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ABSTRACT 

Soil consolidation has been a primary geotechnical interest for decades. Such 

phenomenon involves the gradual dissipation of excess pore pressures from the soil 

deposit subjected to an external applied load, resulting in a considerable reduction of 

soil volume. Majority of industrial and residential areas have been vigorously developed 

in arid and semi-arid climatic regions, where the underground water table is relatively 

deep. In these regions, construction activities can significantly influence the upper 

unsaturated zone. In particular, the earthworks, such as excavation and compaction, and 

changes in the climate and surface vegetation may result in further creation of 

unsaturated soils, whose properties are much more complicated than those of saturated 

soils. Past decades have witnessed the significant growth of engineering interests in 

unsaturated soils and that has motivated researchers to conduct more insightful research. 

A great attention has been given to the unsaturated consolidation theory due to many 

foundation-related problems particularly relate to time-dependent soil volume change 

and settlement. However, a typical unsaturated soil usually has nonlinear properties and 

intricate phase relationships, which result in theoretical difficulties in formulating a 

reliable model for the consolidation prediction.  

This thesis presents a systematic catalogue of analytical solutions for the 

consolidation of unsaturated soils subjected to various loading and initial conditions. 

Particularly, eigenfunction expansions and standard Laplace transformation techniques 

are used to solve the consolidation equations. This research provides rigorous solutions 

to estimate the rates of excess pore-air and pore-water pressure dissipation and 

consolidation settlement under the one-dimensional (1D), two-dimensional (2D) plane 

strain and axisymmetric consolidation conditions. For the mathematical derivation, 

uniform and linearly depth-dependent initial conditions are adopted along with 

homogeneous boundary conditions, including one-way and two-way drainage boundary 

conditions. In addition, effects of time-dependent loadings are also captured in this 

study. Four primary types of external loads, namely ramping, asymptotic, sinusoid and 

damped sine wave, are simulated and then incorporated in the proposed solutions. On 

the other hand, the 1D consolidation of unsaturated soils under non-isothermal 

conditions is sufficiently discussed. This study also demonstrates that the proposed 
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analytical solutions can change back to the traditional equations for saturated soils. 

Most results are graphically presented in the semi-logarithmic plots. Changes in excess 

pore pressures and settlement are investigated against the air to water permeability ratio 

( ). Moreover, pore pressure isochrones along the flow domains are also 

highlighted in each consolidation field. Verification exercises are conducted by 

comparing the predicted results with other solutions obtained from existing literature. 

The proposed equations can be used by practicing engineers. Programmable methods 

such as Microsoft Excel or MATLAB can be simply adopted to generate results from 

proposed equations to predict the time-dependent settlement of unsaturated soils. 

For all consolidation cases, it is predicted that variations in the permeability ratio 

 result in double inverse S curves for the excess pore-water pressure and 

settlement, while forming a single S curve for the excess pore-air pressure. The study 

shows that the 1D consolidation process in the two-way drainage soil stratum tends to 

proceed more quickly than that in the one-way drainage system. However, the 

consolidation rates under these boundary conditions are almost comparable when drain 

wells (for the 2D plane strain and axisymmetric cases) are installed in the soil profile. In 

the 2D plane strain consolidation system, if the horizontal permeability is greater than 

the vertical permeability (i.e. ), the horizontal flow will govern the 

dissipation rate and the effects of vertical flow is much attenuated. This point is also 

supported in the axisymmetric analysis.  

Additionally, the time-dependent loadings and temperature variations have 

significant impacts on changes in excess pore pressures and settlement. For the loading 

effects, it can be predicted that excess pore-water pressures and settlement are 

considerably influenced by the loading patterns irrespective of  values. However, 

in most loading cases, effects of the applied loads on the excess pore-air pressure are 

less pronounced as  increases. On the other hand, variations in soil temperature 

are substantially attributed to the air temperature and the heat from solar radiation. It is 

predicted that, for time-dependent linear temperature variations, the excess pore-air 

pressure initially increases dramatically and then attains a constant value, while the 

excess pore-water pressure diminishes a very long time after the heat begins to increase. 

Besides, excess pore-air and pore-water pressures near the ground surface increase 

faster than those at lower depths when the temperature increases exponentially. Both 
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pressures then are fully dissipated as the temperature approaches the maximum value. 

For the case of diurnal temperature wave, the excess pore pressure curves would 

oscillate capturing damping and retarding effects. Development of analytical solutions 

for the unsaturated consolidation incorporating the above influencing factors would 

provide fundamental understandings of deformation of unsaturated soils. 
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CHAPTER 1

INTRODUCTION 

1.1. General 

Under an undrained condition, the application of external loads, mainly induced by the 

self-weight of engineered structures, may generate excess pore pressures in a soil 

stratum. After a certain period of time, these excess pore pressures gradually dissipate 

towards the permeable boundaries and subsequently lead to a noticeable reduction of 

soil volume at a variable rate. Such phenomenon is defined as consolidation. As a 

common issue in many engineering applications and designs, consolidation in a 

particular soil stratum has been a major interest in the geotechnical field for decades. An 

original consolidation theory was studied by Terzaghi (1925), who employed the 

effective stress principle and constituted a solid framework to predict the rates of excess 

pore pressure dissipation and settlement, in a limit of saturated soil mechanics. This 

pioneered work has formed a solid background for many later studies. 

Through vigorous developments in geotechnical engineering, it has come to 

realisation that characteristics of natural soils in the subterranean zone have no longer 

been consistent to the traditional soil mechanics studies (Terzaghi 1925, 1943). 

Environmental changes, long-term climatic conditions (i.e. arid and semi-arid climates) 

and human-induced activities (i.e. compaction, excavation) may account for such 

inconsistencies (Fredlund et al. 2012). Likewise, the emergence of flux boundary 

problems due to the imbalance between evaporation and precipitation of groundwater 

has lowered the phreatic level in the soil profile and subsequently altered the saturated 

nature of soil beneath the ground to an unsaturated manner (Thornthwaite 1948; 

Fredlund 1996; Cameron 2001; Cameron & Mills 2009; Fredlund et al. 2012). Figure 

1.1 visualises the flux surface boundary problem occurring at about the surface of the 

hill slope. Most light-engineered and residential structures have been constructed in a 
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direct contact with the upper unsaturated ground, also known as upper vadose zone

(Bouwer 1978), and induce significant compression on the ground surface. Due to the 

complex nature of unsaturated soils, the consolidation-related problems in arid and 

semi-arid regions have not yet been comprehensively understood.  

Existing literature (e.g. Ng & Menzies 2007; Lambe & Whitman 2008; Fredlund et 

al. 2012) refer to a typical unsaturated soil as a three-phase composition consisting of 

solid particles, water and air. The inclusion of air phase within the soil element has 

brought about a great challenge in obtaining a generalised constitutive model that is able 

to capture various soil state conditions. The properties of unsaturated soil, likewise, are 

much more sophisticated than those of fully saturated soil, resulting in highly nonlinear 

consolidation problems. These aforementioned shortcomings may hinder the 

computational capabilities in the consolidation field of unsaturated soils.  

The escalating awareness of changes in soil properties caused by environmental 

impacts emphasises the importance of unsaturated soil mechanics studies, particularly 

Figure 1.1. Schematic of flux surface boundary occurring at the surface of 

unsaturated soil system  
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consolidation theory, for the sake of proper structural development. However, a 

considerable number of past studies have not yet provided satisfactory understandings 

about the mechanical behaviour of consolidation and likewise profound knowledge of 

the field have been left undiscovered for years due to complex problems. Nevertheless, 

a vigorous improvement in computational tools has recently enabled numerous in-depth 

research investigations regarding deformation of unsaturated soils to be established, 

thus enhancing prediction accuracy. This has also allowed extensive capabilities of 

analytical and numerical approaches to evaluate the consolidation in an unsaturated 

porous medium. A following section in this chapter explains statement of problem and 

the concept of consolidation of unsaturated soils, in terms of changes in excess pore-air 

and pore-water pressures and consolidation settlement. This chapter also discusses the 

research objectives and scopes, and later provides an outline of content for this thesis. 

1.2. Statement of problem 

Settlement of a natural soil induced by external applied loads can be categorised into 

three stages including instantaneous (immediate), primary (consolidation) and 

secondary (creep) settlements, as shown in Figure 1.2. Immediately after loading, 

instantaneous settlement occurs as a soil only experiences shear deformation, which 

subsequently leads to changes in shape while maintaining constant volume of soil. It is 

worth mentioning that no dissipation of excess pore pressures occurs during the 

instantaneous settlement. Primary settlement, on the other hand, manifests a notable 

change in the soil volume characterised through dissipation process of both excess pore-

air and pore-water pressures. When time elapses, such excess pore pressures gradually 

dissipate towards permeable boundaries and correspondingly the soil volume would 

reduce due to air and water being squeezed out of pores. Primary settlement is therefore 

considered to be a time-dependent process and may take years to complete. 

Theoretically, the consolidation settlement ends when both excess pore-air and pore-

water pressures approach zero. Once excess pore pressures diminish, the soil continues 

to settle as a result of rearrangement of soil skeleton under loading. This phenomenon is 

known as secondary settlement and it is also considered as a time-dependent process. 

However, the secondary settlement may proceed at a slower rate compared to the 

primary settlement and the amount of secondary settlement may not be very significant 
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(Coduto & Huitric 1990; Coduto et al. 2011). The main highlight in this thesis is the 

primary consolidation settlement of unsaturated soils. 

Although geotechnical studies have witnessed a number of investigations on the 

consolidation theory for unsaturated soils since the mid of 1960s, its true mechanism 

still has been far unfathomable to certainty. Consolidation-related problems in regards 

to the field of interest have not been comprehensively understood for decades. There 

was a realisation that the study of unsaturated soil mechanics was much more 

sophisticated than that of fully saturated soil mechanics (Fredlund et al. 2012). The 

constitutive model of unsaturated soils was likewise developed adopting complex stress 

state variables to accommodate pore-air pressure, resulting in a highly nonlinear 

consolidation problem that requires a cumbersome evaluation for predicting purposes. 

In the early 1960s, the original yet well-known studies of this field were conducted by 

Blight (1961), who introduced a consolidation equation for the dry, rigid and 

unsaturated soils; Scott (1963), who estimated the consolidation of unsaturated soil with 

occluded air bubbles; and Barden (1965, 1974) who analysed the consolidation of 

compacted and unsaturated clays. 

Consolidation studies for unsaturated soils have progressed rigorously since the 

inception of one-dimensional (1D) consolidation theory proposed by Fredlund & Hasan 

Se
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Secondary
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Figure 1.2. A typical settlement curve obtained from oedometer test
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(1979). This theory introduces the nonlinear governing equations describing 

independent flows of air and water in unsaturated deposits. Later, Dakshanamurthy & 

Fredlund (1980), and Dakshanamurthy et al. (1984) accomplished the consolidation 

theories by expanding the existing equations to two-dimensional (2D) and three-

dimensional (3D) models, respectively. This set of theories has inspired a large number 

of recent studies on analytical and numerical models for estimating the consolidation 

settlement in unsaturated soils. Several prominent research accentuated the general 

problems such as 1D consolidation settlement of a single-layer unsaturated soil (e.g. 

Qin et al. 2008; Qin et al. 2010a, 2010b; Shan et al. 2012, 2013; Zhou & Zhao 2014; 

Zhou et al. 2014), consolidation of multi-layered soil (e.g. Shan et al. 2014), 

consolidation for viscoelastic soil (e.g. Qin et al. 2014), 2D plane strain consolidation 

(e.g. Conte 2004), and axisymmetric consolidation problems (e.g. Conte 2006; Qin et al. 

2010c; Zhou & Tu 2012; Zhou 2013). Results given by the aforementioned models 

generally emphasised effects of air to water permeability ratio on excess pore-air and 

pore-water dissipation rates, and consolidation settlement. In addition, pore pressure 

isochrones along dissipation domains were investigated.  

Among the mentioned models, a very modest number of analytical approaches have 

been proposed. Most studies preferred different numerical methods to deal with the 

complexity of governing equations of flow, particularly those derived from 2D plane 

strain and axisymmetric conditions. An initial analytical study about consolidation of 

unsaturated soils was developed by Qin et al. (2008), who introduced the velocity of 

water ( ) and mass rate of air ( ) to the mathematical process. Assuming all the 

consolidation parameters remain constant during the loading process, Qin et al. (2008) 

employed Cayley-Hamilton and Laplace transformation techniques to obtain the final 

solution. Moreover, Qin et al. (2010b) further estimated the dissipation rate of excess 

pore pressures and consolidation settlement of unsaturated soil deposits subjected to an 

exponentially time-dependent loading. Although the results gave good agreement with 

the numerical predictions, the analytical solution is relatively impractical for use 

because of the complexity of the obtained equations.  Shan et al. (2012) and Zhou et al. 

(2014) derived an existing set of inhomogeneous governing flow equations given by 

Fredlund & Hasan (1979) to a homogeneous equations prior to delivering the 

mathematical procedure. Separation of variables was directly applied to the newly 
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proposed governing equations and alternative solutions would be subsequently 

obtained. These indirect methods (Shan et al. 2012; Zhou et al. 2014) require several 

intermediate steps, which are usually cumbersome, to obtain actual solutions. On the 

other hand, there has been a very limited analytical research about the consolidation 

settlement of unsaturated soils under the plane strain and axisymmetric conditions. 

Numerical approaches for both plane strain and axisymmetric cases were provided by 

Conte (2004, 2006), and for axisymmetric case only presented by Qin et al. (2010c) 

using Fourier series approximation and by Zhou & Tu (2012) and Zhou (2013) using 

the differential quadrature method (DQM). Besides analytical and numerical 

predictions, many experimental research (Fredlund & Rahardjo 1986; Rahardjo & 

Fredlund 1995; Wong et al. 1998) have also been conducted to investigate properties of 

unsaturated soil such as permeability and volume change coefficients to name a few. 

Apart from the consistent growth in numerical models for estimating the 

consolidation of unsaturated soils, analytical studies have recently become more 

accessible due to the vast improvements in computational capabilities. This has enabled 

geotechnical researchers to analytically predict characteristics of unsaturated 

consolidation. Besides numerical approaches, it should be noted that analytical 

approaches are widely applicable for homogeneous and nonhomogeneous partial 

differential equations (PDEs) under complex boundary and initial conditions, thus 

providing a decent approximation to consolidation theory. Development of analytical 

methods would also provide comprehensive understandings of time-dependent 

deformation of unsaturated soils. Furthermore, proposed analytical solutions can be 

used to validate the existing numerical models and experimental results. Having realised 

many undiscovered potentials in the analytical field, it is necessary to invest more on 

analytical frameworks for the sake of proper prediction.      

1.3. Objectives and scope of research 

The main objective of this study is to develop a systematic catalogue of analytical 

models to predict the dissipation of excess pore-air and pore-water pressures and 

consolidation settlement of unsaturated soils under three categories: (1) 1D 

consolidation, (2) 2D plane strain consolidation, and (3) axisymmetric consolidation. In 

addition, effects of time-dependent loadings applied on the ground surface and non-
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isothermal conditions are addressed and incorporated in the proposed solutions. 

Graphical presentations will mainly highlight effects of the air to water permeability 

ratio on the consolidation process, particularly time-dependent changes in excess pore 

pressures and settlement. Parametric studies associated with environmental variables, 

such as external loads and temperature, are presented against the dissipation rates and 

settlement of unsaturated soil. This study also demonstrates pore pressure isochrones 

along the dissipation domains. Moreover, effects of a vertical sand drain, which is 

installed in the unsaturated soil profile, under the axisymmetric conditions are 

addressed. The specific objectives of this research are: 

Providing a simple yet novel analytical method for predicting the consolidation of 

unsaturated soil deposits under 1D, 2D plane strain and axisymmetric conditions; 

Estimating the dissipation rates of excess pore-air and pore-water pressures and 

settlement induced by constant and time-dependent loadings; 

Investigating the 1D consolidation of unsaturated soil deposits induced by time-

dependent temperature variations; and 

Evaluating the efficiency of the proposed analytical models and providing guidelines 

as well as step-by-step development of the model for practicing geotechnical 

engineers.  

For the analytical procedure, Fourier Bessel and sine series, and standard Laplace 

transformation are employed to yield final solutions. In particular, these solutions are 

derived from governing equations of flow adopted from existing consolidation theories 

(Fredlund & Hasan 1979; Dakshanamurthy & Fredlund 1980, 1981; Darkshanamurthy 

et al. 1984). A set of governing equations is presented under PDEs with variables of 

time and flow domains. Fourier Bessel and sine series can be applied to PDEs to present 

the eigenfunctions (flow function) whereas Laplace transformation and Laplace inverse 

can be employed to derive the generalised Fourier coefficients (time function) and 

subsequently obtain the solutions. Generally, this research includes the following parts: 

Developing analytical solutions to predict the 1D, 2D plane strain and axisymmetric 

consolidation of unsaturated soil deposits subjected to a constant loading, while 

capturing both uniform and linear initial conditions; 
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Developing analytical solutions for the 1D, 2D plane strain and axisymmetric 

consolidation incorporating the simulated time-dependent loadings, such as ramping, 

asymptotic, sinusoidal and damp sine wave; 

Developing an analytical solution to predict the 1D consolidation of unsaturated soil 

deposits, while considering non-isothermal conditions; and 

Verifying the proposed models for 1D, 2D plane strain consolidation with existing 

data previously published in the literature. 

In addition, it is necessary to address some limitations of the research as follows: 

Coefficients of consolidation, volume change coefficients and consolidation-related 

properties are assumed constant under a transient process at a particular loading 

increment; 

Model verifications are not sufficiently provided in Chapters 5, 6, 8 and 9 due to the 

shortage of experimental results;  

Consolidation model does not capture the hysteresis effect; 

Unsaturated soil stratum is subjected to an isotropic loading; 

Flows of air and water phases are considered on a basis of fluid flow and are 

assumed to be continuous and independent; and 

Vagaries of environmental factors (e.g., wind, rain, snow) and climatic irregularities 

are neglected. 

1.4. Organisation of thesis 

Ten major chapters are presented in this thesis, including:  

Chapter 1 promptly presents an overall view as well as an importance of unsaturated 

soil mechanics in consolidation theory. Additionally, the scope and objectives are 

clearly highlighted in this chapter. 

Chapter 2 delivers a comprehensive literature review of unsaturated soil mechanics 

studies associated with consolidation problems. This chapter also introduces the 

stress state variables, namely suction and net stress, and volume-mass constitutive 

models for unsaturated soils. Development of governing equations is also 

highlighted. Moreover, existing analytical and numerical models for saturated and 

unsaturated soils are sufficiently reviewed in this chapter. 
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Chapter 3 presents the detailed development of analytical model to predict the 1D 

consolidation of unsaturated soil stratum subjected to a constant loading while 

capturing both uniformly and linearly distributed initial excess pore pressures. 

Homogeneous boundary conditions (e.g., one-way and two-way drainage systems) 

are introduced to the mathematical derivation. Changes in excess pore-air and pore-

water dissipation and settlement are discussed and graphically demonstrated against 

time, under semi-logarithmic plots. Pore pressure isochrones along with the vertical 

domain ( -direction) is also investigated. Besides, to check for the validity of the 

proposed solution, a verification exercise against other existing consolidation 

solutions is presented. 

Chapter 4 presents the rigorous development of an analytical model to predict the 1D 

consolidation of unsaturated soil stratum subjected to different time-dependent 

loadings. Four loading functions, namely ramping, asymptotic, sinusoid and damp 

sine wave, are mathematically simulated and incorporated in the procedure to yield 

solutions. The mathematical procedure employs homogenous boundary conditions 

and a uniform initial condition. For the graphical demonstration, dissipation rates of 

excess pore-air and pore-water pressures as well as the consolidation settlement are 

investigated against time. Furthermore, parametric studies in regards to effects of 

loading parameters on the consolidation patterns are conducted for each loading case. 

A verification exercise against existing models is carried out to check for the validity 

of the proposed solutions. 

Chapter 5 introduces an analytical model to predict the 1D consolidation of 

unsaturated soil stratum mainly induced by effects of temperature change with time 

and depth. Governing flow equations are first modified incorporating temperature 

variations. Thermal equations are simulated under forms of linear, exponential and 

diurnal sin wave, and are subsequently incorporated in the proposed solutions. 

Dissipation rates of excess pore pressures at various depths are examined against 

time. This chapter also conducts parametric studies by investigating effects of 

thermal parameters on the 1D consolidation of unsaturated soil deposit.  

Chapters 6 and 7 are to provide an analytical approach that predicts the 2D plane 

strain consolidation behaviour of unsaturated soil stratum. In Chapter 6, the 

mathematical procedure captures both uniform and linearly depth-dependent initial 

conditions along with the constant loading condition to obtain final solutions. Fourier 



10 

sine series are adopted as eigenfunctions for - and -domains whereas Laplace 

transformation is applied to yield the function of time. Chapter 7, on the other hand, 

presents the analytical solution for the 2D plane strain system, while incorporating 

time-dependent loadings in the obtained equations. 

Chapters 8 and 9 present an analytical approach to evaluate the axisymmetric 

consolidation of unsaturated soil stratum considering both radial and vertical flows. 

Governing equations are first transformed into a set of polar equations. Chapter 8 

adopts the constant loading applied to the soil foundation. Separation of variables 

and Laplace transformation techniques are employed to yield final solutions. Chapter 

9 presents the analytical prediction for axisymmetric consolidation of unsaturated 

soils subjected to different time-dependent loadings. 

Finally, Chapter 10 briefly provides the summary of the thesis and then presents the 

conclusions and recommendations for forthcoming studies. This chapter is followed 

by references and appendices. 
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CHAPTER 2

LITERATURE REVIEW 

2.1. General  

2.1.1. Phases in unsaturated soil  

Referring to Dregne (2011), the long-term climatic conditions have resulted in fully dry 

or unsaturated (partially dry) soils in the proximity of the ground surface, accounting for 

approximately a third of the earth’s surface. These soils are located well above the 

groundwater table and are frequently unsaturated due to the excessive evaporation and 

evapotranspiration through vegetation, and insufficient water precipitation (Fredlund et 

al. 2012) (see Figure 1.1). 

