- Biosorption of effluent organic matter onto magnetic biochar
- 2 composite: Behavior of fluorescent components and their binding
- 3 **properties**
- 4 Dong Wei ^a, Huu Hao Ngo ^b, Wenshan Guo ^b, Weiying Xu ^a, Yongfang Zhang ^a
- 5 Bin Du ^{a *}, Qin Wei ^c
- 6 ^a School of Resources and Environment, University of Jinan, Jinan 250022, PR China
- 7 b School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW
- 8 2007, Australia
- 9 "Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry
- 10 and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- 11 **Abstract**
- 12 Effluent organic matter (EfOM) is of great concern as one of main sources of organic
- pollutants from biologically treated wastewater, which is harmful to the quality of
- receiving waters. In present study, magnetic biochar composite (MBC) was
- 15 successfully prepared, characterizated and applied to EfOM treatment. The interaction
- between EfOM and MBC was explored by a combination of excitation-emission
- matrix (EEM), parallel factor analysis (PARAFAC), synchronous fluorescence,
- 18 two-dimensional correlation spectroscopy (2D-COS), and molecular weight
- distribution. Result implied that two fluorescence components were derived from
- 20 EEM-PARAFAC, and their relative fluorescence intensity scores expressed decreased
- 21 trend. Moreover, fluorescence quenching of EfOM with increased MBC took place

^{*} Corresponding author. Tel: +86 531 8276 7370; fax: +86 531 8276 7370. E-mail address: dubin61@gmail.com (B. Du); weidong506@163.com (D.Wei).

- 22 sequentially in the following order: protein-like fraction < fulvic-like and humic-like
- 23 fractions. Molecular weight distribution suggested that MBC had different uptake
- ability to different size ranges of EfOM. The obtained results could provide a
- 25 potential application of fluorescence spectroscopy for EfOM treatment assessment.
- 26 **Keywords:** Effluent organic matter (EfOM); Excitation-emission matrix (EEM);
- 27 Parallel factor analysis (PARAFAC); Two-dimensional correlation spectroscopy
- 28 (2D-COS); Synchronous fluorescence spectroscopy.

1. Introduction

29

Recently, effluent organic matter (EfOM) originating from wastewater treatment 30 31 plant (WWTP) is of significant concern since it negatively affects the quality of 32 effluent (Henderson et al., 2011). The main components of EfOM are consisting of 33 dissolved natural organic matter, refractory compounds, residual degradable substrate, 34 intermediates, soluble microbial products, and trace harmful chemicals (Barker and 35 Stuckey, 1999). The production of EfOM in biological wastewater treatment are greatly influenced by many operational stress conditions, such as hydraulic shock 36 37 loads, low pH, nutrient deficiency, and presence of toxic compounds etc (Jarusutthirak 38 and Amy, 2007). It is generally accepted that the deep treatment of EfOM is not only 39 beneficial to meet the strict disposal standards but also an essential strategy for 40 making better reuse of limited water resource. Therefore, various effectiveness of 41 specific EfOM treating processes have been developed in recent years, including 42 flocculation, ion exchange, sorption, biofiltration, advanced oxidation, and membrane

43	processes (Shon et al., 2006).
44	Among all above-mentioned methods, sorption is considered as a promising
45	choice for EfOM removal effectively from WWTP effluents aiming at decreasing the
46	pollution of receiving water bodies (Zietzschmann et al., 2014). Biochar, as one of
47	typical kind of low-cost sorbents, has been successfully applied for removing
48	potential organic and inorganic pollutants because of its free availability and high
49	sorption capacity. However, one challenge of the application of biochar is the
50	difficulty to separate and recover it from aqueous solution except by high speed
51	centrifugation or filtration, which means high of operational complexity together with
52	a large amount of energy consumption (Ren et al., 2013). To solve this problem,
53	functionalized magnetic materials have been developed in the field of wastewater
54	treatment to overcome the recovery of adsorbents from treated aqueous solution (Jin
55	et al., 2015). Compared with conventional separation methods, the advantage of
56	magnetic nanoparticles is easy to combine with magnetic field to achieve rapid
57	magnetic separation (Mohan et al., 2011). Therefore, it is expected that the
58	combination use of biochar and magnetic separation would have a well prospect in
59	advanced treatment of EfOM in practical application.
60	Since the components of EfOM are complicated, many analytical methods have
61	been developed and applied to reveal the EfOM removal mechanism during advanced
62	treatment process, including ultraviolet/visible spectrometry (UV/Vis), fluorescence
63	spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic
64	resonance (NMR) etc (Michael et al., 2015). Fluorescence spectroscopy, including

