase diagram’ in \(\kappa - s \) space ... 143
C.5 Gram-Charlier density for the point inside the dashed domain 143
C.6 Gram-Charlier density for the point outside of the dashed domain 143
C.7 Series convergence for \(R = 0.7 \) ... 145
List of Tables

2.1 Changes in Market Price Cap (VoLL) ... 28
2.2 Hedging - Base Futures ... 41
2.3 Hedging - Adding Peak Futures ... 42
2.4 Hedging - Adding Cap Futures .. 45
2.5 Hedging - Derivative prices as at 30 June 2009 45

5.1 Parameters for Curve ... 115
5.2 Parameters for Curve ... 117