A typical unsaturated soil is commonly known as a three-phase geomaterial 

consisting of soil particles, water and air (Ng & Menzies 2007; Lambe & Whitman 

2008; Fredlund et al. 2012). Existence of even the tiniest amount of air in a soil element, 

for instance air bubbles, renders a soil unsaturated. Soil particles form an irregular 

framework called soil skeleton, and spaces between solid particles are called voids

which can be occupied by only water or air or combination of both. In practice, the soil 

portion immediately above the phreatic line can be referred as the capillary zone, where 

pore-water pressures are reported to be negative (Fredlund & Rahardjo 1993; Fredlund 

et al. 2012). Soils in the capillary zone are usually considered as unsaturated soils with 

the presence of negative pore-water pressures.  

In unsaturated soils, concepts and principles required to establish the volume-mass 

constitutive models are usually complex due to the intricate phase relationships and soil 

properties. It is also worth mentioning that the unsaturated soil studies, particularly the 

consolidation theory, have been no longer consistent to the traditional framework 
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proposed by Terzaghi (1925, 1943). In some prevalent consolidation research, the soil 

particles are assumed to be incompressible and changes in the soil volume are therefore 

mainly governed by flows of pore-air and pore-water. Barden (1965) reported that the 

air and water flow in accordance with the continuity of fluid phases. Thus, in an attempt 

to evaluate the soil deformation, flows of air and water phases are usually assumed to be 

independent and continuous.   

Later studies (e.g. Fredlund & Morgenstern 1977; Ng & Menzies 2007; Fredlund et 

al. 2012) claimed the air-water interface within a soil element to be a fourth phase 

which is known as contractile skin. This phase can be described as a thin yet elastic 

membrane formed throughout the voids of soil, separating the pore-air and pore-water. 

Stress state changes in contractile skin may noticeably influence the physical properties 

such as water content, soil volume, and shear strength. According to Fredlund et al. 

(2012), physical properties and mechanical interactions of contractile skin are different 

from the contiguous air and water phases, and as a result the contractile skin should be 

considered as an independent phase when analysing the stress state and physical 

interactions in unsaturated soils. Figure 2.1 demonstrates an unsaturated soil element 

consisting of soil solids, air, water and contractile skin. 

However, the contractile skin is composed of only a few thin molecular layers, its 

physical subdivision may not be essential for constituting volume-mass models for 

unsaturated soils. Thus, the contractile skin can be practically considered as part of 

Figure 2.1. An unsaturated soil element with air, water and contractile
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water phase (Fredlund & Rahardjo 1993; Fredlund et al. 2012). Current studies have 

employed the simplified three-phase composition for practical investigation. Figure 

2.2(a) demonstrates the mass and volume quantities in the four-phase diagram whereas 

Figure 2.2(b) schematically shows a simplified phase diagram of unsaturated soil. 

Figure 2.2. Schematic phase diagram of unsaturated soil: (a) four-phase soil

system and (b) simplified three-phase soil system (modified after Fredlund &

Rahardjo 1993)



14 

2.1.2. Surface tension on the contractile skin 

Surface tension, denoted as , occurs when intermolecular forces are exerted on 

molecules of contractile skin. As mentioned by Fredlund et al. (2012), the molecules 

within water are surrounded by equally intermolecular forces whereas the molecules 

within the contractile skin (i.e. the air-water interface) are subjected to unbalanced 

forces, as shown in Figure 2.3(a). Due to the unbalanced force condition, the contractile 

skin acts like a flexible membrane that exhibits a concave segment towards the larger 

pressure and induces surface tension for the sake of pressure equilibrium. This tension 

phenomenon can be depicted in Figure 2.3(b). As observed, pressures exerted on each 

side of the contractile skin are  and . Additionally, the radius of concave 

curvature is called meniscus and is denoted as . It is worth mentioning that the surface 

tension decreases with increasing temperature (Kaye & Laby 1921). Table 2.1 presents 

decreasing magnitudes of surface traction as temperature increases. 

Based on Figure 2.3(b), Ng & Menzies (2007), and Fredlund et al. (2012) suggested 

the force equilibrium in the vertical direction as follows: 

          [2-1] 

Rs Rs

Ts Ts

Molecule on the
contractile skin

Molecule in water

Contractile skin

(a) (b)

O

u + u 

u

Figure 2.3. Surface tension effect in the contractile skin: (a) intermolecular forces 

acting on a molecule in the contractile skin and on a molecule in water; (b) a 

concave segment and surface tension in the contractile skin (after Fredlund et al. 

2012)
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Table 2.1. Relation between surface tension and temperature (after Kaye & Laby 

1921) 

Temperature ( ) Surface tension 
( ) 

0 75.7 

10 74.2 

20 72.75 

30 71.2 

40 69.6 

50 67.9 

60 66.2 

70 64.4 

80 62.6 

100 58.8 

Note that the parameter  presented in Equation [2-1] would be determined by 

taking a difference between the pore-air pressure ( ) and pore-water pressure ( ), and 

that is defined as the matric suction. Thus, Equation [2-1] can be further simplified as 

shown below: 

           [2-2] 

When the three-dimensional (3D) membrane is considered (Figure 2.4), Equation [2-

2] becomes: 

          [2-3] 

where  and  are radii of curvature of 3D membrane in two orthogonal planes. 
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Assuming that radii of curvature are similar in all directions, Equation [2-3] then can 

be rewritten as: 

           [2-4] 

Equation [2-4] is provided by Fredlund et al. (2012), demonstrating a clear 

correlation between the matric suction ( ) and the meniscus ( ). In particular, 

the meniscus is inversely proportional to the matric suction, implying that the decreases 

in matric suction leads to the increases in radius of curved air-water interface. In a case 

when the meniscus approaches infinity, the matric suction would be equal to zero and 

the air-water interface would become flat.  

2.1.3. Soil suction 

The total suction, symbolised as , is considered to be a free energy of soil water and 

consists of two major components, namely the matric suction ( ) and osmotic 

suction ( ) (Edlefsen & Anderson 1943). The total suction can be formulated in a 

simple equation as shown below: 

             [2-5] 

Figure 2.4. The 3D membrane with radii of curvature (modified after Fredlund et

al. 2012)
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On the other hand, Richards (1966) and Sposito (1981) also introduced a qualitative 

equation that describes the soil suction in terms of the partial vapour pressure of soil 

water as follows: 

           [2-6] 

where  is the universal gas constant (i.e., );  is the 

absolute temperature ( );  is the temperature ( );  is the specific volume of water 

( );  is the molecular mass of water vapour (i.e., );  is the 

partial pressure of pore-water vapour ( ); and  is the saturation pressure of water 

vapour over a flat surface of pure water at the same temperature ( ). It is also worth 

mentioning that the fraction  is defined as the relative humidity ( ). 

As stated by Fredlund et al. (2012), both matric suction ( ) and osmotic 

suction ( ) contribute to a reduction of the relative humidity ( ). The osmotic suction 

can be applicable to both saturated and unsaturated soil mechanics. It is a result of 

retention energy due to the amount of dissolved salts in the pore fluid and is expressed 

in terms of pressure (Murray & Sivakumar 2010). Therefore, changes in osmotic suction 

are most likely due to changes in the salt content within the soil. The mechanical 

properties of the soil, such as total volume and shear strength, are significantly 

susceptible to effects of osmotic suction when the dissolved salts are contaminated. The 

matric suction, on the other hand, mainly associates with the capillary phenomenon and 

contractile skin. The relationship between the matric suction and contractile skin is 

mathematically presented in Equation [2-4]. Changes in matric suction are mainly due 

to the environmental variables, climatic vagaries and earthworks (e.g., compaction, 

excavation) (Fredlund et al. 2012). Most unsaturated soil problems are related to the 

environmental changes (e.g. excessive rainfall, drought etc.), which significantly 

influence the matric suction component but results in minor changes in the osmotic 

suction component. In other words, the strength of unsaturated soils is fundamentally 

governed by the matric suction despite a considerable amount of salts within the soil 

water (Alonso et al. 1987). 
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Figure 2.5 demonstrates the total, matric and osmotic suction measurements based on 

the compacted Regina clay using different experiments (e.g., transistor psychrometer, 

pressure plate, squeezing technique). It can be observed that the matric suction change 

is very much congruent to the total suction change, particularly at higher water content 

values ( ). These results obtained by Krahn & Fredlund (1972) indicate that the total 

suction changes are equivalent to the matric suction changes. The matric suction 

therefore may essentially represent the total suction when dealing with unsaturated soil 

settlement problems (Fredlund et al. 2012). Tang et al. (2002) also reported that an 

increase in matric suction would result in a pronounced increase in soil strength. 

However, it is noteworthy that marine soils near coastal areas or particular soils 

composed of low porosities and high cation exchange capacity usually exhibit a high 

osmotic suction, which significantly affects the volumetric behaviour of soils (Fritz & 

Marine 1983; Graham et al. 1992; Feng et al. 2003; Sreedeep & Singh 2006). Referring 

to existing soil deformation analyses (Alonso et al. 1990; Loret & Khalili 2002; Sheng 

et al. 2008; Fredlund et al. 2012), this thesis only highlights effects of matric suction for 

the constitutive formulation in unsaturated soils. 
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Figure 2.5. Total, matric and osmotic suctions obtained using compacted Regina 

clay (modified after Krahn & Fredlund 1972)
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2.1.4. Fabric modifications induced by soil suction 

Soil deformation associated with microstructural changes is of great interest in 

unsaturated soil mechanics. According to Romero & Simms (2008), many macroscopic 

soil properties such as water content, hydraulic conductivity, and volume changes may 

be characterised by the microstructural behaviour. Compacted soils are mainly 

composed of two structure levels, namely macrostructure and microstructure (Koliji et 

al. 2006). The soil macrostructure is related to the structural assemblage of soil 

aggregates and spaces between these aggregates are termed macropores, also known as 

inter-aggregate. On the other hand, the microstructure associates with the elementary 

arrangement within individual aggregates. Spaces within these individual aggregates 

can be defined as micropores or intra-aggregates. In some existing literature (Cuisinier 

& Laloui 2004; Koliji et al. 2006), the pore classes are usually bordered at about . 

It is also worth mentioning that, in fissured porous media, Valliappan & Khalili-

Naghadeh (1990) consider the macropores as fissures and the micropores as spaces in 

porous blocks. Such distinctive division of pore classes yields the double porosity 

concept of soils. 

The compacted soil fabric can be determined using two prominent techniques: (1) 

mercury intrusion porosimetry (MIP) for interpreting the soil porosity and pore-size 

distribution (PSD) (Delage et al. 1996; Romero & Simms 2008); and (2) scanning 

electron microscopy (SEM) for investigating the spatial arrangement and structure of 

micropores and small particles (Delage et al. 1996; Cuisinier & Laloui 2004; Koliji et 

al. 2010). As reported by Delage & Lefebvre (1984), both techniques show that the 

macropores would first retract notably during the consolidation process and the 

micropores are eventually subjected to compression when larger pores completely 

collapse. Of two techniques, the MIP is more suitable to investigate the double porosity 

theory and structural evolution as it successfully measures a large pore range, in which 

pore classes (i.e., microporosity and macroporosity) are clearly identified (Cuisinier & 

Laloui 2004). The MIP also provides qualitative interpretations on soil fabric 

modifications induced by suction increase (i.e.,  or ). This point was 

evidenced from experimental investigations on a compacted glacial till conducted by 

Simms & Yanful (2001, 2002). These studies demonstrated that increases in matric 

suction (i.e., from about ) would lead to the bimodal PSD curve in a way 
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Figure 2.6. Soil fabric modification due to varying suctions (after Koliji et al.

2006)
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that the microporosity rises considerably companied with a pronounced decrease in the 

macroporosity.  Figure 2.6 illustrates PSD curves induced by matric suction variations. 

It is observed that the suction increase has little effects on the volume fraction of pores 

when the pore-size is approximately smaller than  (Zone 1) or greater than 

(Zone 4). The PSD curves in Zone 2 correspond to the micropore volume, which 

increases significantly during the drying process (i.e., suction increase). It is also 

observed that the reduction of total porosity of soil is ascribed by the notable shrinkage 

of the macropore volume (Zone 3). From the MIP test results, Cuisinier & Laloui (2004) 

elucidated that soil samples might undergo significant fabric modifications without 

changing the total porosity and void ratio. Koliji et al. (2006) further formulated the 

double-structure model based on the PSD curves as follows: 

    [2-7] 
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Figure 2.7. Compression indices influenced by suction increase (after Cuisinier

& Laloui 2004)

where  is the predicted volume fraction of pores at suction ;  is the pore 

radius;  is the pore radius at particular zone;  and  are the initial and final matric 

suctions; and ,  and  are volume fraction of pores at particular zone. 

Experimental studies conducted by Cuisinier & Laloui (2004) also show that a pre-

consolidation stress (i.e., ) obtained in an unsaturated soil sample is significantly 

higher than that in a fully saturated soil at a particular stress increment ( ) 

(Figure 2.7). In other words, the pre-consolidation stress  is prone to increase as 

the matric suction increases. It is also reported that the compression indices  and 

associated with settlement analyses would increase with increasing suction (Cuisinier & 

Laloui 2004). However, at a very high applied stress (e.g., ), compression curves 

of unsaturated soil samples would relatively converge to those of saturated samples 

(Figure 2.7). This phenomenon implies that the matric suction has insignificant effects 

on the volume change of the tested samples when the vertical applied stress increases. A 

plausible explanation for this observation associates with the change in degree of 

saturation ( ) (Cuisinier & Laloui 2004). The void ratio of the unsaturated soil sample 

reduces during the compression process and consequently the degree of saturation 

approaches close to  per cent at the later stages of compression. This condition leads 
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to a pronounced increase in the meniscus, which in turn causes the matric suction to 

diminish as the loading progresses. Thus, compression curves of both saturated and 

unsaturated soils would approach a similar value when the loading increases. 

2.2. Wetting-induced volume change issues 

2.2.1. Problematic soils in response to saturation  

Volume change prediction of soils has been a major interest in geotechnical engineering 

since the robust growth of classic soil mechanics introduced by Terzaghi (1925). In the 

mid 1960’s, it was however realised that mechanical behaviours of a large portion of 

earth deposits in arid and semi-arid regions appeared to be inconsistent to the traditional 

saturated soil studies. A notable attention was given to a number of problematic soils 

associated with wetting-induced volume change in such areas. In particular, the 

naturally occurring deposits as well as compacted fills may be usually wetted as the 

results of excessive rainfalls or human-induced changes in groundwater regime. The 

wetting may lead to decreases or increases in a volume depending on the type and 

structure of soil, initial density, and the stress states to name a few (Ng & Menzies 

2007). According to Houston (1996), soils exhibiting considerable deformation due to 

changes in moisture content can be regarded as moisture-sensitive soils. 

Most soils under the arid climates appear to be problematic as they expand, collapse, 

or disperse and subsequently experience a significant ground deformation (Rezaei et al. 

2012). Particularly, two common problems in response to the effect of wetting that 

geotechnical and foundation engineers have frequently encountered in real practice are 

related to collapsible soils and expansive soils (Houston et al. 1988; Bell & Maud 1995; 

Bell & Culshaw 2001; Tripathy et al. 2002; Fredlund 2014). When moisture content 

increases, collapsible soils are usually subjected to pronounced reduction of volume or 

collapse whereas expansive soils are prone to heave. Both problematic soils are 

moisture-sensitive and would lead to foundation distress and differential movements, 

which consequently result in severe damages to the structural components (Ng & 

Menzies 2007; Sheng 2011). It is worth mentioning that such soils are relevant to 

unsaturated soil mechanics, which contradicts to the saturated soil theories due to their 

different natures and properties. 
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2.2.2. Collapsible soils  

Arid and semi-arid climates have been immensely attributable to the formation of 

problematic collapsible soils (Houston et al. 2001). Furthermore, over the past decades, 

urbanisation in such climatic areas has significantly disturbed the groundwater level and 

increased the moisture content within the foundation region. Thus, the soil volume 

would eventually suffer from a dramatic reduction upon wetting. Particles of collapsible 

soils are originally comprised of loosely packed grains, ranging from gravels and 

cobbles to fine sands and silts with coatings of small amounts of clay (Fookes & Parry 

1994). Clevenger (1956) also reports that the silt and sand contents in the collapsible 

soils (e.g. loess, colluvium, alluvium, brickearth etc.) may be up to  per cent of the 

soil weight. Ng & Menzies (2007) further explained that such naturally occurring soils 

possess a metastable structure with typically low density, and may be cemented by 

various salts, oxides and dried clays. It should be noted that the matric suction has 

substantial impacts on properties of those soils, particularly the void ratio. As explained 

by Fredlund (2014), the reduction in matric suction due to wetting would lead to a 

notable decrease in void ratio of the metastable-structured soils, and an increase in void 

ratio of the stable-structured soils. When wetted, the soil tends to move downwards 

rapidly as particles slip past each other to become more tightly compacted. Significant 

amount of clay contained in soils, however, would hinder the collapse rate (Bell & 

Culshaw 2001).     

During the vigorous urbanisation, engineering activities such as alterations and 

modifications of natural flow patterns have been responsible for the collapse of soil (Ng 

& Menzies 2007). Several methods have been proposed to predict the collapse issue 

upon wetting. Clevenger (1956) developed a dry density based criteria to determine if a 

soil is liable to the collapse when the moisture content increases. Specifically, the soil 

may be predicted to experience a significant collapse for the dry density smaller than 

about , and the soil may undergo a less pronounced collapse for the dry density 

greater than  (Clevenger 1956). Gibbs & Bara (1962) recommended criteria 

for detecting the collapsibility based on the dry unit weight when the liquid limit is 

greater than  per cent. Handy (1973), on the other hand, suggested much simpler 

method to estimate the probability of collapse by investigating the quantity of clay. 



24 

Void ratio rapidly reduces

(Collapse)

0.78

0.74

0.70

0.66

0.62

0.58

0.54

0.50

0.46
10 20 30 40 50 100 200 300 400 500 1000

V
oi

d 
R

at
io

Logarithmic Stress (kPa)

Figure 2.8. Result generated by oedometer test indicating collapse of metastable-

structured brickearth (modified after Northmore et al. 1996)

Detailed criteria indicating the probability of soil collapse due to saturation are provided 

in Table 2.2.  

Table 2.2. Criteria for determining collapsibility based on clay content (modified 

after Handy 1973) 

Clay Content (%) Probability of Collapse 
upon Wetting 

Below High probability for collapse 

 – Probably collapsible 

 –  Less than    

Above Non-collapsible 
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Pells et al. (1975) conducted oedometer tests to investigate the effect of wetting on 

identical metastable-structured soils. In particular, specimens were prepared in the way 

that they could maintain natural moisture content, and then they were subjected to the 

same loading sequences. After the loading reached a given target, the unsaturated 

specimens were inundated with water for over  hours while maintaining the loading 

condition. Reduction of volume of the specimen eventually occurred and the collapse 

strain was recorded. Then, the specimens experienced further applied load. Figure 2.8 

presents a typical collapse evidence of metastable-structured brickearth (taken from the 

south Essex) under the oedometer test condition carried out by Northmore et al. (1996). 

Based on experimental results, Pells et al. (1975) further summarised the potential 

severity of collapse by measuring the collapse percentage (i.e., , in which ‘ ’ 

is the void ratio) (Table 2.3). 

Table 2.3. Criteria indicating severity of collapse based on percentage of collapse 

(modified after Pells et al. 1975) 

Identifying collapse potential deposits prior to construction and proposing proper 

solutions to alleviate collapse problems have always been great challenges for 

geotechnical engineers. The lack of thorough understanding of the wetting-induced 

volume change leads to unsatisfactory remedy for the problem. Practically, light-weight 

Collapse Percentage (%) Severity of Problem 

 – No problem 

 – Moderate problem 

 – Problem 

 – Severe problem 

Above Very severe problem 
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to moderate-weight structures and many other cost-competitive construction projects 

may be susceptible to critical damages because the financial investments spent on the 

site investigation and mitigation alternatives are usually limited (Ng & Menzies 2007). 

Some available solutions have been proposed to deal with the collapse phenomenon 

such as removal of moisture-sensitive soils (Anayev & Volyanick 1986), chemical 

stabilisation (Sokolovich & Semkin 1984), dynamic compaction (Lutenegger 1986), 

pile foundations (Gao et al. 2007), and differential settlement resistance foundations 

(Souza et al. 1995) to name a few. The soil collapsibility is not comprehensively 

understood and, in most practical cases, it is only discovered after the structure is 

completely constructed. To overcome such problem, great cares should be given to the 

site investigation and pre-construction mitigation plan prior to construction. 

2.2.3. Expansive soils  

Essentially expansive soils account for many critical failures of foundation in response 

to wetting. This geotechnical problem has been frequently reported in several parts of 

the world, but is found to be the most critical in arid and semi-arid climatic areas, where 

urbanisation takes place (Jones & Jefferson 2012). Due to an increase in water content 

within foundation, moisture-sensitive soils may be subjected to substantial volume 

changes characterised by swell-shrink processes. According to Jones & Jefferson 

(2012), foundation beneath infrastructures and buildings primarily consists of clay-rich 

deposits, such as smectite and montmorillonite, with high swelling potential. It should 

be noted that if a soil contains larger amounts of clay, its welling potential will become 

very high and the soil is able to absorb more water. In this case, the soil volume would 

subsequently swell or expand due to the water absorption. It is common for most 

expansive clays to experience volume changes of more than  per cent (Nelson & 

Miller 1997; Chen 2012). In contrast, clays with shrinkage potential may be exposed to 

a dry condition during a long-term drought and therefore become more susceptible to 

the shrinkage and cracking phenomena. Holtz & Kovacs (1981) report that the swell-

shrink behaviours of clays are irreversible processes. However, latest results from cyclic 

swell-shrink tests have demonstrated that compacted clays subjected to numerous 

wetting and drying cycles would almost recover to the original soil thickness (Subba 

Rao & Satyadas 1987; Day 1994; Al-Homoud et al. 1995; Songyu et al. 1998; Tripathy 

et al. 2002; Ng & Menzies 2007).     
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Soils with high swelling potential would be liable to volume expansions when 

wetted, lifting up and damaging engineered structures, particularly the low-rise or light-

weight structures. Contrariwise, soils with shrinkage potential would become rigid 

under the dry condition, inducing shrinkage and cracking of the ground. Referring to 

Bell & Culshaw (2001), the swell-shrink response of clays substantially depends on 

seasonal variations (e.g. rainfall, drought), precipitation and evapotranspiration of 

vegetation. More importantly, a decent portion of clay contained in soils would be a 

crucial factor that contributes immensely to swelling (Tripathy et al. 2002). Reportedly, 

kaolinite is usually categorised into a clay group that has the least swelling capacity; 

illite can expand up to  per cent and would further expand to  per cent or more 

when it is mixed with montmorillonite; calcium montmorillonite has the swelling range 

from about  to  per cent; and sodium montmorillonite exhibits very high 

expansion with up to  per cent of the initial volume and is likely to appear in a gel 

form when wetted (Bell & Culshaw 2001). The wetting-induced volume change is also 

characterised by the initial density and the soil structure. Expansion of a densely packed 

soil tends to proceed more quickly compared to that of a loosely packed soil. It is worth 

noting that undisturbed expansive clays support the soil structure against swelling 

pressures and therefore become less susceptible to vertical deformations (Ng & Menzies 

2007). 