65	three-dimensional excitation-emission matrix (3D-EEM) and synchronous
66	fluorescence, has been extensively utilized for characterization the chemical
67	composition, concentration, distribution and dynamics of samples in water and
68	wastewater due to its rapid, selective and sensitive (Ni et al., 2010; Yu et al., 2013). In
69	particular, detailed investigations have been reported on the utilization of parallel
70	factor analysis (PARAFAC) as an effective multivariate data analysis method to
71	deconvolute complex EEMs into independent fluorescent components which
72	represent groups of similar fluorophores (Ishii and Boyer, 2012). Recent research also
73	has demonstrated that two dimensional correlation spectroscopy (2D-COS) could
74	resolve overlapped peaks problem of one-dimensional synchronous fluorescence by
75	extending spectral intensity trends over a second dimension, and thus provide
76	insightful information about the relative directions and sequential orders of structural
77	variations (Xu et al., 2013). Since a significant typical fluorescent components present
78	in aquatic EfOM (e.g., humic and fulvic acids, and proteinaceous material)
79	(Esparza-Soto et al., 2011; Yu et al., 2015), it is of a particular interest for providing a
80	basis of fluorescence analysis and multivariate calibration method as a powerful tool
81	to characterize the binding property of EfOM during sorption process. However, there
82	is still a lack of thorough examination towards this point.
83	Based on the above discussion, the objective of this study was to investigate the
84	feasibility of EfOM sorption onto magnetic biochar composite (MBC) from
85	wastewater. For this purpose, MBC was synthesized, characterized and applied for
86	EfOM removal in view of sorption contact time, adsorption kinetics and adsorption

87	isotherm. A combined use of 3D-EEM, PARAFAC, synchronous fluorescence,
88	2D-COS, and molecular weight distribution were employed to elucidate the
89	interaction between EfOM and MBC. The obtained results could provide insightful
90	information to select, design and optimize the WWTP effluent treatment facilities by
91	considering the point of spectroscopy characterization.
92	2. Materials and methods
93	2.1 Effluent organic matter sample
94	EfOM sample was collected from the secondary settling tank of a municipal
95	WWTP in Jinan, Shandong province, China. The WWTP was treated by using
96	Anaerobic-Anoxic-Oxic (A ² /O) activated sludge process with a treatment capacity of
97	20,000 m ³ /day. The sample was filtered through a 0.45 nm filter, and next stored at 4
98	°C until use. Total organic carbon (TOC) of the collected EfOM sample is typically
99	around 9.0 mg/L with pH at about 7.5.
100	2.2 Synthesis of magnetic biochar composite
101	Biochar was carbonized by using shell as raw material. MBC was prepared by
102	using co-precipitation method (Mohan et al., 2011), and the detailed procedure was as
103	follows: Firstly, 50 g biochar was suspended in a beaker with 500 mL of deionized
104	water. Then, 18 g FeCl ₃ and 20 g FeSO ₄ were sequentially added to another beaker
105	with 1500 mL of deionized water and stirred until they were dissolved completely.
106	Next, both solutions were mixed and stirred at 60-70 °C for 20 min. Thereafter, 10
107	M-NaOH (aqueous) was added drop wise into the mixed suspension until the pH was

108	10-11. After mixing for 1 h, the suspension was aged at room temperature for 24 h
109	and filtered. The remaining solid particles were repeatedly washed with deionized
110	water followed by ethanol. Finally, the prepared MBC was dried at 50 °C for 12 h in a
111	hot air oven.
112	2.3 Batch sorption experiment
113	For sorption kinetic experiment, about 30 mg of MBC was added into a 150 mL
114	conical flask containing 50 mL EfOM solution and 50 mL deionized water (TOC
115	about 4.5 mg/L). The initial pH value of the mixed solution was adjusted to 7.0 by
116	using 0.1 mol/L HCl or NaOH. The samples were taken at different time intervals in
117	the range of 0 - 45 h and analyzed for their TOC concentrations. TOC was selected as
118	a surrogate parameter because it was wildly used for the quantification of EfOM
119	(Michael et al., 2015). The sorption isotherm was carried out with EfOM varied
120	different initial TOC concentrations (3.5-9 mg/L) onto MBC (10 mg) at pH 7.0 for 48
121	h to ensure equilibrium.
122	2.4 EEM-PARAFAC
123	As for the adsorption capacity analysis for batch kinetic experiment, the
124	suspensions were measured to obtain a time-dependent 3D-EEM. 3D-EEM of
125	excitation wavelength were subsequently scanned from 200 to 400 at 10 nm
126	increments by varying the emission wavelength from 280 to 550 nm at 0.5 nm
127	increments, respectively. A 290 nm emission cutoff filter was used in scanning to

eliminate second order Raleigh light scattering. The scanning speed was set at 1200

- nm/min for all the fluorescence measurements. PARAFAC was performed to interpret
- the EEM fluorescence data (n=9). PARAFAC analysis was conducted using
- MATLAB 7.6 (Mathworks, Natick, MA, USA) with the N-way toolbox (Andersson
- and Bro, 2000). Prior to modeling, first-order Rayleigh and Raman light scattering in
- EEM data was removed by using interpolation method (Bahram et al., 2006).
- 2.5 Synchronous fluorescence spectra and 2D-COS
- Before the binding test, 100 mL EfOM sample with initial TOC about 4.5 mg/L
- was added into each erlenmeyer flask by varying different MBC concentration from
- 50 to 450 mg/L at pH 7.0 for 48 h before spectral analysis. Prior to 2D analysis,
- 138 synchronous fluorescence was measured by ranging the excitation wavelengths from
- 250 to 550 nm with a constant offset ($\Delta \lambda$) of 60 nm (Hur et al., 2011), and thus a set
- of dose-dependent synchronous fluorescence spectra were obtained.
- 2D-COS was employed to synchronous fluorescence spectra with the increased
- MBC concentration as the external perturbation. Two types of the maps, including
- synchronous (Φ) and asynchronous (Ψ) correlation spectroscopy, can be generated
- from 2D-COS and mathematically written as follows (Noda and Ozaki, 2004):

145
$$\Phi(x_1, x_2) = \frac{1}{T_{\text{max}} - T_{\text{min}}} \int_{T}^{T_{\text{max}}} \tilde{y}(x_1, t) \cdot \tilde{y}(x_1, t) \, dt$$
 (1)

146
$$\Psi(x_1, x_2) = \frac{1}{T_{\text{max}} - T_{\text{min}}} \int_{T}^{T_{\text{max}}} \tilde{y}(x_1, t \cdot \tilde{z}) ((x_2, t)) dt$$
 (2)

- The parameters of x and t are a spectral variable (i.e., wavelengths) and an
- external perturbation, respectively. $\tilde{y}(x_1,t)$ is the dynamic spectrum, and $\tilde{z}(x_2,t)$ is

149	the Hilbert-transformed orthogonal spectrum. More detailed information on the
150	mathematical procedures associated to 2D-COS could be found elsewhere (Noda and
151	Ozaki, 2004).
152	2.6 Analytical methods
153	The morphology, physical structure and chemical property of prepared MBC
154	were characterized by using Brunauer-Emmett-Teller (BET), FTIR, Scanning electron
155	microscope with energy-dispersive X-ray (SEM-EDX) and Zeta potential, as similarly
156	reported by Mohan et al. (2011). Surface area measurements were performed on
157	Micromeritics ASAP 2020 surface area and porosity analyzer (Quantachrome, United
158	States). FTIR was measured by using a Perkin-Elmer Spectrum One FTIR
159	spectrometer (United States) in the spectral range of 4000-400 cm ⁻¹ . The surface
160	physical morphology and corresponding element of MBC was obtained by using
161	SEM-EDX (Quanta 250 FEG). Zeta potential was measured by using a Malvern zeta
162	meter (Zetasizer 2000). All fluorescence spectra of EfOM samples were measured
163	using a luminescence spectrometer (LS-55, Perkin-Elmer Co., USA). Molecular
164	weight distribution of EfOM samples was measured by using high performance size
165	exclusion chromatography method and detected by high performance liquid
166	chromatography system (Waters 1525, Waters, USA). TOC was analyzed by using by
167	TOC analyzer (TOC-LCPN, Shimadzu Co., Japan). The adsorption experimental
168	results of TOC were analyzed in triplicate, and the averaged data were presented here.

3. Results and discussion

3.1 Characterization of MBC

170

189

190

171	The characterization results of Brunauer-Emmett-Teller (BET), FTIR, SEM,
172	EDX and Zeta potential of the prepared MBC are given in Fig. S1. According to the
173	data, Barrett-Joyner-Halenda (BJH) desorption cumulative volume of pores and BET
174	surface area of MBC is $0.3782~\text{cm}^3/\text{g}$ and $359.7~\text{m}^2/\text{g}$, respectively (Fig. S1A). FTIR
175	spectrum demonstrates the presence of N-H at 3130 cm ⁻¹ , C=O at 1630 cm ⁻¹ and
176	C-OH at 1400 cm ⁻¹ in both biochar and MBC (Fig. S1B). However, two main
177	additional peaks were observed at 579 and 880 cm ⁻¹ in MBC, assigning to the
178	stretching vibrations of Fe-O and C-H out of plane deformation vibration during
179	magnetization process.
180	The surface physical morphology of MBC was measured by SEM (Fig. S1C).
181	Different shapes of pores were observed on the carbons' surface after magnetic
182	process, which was beneficial for surface adsorption. The corresponding EDX
183	spectrum (Fig. S1D) further proved the existence of iron, sulfur and oxygen on the
184	surface of composite, implying that MBC was successfully prepared from the raw
185	carbonaceous material. Fig. S1E shows that Zeta potentials of MBC declined from
186	36.0 to -32.8 mV in the pH range of 2-10, respectively. The negative Zeta potential
187	(pH>5.0) of the magnetic production implied that the positively charged pollutants in
188	EfOM may be more easily adsorbed.

3.2 Effect of contact time on EfOM removal

Fig. 1 shows the effect of contact time on EfOM sorption onto MBC. It is

191 obvious seen that EfOM adsorbed rapidly and amounted to 51.8 % after contact time 192 of 11 h, while 62.9 % of EfOM was uptake by a long period of 45 h to equilibrium. 193 The fast EfOM sorption at the initial stage may be due to the fact that a large number 194 of surface sites are available on MBC. After a lapse of time, it took long time to reach 195 equilibrium because the remaining surface sites were difficult to be occupied due to 196 the repulsion between the solute molecules of the solid and bulk phases (Ahmad and 197 Rahman, 2011). 198 In present study, four common kinetic models in terms of pseudo-first order, 199 pseudo-second-order, Bangham, and Elovich kinetic models were used to analyze the 200 adsorption kinetics data of EfOM onto MBC. Detailed description of the above four 201 kinetic models could be found in Supplementary material. Table S1 displayed the 202 modeled results of kinetics were calculated based on TOC concentrations. It is 203 concluded that pseudo-first order model and pseudo-second order model have higher 204 correlation coefficients (R^2 =0.9497 and 0.9784, respectively). The result implied that 205 physical and chemical sorption were both important during EfOM sorption onto MBC. 206 It has been well reported that EfOM contains different types of organic substances 207 (e.g. endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care 208 products residues (PPCPs) etc.). Therefore, it is possible that physical and chemical 209 adsorption takes place when it comes in contact with activated carbon (Shon et al., 210 2006).