Table 2.4. Potential swell-shrink of clayey soils based on various categories of PI 

(modified after BRE 1993) 

PI (%) Potential 
Swell-Shrink  

Below Low 

 – Medium 

 – High   

Above Very high 
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According to Bell & Maud (1995), volume change detection methods available in 

engineering practice include empirical, soil suction and oedometer methods. The 

empirical method usually involves determining various properties such as Liquid Limit 

( ), Plastic Limit ( ), natural moisture content, and void ratio to name a few. The 

Building Research Establishment (BRE) (1993) shows the degree of swelling and 

shrinkage potentials of clayey soils by referring to the Plasticity Index ( ) (see Table 

2.4). Note that overlapping categories of  presented in Table 2.4 are due to the fact 

that data was collected from various sources (Jones & Jefferson 2012). Nevertheless, the 

prediction criteria based on  is found to be rather simple yet impractical as it does not 

capture effects of moisture content, soil suction and structure which principally control 

the swell-shrink behaviour (Bell & Culshaw 2001). 

Soil suction is considered to be a substantial factor influencing the degree of volume 

change. Particularly, matric suction reduces in response to an increase in moisture 

content, resulting in a swelling behaviour of soils. When a soil achieves the maximum 

expansion, the value of matric suction would reach zero (Ng & Menzies 2007). For the 

volume change detection method related to suction, O’Neil & Poormoayed (1980) 

adopted the United States Army Engineers Waterways Experimental Station 

(USAEWES) to present swelling potentials and their classifications corresponding to 

various groups of in situ suction,  and , as shown in Table 2.5.  

Table 2.5. Potential swell and classifications based on USAEWES (modified after 

O’Neil & Poormoayed 1980) 

In situ Suction 
(kPa) 

LL (%) PL (%) Potential Swell 
(%) 

Classifications 

Below  Below  Below  Below Low 

 –  –  –  – Marginal 

Above  Above  Above  Above High 
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Alternatively, the potential swell of a soil can be determined by adopting oedometer 

tests. Undisturbed clayey specimens can be prepared and placed firmly in the oedometer 

and then subjected to different stress paths. Subsequently, data related to vertical strain 

of soil specimen is collected and analysed. As reported by Bell & Culshaw (2001), both 

lateral and vertical strains develop locally within the ground, inducing visible cracking 

in soils. Furthermore, oedometer test results revealed that the swelling and shrinkage 

deformations do not happen one-dimensionally. Thus, an exclusion of lateral strain in 

the study may overestimate the extent of the problems (Bell & Culshaw 2001). 

Expansive soils may cause a long-term heave beneath structures due to wetting and 

induce a differential settlement as well as cracking in response to drying. To deal with 

these expansive problems, some solutions have been used in engineering practice such 

as ground substitution (Katti & Katti 1994), ground stabilisation (Nelson & Miller 

1997), stabilisation of moisture content, flexible structure design, rigid structure design 

(Rosenhaupt & Mueller 1963), and deep foundations (Blight 1984). Also, careful site 

investigations and explorations should be carried out prior to construction to avoid 

potentially expansive problems. 

2.3. Stress State Variables in Unsaturated Soils 

2.3.1. Single-valued effective stress equations 

Volume change characteristics and shear strength are generally regarded as mechanical 

properties which can be described in terms of stress state in a soil. The term “stress state 

variables” refers to combinations of stress variables in the soil that characterise physical 

deformations. According to Ng & Menzies (2007), typical stress state variables of an 

elastic body describe the strain and stress fields and the geometry of the body. In 

addition, stress state variables can be used to establish a constitutive model predicting 

soil behaviours associated with the volume change and shear strength. It should be also 

noted that these stress variables are independent of physical properties of soil and can be 

therefore applicable to a wide range of soil particles such as sands, silts and clays (Fung 

1965; Ng & Menzies 2007).  
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Table 2.6. Single-valued effective stress equations for unsaturated soils (modified 

after Fredlund 1987) 

Equations Authors 

  

where  is the bonding factor which is measure of number of 
bonds under tension, effective in contributing to soil 
strength.    

Croney et al. 
(1958) 

  

where  is the pore-air pressure; and 

 is the parameter related to the degree of saturation. 

Bishop (1959) 

  

where  is the statistical factor of same type as contact area; and  

 is the pore-water pressure deficiency. 

Jennings (1960) 

  

where  is the parameter with values ranging from zero to one. 

Aitchison (1961)

  

where  is the effective stress parameter for matric suction;  

 is the effective stress parameter for solute suction;  

 is the matric suction; and 

 is the solute suction. 

Richards (1966) 
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In saturated soil studies, the effective stress principle and one-dimensional (1D) 

consolidation theory were initiated by Terzaghi (1925), who claimed that the stiffness 

and shear strength are principally controlled by an effective stress. This 1D 

consolidation theory was later expanded to the three-dimensional (3D) consolidation 

field by Biot (1941). The effective stress in saturated soil mechanics can be considered 

as a single stress state variable and is expressed as follows:  

                      [2-8] 

where  is the effective normal stress;  is the total normal stress; and  is the pore-

water pressure. The single-valued effective stress equation for fully saturated soils has 

been proven to be valid through numerous experiments conducted by Rendulic (1936), 

Bishop & Eldin (1950), and Skempton (1984). The validity of effective stress theory in 

saturated soil mechanics has motivated further developments of single-valued effective 

stress equations for unsaturated soils. In late 1950s and early 1960s, many progressions 

were made to adopt the effective stress concept by Croney et al. (1958), Bishop (1959), 

Jennings (1960), Aitchison (1961), and Richards (1966). Table 2.6 summarises various 

single-valued effective stress equations proposed for unsaturated soils. 

Later studies (e.g. Brackley 1971; Morgenstern 1979; Wheeler & Karube 1996) 

however revealed that unsaturated soil frameworks adopting the single effective stress 

might lead to many practical difficulties. Morgenstern (1979) found that the volumetric 

behaviour and shear strength might not be practically governed by the same effective 

stress parameters. Wheeler & Karube (1996), on the other hand, reported that expansive 

and collapsible soil effects could not be captured in the proposed effective stress 

equations. Experimental results also showed little support on the use of a single-valued 

effective stress (Wheeler & Karube 1996). According to Morgenstern (1979), soil 

parameters used in the proposed equations, particularly , may not be comprehensively 

understood. Moreover, the soil property (i.e., degree of saturation) incorporated in 

effective stress make the proposed equations no longer single-valued (Fredlund et al. 

2012). Many studies (Coleman 1962; Jennings & Burland 1962; Bishop & Blight 1963; 

Burland 1964; Blight 1965) demonstrate that the soil property associated with effective 

stress would rather vary depending on different physical problems such as volume 

change and shear strength, different stress paths, and different types of soil. In 
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concerning several limitations when adopting the single-valued effective stress for 

unsaturated soils, Matyas & Radhakrishna (1968), Barden et al. (1969), and Fredlund & 

Morgenstern (1977) recommended separate stress state components for further 

formulation of constitutive models. The concept of independent stress state variables 

has been used in many theoretical formulations for fluid flows (e.g. Fredlund & Hasan 

1979; Dakshanamurthy & Fredlund 1980, 1981; Darkshanamurthy et al. 1984) and 

elastoplastic (EP) frameworks for volume change prediction (e.g. Alonso et al. 1990; 

Cui & Delage 1996; Chiu & Ng 2003; Georgiadis et al. 2005; Thu et al. 2007).   

It is however worth mentioning that the effective stress equation for unsaturated soils 

have been recently modified and incorporated in many well-recognised EP models (e.g. 

Kohgo et al. 1993; Loret & Khalili 2000, 2002; Sheng et al. 2004; Pereira et al. 2005; 

Sun et al. 2007; Nuth & Laloui 2008). These EP models were constituted on the basis of 

Bishop’s effective stress theory to predict the volume change of soils while capturing 

the plastic collapse phenomenon. Likewise, the effective parameter , as introduced by 

Bishop (1959), was qualitatively defined with decent accuracy. Based on experimental 

results extracted from past literature studies, Khalili & Khabbaz (1998) expressed the 

parameter  as a function of matric suction as follows: 

        [2-9] 

where  or  is the matric suction;  or  is the air entry suction; 

and  is constant parameter obtained from the best-fit data and usually has a value of 

. Note that the value of  varies depending on different soil particles. Particularly, 

the parameter  may be higher than  for the coarser soils and smaller than  for 

the finer soils (Khalili & Khabbaz 1998). On the other hand, as observed in Equation [2-

9], the effective parameter  decreases as the matric suction increases. It should be 

noted that the parameter  is imperative for the development of single-valued effective 

stress equation. A recent study conducted by Alonso et al. (2010) shows that  can also 

be expressed in terms of effective degree of saturation (i.e. ). The EP models adopting 

the effective stress principle to predict the volume change of unsaturated soils are 

discussed in Section 2.5.  
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2.3.2. Equilibrium analyses and newly proposed stress state variables  

There was a realisation that the proposed single-valued effective stress variables, shown 

in Section 2.3.1, contributed very little practicality to the definition of stress state in 

unsaturated soils (Brackley 1971; Morgenstern 1979). According to Wheeler & Karube 

(1996), the qualitative difference in action modes of matric suction and external applied 

stress within the soil skeleton may account for this unsatisfactory stress state 

description. More specifically, the suction only provides the normal bonding forces (i.e., 

) at contacts of adjacent particles while external stress applied to a soil element 

induces the normal and tangential forces (i.e.,  and , respectively) at particle 

contacts (Wheeler & Karube 1996). Therefore, combining these stresses to produce a 

single effective stress parameter would result in failure to describe unsaturated soil 

problems associated with volume change and shear strength. Figure 2.9 illustrates inter-

particle forces generated by the external stress and matric suction. Many constitutive 

models predicting volume change of unsaturated soils have instead adopted independent 

stress state variables (Alonso et al. 1990; Cui & Delage 1996; Chiu & Ng 2003; 

Georgiadis et al. 2005; Thu et al. 2007; Fredlund et al. 2012).  

Figure 2.9. Effects of external total stress and matric suction on inter-particle 

forces at contact of adjacent particles (after Wheeler & Karube 1996)
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In an attempt to formulate constitutive models that capture both volumetric and shear 

behaviours of unsaturated soils, contemporary studies conducted by Matyas & 

Radhakrishna (1968), Barden et al. (1969), Fredlund & Morgenstern (1977) and 

numerous others have recommended the use of combination of independent stress state 

variables. Considering the unsaturated soil as a four-phase composition, it is essential to 

separate stress variables in an independent manner. Fredlund & Morgenstern (1977) 

suggested that any two of three stress variables ( ), ( ) and ( ) can be 

selected to define the stress state and can therefore be used to establish constitutive 

equations for unsaturated soils. It is worth mentioning that the constitutive behaviour 

described from deformation analyses normally associates with overall equilibrium 

(Morgenstern 1979). Thus, the proposed stress state variables can be extracted from the 

equilibrium equations.   

According to Fredlund et al. (2012), stress state variables control behaviour of 

unsaturated soils, in terms of volume change and shear strength, and can be used to 

describe the equilibrium of soil structure. Fredlund & Rahardjo (1993) also 

recommended that measurable stresses such as the total normal stress ( ), pore-air ( ) 

Figure 2.10. Normal and shear stresses acting on a cuboidal soil element (after

Fredlund et al. 2012)
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and pore-water ( ) pressures are potential parameters to present stress state variables. 

A cuboidal element of unsaturated soil is commonly used when analysing the stress 

equilibrium at a point. Figure 2.10 presents the cuboidal soil element with the 

infinitesimal dimensions  subjected to external stresses.  

As observed in Figure 2.10, two primary types of stress acting on a plane of soil 

mass, such as total normal stresses (i.e., ,  and ) and shear stresses (i.e., , 

and ), mainly contribute to the overall equilibrium of soil structure. The normal 

stress is perpendicular to the plane of unsaturated soil element while the shear stress is 

transverse to the element plane. For the sign convention, all compressive normal 

stresses presented in Figure 2.10 are suggested to be positive whereas tensile normal 

stresses are negative (Holtz & Kovacs 1981). Shear stresses, on the other hand, can be 

arbitrarily selected to be positive in a particular direction and negative in an opposite 

direction, as suggested by Sowers & Sowers (1951), or counter-clockwise shear stresses 

are positive and clockwise shear stresses are negative, as recommended by Taylor 

(1948), Dunn et al. (1980), Holtz & Kovacs (1981), and Das (1998). As supported by 

Fredlund & Rahardjo (1993), the force equilibrium is analysed capturing the concept of 

conservation of linear momentum. Assuming the -direction is the vertical direction, 

equilibrium equations of an unsaturated soil structure can be algebraically determined 

by computing the resultant forces in the multiphase system (Fredlund & Morgenstern 

1977), as follows:  

                                          [2-10] 

where  is the porosity related to the contractile skin;  is the porosity related to the 

soil particles;  is the porosity related to the water phase;  is the interaction between 

the contractile skin and the soil structure equilibriums;  is the interaction force 

between the air phase and soil particles in the -direction;  is the interaction force 

between the water phase and soil particles in the -direction;  is the density of soil 

particles; and  is the gravitational constant.  
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It should be noted that Fredlund & Rahardjo (1993) derived Equation [2-10] while 

taking the pore-air pressure ( ) as a reference pressure. Thus, the porosity with respect 

to the air phase can be expressed in terms of other porosity components, giving: 

                  [2-11] 

where  is the porosity related to the air phase. Equation [2-11] is used to derive 

Equation [2-10]. Detailed force components for multiphase equilibrium (i.e., soil solids, 

air, water and contractile) can be depicted in Figure 2.11. For the equilibrium analysis, 

the soil element is subjected to the gravitational force (i.e., ) and interaction forces 

(i.e., , ,  and ) in the vertical direction (i.e., -direction) only. These forces, 

known as body forces, act through the centroid of soil mass. Contractile skin, on the 

other hand, induces surface tractions in the unsaturated soil element, as discussed in 

Section 2.1.2, and significantly influences the equilibrium conditions. It is worth noting 

that the matric suction ( ) in both compressible and incompressible soils has 

notable impacts on the contractile skin equilibrium whereas the total stress affects the 

contractile skin equilibrium for only a case of compressible soils. Therefore, changes in 

degree of saturation ( ) or water content of the soil are more likely attributed to the 

change in matric suction (Fredlund & Rahardjo 1993). 

Three stress variables, namely ,  and , can be extracted from 

the equilibrium equation for the unsaturated soil structure (i.e., Equation [2-10]). These 

stress variables are referred as stress state variables characterising the mechanical 

behaviour of soils. It should be noted that the stress variable  can be omitted when 

the incompressible soils are considered in the analysis (Fredlund & Rahardjo 1993). 

Thus, possible stress state variables for further constitutive formulations are 

and . 

Alternatively, the equilibrium equation of soil structure can be obtained by using the 

pore-water pressure ( ) as a reference pressure. Hence, the relationship of porosities of 

individual phases is:   

                  [2-12] 
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Figure 2.11. Components for force equilibrium of (a) soil element, (b) air phase,

(c) water phase and (d) contractile skin in the y-direction (modified after Fredlund

& Rahardjo 1993)
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Then, equilibrium equations of soil structure in the -direction can be rewritten by 

incorporating Equation [2-12] and subsequently obtaining the resultant forces of 

independent phases, yielding in: 

                                     [2-13] 

Three stress variables, including ,  and , are extracted from 

Equation [2-13] and can be used to describe the stress state of unsaturated soils. 

However, the stress variable  is disregarded when incompressible soil particles are 

considered in the analysis (Fredlund & Rahardjo 1993). Therefore, only two possible 

stress state variables  and  can be selected for further constitutive 

formulation.  

On the other hand, if the total normal stress in the -direction ( ) is used as a 

reference, Equation [2-10] can be rearranged as follows: 

                   [2-14] 

The stress variables ,  and  are obtained from Equation [2-

14] and can be referred as stress state variables of unsaturated soils. However, the stress 

variable  can be neglected when considering the incompressible soils (Fredlund & 

Rahardjo 1993). Thus, the available stress state variables for constitutive models are 

 and . 

In a limit of incompressible soil particles, the total equilibrium associated with the 

soil structure presented in Equations [2-10], [2-13] and [2-14] introduce three 

combinations of stress variables that principally control the volumetric and shear 

deformations of unsaturated soils. Specific combinations of stress variables are adopted 

depending upon the selected referential stress such as ,  and . Table 2.7 

summarises different sets of independent stress state variables with corresponding 

reference pressures.   
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Table 2.7. Stress state variables depending on each referential pressure (Fredlund 

et al. 2012) 

Reference pressures Stress state variables 

Pore-air pressure,  ( ) and ( ) 

Pore-water pressure,  ( ) and ( ) 

Total normal stress,  ( ) and ( ) 

It is worth noting that, if both compressible soil grains and pore fluid are considered 

in the equilibrium equations, more than two stress state variables are needed to describe 

the behaviour of unsaturated soils (Ng & Menzies 2007). From Table 2.7, the pair of net 

stress ( ) and matric suction ( ) has been commonly adopted for recent 

consolidation studies (Fredlund & Morgenstern 1977; Fredlund & Hasan 1979; 

Fredlund et al. 2012). Some advantages for selecting these stress variables are presented 

as follows: 

Effects due to changes in the total normal stress ( ) and pore-water pressure ( ) are 

independent (Fredlund et al. 2012); 

In most practical problems, the pore-air pressure ( ) is zero (Ng & Menzies 2007; 

Fredlund et al. 2012) and as the result, the net stress and suction can be further 

simplified to the total normal stress and negative pore-water pressure, respectively; 

and 

The negative pore-water pressure may not be easily measured, therefore selecting the 

stress variables ( ) and ( ) would reduce an uncertainty in the value of 

stress state variables (Ng & Menzies 2007). 

The alternative combination of stress variables ( ) and ( ) can also be 

adopted for some research as it allows an easier transition from unsaturated soil state to 

fully saturated state. However, this transition has a very minor contribution to the 

problem solving (Wheeler & Karube 1996). Furthermore, Ng & Menzies (2007) also 
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added that adopting the two alternative stress variables may lead to practical difficulties 

since the negative pore-water pressure is not easily determined. Thus, the pair of net 

stress ( ) and matric suction ( ) still has been the most satisfactory 

combination for practical analyses (Fredlund 1987). For the sake of generality, this 

thesis will adopt the stress state variables ( ) and ( ) for the analytical 

development in subsequent chapters. 

2.4. Volume-Mass Constitutive Relation 

2.4.1. Continuity requirement 

When a soil is subjected to an external loading, the volume change of soil element is 

considered to be equal to the sum of volume changes related to each independent phase 

(Fredlund et al. 2012). If the soil particles are assumed to be incompressible and the 

contractile skin is considered as part of water phase, the continuity condition for 

unsaturated soil is presented as follows: 

                    [2-15] 

where  is the total volume of unsaturated soil element before loading;  is the 

volume change relative to voids of soil element due to loading;  is the volume 

change relative to the air phase due to loading; and  is the volume change relative to 

the water phase due to loading. The continuity requirement, presented in Equation [2-

15], is proposed by Fredlund & Hasan (1979). It should be noted that the continuity 

condition presented in Equation [2-15] is only valid under the assumption of 

incompressible soil particles (Fredlund & Hasan 1979). The total volume change and 

water volume change can be practically measured in the laboratory while the air volume 

change is computed by taking the difference of measured values (Fredlund et al. 2012). 

The volumetric strain, denoted as , is defined as a ratio of volume change of voids 

( ) and the initial volume of the element ( ) is presented below: 

                    [2-16] 
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Alternatively, by considering the 3D Cartesian coordinates ( ), the volumetric 

strain can also be expressed by adding the normal strain components or adding all 

partial derivatives of displacement, resulting in: 

                 [2-17] 

where  is the normal strain in the -direction;  is the normal strain in the -direction; 

 is the normal strain in the -direction;  is the displacement in -domain;  is the 

displacement in -domain; and  is the displacement in -domain. 

2.4.2. Volume-mass constitutive models for unsaturated soils  

Considering an isotropic and linearly elastic soil structure, the stress-strain constitutive 

relations for unsaturated soils can be expressed in terms of stress state variables, as 

presented in Section 2.3.2, while incorporating a generalised Hooke’s law (Biot 1941). 

Fredlund & Morgenstern (1977) suggested that the net stress ( ) and suction 

( ) are the most appropriate stress variables for the constitutive formulation. The 

stress-strain constitutive equations associated with the strains in the -, - and -

directions are presented as shown below: 

               [2-18a] 

               [2-18b] 

               [2-18c] 

where  is the modulus of elasticity for the soil structure with respect to a change in the 

net stress;  is the modulus of elasticity for the soil structure with respect to a change in 

the matric suction; and  is the Poisson’s ratio.  