211 3.3 Adsorption isotherm

212	In present study, three common models including Langmuir, Freundlich and
213	Henry equations are described for predicting isotherm results, as shown in Fig. 2.
214	Data implied that the adsorption amount of EfOM onto MBC significantly increased
215	with increasing initial EfOM concentrations. The more description of the maximum
216	adsorption amount (q_m) , correlation coefficient (R^2) , and the other parameters for all
217	the isotherms are presented in Table S2.
218	Experimental adsorption data showed a better fit to both Langmuir and
219	Freundlich models (R^2 =0.9531 and 0.9137, respectively) than Henry model
220	$(R^2=0.8608)$, suggesting that the above two isotherm models reasonably explain the
221	adsorption behaviors. In previous literatures, Langmuir model was predominantly
222	used to describe sorption of natural organic matter onto carbon nanotubes (CNTs) (Lu
223	and Su, 2007). However, a good fit to Freundlich model was also observed during the
224	adsorption of DOM onto granular-activated carbon (GAC) as a pretreatment to
225	reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents
226	(Gur-Reznik et al., 2008). As shown in Table S2, the calculated maximum adsorption
227	capacity from Langmuir model is of 56.1 mg/g for MBC, proving its great potential as
228	an effective adsorbent for treating EfOM from biologically treated effluent. The value
229	of $0.1 < 1/n < 1.0$ in Freundlich model implied that adsorption of EfOM onto MBC is
230	favorable, as similarly reported by Sun et al (2008).
231	3.4 EEM spectra

Fig. 3 shows the EEM spectra of the interaction between EfOM and MBC at

various reaction times from 0 to 20 h. Table S3 summarizes the detailed fluorescence
spectral parameters of all EfOM samples, including peak location and fluorescence
intensity. As shown in Fig. 3A, four main fluorescence peaks (Peak A, B, C and D)
were identified from the 3D-EEM spectroscopy in the raw EfOM sample. Peak A and
Peak B were indentified at excitation/emission (Ex/Em) of 230/354 nm and 280/350
nm, respectively, which were related to aromatic protein-like and tryptophan
protein-like substances (Wang et al., 2009). There is evidence that the presence of
protein-like substances may be attributed to aromatic amino acids and/or tannin-like
structures (Hur et al., 2011). Peak C was located at Ex/Em of 330/427.5 nm, which
was assigned to humic acid-like substances with regard to a biological production and
activity of microorganisms, as similarly reported by Yu et al., (2013). Peak D was
observed at Ex/Em of 240/425 nm, which was related to fulvic acid-like substances.
Along with contact time increased, not only fluorescence intensity but also
fluorescence peak location in all EfOM samples changed with different degrees,
indicating the gradually interaction between EfOM and MBC during sorption process.
More detailed, the intensities of all fluorescent peaks approximately decreased by
52.9-67.7 % in the first 5 min, and thereafter those decreased slowly (Table S3),
which was consistent with the rapid uptake in the initial sorption process (Fig. 1). It
has also been well reported that Peak B and Peak C were representative of the
biodegradable and nonbiodegradable components in EfOM samples, respectively
(Wang et al., 2009). In present study, the intensity ratio of Peak B/Peak C increased
from 0.69 to 1.02, implying that nonbiodegradable component was more easily

255	adsorbed by MBC and the treated EfOM became more biodegradable. By contrast,
256	Liu et al. (2011) observed that the intensity ratio of Peak B/Peak C decreased in a
257	submerged membrane bioreactor (MBR) with pre-ozonation, suggesting that the
258	biodegradable DOM with fluorescence was gradually metabolized by microorganism.
259	An obvious blue-shift in terms of emission wavelength was observed in Peak C,
260	implying the chemical composition changes during treatment process (Rodríguez et
261	al., 2014).
262	3.5 PARAFAC analysis
263	According to PARAFAC analysis, two components were found out to be suitable
264	number by using core consistency diagnostic (close to 100 %) in PARAFAC solution,
265	as shown in Fig. 4. According to the protocol reported by Chen et al. (2003),
266	Component 1 was comprised of two peaks at Ex/Em of 240/435.5 nm and 330/435.5
267	nm, which represented to fulvic-like substances and humic-like substances.
268	Correspondently, the fluorophore of component 2, with two peaks at Ex/Em of
269	230/347.5 nm and 280/347.5 nm, were related to protein-like substances. Protein-like
270	substances may be categorized as the mixture of biological matters in PARAFAC
271	analysis, as similarly reported by Ou et al. (2014). PARAFAC analysis also gives the
272	relative fluorescence intensity scores of two components as a function of reaction time,
273	as shown in Fig. 5. Component 1 decreased with much larger degree (0.82 to 0.10)
274	than that of Component 2 (0.70 to 0.14), suggesting that humic-like substances and
275	fulvic-like substances were removed to a much higher extent than that of protein-like

	1 .
276	substances
4/0	substances.

295

296

277	Applications of combined EEM-PARAFAC analysis has been wildly reported to
278	a variety of environment samples including DOM, soluble microbial products, and
279	extracellular polymeric substances, as compared and displayed in Table S4. Yu et al.
280	(2010) suggested that EEM-PARAFAC could be applied as a valuable research tool
281	for sludge dewaterability, given its high sensitivity, selectivity and simultaneous
282	determination of protein-like, humic acid-like and fulvic acid-like substances. Li et al
283	(2014) investigated the chemical changes of DOM during anaerobic digestion of
284	dewatered sewage sludge by using EEM-PARAFAC, implying that three fluorescent
285	components indentified and increased relating to tyrosine-like, tryptophan-like and
286	humic-like groups in DOM samples. Wu et al. (2011) evaluated heavy metal binding
287	potential of dissolved organic matter in municipal solid waste leachate through EEM
288	quenching combined with PARAFAC analysis, suggesting that PARAFAC model
289	provided quantitative information regarding on the distribution of fluorescence
290	components. The result of this study further extended the application of
291	EEM-PARAFAC model to EfOM treatment process assessment, which was beneficial
292	to improve and optimize the parameter of advanced treatment process in the future.
293	3.6 Synchronous fluorescence
294	Fig. S2 shows the changes in synchronous fluorescence spectra of interaction

between EfOM and MBC. Three main regions could be assigned to protein-like,

fulvic-like, and humic-like fluorescence fractions corresponding to the wavelength

297	ranges of 250-300, 300-380, and 380-550 nm, respectively (Chen et al., 2015). It was
298	observed that fluorescence intensities were consistently quenched over the whole
299	wavelengths with the addition of MBC. Specifically, a much higher extent of
300	fluorescence quenching of fulvic-like fluorescence peak (342.5 nm) was observed,
301	compared with the shoulder of protein-like fluorescence peak (289 nm). The result of
302	synchronous fluorescence spectra clearly reflected the binding ability between EfOM
303	and MBC, which was consistent with the analysis from 3D-EEM.
304	3.7 2D-COS
305	2D-COS analysis was performed to clarify the transformation sequence of
306	various spectral regions with increased MBC addition, and the result is displayed in
307	Fig. 6. One positive auto-peak centering at 342.5 nm was observed along the diagonal
308	line of the synchronous map (Fig. 6A), implying that the occurrence of the spectral
309	changes at the corresponding wavelength region in one direction, as similarly reported
310	by Hur et al. (2011). It was also suggested that fulvic-like fluorescence fraction was
311	more susceptible to the decrease of the fluorescence intensity upon the presence of
312	MBC.
313	In contrast, asynchronous map reveals the sequential or successive changes of
314	the spectral intensities in response to MBC addition. Two negative areas with
315	cross-peaks at 279/300, 279/352, 330/352, 330/389 nm and one positive area
316	centering at 300/330 nm, were observed upper the diagonal line of EfOM in

asynchronous map (Fig. 6B). Based on Noda's rule (Noda and Ozaki, 2004),

fluorescence quenching took place sequentially in the following order: 279 <300
<330<352 and 389 nm. The result demonstrated that the longer wavelength exhibited
higher binding affinities than that of shorter wavelength. It is suggested that
fluorescence quenching took place sequentially in the following order: protein-like
fraction < fulvic-like and humic-like fractions. The obtained binding order of EfOM
and MBC was in agreement with the result of PARAFAC, implying that 2D-COS
could be applied as an effective method to assess the binding property of EfOM onto
MBC.
3.8 Molecular weight distribution
In order to better understand the different size ranges of EfOM removal during
the advanced treatment process, molecular weight distribution of EfOM samples
before and after reaction with MBC was evaluated (Fig. S3). It was obviously
observed that the majority of molecular weight fractions decreased with different
degrees after reaction with MBC. The higher fraction of organic compound with
molecular weight 1200-1500 Da in raw EfOM, which was attributed to the presence
of humic and fulvic acids produced in biological treatment process, as similarly
reported by Huber and Frimmel (1996). The highest removal percentage in terms of
molecular weight fraction was 77.0 % at 492 Da, suggesting that MBC had the ability

for treating emerging contaminants including Endocrine Disrupting Chemicals (EDCs)

and Pharmaceutical and Personal Care Products (PPCPs) in low molecular weight

range from 100 to 500 Da (Shon et al., 2006). Jarusutthirak and Amy (2007) also

reported that small molecules with molecular weight between 100 and 200 Da was related to low molecular weight organic acids, amino acids, or simple sugars which were possibly produced during biomass growth. Therefore, the result of high performance size exclusion chromatography implied that the binding ability and removal efficiency of various size ranges WWTP effluent onto MBC was different.