Theoretically, the elastic modulus of the soil structure is described as a ratio between 

changes in the normal stress ( ) and strain ( ). Figure 2.12 illustrates the nonlinear 

stress-strain relationship of a soil on both stress-strain planes  and 

. For the sign convention, both moduli of elasticity  and  are 

considered to be negative, as clearly shown in Figure 2.12. Since the stress-strain curve 

is nonlinear, an incremental analysis should be applied to the constitutive study. The 
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nonlinear curve can be treated as a linear curve when considering small stress and strain 

increments. It is worth noting that the incremental process adopting small increments of 

stress and strain can be practically used to evaluate the linearly elastic behaviour of a 

soil. The incremental form is applied to the stress-strain constitutive relations presented 

in Equations [2-18] as follows:       

              [2-19a] 

              [2-19b] 

              [2-19c] 

The volumetric strain increment of the soil is constituted by the sum of normal strain 

increments in the -, - and -directions, presented in Equations [2-19a] – [2-19c], 

resulting in the constitutive equation that links the stress and deformation state 

variables:  
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Figure 2.12. A nonlinear stress-strain relationships and sign convention for

volumetric deformation properties
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               [2-20] 

The terms  and  presented in Equation [2-20] are defined as volume change 

coefficients of soil structure with respect to the net stress  and matric suction 

, respectively. It should be noted that a pair of volume change coefficients 

and  are considered as slopes of the constitutive surfaces at a particular stress point 

(Figure 2.13(a)), and may vary within different stress increments (Fredlund et al. 2012). 

When considering the general 3D loading condition, these coefficients can be expressed 

in terms of elastic moduli (  and ) and Poisson’s ratio ( ) as follows: 

                [2-21a] 

                         [2-21b] 

where . Assuming an incompressible water phase, Fredlund 

et al. (2012) developed the water phase constitutive equation based on a linear 

combination of the stress state variables: 

                [2-22] 

The terms  and  presented in Equation [2-22] are called volume change 

coefficients of water with respect to the net stress  and matric suction 

, respectively. These coefficients are graphically presented as slopes of the 

constitutive surface for the water phase at a stress point (Figure 2.13(b)), whose 

equations are expressed as below: 

                 [2-23a] 

                                       [2-23b] 

where  is the modulus of elasticity for water phase with respect to a change in the net 

stress; and  is the modulus of elasticity for water phase with respect to a change in 

the matric suction. As suggested by Fredlund & Hasan (1979), the volume change of air 

can only be determined on a basis of continuity requirement, as shown in Equation [2-
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15]. Thus, the constitutive equation for the air phase is obtained by taking the difference 

between the volume changes of soil structure and water, giving: 

                [2-24] 

Based on the continuity requirement at a particular stress point, the volume change 

coefficients must satisfy following conditions: 

                  [2-25a] 

                  [2-25b] 

The constitutive relations of soil structure, water and air phases under the general 3D 

loading condition ( ) are formulated in Equations [2-20], [2-22] and 

[2-24]. This stress-strain formulation can be practically applied to a several other 

loading conditions such as isotropic loading ( ), uniaxial 

loading ( ), triaxial loading ( ),  loading (1D loading) 

( ), two-dimensional (2D) plane strain loading ( ), and 2D plane 

stress loading ( ). Table 2.8 summarises constitutive equations along with 

volume change coefficients with respect to the soil structure and water phase for various 

loading conditions. 

Matric suction 
( )

Matric suction 
( )

Strain 

(a) (b)

Volume change coefficients Volume change coefficients

Figure 2.13. Constitutive surfaces for: (a) soil structure and (b) water phase 

(modified after Fredlund et al. 2012)
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Table 2.8. Summary of constitutive equations for different loading conditions (modified after Fredlund et al. 2012) 

Loading Conditions Constitutive Equations and Volume Change 

Coefficients for Soil Structure 

Constitutive Equations and Volume Change 

Coefficients for Water Phase 

General 3D loading 

( )  

  

 and 

Isotropic 3D loading 

( )  

Uniaxial 3D loading 

( )  

  

Triaxial 3D loading 

( ) 
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Table 2.8. Summary of constitutive equations for different loading conditions (continued) 

Loading Conditions Constitutive Equations and Volume Change 

Coefficients for Soil Structure 

Constitutive Equations and Volume Change 

Coefficients for Water Phase 

 loading (1D loading) 

( )  

  

 and 

2D plane strain loading 

( )

2D plane stress loading 

( ) 
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2.4.3. Uniqueness of constitutive surfaces  

Series of experiments were rigorously conducted to examine the uniqueness of 

constitutive surfaces associated with the soil structure and water phase. The term 

“uniqueness” indicates that the stress state variables and volume change properties can 

be used to form only one predictive framework such that values of which are reasonably 

equal to measured values (Fredlund & Morgenstern 1977). In other words, the 

constitutive relationships presented in Equations [2-20] and [2-22] should be proven 

valid by comparing the predicted results with experimental results. According to 

Fredlund et al. (2012), the constitutive surfaces can be concluded unique if identical 

samples (with similar soil properties) which approach the same final stress point would 

experience relatively similar volume changes irrespective of history of stress paths.  

The uniqueness of constitutive surfaces, however, could not be easily inspected due 

to the hysteresis associated with the soil structure (i.e., loading and unloading curves) 

and contractile skin (i.e., drying and wetting curves). It has been found that increases 

and decreases in loading or water content would lead to different constitutive surfaces 

(Fredlund et al. 2012), as shown in Figure 2.14. Thus, volume change coefficients with 

respect to the soil structure (i.e.,  and ) and water (i.e.,  and ) would also 

change corresponding to those constitutive slopes. As suggested by Fredlund et al. 
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Figure 2.14. Hysteresis associated with (a) soil structure and (b) contractile skin 

(after Fredlund et al. 2012)
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(2012), the uniqueness of loading and unloading constitutive surfaces or wetting and 

drying constitutive surfaces can be verified separately.  

A number of triaxial (isotropic loading) and oedometer (  loading) experiments 

were conducted by Fredlund & Morgenstern (1977) to verify the uniqueness of the 

constitutive surfaces. Three undisturbed Regina clay and a compacted kaolin with the 

same initial volume-mass properties were adopted for verification purposes. These soil 

samples were subjected to very small stress increments (i.e.,  and 

) in order to determine volume change coefficients and vertical strain of soils, and 

the predicted deformation was then compared with the measured deformation. Figure 

2.15 illustrates various stress paths to predict the coefficients of volume change and 

vertical deformation. It should be noted that these soil samples were first loaded to the 

same initial stress point located at O, as presented in Figure 2.15. The sample was then 

subjected to a very small increase in net stress  and constant matric suction 

(i.e, ), as clearly shown from the stress path OA. Note that this 

experimental procedure was regulated by increasing the total normal stress ( ) while 

maintaining the same pore-water pressure ( ). Once the stress path was achieved, a 

vertical strain (i.e., ) of the deformed sample was measured. Consequently, the 

volume change coefficient with respect to the net stress increment ( ) could be 

evaluated as: 

                                [2-26] 

Conversely, another clayey sample was subjected to a very small increase in matric 

suction  and constant net stress (i.e, ), as indicated by the 

stress path OB. This procedure could be achieved by decreasing the pore-water pressure 

( ) while keeping the total normal stress ( ) unchanged. A vertical strain ( ) was 

measured from the experiment and then the volume change coefficient with respect to a 

change in matric suction ( ) could be determined as follows: 

                    [2-27] 

It is worth noting that the coefficients  and  have negative signs referring to the 

sign convention presented in Figure 2.12. Unlike previous experiments, a third sample 
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was subjected to small increases in both net stress  and matric suction 

, as demonstrated by stress path OC. The experimental procedure were 

conducted by simultaneously increasing the total stress ( ) and decreasing the pore-

water pressure ( ). By adopting the values of volume change coefficients  and 

presented in Equations [2-26] and [2-27], respectively, the vertical deformation of 

clayey soil ( ) in a particular stress increment could be predicted by: 

                            [2-28] 

Similarly, measurements of volume change of water could be obtained to determine 

 and , and deformation state variable associated with water ( ). Note that 

the coefficients  and  are also negative due to the sign convention. The predicted 

volume changes related to the soil structure and water phase were subsequently 

compared with the measured values using the best-fit straight line technique (Neville & 

Kennedy 1964). As reported by Fredlund & Morgenstern (1977), predictions for the 

volume change with respect to the soil structure and water phase are in a relatively good 

agreement with volume change measurements, indicating that the constitutive surfaces 

are unique. The constitutive models introduced by Fredlund & Morgenstern (1977) will 

be adopted for analytical derivations in subsequent chapters of this thesis. 

Figure 2.15. Stress paths for determining volume change coefficients and vertical 

deformation (modified after Fredlund et al. 2012)



50 

2.5. Elastoplastic (EP) constitutive models for unsaturated soils 

2.5.1. Introduction  

While the main contribution in this thesis is to estimate the time-dependent settlement 

of an unsaturated soil stratum due to the pore fluid flows, it is essential to introduce 

alternative frameworks to evaluate the volume change of unsaturated soils. Particularly, 

these frameworks have been constituted to describe the EP deformation of soils under 

isotropic loading conditions. The constitutive EP models have progressed vigorously 

since the inception of Barcelona Basic Model (BBM) proposed by Alonso et al. (1990). 

Some features associated with wetting-induced volume change issues (e.g. collapsible 

and expansive soils) can also be captured in EP models. As discussed in Section 2.2, 

significant volume change upon saturation may lead to critical failures to structures and 

foundations and possibly cause fatalities (Ng & Menzies 2007; Sheng 2011; Fredlund et 

al. 2012).  

According to Sheng (2011), a satisfactory EP equation should not only provide a 

smooth transition between different soil states but also is applicable for a whole range 

of suction values. In unsaturated soil mechanics, the EP constitutive models can be 

developed based on three typical categories: (1) independent net stress and matric 

suction approach (Approach 1), (2) combined net stress and matric suction approach 

(effective stress approach or Approach 2), and (3) SFG (i.e. Sheng-Fredlund-Gens) 

approach (Approach 3). Nevertheless, there have been controversies on the selection of 

these approaches for the formulation of EP model since each approach has some certain 

advantages and disadvantages. Details of these approaches are presented in subsequent 

sections. 

2.5.2. Independent net stress and matric suction approach (Approach 1) 

It is noted that the BBM was developed based on Approach 1, in which the changes in 

net stress and matric suction are considered to be independent. Thus, the compressibility 

due to net stress change ( ) and the shrinkability due to suction change ( ) can be 

dealt separately as follows:  

                 [2-29] 
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where  is the specific volume;  is the initial specific volume;  or  is the 

net mean stress under isotropic conditions; and  is the atmospheric pressure. Note 

that the additional term  presented in Equation [2-29] helps to avoid the 

mathematical error when the suction approaches zero (Alonso et al. 1990). Based on 

experimental results, Toll & Ong (2003) and Gallipoli et al. (2003) reported that an 

increase in degree of saturation would lead to a decrease in compressibility  and an 

increase in shrinkability . As the stress variables are presented in a separate manner, 

the model allows flexibilities in regulating stress paths when conducting laboratory 

experiments. Besides the BBM proposed by Alonso et al. (1990), some well-known 

models adopting the similar approach have been studied by Cui & Delage (1996), Chiu 

& Ng (2003), Georgiadis et al. (2005) and Thu et al. (2007) to name a few. 

Despite the above mentioned advantages, a few shortcomings associated to the EP 

models adopting Approach 1 can also be found. In particular, Approach 1 does not 

allow smooth transition between unsaturated and saturated states. Obviously, Equation 

[2-29] cannot recover back to the EP equation for saturated soils which follows the 

effective stress principle. Furthermore, the inclusion of atmospheric pressure 

requires large suction values to be investigated. In other words, the atmospheric 

pressure may make the suction change inconsiderable if the suction value is smaller 

than the atmospheric pressure (i.e. ). On the other hand, Approach 1 shows that 

the volume change induced by suction changes can be independent of stress. This point 

is not supported by Delage & Graham (1995).  

2.5.3. Effective stress approach (Approach 2) 

The lack of continuity of transition between unsaturated and fully saturated states has 

made Approach 1 unfavourable for some researchers when they decided to formulate an 

explanatory EP model. Instead, most constitutive EP models were developed on the 

basis of effective stress principle (Approach 2). Current EP studies using Approach 2 

have been conducted by Kohgo et al. (1993), Bolzon et al. (1996), Loret & Khalili 

(2000, 2002), Sheng et al. (2004), Pereira et al. (2005), Santagiuliana & Schrefler 

(2006), Sun et al. (2007), Nuth & Laloui (2008), and Buscarnera & Nova (2009). In this 

approach, the net mean stress (i.e. ) and a function of matric suction (i.e. ) can be 
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combined as a single effective stress variable (i.e. ). Thus, a general EP 

model can be expressed as follows: 

                            [2-30] 

where  is the compressibility due to changes in effective stress; and  is the function 

of suction or the function of both suction and degree of saturation. According to Alonso 

et al. (1990), the compressibility  is considered to be a function of the matric suction 

whereas the initial specific volume  can be treated as either a constant or variable. On 

the other hand, Wheeler & Sivakumar (1995) and Loret & Khalili (2002) reported that 

both parameters  and  can be expressed in terms of suction. Based on experimental 

results obtained by Wheeler & Sivakumar (1995), the compressibility  would increase 

with increasing suction, especially for high plasticity clays (e.g. speswhite kaolin). 

One of the important advantages of selecting Approach 2 for the EP formulation is 

that it provides smooth transition between soil states. In particular, Equation [2-30] can 

convert back to the EP equation for the case of saturated soils. However, the 

combination of stress variables in the model may lead to difficulty in defining the 

compressibility  due to net stress change and matric suction change. Another argument 

related to Equation [2-30] shows that a value of compressibility for an arbitrary suction 

(i.e. ) is smaller than that for zero suction (i.e. ), indicating that  increases with 

decreasing suction. This prediction, however, contradicts with the experimental study 

conducted by Wheeler & Sivakumar (1995). As suggested by Sheng (2011), the 

compressibility  should be simulated in terms of degree of saturation (i.e. ) to 

avoid such constraint. 

2.5.4. SFG approach (Approach 3) 

Sheng et al. (2008) proposed SFG model using Approach 3, which embraces the 

concepts of Approaches 1 and 2. This special combination would allow the constitutive 

EP model to be presented in a way that separates two distinctive compressibilities 

and , similar to Approach 1, while still accommodating the combined net mean stress 

and matric suction in the denominator, comparable to Approach 2. This proposed model 

is expressed in an incremental form as follows: 
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                  [2-31] 

The function  in Equation [2-31] can be replaced by the matric suction (i.e. 

). Equation [2-31] covers some shortcomings found in Equations [2-29] and [2-

30]. More importantly, Equation [2-31] can also recover to the incremental form of EP 

model for saturated soils. The SFG model also shows some good agreements with 

experimental results obtained from Pham et al. (2005). On the other hand, Sheng et al. 

(2008) defines a simple relationship between compressibilities  and  as: 

                [2-32] 

where  is the saturation suction. Note that number “ ” is added to the suction in the 

denominator in Equation [2-32] to avoid the singularity when the suction approaches 

zero. According to Sheng et al. (2008), Equation [2-32] introduces a continuous 

function of suction and can be incorporated in Equation [2-31] to determine the volume 

change of unsaturated soils. However, Sheng et al. (2008) also emphasise that the 

relationship between compressibilities  and  presented in Equation [2-32] may not 

be a unique approximation that can be applicable to all cases of unsaturated soils. Thus, 

alternative forms can be used in place of Equation [2-32] to describe such relationship. 
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Figure 2.16. Slopes of compressibilities v  and vs in the (e – lns) space (after 

Sheng et al. 2008)
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Figure 2.16 illustrates compression slopes of  and  in the  space under a 

constant net stress.   

In terms of significance, the SFG model presented in Equation [2-31] has so far been 

the most complete model describing the volume change of unsaturated soils. The SFG 

approach, likewise, overcomes some model constraints found in Approaches 1 and 2. 

One of the most important advantages is that this approach allows the continuous 

transition between unsaturated state and fully saturated state even when . It is 

however suggested that the term  in the denominator of Equation [2-31] may be 

expressed as a function of both matric suction and degree of saturation (i.e., ) 

to ensure the smooth transition from the unsaturated state to the completely dry state 

(Sheng 2011). Another main disadvantage shows that the SFG model requires complex 

integration depending on stress paths. This may limit the range of applications of the 

SFG model to wider aspects. While previous EP models are presented in much more 

succinct forms and provide convenient evaluations, the SFG equation may further 

require rigorous integrations due to different stress paths (Zhang & Lytton 2008), 

producing a lengthy integral form as shown below:  

  

                     [2-33] 

2.6. Consolidation analyses for saturated soils 

2.6.1. Classical consolidation theory and its governing equation 

Terzaghi (1925) successfully developed the principle of effective stress to describe the 

1D consolidation process in fully saturated soils. This classical study has formed a solid 

foundation for numerous state-of-the-art research and geotechnical designs. In 1D 

consolidation analyses, the effective stress theory fundamentally involves changes of 

two local stresses, known as effective normal stress and excess pore-water pressure, 

induced by external loading.  
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The concept of effective stress, however, is only applicable to saturated soil 

mechanics (Craig 2004). Sudden application of external surcharge ( ) (e.g., fills, 

structures, embankments etc.) to a saturated soil stratum generates a notable increase in 

pore-water pressure, which is defined as excess pore-water pressure ( ). This is due 

to the fact that incompressible pore-water entirely supports the surcharge at the 

beginning of compression (i.e., ). Meanwhile, the effective vertical stress ( ) 

during the early stages remain almost unchanged and equals to an effective stress prior 

to loading ( ). Development of excess pore-water pressure in the soil stratum would 

further induce the hydraulic gradient, resulting in flow of water after a certain period of 

time. Once water begins to dissipate gradually from voids, the effective stress increases 

to support the surcharge. It should be noted that the excess pore-water pressure 

dissipation is a time-dependent process which causes the time-dependent settlement of 

the soil. Very long time after loading, the excess pore-water pressure almost diminishes 

(i.e., ) while the effective vertical stress approaches the final effective stress that 

entirely supports the surcharge (i.e., ). The soil stratum would 

subsequently experience the ultimate consolidation settlement ( ) and no further 

deformation of soil can be observed (Coduto et al. 2011). The above mentioned process 

is regarded as a traditional consolidation theory proposed by Terzaghi (1925, 1943). 

Means & Parcher (1963) further suggested that the rate of settlement is significantly 

affected by soil textures and hydraulic conductivity. For coarse-grained soils (e.g., 

gravels, cobbles and coarse sands), the consolidation settlement occurs almost 

immediately due to their high permeability coefficients. In contrary, it takes 

considerable amount of time for fine-grained geomaterials (e.g., clays, silts and fine 

sands) to settle as the result of extremely small permeability coefficients. In the 1D 

consolidation, water is assumed to flow in one direction (e.g. usually vertical direction) 

only. Additionally, the width of soil stratum is assumed to be indefinite and therefore 

the soil deformation occurs only vertically (Coduto et al. 2011). The consolidation rate 

also depends on the drainage distances of water flow. If the consolidating soil consists 

of a permeable top and an impermeable base, under an external applied load, water will 

travel upward and the drainage path ( ) is equivalent to the thickness of the soil (i.e., 

). This case is termed the one-way drainage boundary condition. When the 

consolidating soil is sandwiched by much more permeable strata, water is able to drain 
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both directions, either upward or downward. The drainage path is therefore considered 

to be only a half of the soil thickness (i.e., ). This case is known as the two-

way drainage boundary condition. Figure 2.17 illustrates typical one-way and two-way 

drainage boundary conditions. Note that, due to the shorter drainage path, settlement in 

the two-way drainage system may proceed approximately four times faster than that in 

the corresponding one-way drainage system (Terzaghi 1943; Venkatramaiah 2006; 

Coduto et al. 2011).  

The complex nature of soil may lead to computational difficulties. To ensure a 

predictive equation for the 1D consolidation of fully saturated soil is achievable, 

additional assumptions made by Terzaghi (1925, 1943) are as follows: 

The soil is homogenous; 

The soil is fully saturated ( ); 

Pore-water and solid particles are incompressible; 

Darcy’s law is adopted to describe the water flow; 

No creep occurs simultaneously with the consolidation process; 

Soil deformation happens in the vertical direction only ( -direction);  

Relationship between void ratio and effective stress ( ) is independent of time; 

Soil properties such as coefficients of volume change ( ) and permeability ( ) are 

treated constant throughout the consolidation. 

Figure 2.17. Soil stratum under (a) the one-way drainage boundary condition and

(b) the two-way drainage boundary condition
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Terzaghi (1925) mathematically developed a governing equation that describes the 

dissipation of excess pore-water pressure in response to consolidation. Assuming that 

water flows upward through a soil element (Figure 2.18), hydraulic gradients at the top 

and bottom of the element can be expressed in terms of excess pore pressure as shown 

below: 

    (at the top)               [2-34a] 

  (at the bottom)              [2-34b] 

where  is the water unit weight;  and  are the hydraulic gradients at the top and 

bottom of the soil element, respectively. By adopting Darcy’s law, volumes of water 

entering and water leaving the element are derived while incorporating Equation [2-34], 

resulting in: 

               [2-35a] 

                                   [2-35b] 

where  and  are the volumes of water entering and water leaving the soil 

element, respectively; and , is the change in cross-sectional area. The net 

Figure 2.18. One-dimensional flow through the soil element (after Budhu 2008)
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flux of water is determined by taking the difference between volumes of water entering 

(i.e., Equation [2-35a]) and water leaving (i.e., Equation [2-35b]) the element, giving: 

                           [2-36] 

According to Budhu (2008), the change in effective normal stress in a particular 

depth would be equal to the change in excess pore-water pressure at that depth (i.e., 

). As the result, the net flux of water can be alternatively expressed in terms 

of volume change coefficients ( ) as follows: 

                    [2-37] 

Combining Equations [2-36] and [2-37] results in the governing equation capturing 

the flow of pore-water in the soil element, as shown below:  

                     [2-38] 

where , is the coefficient of consolidation. Equation [2-38] is written 

under the partial differential equation (PDE) which relates to three quantities: (1) excess 

pore-water pressure induced by surcharge ( ), (2) investigated depth ( ) that is 

measured from the top of consolidating soil to the point of interest, and (3) time of 

consolidation ( ) starting from the immediate application of load. The governing 

equation of flow proposed by Terzaghi (1925) is very similar to the heat diffusion 

equation in mechanical engineering, except that pore pressure parameter ( ) replaces 

temperature ( ) and the consolidation coefficient ( ) replaces the heat factor ( ). 