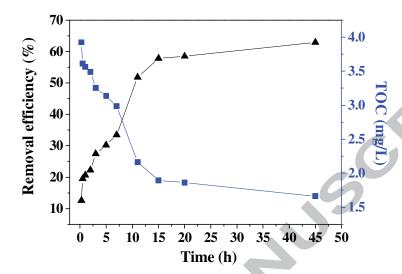
4. Conclusions

In summary, EfOM sorption onto MBC followed pseudo-second order kinetic model and the adsorption isotherm data could be described with Langmuir and Freundlich models. Two components of EfOM were identified from EEM-PARAFAC model and the relative fluorescence intensity scores of two components decreased as a function of reaction time. Synchronous fluorescence spectra and 2D-COS analysis reflected the different binding property between EfOM fractions and MBC with the following order: protein-like < fulvic-like and humic-like fractions. The result of this study is helpful to provide insightful information with respect to EfOM treatment process regarding to the point of spectroscopy characterization.

5. Acknowledgements

This study was supported by the National Natural Science Foundation of China (21377046), Special project of independent innovation and achievements transformation of Shandong Province (2014ZZCX05101), Science and technology development plan project of Shandong province (2014GGH217006), Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation

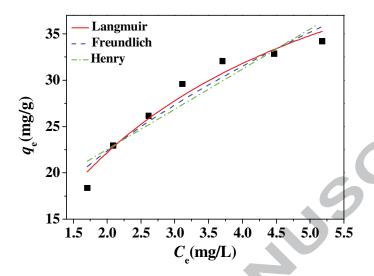
- 360 (STGEF) and QW thanks the Special Foundation for Taishan Scholar Professorship of
- 361 Shandong Province and UJN (No.ts20130937).


References

- [1] Ahmad, M.A., and Rahman, N.K., 2011. Equilibrium, kinetics and thermodynamic
- of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated
- 365 carbon. Chem. Eng. J. 170, 154-161.
- 366 [2] Andersson, C.A., and Bro, R., The N-way toolbox for matlab. Chemom. Intell.
- 367 Lab. Syst. 2000, 1-4.
- 368 [3] Barker, D.J., and Stuckey, D.C., 1999. A review of soluble microbial products
- 369 (SMP) in wastewater treatment systems. Water Res. 33, 3063-3082.
- 370 [4] Bahram, M., Bro, R., Stedmon, C., Afkhami, A., 2006. Handling of Rayleigh and
- Raman scatter for PARAFAC modeling of fluorescence data using interpolation.
- 372 J. Chemom. 20, 99-105.
- 373 [5] Chen, W., Habibul. N., Liu. X.Y., Sheng, G.P., Yu, H.Q., 2015. FTIR and
- 374 Synchronous Fluorescence Heterospectral Two-Dimensional Correlation
- Analyses on the Binding Characteristics of Copper onto Dissolved Organic
- 376 Matter. Environ. Sci. Technol. 49, 2052-2058.
- 377 [6] Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., 2003. Fluorescence
- excitation-emission matrix regional integration to quantify spectra for dissolved
- organic matter. Environ. Sci. Technol. 37, 5701-5710.
- [7] Esparza-Soto, M., Núñez-Hernández, S., Fall, C., 2011. Spectrometric
- characterization of effluent organic matter of a sequencing batch reactor operated
- at three sludge retention times. Water Res. 45, 6555-6563.
- [8] Gur-Reznik, S., Katz, I., Dosoretz, C.G., 2008. Removal of dissolved organic
- matter by granular-activated carbon adsorption as a pretreatment to reverse
- osmosis of membrane bioreactor effluents. Water Res. 42, 1595-1605.
- 386 [9] Henderson, R.K., Subhi, N., Antony, A., Khan, S.J., Murphy, K.R., Leslie, G.L.,
- 387 Chen, V., Stuetz, R.M., Le-Clech, P., 2011. Evaluation of effluent organic matter
- fouling in ultrafiltration treatment using advanced organic characterisation
- 389 techniques. J. Membr. Sci. 382, 50-59.
- 390 [10] Huber, S.A., and Frimmel, F.H., 1996. Size-exclusion chromatography with
- organic carbon detection (LC-OCD): a fast and reliable method for the
- characterization of hydrophilic organic matter in natural waters. Vom Wasser. 86,
- 393 277-290.
- 394 [11] Hur, J., Jung, K.Y., Jung, Y.M. 2011. Characterization of spectral responses of
- 395 humic substances upon UV irradiation using two-dimensional correlation
- spectroscopy. Water Res. 45, 2965-2974.

- [12] Ishii, S.K., and Boyer, T.H., 2012. Behavior of reoccurring PARAFAC
 components in fluorescent dissolved organic matter in natural and engineered
 systems: a critical review. Environ. Sci. Technol. 46, 2006-2017.
- 400 [13] Jarusutthirak, C., and Amy, G., 2007. Understanding soluble microbial products
 401 (SMP) as a component of effluent organic matter (EfOM). Water Res. 41,
 402 2787-2793.
- 403 [14] Jin, Z.X., Wang, X.G., Sun, Y.B., Ai, Y.J., Wang, X.K., 2015 Adsorption of 404 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a 405 combined experimental and theoretical studies. Environ. Sci. Technol. 49, 406 9168-9175.
- [15] Li, X., Dai, X., Takahashi, J., Li, N., Jin, J., Dai, L., Dong, B., 2014. New insight
 into chemical changes of dissolved organic matter during anaerobic digestion of
 dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR
 correlation spectroscopy. Bioresour. Technol. 159, 412-420.
- [16] Liu, T., Chen, Z.L., Yu, W.Z., You, S.J., 2011. Characterization of organic
 membrane foulants in a submerged membrane bioreactor with pre-ozonation
 using three-dimensional excitation-emission matrix fluorescence spectroscopy.
 Water Res. 45, 2111-2121.
- 415 [17] Lu, C., and Su, F., 2007. Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol. 58, 113–121.
- [18] Michael, I., Michael, C., Duan, X., He, X., Dionysiou, D., Mills, M. and
 Fatta-Kassinos, D., 2015. Dissolved effluent organic matter: Characteristics and
 potential implications in wastewater treatment and reuse applications. Water Res.
 77, 213-248.
- [19] Mohan, D., Sarswat, A., Singh, V.K., Alexandre-Franco, M., Pittman, C.U., 2011.
 Development of magnetic activated carbon from almond shells for trinitrophenol
 removal from water. Chem. Eng. J. 172, 1111-1125.
- [20] Ni, B.J., Zeng, R.J., Fang, F., Xie, W.M., Sheng, G.P., Yu, H.Q., 2010.
 Fractionating soluble microbial products in the activated sludge process. Water
 Res. 44, 2292-2302.
- [21] Noda, I.; Ozaki, Y., 2004. Two-dimensional correlation spectroscopy:
 applications in vibrational and optical spectroscopy. John Wiley and Sons Inc.,
 London.
- [22] Ou, H.S., Wei, C.H., Mo, C.H., Wu, H.Z., Ren, Y., Feng, C.H., 2014. Novel
 insights into anoxic/aerobic/aerobic biological fluidized-bed system for coke
 wastewater treatment by fluorescence excitation-emission matrix spectra coupled
 with parallel factor analysis. Chemosphere. 113, 158-164.
- 434 [23] Ren, Y., Abbood, H.A., He, F., Peng, H., Huang, K., 2013. Magnetic 435 EDTA-modified chitosan/SiO₂/Fe₃O₄ adsorbent: preparation, characterization, 436 and application in heavy metal adsorption. Chem. Eng. J. 226, 300-311.

437	[24] Rodríguez, F. J., Schlenger, P., García-Valverde, M., 2014. A comprehensive
438	structural evaluation of humic substances using several fluorescence techniques
439	before and after ozonation. Part I: Structural characterization of humic
440	substances. Sci. Total Environ. 476-477, 718-730.
441	[25] Shon, H., Vigneswaran, S., Snyder, S., 2006. Effluent organic matter (EfOM) in
442	wastewater: constituents, effects, and treatment. Crit. Rev. Env. Sci. Technol. 36,
443	327-374.
444	[26] Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Nan, B., Gao, B. Y., 2008.
445	Competitive biosorption of zinc (ii) and cobalt (ii) in single- and binary-metal
446	systems by aerobic granules. J. Colloid Interface Sci. 324, 1-8.
447	[27] Wang, Z., Wu, Z., Tang, S., 2009. Characterization of dissolved organic matter in
448	a submerged membrane bioreactor by using three-dimensional excitation and
449	emission matrix fluorescence spectroscopy. Water Res. 43, 1533-1540.
450	[28] Wu, J., Zhang, H., He, P.J., Shao, L.M., 2011. Insight into the heavy metal
451	binding potential of dissolved organic matter in MSW leachate using EEM
452	quenching combined with PARAFAC analysis. Water Res. 45, 1711-1719.
453	[29] Xu, H.C., Jiang, H.L., 2013. UV-induced photochemical heterogeneity of
454	dissolved and attached organic matter associated with cyanobacterial blooms in a
455	eutrophic freshwater lake. Water Res. 47, 6506-6515.
456	[30] Yu, G.H., He, P.J., Shao, L.M., 2010. Novel insights into sludge dewaterability
457	by fluorescence excitation-emission matrix combined with parallel factor
458	analysis. Water Res. 44, 797-806.
459	[31] Yu, H.R., Qu, F.S., Sun, L., Liang, H., Han, Z.S., Chang, H.Q., Shao, S.L., Li,
460	G.B., 2015. Relationship between soluble microbial products (SMP) and effluent
461	organic matter (EfOM): Characterized by fluorescence excitation emission
462	matrix coupled with parallel factor analysis. Chemosphere. 121, 101-109.
463	[32] Yu, H., Song, Y., Tu, X., Du, E., Liu, R., Peng, J., 2013. Assessing removal
464	efficiency of dissolved organic matter in wastewater treatment using
465	fluorescence excitation emission matrices with parallel factor analysis and
466	second derivative synchronous fluorescence. Bioresour. Technol. 144, 595-601.
467	[33] Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F.,
468	Jekel, M., 2014. Impact of EfOM size on competition in activated carbon
469	adsorption of organic micro-pollutants from treated wastewater. Water Res. 65,
470	297-306.
471	