Besides, volume change ( ) and permeability ( ) coefficients presented in Equation 

[2-38] are assumed to be constant throughout the consolidation for the sake of simple 

computation. However, this assumption may not be strictly accurate for some practical 

cases. Note that both  and  are nonlinear properties that change in response to 

consolidation, resulting in variations in . The assumption may be acceptable for the 

small stress increment or transient loading process, in which  and  do not 

significantly change (Budhu 2008). 
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2.6.2. Solution to consolidation of saturated soils  

Solving for the PDE presented in Equation [2-38] requires a homogeneous boundary 

condition, either one-way or two-way drainage condition, and an initial condition. Many 

clay strata in nature usually consist of pervious top surface that facilitates water 

drainage and impervious bedrock (Venkatramaiah 2006). With such occurrences, the 

boundary condition for the one-way drainage system is often considered in the 

formulation. It should be also noted that the initial condition is highly dependent of 

loaded area, external loading condition and layer thickness (Jumikis 1969). If the 

external loading is considered to be indefinite and uniform or the soil stratum is 

relatively thin, the initial excess pore pressure may be distributed uniformly with depth. 

However, if the loaded area is small or the soil stratum is too thick, the initial excess 

pore pressure may decrease with depth. In this case, a simple simulation for the initial 

condition is a triangular distribution of initial excess pore pressure. Irregular loading 

applied to the ground surface also results in variations of initial condition. For 

simplification, the classical solution derived by Terzaghi (1925) captured the uniform 

initial condition. Based on existing literature (Terzaghi 1943; Venkatramaiah 2006; 

Verruijt & Van Baars 2007; Budhu 2008; Coduto et al. 2011), the boundary condition 

related to one-way drainage system and the uniform initial condition are: 

Boundary condition: ,         [2-39] 

Initial condition:  ,          [2-40] 

Similar to solving the heat transfer equation, Terzaghi (1925) adopted the separation 

of variables and Fourier sine series to solve the governing flow equation (i.e., Equation 

[2-38]) while incorporating the boundary and initial conditions (i.e., Equations [2-39] 

and [2-40], respectively). Thus, the solution predicting excess pore pressure dissipation 

is obtained as follows:  

                 [2-41] 
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where , ( ); and , is the time factor. To 

illustrate the 1D consolidation in an instructive manner, a series of excess pore-water 

pressure curves for different time factor  at a particular depth  is graphically 

presented in Figure 2.19. These curves are called pore pressure isochrones whose 

patterns are practically governed by both boundary and initial conditions. As observed 

in Figure 2.19, excess pore-water pressure isochrones are perpendicular at the base of 

the soil stratum satisfying the one-way drainage boundary condition presented in 

Equation [2-39]. Additionally, the pore pressure isochrones also follow the initial 

condition in Equation [2-40]. In particular, when  approaches zero, excess pore-water 

pressures are equal to initial values and are uniformly distributed along the soil depth, 

except for the top surface. 

In many geotechnical investigations, it is also useful to analyse the 1D consolidation 

problems in terms of the average degree of consolidation, denoted as  (Budhu 2008). 

The average degree of consolidation can be referred as the average settlement over the 

Figure 2.19. Typical excess pore pressure isochrones under one-way drainage

system (after Verruijt & Van Baars 2007)
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entire soil stratum at a particular time (Venkatramaiah 2006). The formulation of the 

degree of consolidation involves integrating Equation [2-41] against the depth , giving: 

                              [2-42] 

Equation [2-42] presents the settlement response of the entire soil stratum and is a 

function of time only. Note that consolidation in the two-way drainage system proceeds 

much faster than that in the corresponding one-way drainage system. For uniform initial 

conditions, settlement curves, , are all the same irrespective of different drainage 

systems (Venkatramaiah 2006). However, values of degree of consolidation would vary 

due to different initial conditions. Figure 2.20 presents settlement patterns for uniform 

and triangular distributions of initial excess pore pressures based on available literature 

(Taylor 1948; Venkatramaiah 2006; Budhu 2008).  

The 1D consolidation theory for fully saturated soils proposed by Terzaghi (1925) 

has motivated numerous well-recognised studies in geotechnical field. Olson (1977) 

extended the traditional consolidation model by including a simple ramp loading. Zhu & 

Yin (1998) later conducted similar study to obtain excess pore pressures and degree of 

consolidation induced by the depth-dependent ramped loading. Morris (2002, 2005) 

presented both numerical and analytical methods to derive solutions predicting the 

Figure 2.20. Average degree of consolidation (U) versus time factor (Tv) for

uniform and triangular initial conditions (modified after Taylor 1948,

Venkatramaiah 2006, and Budhu 2008)
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average degree of consolidation for linear finite-strain 1D consolidation of initially 

unconsolidated soils. Xie & Leo (2004) introduced explicit analytical solutions for the 

large-strain consolidation in thick and thin strata. In this study, Xie & Leo (2004) found 

that the large-strain consolidation proceed more quickly than the small-strain 

consolidation. Xie et al. (2002), on the other hand, expanded the consolidation study 

from a single-layered soil to double-layered soil and estimated the excess pore pressures 

and average degree of consolidation. All these and many more studies have been 

recently conducted to improve the reliability of consolidation models. The study of 

interest has also been rigorously updated to capture mechanical behaviours of 

problematic soils located in unsaturated regions. 

2.6.3. Axisymmetric consolidation and its polar governing equation  

In major ground improvement projects, vertical drain assisted preloading has been 

considered to be a cost-effective method to accelerate drainage in soil deposits and 

shorten the consolidation process. Vertical drain consolidation can be modelled 

assuming axisymmetry around the drain. The basic theory of the axisymmetric 

consolidation was developed based on the traditional consolidation theory proposed by 

Terzaghi (1925). Figure 2.21 depicts two idealistic cases of drain well system, namely 

vertical sand drains (Figure 2. 21(a)) and prefabricated vertical drains (PVDs) with 

smear effects (Figure 2. 21(b)), in a saturated soil stratum.  

Dimensions of the typical sand drain primarily include a depth ( ), a radius of the 

influence zone ( ), and a drain well radius ( ) located at the centre of the influence 

zone, as shown in Figure 2. 21(a). Axisymmetric consolidation induced by sand drain 

follows a simple principle such that, when a constant loading is applied to the soil, the 

pore-water will dissipate through the radial boundary of drain well and through the 

permeable boundaries of soil stratum. However, installation of PVDs using close-ended 

mandrels has reportedly disturbed the surrounding soil and generated some operational 

issues (Holtz 1987). The remolded soil caused by mandrels may possess the reduced 

hydraulic conductivity and moisture content, thus impeding the flow of pore-water into 

the drain system and the consolidation would be eventually delayed (Holtz & Holm 

1973; Basu & Prezzi 2007). The disturbed zone is usually referred to as smear zone that 

is located immediately adjacent to the drain, as depicted in Figure 2.21(b). Several 
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studies conducted by Holtz & Holm (1973), Jamiolkowski et al. (1983), Hansbo (1986, 

1987), Mesri et al. (1994), Chai & Miura (1999), Perera et al. (2014), and Indraratna et 

al. (2014) report that radius of smear zone, measured from the centre of drain well to the 

smear boundary ( ), may be equal to or increase up to four times the equivalent radius 

of mandrel ( ). However, the smear radius can also be determined through other 

factors such as in situ conditions, field explorations and data obtained from case 

histories (Hird & Moseley 2000).     

Vertical drain wells can be installed in square or triangular patterns depending on 

different design purposes. According to Indraratna & Bamunawita (2002), the square 

pattern allows simple and easy installation of vertical drain. However, Barron (1948) 

suggested that it is more economical to install drain wells in the triangular pattern. 

Furthermore, the triangular pattern also provides uniform consolidation between drain 

wells (Indraratna & Bamunawita 2002). Figure 2.22 illustrates the layout of typical 
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Figure 2.21. Typical drain well installed in saturated soil stratum: (a) vertical 

sand drains and (b) PVDs with smear effects
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drain well patterns. A centre to centre distance between adjacent drains is called drain 

spacing ( ) determining the influence zone radius ( ) as follows: 

Square pattern:                [2-43a] 

Triangular pattern:                [2-43b] 

According to Holtz (1987), the desirable range of drain spacing ( ) ranges from m 

to . In other words, the radius of the influence zone ( ) should be within 

approximately  –  for the square patterns or  –  for the triangular 

patterns. Additionally, design dimensions of drain well radius  are presented in Table 

2.9 (Holtz et al. 1991; Smoltczyk 2003). 

Theoretical complexities of axisymmetric consolidation problems can account for 

free strain and equal strain hypotheses. As assumed by Barron (1948), the free strain 

consolidation due to uniform loading does not consider the stress redistribution by 

arching of the fill. This assumption indicates that the consolidation process induced by 

vertical drains is independent of shear strains. Contrariwise, the equal strain 

consolidation allows the soil adjacent to the drain to consolidate more quickly compared 
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Figure 2.22. Plan of drain well systems: (a) square patterns and (b) triangular

patterns
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to the soil further away from the drain (Barron 1948). Thus, differential settlement is 

developed over the circular zone, influencing the stress redistribution and consolidation 

rate. Furthermore, shear strains also affects the consolidation process if the equal strain 

condition is considered. Of these hypotheses, the equal strain case is favoured over the 

free strain case because of its decent accuracy and practical applications (Barron 1948). 

On the other hand, problems associated with smear zone and well resistance may also 

contribute to a wide range of research possibilities. 

Table 2.9. Dimensions of various types of vertical drain (modified after Holtz et 

al. 1991, and Smoltczyk 2003) 

Types of Vertical Drain Radius (rw) 

Sand drain (in situ)  – 

Sand drain (prefabricated)  – 

Prefabricated drains (plastics, cardboard etc.)  – 

A governing equation for the flow of pore-water under axisymmetric conditions is 

obtained from the polar transformation of Terzaghi’s classical consolidation equation 

(Punmia & Jain 2005). Likewise, for the case of axial symmetry on a horizontal 2D 

plane, Cartesian coordinates  must be transformed into polar coordinates  as 

follows: 

                   [2-44a] 

                  [2-44b] 

The net flux of pore-water in the horizontal 2D plane is determined using Darcy’s 

law, leading to:  

                           [2-45] 
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owing to the following assumption:   

                     [2-46] 

where  and  are the coefficients of permeability in the - and -directions; and  is 

the coefficient of permeability in the radial direction. Rigorous procedure is conducted 

combining Equations [2-44] – [2-46], the polar governing equation describing the flow 

of pore-water in the domain  is:  

                   [2-47] 

where  is the coefficient of consolidation under axisymmetric 

conditions. The coefficient  is equivalent to  as presented in Equation [2-38]. 

Equation [2-47] describes the flow of pore-water in the radial direction only without 

considering the effects of smear zone. For the sake of simplicity, soil properties such as 

coefficient of volume change ( ) and permeability ( ) are assumed to be constant 

during the radial consolidation, leading to constant . This assumption may be only 

valid in a transient process of radial consolidation. 

2.6.4. Solution to radial consolidation of saturated soils  

Several analytical and numerical approaches were proposed to solve PDE presented in 

Equation [2-47]. By discarding the smear effects, radial boundary condition generally 

assumes that the outer boundary of influence zone of the soil ( ) is impermeable 

whereas the boundary of the drain cylinder ( ) is permeable to water. In addition, the 

uniform initial condition for the radial consolidation is adopted similar to Equation [2-

40], except that the depth  is replaced by the radius . Thus, both boundary and initial 

conditions are presented as follows:  

Boundary condition: ,        [2-48] 

Initial condition:  ,        [2-49] 
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Barron (1948) first introduced solutions based on both free strain and equal strain 

conditions to estimate the radial consolidation in saturated soils. Yoshikuni & 

Nakanodo (1974) later developed an analytical solution for free strain consolidation 

adopting radial and vertical flows of water, while considering the well resistance. This 

work was followed by Onoue (1988), whose study expanded the field of interest from 

single layer soils to multi-layered soils. Among significant research studies, the semi-

analytical solution presented by Onoue (1988) has been one of the most rigorous 

solutions under the free strain condition. However, many recent methods for analysing 

consolidation assisted by vertical drain wells have adapted the simplified theory given 

by Hansbo (1981) under the case of equal strain. Table 2.10 summarises the proposed 

equations for the degree of consolidation ( ) given by the aforementioned authors. 

Figure 2.23 also demonstrates the  patterns for different  values (i.e., ) 

varying with time factor  (i.e., ) based on Barron (1948) solution. 
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Table 2.10. Summary of theoretical solutions for determining the degree of consolidation Ur

Theoretical Solutions for Axisymmetric Consolidation (Average Degree of Consolidation) Authors 

                               (Equal strain case) 

where   

Barron (1948) 

                               (Free strain case)  

where ; 

           ;  ; 

            is the roots of equation: ; and 

           

Yoshikuni & Nakanodo (1974) 
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Table 2.10. Summary of theoretical solutions for determining the degree of consolidation Ur (continued) 

Theoretical Solutions for Axisymmetric Consolidation (Average Degree of Consolidation) Authors 

                               (Equal strain case) 

where  is the radius measured from the centre of drain well to the smear boundary; 

           ; and 

             

Hansbo (1981) 

         (Free strain case)       (can be determined using trapezoidal rule) 

where ; and 

           

Onoue (1988) 
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In an attempt to constitute more realistic models, further studies have included the 

effects of the smear zone and time-dependent loading (Tang & Onitsuka 2000; Leo 

2004; Zhu & Yin 2004; Conte & Troncone 2009; Geng et al. 2010; Lei et al. 2015; Lu 

et al. 2015), varying radial permeability coefficients (Indraratna et al. 2005a; Walker & 

Indraratna 2006, 2007), new analysis for soil-drain system conceptually based on the 

double porosity model (DPM) (Wang & Jiao 2004), vertical drain consolidation with 

discharge capacity varying linearly with depth and decreasing exponentially with time 

(Deng et al. 2013), or axisymmetric model including both radial and vertical flows for 

electro-osmotic consolidation (Wu & Hu 2013). Practical factors which have been 

observed from installations and operations of drain well system would lead to 

theoretical variations in developing frameworks for the axisymmetric consolidation. In 

concerning more thorough models applicable to different soil states, the study of interest 

has been extensively expanded from saturated soil mechanics to unsaturated soil field 

(Conte 2006; Qin et al. 2010c; Zhou 2013). 

It is also worth mentioning some 2D plane strain consolidation studies associated 

with vertical drains. Horne (1964) provided analytical solutions to predict the 

consolidation of a stratified soil under the plane strain and radially symmetrical 

conditions. In this study, considering the 2D plane strain case, the coefficients of 

consolidation with respect to the horizontal and vertical flows (i.e.,  and ) were 

assumed to be functions of the vertical coordinate  only (Horne 1964). On the other 

hand, Indraratna & Redana (1997) obtained analytical model to quantify the smear 

effects using the finite element method. The conventional axisymmetric condition was 

first transformed into an equivalent plane strain system by expressing the equivalent 

widths (i.e.,  and ) as functions of drain spacing ( ). Soil property such as 

permeability coefficient ( ) was likewise adjusted to fit in the plane strain system. 

Based on the consolidation theory given by Indraratna & Redana (1997), extensive 

studies conducted by Indraratna and his co-workers (Indraratna et al. 2005b; Indraratna 

et al. 2005c) derived both analytical and numerical solutions for the plane strain 

consolidation induced by vertical sand drains and PVDs incorporating the vacuum 

preloading. In the case of PVDs, the effects of smear zone were also captured in the 

analytical and numerical modelling. 
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2.7. Consolidation analyses for unsaturated soils 

2.7.1. Consolidation theory and governing equation of flow

An unsaturated soil is the three-phase geomaterial primarily comprised of soil solids, 

water and air phases. In many theoretical formulations, the contractile skin, which is 

believed to be the fourth phase in the unsaturated soil, is assumed as part of the water 

phase (Fredlund et al. 2012). There have been theoretical difficulties in deriving the 

constitutive frameworks for unsaturated consolidation due to the inclusion of pore-air 

pressure. Single-valued effective stress variables have been reported to be impractical 

when predicting mechanical behaviours of problematic soils (Morgenstern 1979; 

Wheeler & Karube 1996), as discussed in Section 2.3.1. In the late 1970s, Fredlund & 

Morgenstern (1977) introduced a new set of stress state variables, including , 

 and , through analyses of equilibrium equations for soil structure 

and independent phases (i.e., air, water and contractile skin). Of these stress variables, 

net stress  and matric suction  are selected to develop the constitutive 

equations for the air and water phases in the  loading (axial load applied along 

vertical direction or -direction) (Fredlund & Hasan 1979) as follows: 

                 [2-50a]

                 [2-50b] 

As mentioned in Section 2.4.3, the constitutive relations presented in Equation [2-50] 

were proven valid for practical applications. In addition, Fredlund & Morgenstern (1977)

confirmed that constitutive surfaces associated with the soil structure and water phase 

are unique due to the good agreement between predicted and measured volume changes. 

On the other hand, Barden (1965) suggested that the air and water in a soil element flow 

on the basis of the continuity of fluid phases. In many existing literature, these flows are 

assumed to be continuous and independent (Qin et al. 2008; Shan et al. 2012; Zhou et 

al. 2014). Figure 2.24 illustrates upward flows of pore-air and pore-water through an 

unsaturated soil element. Childs & Collis-George (1950) recommended that the flow of 

water should follow Darcy’s law. Assuming that water is incompressible (i.e.,  is 
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constant throughout the soil element), the volumes of water entering ( ) and water 

leaving ( ) the soil element can be mathematically derived as follows: 

                           [2-51a] 

                          [2-51b] 

where , is the unit area of the unsaturated soil element; and  is the flow 

rate of water across the unit area in the -direction. Besides, Blight (1971) suggested 

that the air flows in accordance with Fick’s law. Note that the air phase is assumed to be 

continuous and compressible (i.e.,  is not constant throughout the soil element). Thus, 

the masses of air entering ( ) and air leaving ( ) the unsaturated soil element are: 

                                    [2-52a] 

                          [2-52b] 

where  is the mass rate of air across the unit area in the -direction. The net flux of 

water in the soil element can be determined by taking the difference between the 

Figure 2.24. Flows of pore-air and pore-water through the unsaturated soil 

element (modified after Fredlund & Hasan 1979)
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volumes of water entering and leaving the soil element. Likewise, under the isothermal 

condition, the net flux of air is estimated by subtracting the mass of air leaving from the 

mass of air entering (Fredlund & Hasan 1979). Thus,     

                          [2-53a] 

                 [2-53b] 

where  and  are the coefficients of permeability with respect to the air and water 

phases, respectively;  and  are the density of air and water, respectively; and  is 

the gravitational constant. Combining Equations [2-50] and [2-53] while considering the 

constant loading condition (i.e., ) would lead to the governing equations 

describing coupled pore-air and pore-water dissipation as follows: 

                [2-54a] 

                [2-54b] 

in which ; ; 

; and  .              [2-55] 

where  and  are the interactive constants associated with the air and water phases, 

respectively;  and  are the coefficients of consolidation with respect to the air and 

water phases, respectively;  is the degree of saturation;  is the porosity;  is the 

atmospheric pressure;  is the universal gas constant ( );  is the 

molecular mass of air phase ( );  is the absolute temperature;  is the 

unit weight of water. 

According to Fredlund & Hasan (1979), the only drawback in these governing 

equations (i.e., Equation [2-54]) is that the air phase is assumed continuous throughout 

the compression even when the degree of saturation ( ) is high. Nevertheless, this set 

of governing equations can smoothly convert to the governing equation for saturated 

soils provided by Terzaghi (1925) or to the equation for dry soils proposed by Blight 
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(1971). In most models introduced by Fredlund and his co-workers (Fredlund & Hasan 

1979; Dakshanamurthy & Fredlund 1980, 1981; Darkshanamurthy et al. 1984; Fredlund 

et al. 2012), the interactive constants (i.e.,  and ) and coefficients of consolidation 

(i.e.,  and ) are assumed to remain unchanged during the consolidation process for 

the sake of simple evaluation. This assumption may be acceptable for a small stress 

increment in a transient process, at which all involved properties, such as degree of 

saturation ( ), hydraulic conductivity (  and ), volume change coefficients ( , 

,  and ) and porosity ( ) to name a few, do not change considerably. It should 

be noted that Dakshanamurthy & Fredlund (1980), and Dakshanamurthy et al. (1984) 

further expanded the 1D equations to the 2D and 3D models, respectively. 

2.7.2. Existing models for consolidation in unsaturated soils 

The past two decades have witnessed a significant progression in consolidation studies 

for unsaturated soils. Both analytical and numerical methods have been adopted to 

derive the consolidation models. Qin et al. (2008) developed an analytical solution to 

predict the 1D consolidation using Cayley-Hamilton theorem and Laplace 

transformation technique. The water velocity ( ) and mass rate of air ( ) were 

introduced to the mathematical development, forming fundamental relationships 

between these terms and pore-air and pore-water pressures. However, the inclusion of 

 and  also causes cumbersome computations associated with complex arguments. 

Although analytical results gave a good agreement with the numerical predictions, the 

solution may be impractical for use due to the complexity of the obtained equations. Qin 

et al. (2010a) alternatively presented a semi-analytical solution for the 1D consolidation 

using Fourier series approximation for Laplace inversion (Crump 1976). Besides, Qin et 

al. (2010b) further estimated the dissipation rates of excess pore pressures and 

settlement of unsaturated soil deposits subjected to an exponentially time-dependent 

loading. In this study, the exponential loading function (with respect to time) generates 

new consolidation parameters,  and , leading to difficulty in deriving the 

settlement equation. Later, Qin et al. (2014) developed a semi-analytical solution for the 

consolidation of viscoelastic unsaturated soils. It is reported that the viscosity 

coefficient ( ) has minor impacts on both the excess pore-air and pore-water pressure 

dissipation rates (Qin et al. 2014). 
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Shan et al. (2012) provided exact solutions for the unsaturated consolidation using 

homogeneous and nonhomogeneous boundary conditions. In homogeneous conditions, 

analytical solutions were obtained by converting the nonhomogeneous governing flow 

equations into the homogeneous forms. The altered homogeneous equation is presented 

by: 

,                    [2-56] 

in which  and  can be obtained from the following equation: 

                 [2-57] 

Similar to the derivation provided by Terzaghi (1925), Equation [2-56] can be solved 

using the separation of variables method to produce two roots, namely  and . 