472	Figure Captions
473	Fig. 1 Effect of contact time on EfOM sorption onto MBC.
474	Fig. 2 Sorption isotherms fit of EfOM onto MBC with different initial EfOM
475	concentrations.
476 477	Fig. 3 EEM spectra of the interaction between EfOM and MBC at various reaction times.
478 479	Fig. 4 Two components identified by PARAFAC based on EEM spectra of the EfOM samples: (A) Component 1; (B) Component 2.
480	Fig. 5 Fluorescence intensity scores of two PARAFAC-derived components in nine
481	EfOM samples as a function of reaction time.
482	Fig. 6 2D-COS maps for the synchronous fluorescence spectra of interaction between
483	EfOM and MBC: (A) synchronous map; (B) asynchronous map.
484	
485	

488 Fig. 1 Effect of contact time on EfOM sorption onto MBC.

490

491

492

Fig. 2 Sorption isotherms fit of EfOM onto MBC with different initial EfOM

493 concentrations.

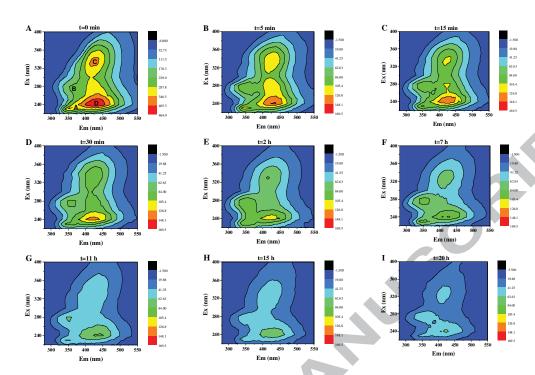
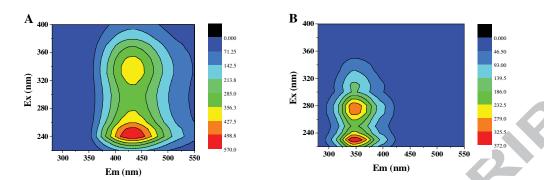



Fig. 3 EEM spectra of the interaction between EfOM and MBC at various reaction 496 497 times.

EEM sp Fig. 4 Two components identified by PARAFAC based on EEM spectra of the EfOM

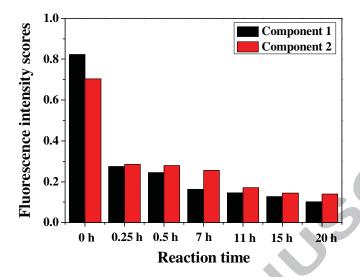
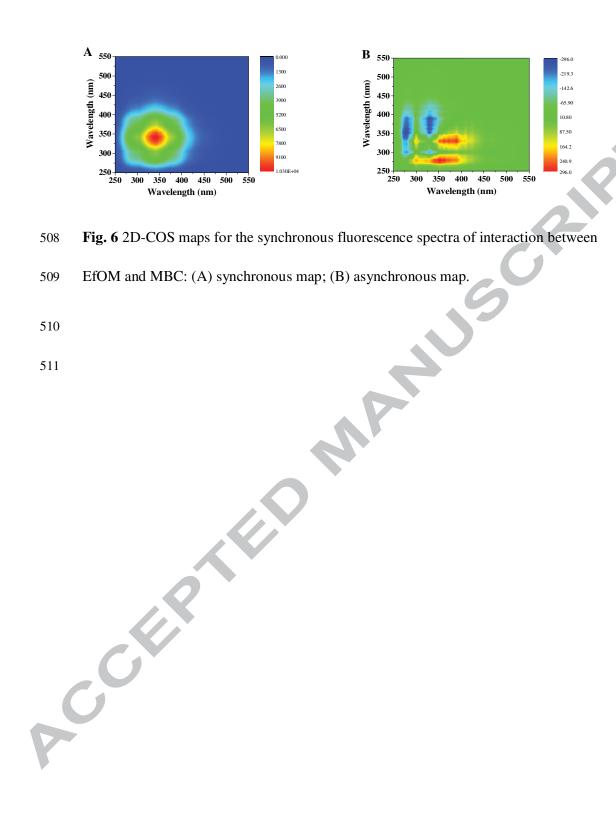
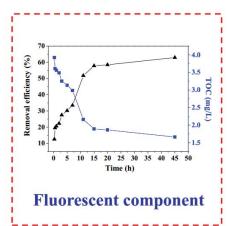
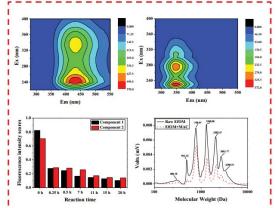



Fig. 5 Fluorescence intensity scores of two PARAFAC-derived components in nine


EfOM samples as a function of reaction time.



512

Effluent organic matter+Magnetic biochar composite

513

518 Research Highlights

- 519 MBC was successfully prepared, characterized and applied for treating EfOM.
- 520 Fluorescent components of EfOM were identified by using EEM-PARAFAC.
- 521 Fluorescence quenching order of EfOM onto MBC was obtained from 2D-COS
- 522 The majority of EfOM in terms of MW were removed with different degrees.