These alternative solutions constitute excess pore pressures based on relationships 

presented as follows: 

,   for                [2-58a] 

,   for                [2-58b] 

where ; ; 

; ; 

;  ; and .             [2-59] 

To obtain Equation [2-58], Shan et al. (2012) used the indirect method which 

acquires intermediate steps of transforming the nonhomogeneous PDEs to the 

homogeneous PDEs. In this solution, the authors also captured the effects of 

exponential and sine wave loading on the consolidation process. Although the analytical 

method is presented in a constructive manner, the lack of presentation of final equations 

may lead to the ambiguity in justification, particularly the transition exercise between 

saturated and unsaturated states. Shan et al. (2014) extensively improved the analytical 

solutions to predict the consolidation for unsaturated multi-layered soils using the 

method of undetermined coefficients and orthogonal relation of the eigenfunction. Their 
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study found that the constant loading exerted to the ground surface of multi-layered soil 

would generate different excess pore pressures in different layers (Shan et al. 2014). 

Zhou et al. (2014), on the other hand, proposed a simple analytical solution for the 

consolidation of unsaturated soils. The mathematical procedure adopted two alternative 

variables, namely  and , to transform the nonhomogeneous governing equations to 

a new set of homogeneous equations. This procedure is comparable to the one proposed 

by Shan et al. (2012). The alternative set of homogeneous PDEs includes: 

,                    [2-60] 

where ; 

; 

;  ; 

;  ; 

; and  .                [2-61] 

Zhou et al. (2014) solved the PDEs in Equation [2-60] using the separation of 

variables method and obtained the roots  and . These solutions can be expressed as 

functions of excess pore-air and pore-water pressures as follows: 

                    [2-62] 

where  and . Changes in excess pore-air and 

pore-water pressures can be computed by simultaneously solving Equation [2-62]. For 

the sake of realistic predictions, the study also incorporated effects of ramped and 

exponential loadings in the proposed equations. Despite the proposed simple method, 

analytical procedure given by Zhou et al. (2014) cannot obtain final solutions directly. 

Moreover, the transition from the obtained solutions to the traditional equation for 

saturated soils (Terzaghi 1925) may encounter the singularity issues. This indicates that 

the method is only applicable to the case of unsaturated soils. When the soil becomes 

saturated, the final solutions may be undefined. Besides the analytical study, Zhou & 
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Zhao (2014) also provided a numerical approach such as differential quadrature method 

(DQM) to estimate some complex consolidation problems considering different initial 

and boundary conditions.  

It is also worth mentioning other well-recognised studies associated with the 2D 

plane strain and axisymmetric consolidation fields. Conte (2004) used the finite element 

approximation to analyse the plane strain consolidation of a single-layer unsaturated 

soil. One of the most important findings in this study is that the Mandel-Cryer effect has 

little impacts on the unsaturated consolidation regardless of values of Poisson’s ratio 

and soil thickness (Conte 2004). This point has been supported by Wong et al. (1998), 

Vu & Fredlund (2003), and Fredlund et al. (2012).  

Previous decades have seen a modest number of studies in relation to the 

axisymmetric consolidation of unsaturated soils, most of which preferred numerical 

approaches to deal with the complexity of mathematical equations. Besides the plane 

strain consolidation study, Conte (2006) also introduced the standard finite element 

technique to obtain a solution for the coupled consolidation under axisymmetric 

conditions. Qin et al. (2010c) dealt with the drain well consolidation problem in 

unsaturated soils using the modified Bessel functions and the Laplace transformation. 

Zhou & Tu (2012), and Zhou (2013) presented the numerical approach such as DQM to 

estimate the axisymmetric consolidation behaviour in the unsaturated soil stratum. 

However, the aforementioned approaches (Conte 2006; Qin et al. 2010c; Zhou & Tu 

2012; Zhou 2013) are generally confined to complex numerical procedures. In addition, 

some prediction methods may be impractical due to the lack of consideration of the 

vertical flow of air and water phases which occur in the field. Moreover, predictions 

generated by these methods only cover a simple case when soil is subjected to an 

external constant loading. In more realistic circumstances, applied loads are rather 

dynamic and usually vary with time. 

2.8. Summary 

An unsaturated soil is a three-phase composition generally composed of solid particles, 

air and water phases. Existing studies (e.g. Fredlund & Morgenstern 1977; Ng & 

Menzies 2007) have shown that the contractile skin (air-water interface) could be 

considered as the fourth phase in the soil element. However, contractile skin is 
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composed of a few thin molecular layers and therefore can be considered as a part of 

water phase when establishing the volume-mass constitutive models. On the other hand, 

the contractile skin induces surface traction, which in turn causes a concave curvature 

on the air-water interface. The radius of curvature, known as meniscus, forms a reverse 

relationship with matric suction, as demonstrated in Section 2.1.   

Soil suction, , is defined as the free energy of soil water and is one of the most 

important soil properties. The soil suction consists of matric suction component 

( ) and osmotic suction component ( ). Many unsaturated soil problems 

observed in arid and semi-arid climatic areas are found to significantly affect the matric 

suction but have minor influence on the osmotic suction (Fredlund et al. 2012). 

Additionally, experimental studies elucidate that changes in matric suction are very 

much congruent to changes in the total suction (Krahn & Fredlund 1972). Thus, it can 

essentially replace the total suction for analysing unsaturated soil mechanics. It is also 

found that the matric suction change significantly induces the microstructural behaviour 

of a soil. In particular, the matric suction increase would lead to a bimodal pore-size 

distribution (PSD) curve, which is ascribed by an increase in the microporosity and a 

decrease in the macroporosity (Cuisinier & Laloui 2004; Koliji et al. 2006). Effects of 

matric suction on different pore classes are clearly discussed in Section 2.1. On the 

other hand, the matric suction has substantial impacts on properties of problematic soil 

deposits (i.e. collapsible and expansive soils), such as the void ratio ( ). It is reported 

that the decreasing matric suction would lead to a decrease in void ratio for metastable-

structured soils and to an increase in void ratio for stable-structured soils (Fredlund 

2014). Detailed discussions about problematic soils are presented in Section 2.2. 

Terzaghi (1925) proposed a single-valued effective stress variable ( ) based on 

the effective stress principle, which was used to develop the 1D consolidation theory. 

However, the single stress variable is only valid for the case of saturated soils but is 

rather fictive for the case of unsaturated soils. Morgenstern (1979) revealed that single-

valued effective equations cannot control both volumetric and shear behaviours of 

unsaturated soil. Furthermore, Wheeler & Karube (1996) also reported that these 

proposed equations cannot capture the effects of problematic soils. Therefore, 

independent stress state variables for constitutive models were recommended by several 

researchers (Matyas & Radhakrishna 1968; Barden et al. 1969; Fredlund & 
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Morgenstern 1977). Combination of stress variables, namely ,  and 

, were obtained on the basis of equilibrium analyses for a multiphase 

structure (Fredlund & Morgenstern 1977). The adoption of new stress state variables for 

unsaturated soils is clearly discussed in Section 2.3.  

Fredlund & Morgenstern (1977) proposed a volume-mass constitutive framework 

based on assumptions of isotropic and linearly elastic soil structure. A set of net stress 

 and matric suction  is usually selected to formulate the constitutive 

equations for various loading conditions, as presented in Section 2.4. Volume change 

coefficients for the soil structure (  and ) and water phase (  and ) associated 

with changes in stress variables were introduced to the constitutive relations. 

Verifications for the proposed models were conducted through rigorous laboratory 

experiments (i.e., oedometer, triaxial tests). In addition, constitutive surfaces for the soil 

structure and water phase were successfully proven unique as experimental results 

provided a good agreement with the predictive models (Fredlund & Morgenstern 1977). 

Meanwhile, alternative frameworks associated with elastoplastic (EP) behaviour of 

soils have been developed to predict the total final settlement. The constitutive EP 

frameworks also capture some features related to wetting-induced volume change issues 

(e.g. collapsible and expansive soils). These models can be divided in three categories: 

(1) independent net stress ( ) and matric suction ( ) (Approach 1), (2) effective stress 

approach (Approach 2), and (3) SFG approach (Approach 3). Advantages and 

disadvantages of each approach were clearly discussed in Section 2.5. 

Terzaghi (1925, 1943) introduced a remarkable consolidation theory for fully 

saturated soils based on the concept of heat diffusion. A derived equation predicting an 

excess pore-water pressure at particular time and depth was obtained adopting 

homogeneous drainage boundaries and uniform initial conditions, as shown in Section 

2.6. This study provides a solid framework for further formulations of more rigorous 

settlement models. On the other hand, Barron (1948) transformed the traditional 

consolidation equation into a polar form to predict the settlement of saturated soils 

induced by vertical drains. This vertical drain consolidation was analysed assuming 

axisymmetry around a drain, thus it is also termed axisymmetric consolidation. 

Predictions of the axisymmetric consolidation are obtained based on free strain and 



80 

equal strain hypothesis. According to Barron (1948), equal strain consolidation models 

are more reliable because of its decent accuracy and simplicity.    

Governing equations describing coupled flows of pore-air and pore-water in an 

unsaturated soil element were originally proposed by Fredlund & Hasan (1979). It is 

suggested that the flow of air follows Fick’s law whereas the water flows in accordance 

with Darcy’s law. Referring to the continuity requirement, the derivation of equation 

requires assumptions of incompressible soil grains and pore-water, and continuous air 

phase. The net flux of air and water obtained from changes in mass rate of air ( ) and 

water velocity ( ), respectively, are combined with the constitutive models proposed 

by Fredlund & Morgenstern (1977), resulting in the governing equations for unsaturated 

soil consolidation.  

Several attempts have been made to solve the governing flow equation provided by 

Fredlund & Hasan (1979). Among initial studies, Qin et al. (2008) present analytical 

solution for the 1D consolidation of unsaturated soils using Cayley-Hamilton theorem 

and Laplace transformation technique. This study reports a good agreement between the 

analytical predictions and numerical results, indicating that the proposed solution is 

valid. However, the obtained solution may not be practical for use due to cumbersome 

equations. On the other hand, Shan et al. (2012) and Zhou et al. (2014) introduced 

alternative terms,  and , respectively, to convert the nonlinear nonhomogeneous 

PDEs into traditional homogeneous PDEs and finally obtain solutions. These indirect 

methods lead to some uncertainties in mathematical analyses, particularly the transition 

to the case of saturated soils. Discussions of existing analytical solutions are presented 

in Section 2.7. The above mentioned analytical methods, however, come across with 

several constructive ideas, which inspire the ongoing research seeking a precise solution 

for the consolidation for unsaturated geomaterials. Subsequent chapters will present 

novel analytical approaches to overcome the shortcomings discussed in the existing 

solutions. 
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CHAPTER 3

ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL 
CONSOLIDATION OF UNSATURATED SOILS USING 

EIGENFUNCTION EXPANSION METHOD 

3.1. Introduction 

This chapter proposes a simple but novel analytical solution to predict the dissipations 

of excess pore-air and pore-water pressures, and the settlement of unsaturated soils 

during the compression process. The entire procedure refers to 1D consolidation under 

homogeneous boundary conditions along with the application of uniform and linear

distributions of initial excess pore pressures. This study is based on the governing 

equations originally proposed by Fredlund & Hasan (1979). The method of 

eigenfunction expansion and the Laplace transform technique are directly applied to 

solve nonhomogeneous partial differential equations (PDEs), and consequently, the 

obtained solutions will be presented in two worked examples and verified against other 

available analytical solutions.

3.2. Governing equations of flow for unsaturated soils 

The consolidation theory of unsaturated soils indicates that air and water phases can 

flow independently. Thus, the flow of air and water should comply with the continuity 

conditions satisfying Fick’s and Darcy’s laws, respectively. Considering a referential 

elevation of a single soil layer in Figure 3.1, for 1D consolidation, the horizontal width 

is assumed to be infinity and the thickness is denoted as . A representative soil 

element has a length:width:depth ratio ( ) of , meaning that the depth of the 

soil element can change. The one-way drainage system demonstrates an upward 

migration of pore-air and pore-water once an external load is applied to the system. A 

permeable surface facilitates the dissipation process while the impermeable bedrock 
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prevents both pore pressures from penetrating through (Figure 3.1(a)). In addition, the 

two-way drainage boundary condition considers free dissipation of pore-air and pore-

water pressures through both permeable surfaces on the top and the base (Figure 3.1(b)).  

According to Fredlund & Hasan (1979), the constitutive equations illustrating the 

changes of volume of air ( ) and water ( ) with respect to the initial volume of the 

soil element ( ) can be expressed as: 

                  [3-1a] 

                  [3-1b] 

where  is the total pressure;  and  are excess pore-air and pore-water pressures, 

respectively;  and  are coefficients of air and water volume change with respect 

to the change of net stress , respectively; and  and  are coefficients of air 

and water volume change with respect to the change of suction , respectively. 

In addition, the change in air and water volumes can be described by Fick’s and 

Darcy’s laws, respectively. 

                [3-2a] 

                    [3-2b] 

Figure 3.1. A simplified model for one-dimensional elevation of unsaturated 

soils: (a) one-way drainage system and (b) two-way drainage system
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where  and  are air and water permeability coefficients ( ), respectively;  is 

the gravitational acceleration ( );  and  are maximum initial pore-air and 

pore-water pressures ( ), respectively;  is the atmospheric pressure ( );  is 

the universal air constant ( ); , is the absolute 

temperature ( );  is the molecular mass of air phase ( );  is the 

porosity during consolidation process;  is the degree of saturation during 

consolidation process; and  is water unit weight ( ). 

The change in total pressure with respect to time in Equations [3-1a] and [3-1b] is set 

to zero ( ) as a result of constant loading. By combining two pairs of 

Equations [3-1a] and [3-2a] and Equations [3-1b] and [3-2b], the result demonstrates 

two nonhomogeneous PDEs of air and water phases dependent on variables  and , as 

follows: 

                  [3-3a] 

                  [3-3b] 

where , is the interactive constant associated with the air 

phase;  

, is the coefficient of consolidation with 

respect to the air phase;  

, is the interactive constant associated with the water phase; and 

, is the coefficient of consolidation with respect to the water 

phase.  

Equations [3-3a] and [3-3b] can be simplified as follows: 

                  [3-4a] 

                  [3-4b] 
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where  and  are the first order of PDEs of pore-air and pore-water pressures 

with respect to time, respectively; and  and  are the second order of PDEs of 

pore-air and pore-water pressures with respect to depth, respectively. 

3.3. Analytical solution for 1D consolidation  

The nature of soils, in general, is some of ambiguity due to the complicated texture 

assemblage and the lack of homogeneity in particle sizes, making it more difficult in 

predicting the consolidation characteristics. Before analysing further, some essential 

assumptions need to be made to allow an ease of handling analytical development, 

which are listed below: 

(1) The entire soil strata are assumed to be homogeneous; 

(2) Solid solids and pore-water are incompressible; 

(3) Air and water phases are assumed to be continuous; 

(4) Environmental influences such as air diffusion through water and temperature 

change can be neglected; 

(5) The loading and deformation happen along vertical direction only (1D 

consolidation); 

(6) Interactive constants and consolidation coefficients with respect to air phase (

and , respectively) and water phase (  and , respectively) are assumed to be 

constant.  

Due to variations of permeability, volume change coefficients, degree of saturation 

( ), and porosity ( ), the interactive and consolidation coefficients may change during 

the consolidation process. However, for the sake of simplification, assumption (6) is 

made to alleviate the complication in obtaining the solutions for the governing 

equations (i.e. Equation [3-3]). It should be noted that this assumption was also adopted 

by Shan et al. (2012). Additionally, in the analytical solution provided by Terzaghi 

(1943), the consolidation coefficient ( ) was considered to be constant. 

In this chapter, the homogeneous boundary conditions, namely one-way and two-

way drainage systems, can be mathematically described as follows: 
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(a) One-way drainage condition:  

;                                                    [3-5a] 

;                   [3-5b] 

(b) Two-way drainage condition:  

;                                 [3-6a] 

;                        [3-6b] 

where  is the soil layer thickness. 

Constant initial excess pore pressures have been assumed in most literature and in the 

laboratory consolidation tests (Venkatramaiah 2006). Figure 3.2 depicts typical patterns 

of water and air dissipation under one-way (Figure 3.2(a)) and two-way (Figure 3.2(b)) 

drainage systems when the constant initial condition is considered. However, this 

condition is not strictly applicable in the cases of consolidation under small footings or 

deep soil layers (Venkatramaiah 2006). In this chapter, the initial condition of the soil 

layer will be presented in mathematical forms which capture the cases of the initial 

excess pore pressures being uniformly distributed (constant with depth) and linearly 

Figure 3.2. Dissipation of excess pore-water and pore-air pressures for (a) one-

way drainage system and (b) two-way drainage system
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Figure 3.3. Different initial conditions due to the changes of and 

distributed (linearly decreasing with depth). Thus, at , the initial pore-air and pore-

water pressures are respectively described in the domain  as follows: 

;                       [3-7a] 

;                             [3-7b] 

where  and  are dimensionless parameters controlling the gradient of distributions 

of initial excess pore-air and pore-water pressures with depth, respectively. 

The parameters  and  act as weighting factors, ranging from  to . When 

,  and  will become  and , respectively. This means 

that the distribution of initial pore pressures is uniform throughout the depth. In the case 

where  or , the initial excess pore pressures decrease linearly 

with depth. The triangular distributions of initial pore pressures will be formed when 

. Figure 3.3 demonstrates the gradient change of distributions of initial 

pore pressures with variations of  and . 

According to Haberman (2012), to deal with nonhomogeneous problems, the 

eigenfunction expansion method with homogeneous boundary conditions (Equations [3-

5] and [3-6]) employs homogeneous forms for general solutions of  and . 

                   [3-8a] 

                  [3-8b] 

where   and  are eigenfunctions with respect to the depth ; and  and 

 are generalised Fourier coefficients varying with time . 
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These general solutions can be written as products of functions of  and functions of 

. The functions  and  are subjected to homogeneous boundary conditions 

and are termed as eigenfunctions. In this study, the eigenfunctions describe natural 

vibrations and can be presented in trigonometric series, namely ordinary Fourier sine 

series (Haberman 2012). Additionally, eigenvalues, known as natural frequencies of 

vibration ( ) (with ), are determined by the material constants of the 

system, geometrical factors and boundary conditions. Two pairs of eigenfunctions and 

eigenvalues can be adopted as follows:  

(a) One-way drainage condition: 

                            [3-9] 

(b) Two-way drainage condition: 

                  [3-10] 

For the ease of handling the mathematical development in both drainage conditions, 

term  can be introduced in Equation [3-11], as follows: 

                           [3-11] 

Hence, Equations [3-8a] and [3-8b] can be rewritten as follows: 

                [3-12a] 

                [3-12b] 

Substituting Equations [3-12a] and [3-12b] into the corresponding Equations [3-4a] 

and [3-4b] gives: 

           [3-13a] 

           [3-13b] 
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Equations [3-13a] and [3-13b] can be truncated to the family of ordinary differential 

equations (ODEs): 

                          [3-14a] 

                [3-14b] 

with   

Applying Laplace transform to Equations [3-14a] and [3-14b] yields in: 

             [3-15a] 

             [3-15b] 

with 

Rearranging and then simultaneously solving for  and  ( ) in 

Equation [3-15] results in: 

               [3-16a] 

               [3-16b] 

It is known that the parameters  and  ( ) are independent of 

the complex argument . Thus, taking the inverse Laplace in Equations [3-16a] and [3-

16b] leads to: 

                [3-17a] 

                         [3-17b] 

where ; 

; ;  

; ; 

;   ; 
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   ; and    .                             

Substituting a pair of Equations [3-17a] and [3-17b] into Equations [3-12a] and [3-

12b], respectively, results in: 

            [3-18a] 

            [3-18b] 

Equation [3-18] indicates the dissipation of excess pore pressures applicable to both 

drainage systems. These equations present closed-form solutions and can smoothly 

convert back to the solution for 1D consolidation in saturated soils (Terzaghi 1943) if 

properties associated with the air phase are discarded. Moreover, the application of 

eigenfunction expansion method allows the general solution to be expressed in a series 

of the eigenfunction of the related homogeneous problem. This means that Equation [3-

4] can be solved directly without an intermediate step of converting the 

nonhomogeneous PDEs to the homogeneous PDEs as performed by Shan et al. (2012) 

and Zhou et al. (2014).  

3.4. Settlement of unsaturated soils  

The prediction of the time-dependent soil settlement is a key objective in this study. 

Settlement rate mainly corresponds to the dissipation rate of pore-air and pore-water 

pressures with respect to time. Therefore, it is crucial to express the settlement equation 

under the time domain only. It is also worth noting that when the time approaches 

infinity, excess pore pressures completely dissipate, and the soil layer will achieve its 

final settlement.  

To obtain the settlement of unsaturated soils, coefficients of volume change with 

respect to air and water phases are assumed to remain constant during the consolidation 

process. Fredlund & Hasan (1979) proposed a constitutive equation for the soil structure 

to link the stress and deformation state variables, as below:   

                 [3-19] 
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where  is the volumetric strain; , is the coefficient of volume change 

of the soil element with respect to the change in the net stress; and , is 

the coefficient of volume change of the soil element with respect to the change in 

suction. 

Considering a static loading, the change in the total stress with respect to time is set 

at zero ( ), thus: 

                  [3-20] 

Integrating Equation [3-20] with respect to time  at which , the volumetric 

strain will be given by: 

            [3-21] 

The compression of the soil layer can be expressed by integrating Equation [3-21] 

with respect to depth  at which . 

     

                                [3-22] 

Equation [3-22] is a function of time  and can be utilised to predict the settlement of 

the unsaturated soil deposits.  

3.5. Worked examples 

This section consists of two worked examples predicting the dissipation rates of excess 

pore-air and pore-water pressures, and more importantly, the ground surface settlement 

against elapsed time. Example 1 considers the case of uniformly distributed initial pore 

pressures, where the parameters  and  are equal to zero. In this worked example, 

the predictions are presented incorporating various permeability ratios ( ). 

Verification is conducted by comparing the predictions with analytical solutions 

introduced by Shan et al. (2012). Furthermore, Example 2 adopts linear distributions of 

initial pore-air and pore-water pressures, where  and  are greater than zero. This 
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example primarily investigates the variation of dissipation rates of pore pressures and 

settlement due to the changes in the newly proposed parameters  and . Both 

examples include one-way and two-way drainage boundary conditions and will adopt 

similar properties (Qin et al. 2008; Shan et al. 2012) as follows: 

Material properties: ; ; ; 

;   ; 

; ; 

;   . 

Physical properties: ; ; 

;   . 

In Example 1, the air permeability coefficient ( ) varies from  to 

while the water permeability coefficient ( ) remains constant with the value of 

. The properties, as provided above, can be employed to work out the values 

of the consolidation coefficients (  and ) and the interactive constants (  and ) 

presented in Equations (3a) and (3b). In Example 2, the effects of  and  on 

consolidation of unsaturated soils can be investigated by increasing  from  to  while 

maintaining  of , and vice versa. The investigated subject is an unsaturated soil 

layer with an infinite width, and depth of . A static surcharge of  is 

instantaneously applied on the ground surface and is denoted as . According to 

Fredlund & Hasan (1979), the application of surcharge will generate an initial excess 

pore-air pressure of  and an initial excess pore-water pressure . After a 

certain time of loading, the air and water tend to flow out of the soil, resulting in the 

reduction of the soil volume. Therefore, the vertical effective stress begins to increase 

gradually in order to compensate the pore pressure losses and the ground surface 

settlement can be observed. 

3.5.1. Worked example 1 

In this example, uniformly distributed initial excess pore pressures are assumed 

throughout the soil layer, meaning  and  are equal to zero. Thus, Equations [3-7a] 

and [3-7b] can be rewritten in a domain  as follows: 
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                 [3-23a] 

                            [3-23b] 

Then, Equation [3-18] can be rearranged under one-way and two-way drainage 

conditions, respectively, as follows:  

(a) One-way drainage condition: 

            [3-24a] 

            [3-24b] 

(b) Two-way drainage condition: 

     [3-25a] 

    [3-25b] 

where ; 

; ; 

; ; 

 for one-way drainage system; or  

      for two-way drainage system; 

; and    . 

In this example, the dissipation process is investigated at  (middle of the layer). 

Figures 3.4(a) and 3.4(b) are correspondingly obtained from Equations [3-24a] and [3-

24b], presenting the dissipation rates of the excess pore pressures with respect to time 

for the one-way drainage system. Figures 3.5(a) and 3.5(b) also describe the change in 

excess pore pressures generated by Equations [3-25a] and [3-25b] for the two-way 

drainage system, respectively. The dissipation rates of normalised air ( ) and 

normalised water ( ) pressures are examined with varying permeability ratios 

( ), ranging from 0.01 to 1000. As observed in Figures 3.4 and 3.5, the pore-water 

pressure dissipation illustrates a double S-shaped pattern when  is greater than , 



93 

while the pore-air pressure dissipation only forms a single curve throughout the entire 

dissipation process.   

In Figures 3.4(a) and 3.5(a), parallel curves are formed when pore-air pressures with 

varying  start decreasing. It can be clearly seen that higher  delivers faster 

dissipation of pore-air pressures. Considering the highest value of , the pore-air 

pressure patterns indicate an instantaneous dissipation and require very short time to 

complete this process. Besides, the dissipation rate of pore-water pressures can be 

divided into two stages due to its complex curve. By closely examining  of  in 

the one-way drainage system, Figure 3.4(a) shows that the pore-air pressure completely 

dissipates after  and during this time the water dissipation rate with the similar 

Figure 3.4. Dissipation of pore pressures varying with permeability ratios in one-

way drainage system: (a) dissipation of pore-air pressure and (b) dissipation of 

pore-water pressure
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 forms an upper S curve (Figure 3.4(b)). This process is considered as the first 

stage of dissipation, where significant variation of pore-water pressure patterns can be 

clearly observed. Figures 3.4(b) and 3.5(b) depict that the rate of water flowing out of 

the soil at the first stage is more rapid as a result of higher . The second stage 

begins after the pore-air pressure completely diminishes. During this stage, the pore-

water pressure patterns with different values of  converge into a single curve and 

fully dissipate at the same time (i.e.,  for one-way drainage condition and  for 

two-way drainage condition). The dissipation at the second stage is a slow process 

similar to the consolidation of saturated soils. In comparison to the one-way drainage 

Figure 3.5. Dissipation of pore pressures varying with permeability ratios in two-

way drainage system: (a) dissipation of pore-air pressure and (b) dissipation of 

pore-water pressure
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condition, the results obtained in the two-way drainage system also share similar 

patterns for pore-air and pore-water pressures. The only difference is that the two-way 

drainage system accelerates the dissipation process; therefore the soil layer consolidates 

more quickly than it does in the one-way drainage system.  

On the other hand, the settlement of the soil layer considering uniformly distributed 

initial pore pressures can be computed as follows: 

                      [3-26] 

Figure 3.6. Settlement of unsaturated soils varying with permeability ratios: (a) 

for one-way drainage and (b) for two-way drainage systems
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where  

(a) One-way drainage condition: 

       [3-27a] 

       [3-27b] 

(b) Two-way drainage condition: 

  [3-28a] 

[3-28b] 

Figure 3.6 represents variations of the normalised settlement ( ) with time in both 

one-way drainage (obtained from Equations [3-26] and [3-27]) and two-way drainage 

(obtained from Equations [3-26] and [3-28]) conditions. The general patterns adequately 

resemble to the double S curves of the water dissipation rates shown in Figures 3.4(b) 

and 3.5(b). These double S curves can be easily seen when  is higher than . 

This is due to the fact that the settlement in the earlier stage is mainly governed by the 

dissipation of excess pore pressures, in which air dissipates more quickly than water, 

whereas the settlement in the later stage is air-free and presents the gradual dissipation 

of excess pore-water pressure only. It is suggested that considerably higher values of 

, let say  or more, cause a rapid dissipation of air pressure. As a result, the 

instantaneous settlement occurs and the upper S curve tends to be shifted away to far 

left. In Figure 3.6, the change in the normalised settlement of the soil layer  (

) is plotted against time . As observed, the two-way drainage system 

allows faster settlement than the one-way drainage system as air and water can be 

squeezed out of the soil from both boundaries.   

 Furthermore, the verification is conducted by graphically comparing the obtained 

solution in this study against the analytical solution proposed by Shan et al. (2012). The 

dissipation rate of excess pore pressures and consolidation settlement with  of 

are considered for this comparison as shown in Figures 3.4-3.6. As observed, the 

predictions in this study are in a very good agreement with the reported values by Shan 
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et al. (2012), confirming that the analytical solution developed in this study can deliver 

reliable predictions.  

Figures 3.7 and 3.8 demonstrate the dissipation of pore pressures with depth at 

different time factors  ( ) for one-way and two-way drainage 

systems, respectively. The ratio  of  is taken for the investigation. In general, 

the results obtained from both drainage systems confirm expected behaviours similar to 

saturated consolidation. Both graphs provide satisfactory patterns according to the 

boundary desires and reinforce the principle of consolidation in which pore pressures 

continuously decrease as time elapses. The dissipation of pore-air pressure appears to be 

Figure 3.7. Dissipation of pore pressures varying with depth in one-way drainage

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water

pressure
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faster than that of pore-water pressure. For instance, Figure 3.7 shows that, when 

, the largest  is recorded to be , whereas largest  is almost 

zero. This is in a good agreement with the results presented in Figures 3.4 and 3.5.  

3.5.2. Worked example 2 

Example 2 investigates the dissipation rates of normalised pore-air (

) and normalised pore-water pressures ( ) as well as the 

normalised settlement ( ) considering the linear distribution of initial excess pore 

Figure 3.8. Dissipation of pore pressures varying with depth in two-way drainage

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water

pressure
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pressures with depth. This condition results in both parameters  and  being greater 

than zero. In this example, the proposed mathematical forms for initial pore-air and 

pore-water pressures resemble to Equations [3-7a] and [3-7b]. Hence, the Fourier 

coefficients  and  can be determined using the orthogonality of sine 

function and Equation [3-18] becomes:  

(a) One-way drainage condition: 

            [3-29a] 

            [3-29b] 

(b)  Two-way drainage condition: 

           [3-30a] 

           [3-30b] 

where ; 

; 

; 

; 

;   

;  

; 

;  

; 

 for one-way drainage system; or  

     for two-way drainage system; 

  ; and   .   

This worked example primarily predicts the changes of excess pore-air and pore-

water pressures due to variations in  and . The consolidation process is investigated 
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at  and the permeability ratio ( ) of  is adopted throughout the dissipation 

and settlement analyses (Figures 3.9-3.14). It should be noted that effects of 

permeability ratio variations have already been discussed in Section 5.1. Figures 3.9(a) 

and 3.9(b) are used to respectively describe Equations [3-29a] and [3-29b], which 

demonstrate the dissipation rates of excess pore pressures with increasing  (from  to 

) and constant  ( ) in the one-way drainage system. In contrast, Figures 3.10(a) 

and 3.10(b) correspond to the similar equations with increasing  (from  to ) and 

constant  ( ).  

Figure 3.9. Dissipation of pore pressures varying with in one-way drainage 

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water 

pressure
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Figure 3.9(a) demonstrates that the variation in  (while keeping  constant) has 

minor effects on the pore-air pressure dissipation rate. By a closer examination, all pore-

air pressures diminish after , regardless of values of . Therefore, it can be 

concluded that the change in the pore-air pressure is mainly influenced by the change in 

 (see Figures 3.4(a) and 3.5(a)). Figure 3.9(b) shows slower changes in the pore-

water pressure during the first stage of dissipation while considering higher values of 

. It is noted that the increasing  causes the decrease in the average pore-air pressure. 

Thus, when this insignificant pore-air pressure completely dissipates, there is still 

considerable pore-water pressure remaining in the soil after the first stage. It can be 

Figure 3.10. Dissipation of pore pressures varying with  in one-way drainage

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water

pressure
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noted that pore-water pressures with varying  continue dissipating until  (end of 

the second stage).  

Effects of increasing  (with constant ) are also investigated on the dissipation 

rates in the one-way drainage system. Figure 3.10(a) shows that the change in  has no 

influence on the pore-air pressure ratio. On the other hand, a noticeable decrease in the 

pore-water pressure ratio due to increasing  can be observed during the first stage of 

dissipation, as shown in Figure 3.10(b). This can be explained that the insignificant 

pore-water pressure caused by the higher values of  dissipates along with relatively 

high pore-air pressure and as a result, when the pore-air pressure has been diminished 

Figure 3.11. Dissipation of pore pressures varying with in two-way drainage 

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water 

pressure
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(after the first stage), the remaining pore-water pressures are reported to be lower with 

increasing . For the two-way drainage system, Figures 3.11 and 3.12 present the 

dissipation rates of pore pressures with varying  (from  to ) and varying  (from 

to ), respectively. The results show similar patterns for pore-air and pore-water 

pressures comparable with the one-way drainage condition. However, the two-way 

drainage condition allows the consolidation to proceed more rapidly as a result of two 

permeable boundaries.  

When the initial excess pore pressures are distributed linearly with depth, settlement 

of the unsaturated soil layer can be presented as: 

Figure 3.12. Dissipation of pore pressures varying with in two-way drainage

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water

pressure
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                                [3-31] 

where  

(a) One-way drainage condition: 

   [3-32a] 

[3-32b] 

Figure 3.13. Settlement of unsaturated soils due to (a) the variation of and (b)

the variation of in one-way drainage system
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(b) Two-way drainage condition: 

     [3-33a] 

 [3-33b]   

Figure 3.13 predicts the settlement of the soil deposit due to varying parameters 

and  for the one-way drainage condition. By comparing Figures 3.13(a) and 3.13(b), 

it becomes apparent that the settlement rate in the early stage is influenced by the 

value. In Figure 3.13(a), the normalised compression ( ) decreases when  increases. 

It can be noticed that the increasing  reduces the average initial pore-air pressure in 

Figure 3.14. Settlement of unsaturated soils due to (a) the variation of and (b) 

the variation of in two-way drainage system
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the soil and consequently, less air pressure dissipates resulting in reduced settlement. 

Figure 3.13(b) demonstrates that the constant  leads to similar normalised 

compressions at the beginning. Once pore-air pressures completely dissipate, the later 

stage of consolidation is air-free and the increasing  contributes to reduction of the 

final settlement. Figure 3.14 predicts the settlement of the soil for the two-way drainage 

condition. As expected, in this condition, the normalised compressions for both cases 

(variations in  or ) are predicted to be faster than those for the one-way drainage 

system.    

Figure 3.15. Dissipation of pore pressures varying with depth in one-way drainage

system: (a) dissipation of pore-air pressure and (b) dissipation of pore-water

pressure
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Figure 3.15 illustrates the distribution of excess pore pressures with depth for the 

one-way drainage condition. The adopted value of  for both  and  indicates 

that the maximum pore pressures at the near permeable surface are  (for air) and 

 (for water), and pressures at the impervious bedrock boundary are recorded to be 

 (for air) and  (for water). Similar to Example 1, the  value of  is 

adopted to obtain the dimensionless solutions. As observed in Figures 3.15(a) and 

3.15(b), there are minor increases in pressures at the impervious bedrock boundary in 

the early stage of consolidation. One of the possible reasons for this is that, under an 

external surcharge, existing initial pressures may be redistributed throughout the soil 

stratum so that the pressure equilibrium can be ubiquitously achieved. Such 

Figure 3.16. Dissipation of pore pressures varying with depth in two-way

drainage system: (a) dissipation of pore-air pressure and (b) dissipation of pore-

water pressure
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phenomenon involves dissipation of significant amount of pore pressures through 

permeable surface, while pushing considerable amount of pressures down to the 

impermeable base. Thus, it is understandable that the pore-air and pore-water pressure 

ratios at the bedrock can be more than  during the early stage of consolidation. Figure 

3.16 depicts the dissipation of pore pressures with depth for the two-way drainage 

system. The obtained patterns are generally similar to Figure 3.8, in which the pore-air 

pressure dissipates more quickly than the pore-water pressure.  

3.6. Summary

An analytical solution to predict pore-air and pore-water pressures and consolidation 

settlement of the unsaturated soil layer has been presented in this chapter. The applied 

procedure is based on homogenous boundary conditions, namely one-way and two-way 

drainage systems, and two typical cases of initial conditions, including uniform and 

linear distributions of the initial excess pore pressures. For the analytical development, 

the eigenfunction expansion and Laplace transform methods are used to obtain an exact 

solution. The proposed equations allow a great convenience for practical use due to its 

simplicity. Moreover, the satisfactory verification also adds more creditability to the 

proposed solution and therefore it can be readily used by practicing geotechnical 

engineers.  

Two worked examples have been introduced in this chapter to predict the 1D 

consolidation behaviours. In Example 1, majority of graphs mainly illustrate significant 

effects of the permeability ratio ( ) on the dissipation rates of excess pore 

pressures and final compression with time. As expected, the obtained results show that a 

higher value of  leads to faster air dissipation and induces double S-shaped 

patterns for water dissipation and settlement prediction. Moreover, Example 2 also 

presents the effects of the newly proposed parameters  and  on the dissipation rates 

of pore pressures and the final settlement with time. In general, varying  or  has 

insignificant influences on the change of pore-air pressures but cause notable changes in 

pore-water pressures and settlement. Furthermore, findings of this study show that, for 

the one-way drainage system, there are minor increases in pore pressures at the 

impervious bedrock boundary during the early stage of consolidation. This is due to the 

redistribution of pore pressures in the soil layer under the external surcharge. 
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CHAPTER 4

ONE-DIMENSIONAL CONSOLIDATION ANALYSIS OF 
UNSATURATED SOILS SUBJECTED TO TIME-DEPENDENT 

LOADING 

4.1. Introduction  

Based on the governing equations originally proposed by Fredlund & Hasan  (1979), 

this paper adopts the eigenfunction expansion and Laplace transform techniques to 

determine the changes in excess pore pressures and settlement of unsaturated soils due 

to four external loadings, namely ramping, asymptotic, sinusoid and damped sine wave. 

Each load is simulated and described using a mathematical equation with respect to 

time. The analytical procedure refers to homogeneous boundary conditions (i.e. one-

way and two-way drainage systems) and constant initial conditions (i.e. uniform 

distribution of initial excess pore pressures). The proposed solutions will be graphically 

demonstrated in worked examples hereafter. 

4.2. Governing equations for unsaturated soils 

Typical unsaturated soils primarily consist of three fundamental phases including solid 

skeleton (soil), liquid (water) and gas (air). According to Barden (1965), the three 

different elements of such soils can be distinguished on the basis of continuity of the 

fluid phases. For instance, in a case of high degree of saturation ( ), the water phase is 

continuous and the air phase is discontinuous. For reduced values of , both phases 

may be continuous, whilst much smaller  indicates that water phase is discontinuous 

and the air phase is continuous. The analysis of consolidation should be carried out 

using a specific approach for each of these cases. 

Considering traditional assumptions in Terzaghi (1943) consolidation theory, 

Fredlund & Hasan (1979) governing equations indicate that air and water phases are 
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continuous and flow independently along the vertical direction ( -direction). Fredlund 

& Hasan (1979) described the flows of air and water using the continuity conditions 

satisfying Fick’s and Darcy’s laws, respectively, as summarised in Equations [4-1a] and 

[4-1b]. 

                [4-1a] 

                    [4-1b] 

where  and  are air and water permeability coefficients ( ), respectively;  is 

the gravitational acceleration ( );  and  are initial pore-air and pore-

water pressures ( ), respectively;  is the atmospheric pressure ( );  is the 

universal air constant ( ); , is the absolute temperature 

( );  is the molecular mass of air phase ( );  is the porosity during 

consolidation process;  is the degree of saturation during consolidation process; and 

 is the unit weight of water ( ). 

According to Fredlund & Morgenstern (1977), the constitutive relationship 

presenting changes in the volumes of air ( ) and water ( ) with respect to the initial 

volume of the soil element ( ) can be expressed as: 

                  [4-2a] 

                  [4-2b] 

where  is the total stress;  and  are excess pore-air and pore-water pressures, 

respectively;  and  are coefficients of air and water volume change with respect 

to the change of net stress , respectively; and  and  are coefficients of air 

and water volume change with respect to the change of suction , respectively. 

Combining two pairs of Equations [4-1a] and [4-2a], and Equations [4-1b] and [4-2b] 

results in inhomogeneous PDEs of air and water phases, dependent on variables  and . 

The simplified equations of flow are presented as follows: 
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                  [4-3a] 

                 [4-3b] 

where  and  are the first order PDEs of pore-air and pore-water pressures with 

respect to time, respectively;  and  are the second order PDEs of pore-air and 

pore-water pressures with respect to depth, respectively; and  are the first order PDE 

of the total stress with respect to time. Additionally, 

;                             [4-4a] 

;                [4-4b] 

;                   [4-4c] 

;                   [4-4d] 

; and                   [4-4e] 

.                        [4-4f] 

Equation [4-3] is employed to investigate the deformation of an unsaturated soil 

deposit due to the dissipation of excess pore-air and pore-water pressures. Since the 

total pressure is varying with time, the term  and two consolidation 

parameters,  and , have been introduced to Equation [4-3], influencing the patterns 

of normalised excess pore pressures and the normalised settlement. 

4.3. Analytical formulations for 1D consolidation  

The actual soil properties influencing deformation of the ground are relatively 

ambiguous due to the complicated texture assemblage and the lack of homogeneity of 

the soil. These may result in a difficulty in predicting the consolidation characteristics. 

Therefore, some additional assumptions helping to obtain solutions must be made for 

simplicity as follows: 

(1) The entire soil strata are assumed to be homogeneous; 

(2) The flows of air and water phases are assumed to be continuous and independent; 
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(3) Solid skeleton and water phase are incompressible; 

(4) Effects of environmental factors such as air diffusion and temperature change are 

ignored; 

(5) The vertical loading and deformations are only along -direction; and 

(6) Consolidation parameters with respect to air phase ( ,  and ) and water phase 

( ,  and ) are assumed to be constant during the loading process.  

It should be noted that, during the loading process, consolidation parameters may 

change due to the variation of permeability, degree of saturation ( ), porosity ( ) and 

volume change coefficients. In particular, the permeability coefficients are considered 

as nonlinear functions of degree of saturation and water content (Fredlund et al. 2012). 

Consideration of highly nonlinear behaviours in the mathematical procedure, however, 

may be subjected to the numerical analysis, as a closed-form analytical solution may not 

be achievable. To obtain the exact analytical solution, for simplicity, Assumption (6) is 

justified to alleviate the complication in obtaining the exact solutions for the governing 

equations (i.e. Equation [4-3]). Furthermore, constant soil properties have been adopted 

in several studies in literature, some of which are conducted by Qin et al. (2010b), Shan 

et al. (2012), and Zhou et al. (2014). 

4.3.1. Boundary and initial conditions 

Figure 4.1 illustrates a referential profile of a homogeneous soil with an infinite width 

and a thickness . A representative soil element in 1-D consolidation located at ( ) 

has dimensions of , indicating that the depth of the soil element can change. In 

Figure 4.1(a), the one-way drainage boundary system can be described as a soil profile 

with a permeable top surface and an impervious base. Soon after the application of 

external loads, excess pore-air and pore-water pressures move towards the permeable 

top surface but cannot dissipate through the impermeable base of the soil layer. In 

addition, the two-way drainage system consists of two permeable boundary surfaces as 

shown in Figure 4.1(b). This system allows free dissipation of pore pressures through 

permeable surfaces on the top and the base. Both boundary conditions can be 

mathematically presented as follows: 
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(a) One-way drainage condition: ;                [4-5a] 

(b) Two-way drainage condition: ;                [4-5b] 

where  is the soil layer thickness. 

In this study, a uniform distribution of initial excess pore pressures generated by the 

external loading applied on the ground surface is adopted. For both drainage systems, 

the initial pore pressures in the domain  can be presented as below: 

           [4-6] 

where  and  are values of the excess pore-air and pore-water pressures when 

, respectively. 

4.3.2. Analytical procedure 

The eigenfunction expansion method can be applied to inhomogeneous differential 

problems involved with piecewise smooth functions (Haberman 2012). This method 

uses homogeneous forms for general solutions of  and , as follows: 

Figure 4.1. Simplified unsaturated soil profiles for (a) one-way drainage system;

and (b) two-way drainage system
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                   [4-7a] 

                  [4-7b] 

where  and  are eigenfunctions with respect to the depth ; and  and 

 are generalised Fourier coefficients varying with time . 

Considering the homogeneous boundary conditions, the eigenfunction expansion 

method is employed to solve the inhomogeneous PDEs (i.e. Equations [4-3a] and [4-

3b]) by expanding the general solutions in a series of the eigenfunctions of the related 

homogeneous problem. In most cases, the eigenfunctions will be expressed in an 

ordinary Fourier sine or cosine series depending on different drainage boundary 

conditions. According to Haberman (2012) for general homogeneous problems, the 

eigenvalue, denoted by , is found to be  ( ) for 

the one-way drainage condition and  for the two-way drainage condition. 

Considering the above mentioned eigenvalues, the corresponding eigenfunctions for 

one-way and two-way drainage conditions are  and 

, respectively. Assuming  ( ), Equations [4-7a] 

and [4-7b] can be rewritten as follows: 

                  [4-8a] 

                  [4-8b] 

where ,  for the one-way drainage boundary condition; and

      ,   for the two-way drainage boundary condition.   [4-9] 

The analytical development may encounter a difficulty in determining the 

generalised Fourier coefficients,  and , by substituting Equation [4-8] into 

Equation [4-3]. Additionally, an idea of taking second order derivatives of Equation [4-

8] with respect to depth  is irrational as  and  do not satisfy the same 

homogeneous boundary conditions (i.e. ). However, the 

term-by-term differentiations with respect to time  in Equation [4-8] are valid and will 

result in: 
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                [4-10a] 

                           [4-10b] 

Combining two pairs of Equations [4-3a] and [4-10a] and Equations [4-3b] and [4-

10b] gives: 

            [4-11a] 

            [4-11b] 

By computing orthogonalities of sine functions, the Equation [4-11] becomes: 

                  [4-12a] 

                         [4-12b] 

where  ( ). The term  becomes 

 for the one-way drainage condition; or  for 

the two-way drainage condition. As a reminder, the term  was defined in Equation [4-

9].  

To solve the first order derivatives, Equations [4-12a] and [4-12b] are converted into 

Laplace transformed equations with a complex variable .  

        

         [4-13a] 

    

         [4-13b] 

where ,  ( ) and  are Laplace transformed functions with 

complex argument . 

On the other hand, the initial generalised Fourier coefficients  and  can 

be computed based on the mentioned initial conditions (Equation [4-6]) as follows: 
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                [4-14a] 

               [4-14b] 

The obtained  and  ( ) are then substituted into Equation 

[4-13]. For the ease of calculations, these Laplace transformed equations can be 

rearranged and written in a matrix form as follows:

                              [4-15] 

where ; ;    

; and .              [4-16] 

Solving for  and  ( ) yields in: 

                              [4-17] 

where ; and 

.                    [4-18] 

Then, taking the Laplace inverse of Equation [4-17] results in: 

                 [4-19] 

where ; 

; 

; 
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; ; 

;    ; 

;  and  .               [4-20] 

In Equation [4-19], the term  follows different time-dependent loading 

functions and will be discussed further in subsequent sections. The final generalised 

solution describing the dissipation of excess pore pressures can be deducted as follows: 

   [4-21] 

where ; 

One-way drainage condition:   ( ); and 

Two-way drainage condition:  ( ).        [4-22] 

For fully saturated soils ( ), under constant uniform loading (i.e. 

), the coefficient of permeability and the initial pressure with respect to air phase (

and , respectively) become zero, resulting in the consolidation parameters  and 

equal to zero. In addition, the coefficients of volume change of water  and  are 

equal to the conventional volume change . Thus, Equation [4-21] will transform into 

Equation [4-23]:  

                 [4-23] 

The coefficient of consolidation with respect to water phase ( ) in Equation [4-23] 

is negative due to the negative coefficient of volume change. It is noticed that Equation 

[4-23] is similar to the consolidation equation originally proposed by Terzaghi (1943) 

for saturated soils.  



118 

4.3.3. Settlement of the unsaturated soil layer  

Fredlund & Hasan (1979) proposed a constitutive equation for the soil structure to link 

the stress and deformation state variables, as below:   

                 [4-24] 

where  is the volumetric strain; , is the coefficient of volume change 

of the soil element with respect to the change in the net stress ; and 

, is the coefficient of volume change of the soil element with respect to the 

change in the matric suction . 

It is assumed that the volume change coefficients of the soil are constant during the 

consolidation process. The volumetric strain is determined by integrating Equation [4-

24] with respect to time, thus: 

                     [4-25] 

Then, the settlement of the soil layer can be obtained by: 

                      [4-26] 

Equation [4-26] presents the time-dependent settlement (vertical deformation) of the 

unsaturated soil deposit due to an applied time-dependent load. Functions  and 

 required to estimate the time-dependent settlement can be obtained from 

Equation [4-21]. It is worth mentioning that the influences of soil cementation and 

visco-plastic behaviour on the time-dependent deformation of soil may be major 

interests in geotechnical engineering (Nguyen et al. 2014; Le et al. 2015). This study, 

however, has not included these mentioned studies. 

4.4. Worked examples 

This study presents four time-dependent loadings adapting from ramped (linear), 

asymptotic, sinusoidal and damped sine wave functions (see Figure 4.2). Such loadings 
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applied on the unsaturated soil deposit surface contribute to the changes in the 

interparticle stresses due to the dissipation of excess pore pressures and eventually the 

soil settlement. In this section, the analytical development incorporating the mentioned 

loading functions are presented to derive exact solutions predicting 1-D consolidation 

behaviour of unsaturated soils. The effects of air to water permeability ratio  are 

investigated through analysing the patterns of the normalised pore pressures 

and  as well as the normalised settlement ( ). Furthermore, this study also 

examines the effects of loading parameter of each loading function on the change in 

normalised pore pressures and the settlement. The following material properties are 

adopted in this study and it is assumed that these properties remain constant during the 

loading process: 

Material properties: ; ;  ; 

    ; ; ;  

;     ; 

;  ; 

;    .   [4-27] 
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Figure 4.2. Time-dependent loadings: (a) ramping, (b) asymptotic, (c) sinusoid,

and (d) damped sine wave
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Physical properties: ;  

; 

;    .     [4-28] 

The application of an external load on the ground surface leads to an instantaneous 

undrained compression and induces excess pore pressures. Such induced pressures form 

the initial conditions for the compression process. According to Fredlund & Hasan 

(1979) and Fredlund et al. (2012), under isotropic conditions, an initial loading 

 will generate an initial excess pore-air pressure  and an initial 

excess pore-water pressure . In this study, the unsaturated homogeneous 

soil stratum consists of an infinite width and depth . For the permeability ratio, 

the air permeability ( ) is varying from  to  whereas the water 

permeability ( ) is assumed to be constant and equal to . The properties 

provided in Equations [4-27] and [4-28] are employed to determine the values of the 

consolidation parameters with respect to the air phase ( ,  and ) and the water 

phase ( ,  and ). 

4.4.1. Ramped Loading 

The ground surface of the unsaturated soil deposits is sometimes subjected to an 

external ramped loading (loading varying linearly with time). This loading may be used 

to simulate the influence of construction time to the consolidation process. The general 

loading function is given by: 

                    [4-29] 

where , is the initial surcharge; ‘ ’ is the load function parameter acting 

as the linear load rate ( ). Along with the initial surcharge , the additional load 

rate  is continuously applied on the unsaturated ground as time 

elapses (Figure 4.2(a)). Equation [4-29] can be substituted to the Laplace transformed 

 presented in Equation [4-18]. The term  incorporating the ramped 

loading function is then obtained as follows: 
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              [4-30] 

 where ; 

; ;  
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; ; 

; and  .                [4-31] 

Then, Equation [4-30] can be substituted back to Equation [4-21] to estimate the 

change in excess pore pressures under the ramped loading. The complete equations 

 and  are shown in Equations [A-1a] and [A-1b] in Appendix A.  
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In this example, the effects of permeability ratio  on the excess pore pressure 

dissipation and consolidation settlement are investigated at the depth  for the 

one-way (Figures 4.3(a – c)) and for the two-way (Figures 4.3(d – f)) drainage 

conditions. It is observed that the application of ramped loading on the ground surface 

contributes to the significant increase in the excess pore-water pressure after . This 

increase is a result of the slow dissipation of excess pore-water pressure. Likewise, 

when , the excess pore-air pressure dissipation is also considerably 

increasing due to its slow dissipation rate. When  exceeds , the excess pore-air 

pressure is fully dissipated before , as a result, the external ramping load will have 

little effect on the change of excess pore-air pressure. 

On the other hand, Figures 4.3(c) and 4.3(f) present the normalised settlement (i.e., 

) of the unsaturated soil deposit subjected to the ramped loading. 

In the early stages of compression, different values of  result in variations in 

settlement patterns. During this stage, it can be seen that the settlement patterns form 

inverse S curves when . This is due to the fact that the compression of the 

soil deposit in the early stages is governed by the dissipation of both excess pore-air and 

pore-water pressures, in which air dissipates faster than water, whilst the compression in 

the later stage is only controlled by excess pore-water pressure as a result of the quick 

dissipation of the pore-air pressure. Before , the settlement patterns resemble to 

those induced by a constant loading. However, after , the unsaturated soil layer 

suffers from a dramatic reduction in the volume due to the linearly increasing load. 

These settlement patterns then converge into a single curve and continue to increase 

until they remain unchanged after a long time. In comparison to the one-way drainage 

condition (Figures 4.3(a – c)), the results obtained in the two-way drainage system 

(Figures 4.3(d – f)) also share similar dissipation and settlement patterns. The major 

difference is that the dissipation process and the consolidation settlement in the two-

way drainage system proceed more quickly than the one-way drainage system. 

Variations in the loading rate ‘ ’, ranging from  to , 

also significantly influences the 1-D consolidation behaviour. The normalised pressures 

and settlement of the unsaturated soil subjected to the ramped loading with various load 

rates are presented in Figures 4.4(a – c) for the one-way drainage condition and in 
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Figures 4.4(d – f) for the two-way drainage condition. The permeability ratio  of 

 is adopted in this analysis. It is noticed that a higher loading rate ‘ ’ leads to higher 

external load at a particular time, generating larger excess pore pressures during the 

compression process. Such increase in pressure is clearly observed in both excess pore-

air and pore-water pressure dissipation. Furthermore, faster settlement rate can be 

observed at the later stages of consolidation due to higher external loads. However, the 

settlement patterns approach a similar value after a very long time, regardless of values 

of ‘ ’. 

4.4.2. Asymptotic Loading 

During construction, it is often observed that an external loading continuously increases 

before approaching an asymptote. The general asymptotic function can be 

mathematically simulated as follows: 

                  [4-32] 

where ‘ ’ is the dimensionless parameter influencing the load magnitude; and ‘ ’ is the 

loading parameter controlling the rate of asymptotic loading ( ). Figure 4.2(b) depicts 

the loading varying exponentially with time when  and . The 

asymptotic function presented in Equation [4-32] can be now substituted to the Laplace 

transformed as shown in Equation [4-18]. The term  incorporating 

the asymptotic loading is now presented below: 

  

           [4-33] 

where ; and .              [4-34] 

Equation [4-33] can be substituted back in Equation [4-21] to estimate the change in 

excess pore pressures due to the defined asymptotic loading. The detailed equations 

 and  for asymptotic loading are given in Equations [A-2a] and [A-2b] in 

Appendix A.  
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The changes in excess pore pressures and consolidation settlement are investigated at 

the depth  for one-way (Figures 4.5(a – c)) and two-way (Figures 4.5(d – f)) 

drainage conditions. As observed in Figure 4.2(b), the external loading gradually 

increases until approaching the constant , doubling the value of the 

initial surcharge . Likewise, excess pore pressures with  exponentially 

increase due to the slow dissipation process. Once the loading approaches the asymptote 
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(i.e. ), these pressures begin to decrease. It can be noticed that higher 

values of  (greater than ) lead to faster dissipation of excess pore-air pressure 

and as a consequence, the pressure tends to dissipate before . The validation 

exercise between the dissipation predictions presented in Equation [4-42] and the 

existing solution proposed by Shan et al. (2012) has been conducted in Figures 4.5(a – 

b) and 4.5(d – e). By examining , the analytical solution in this study has a 
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similar result compared to that of the solution in literature (Shan et al. 2012), 

confirming that the proposed solution is valid.  

Figures 4.5(c) and 4.5(f) present the normalised settlement (i.e. 

) of the unsaturated soil deposit due to the asymptotic loading. As 

observed, the normalised settlement abruptly increases due to the rapidly increasing 

external load in the early stages. When the loading approaches the asymptote, the 

settlement gradually increases whilst forming inverse S-shaped curves, as expected for 

the constant loading. It can be noticed that the two-way drainage system delivers faster 

settlement rate than the one-way drainage system due to the free dissipation of air and 

water in both drainage boundaries. For instance, the soil deposit consisting of double 

drainage boundaries approaches the final settlement at  whilst the corresponding 

time in one-way drainage system is . 

The investigation also accentuates on the effects of parameter ‘ ’ on the 1-D 

consolidation behaviour. Various values of ‘ ’, ranging from  to 

are adopted for this investigation. Considering the permeability ratio , 

normalised pore pressures take shorter time to achieve its highest value as ‘ ’ increases 

(Figures 4.6(a – b) and 4.6(d – e)). When the parameter ‘ ’ is small, the maximum value 

of the excess pore pressure tends to decrease due to the slower loading rate. This 

behaviour can be seen in both excess pore-air and pore-water pressures. In the early 

stages of consolidation, the compression of the soil subjected to the asymptotic loading 

having higher ‘ ’ values also tend to proceed more quickly than those having smaller 

‘ ’ values (Figures 4.6(c) and 4.6(f)). 

4.4.3. Sinusoidal Loading 

Sinusoidal (sine wave) function describes a smooth repetitive oscillation and can be 

taken as a possible repetitive external loading applied on the unsaturated soil deposit. 

The general function is mathematically presented as follows:   

                  [4-35] 

where ‘ ’ is the dimensionless parameter influencing the loading amplitude; and ‘ ’ is 

the angular frequency ( ). The sinusoidal function depicted in Figure 4.2(c) 
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consists of a peak to peak amplitude of  (i.e. ) with an angular frequency 

 and . A possible application for the case study with small 

can be regarded as the compression induced by the storage tanks and silos. For instance, 

in a water storage tank, the liquid weight may gradually reduce to zero when the tank is 

emptied as the result of domestic uses and then approach the maximum value (i.e. 

) when the tank is gradually filled with water to replenish its supply. It is worth 
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Figure 4.7. Variations in excess pore pressures and settlement with different
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mentioning that filling and emptying large tanks and silos usually occur with a very 

slow rate. The change in the liquid weight may be assumed to be periodic and therefore 

can be simulated as the sinusoidal loading function. Obviously, by increasing the value 

of in Equation [4-35], it is possible to generate results with a shorter period. For 

example, the cyclic loads generated by heavy trains or road traffic can be simulated with 

higher  values.  

The sinusoidal function in Equation [4-35] can be substituted to the Laplace 

transformed  as shown in Equation [4-18]. The term  incorporating 

the sinusoidal loading is now obtained as below: 

   [4-36] 

where ;  ; 

; 

; 

; and 

.               [4-37] 

The term  obtained from Equation [4-36] can be then substituted back to 

Equation [4-21] to estimate the change in excess pore pressures under the sinusoidal 

loading. The detailed equations  and  for sinusoidal loading are 

presented in Equations [A-3a] and [A-3b] in Appendix A.  

The excess pore pressure dissipation and consolidation settlement are investigated at 

the depth  for one-way (Figures 4.7(a – c)) and two-way (Figures 4.7(d – f)) 

drainage conditions. The typical sinusoidal loading function includes loading-unloading 

curves, generating similar impacts on the dissipation patterns. In specific, the excess 

pore pressures increase during the loading process (i.e. stress path from  to ) 

and decrease during the unloading process (i.e. stress path from  to ) whilst 

still dissipate due to the average loading (i.e. ) at a very slow rate. As 
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observed in Figures 4.7(a – b) and 4.7(d – e), when the consolidation duration is 

significant (e.g. ), the excess pore pressures become negative due to the 

unloading process, as a result of the decreasing total stress. On the other hand, the 

loading-unloading process presents repetitive oscillations with amplitudes dependent on 

the dissipation rate of excess pore pressures. It can be noticed that the higher values of 

 (greater than ) lead to insignificant excess pore-air pressure remaining in the 

soil after  due to the high excess pore pressure dissipation rate. This results in a 
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Figure 4.8. Excess pore pressures and settlement ( ) with different values

of the angular frequency  due to the sinusoidal loading for (a–c) one-way and

(d–f) two-way drainage conditions
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smaller amplitude in the excess pore-air pressure pattern, indicating that the external 

sinusoidal loading has little effects on the excess pore-air pressure dissipation process 

when . Considering the higher value of  (e.g. ) the excess pore-air 

pressure diminishes before  whereas the excess pore-water pressure still continues 

oscillating due to the slow pore-water pressure dissipation process.  

Figures 4.7(c) and 4.7(f) illustrate the normalised settlement (i.e. 

) of the unsaturated soil layer subjected to the sinusoidal loading. The 

compression patterns form inverse S curves in the early stages of consolidation and then 

oscillate indefinitely after . The unsaturated soil deposit settles and expands in 

response to the loading and unloading processes, respectively. This phenomenon 

indicates that air and water are squeezed out during loading process and then absorbed 

in during unloading process; hence, the soil volume continuously changes with time. 

The effects of angular frequency ‘ ’ on the consolidation pattern can be clearly 

demonstrated for one-way (Figures 4.8(a – c)) and two-way (Figures 4.8(d – f)) 

drainage systems, when particular frequencies of  and  are 

investigated. For , the smaller ‘ ’ ( ) delivers slower 

loading-unloading rate, allowing more time for the excess pore-air pressure to dissipate. 

The inconsiderable excess pore-air pressure remaining in the soil after a long period of 

time (e.g. ), may result in a smaller peak to peak amplitude in the pressure pattern. 

In contrary, the increasing ‘ ’ does not only induce a significant amplitude but also 

contributes to more loading-unloading cycles for excess pore pressures. On the other 

hand, at the early stages of consolidation, it is noticed that the unsaturated soil deposit 

settles more quickly when ‘ ’ increases. 

4.4.4. Damped Sine Wave Loading 

The damped sine wave loading is described as a sinusoidal function with its amplitude 

approaching zero when time increases. In engineering practice, soil deposits beneath the 

ground may be subjected to damped and cyclic loadings as the result of traffic loads. A 

damped wave function can be a good representative to describe such external loadings. 

The general damped sine wave loading can be simulated as below: 

                  [4-38] 
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where ‘ ’ is the dimensionless parameter influencing the loading amplitude; ‘ ’ is the 

loading parameter controlling damping rate ( ); and ‘ ’ is the angular frequency 

( ). The damped sine wave loading depicted in Figure 4.2(d) consists of an 

angular frequency  whilst adopting the damping parameter 

 and . The damped function presented in Equation [4-38] can be 

substituted to the Laplace transformed  as shown in Equation [4-18]. The term 

 incorporating the damped loading can be presented as follows:    

  

           [4-39]

where ;  ; 

;  

;  

; and  

.              [4-40] 

The term  obtained from Equation [4-39] will be substituted to Equation 

[4-21] to determine the dissipation of excess pore pressures due to the damped sine 

wave loading. The complete equations  and  for damped loading are 

presented in Equations [A-4a] and [A-4b] in Appendix A.  

The excess pore pressure dissipation and settlement induced by damped sine wave 

loading are investigated at the depth  for one-way (Figures 4.9(a – c)) and two-way 

(Figures 4.9(d – f)) drainage systems. Similar to the sinusoidal loading, the damped sine 

wave function consists of oscillations with peak to peak amplitude of about  at the 

very beginning; then, the amplitude exponentially decreases and approaches zero and 

the external loading becomes constant ( ). Correspondingly, excess pore 

pressure dissipation patterns appear to oscillate due to the loading-unloading process at 
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the early stages and then gradually dissipate after . The change in pressure at later 

stages resembles to that previously proposed in literature (Qin et al. 2008; Shan et al. 

2012; Zhou et al. 2014), in which the dissipation of the excess pore-air pressure presents 

a typical single inverse S curve whilst the excess pore-water pressure forms double 

inverse S curves when .  

-0.6

-0.2

0.2

0.6
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 S
et

tle
m

en
t (

S* )

Time (s)

ka/kw =103

110

102

10-1 10-2

Two-way drainage 
condition

(f)

1 102 104 1010106 108

-0.3

0

0.3

0.6

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 P
or

e-
A

ir 
Pr

es
su

re
 (u

a/u
at

m
)

Time (s)
1 102 104 1010106 108

ka/kw =103 110102 10-1 10-2

One-way drainage 
condition

z = H/2

(a)
-0.45

0

0.45

0.9

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 P
or

e-
W

at
er

 P
re

ss
ur

e 
(u

w
/u

at
m

)

Time (s)
1 102 104 1010106 108

One-way drainage 
condition

110102 10-1 10-2

ka/kw =103

z = H/2

(b)

-0.6

-0.2

0.2

0.6
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 S
et

tle
m

en
t (

S* )

Time (s)

One-way drainage 
condition

110102 10-1 10-2

ka/kw =103

(c)

1 102 104 1010106 108

-0.3

0

0.3

0.6

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 P
or

e-
A

ir 
Pr

es
su

re
 (u

a/u
at

m
)

Time (s)
1 102 104 1010106 108

ka/kw =103 110102 10-1 10-2

Two-way drainage 
condition

z = H/2

(d)

-0.45

0

0.45

0.9

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

iz
ed

 P
or

e-
W

at
er

 P
re

ss
ur

e 
(u

w
/u

at
m

)

Time (s)
1 102 104 1010106 108

110102 10-1 10-2

ka/kw =103

Two-way drainage 
condition

z = H/2

(e)

Figure 4.9. Variations in excess pore pressures and settlement with different

 due to the damped sine wave loading for (a–c) one-way and (d–f) two-way

drainage conditions
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Figures 4.9(c) and 4.9(f) depict the normalised settlement (i.e. 

) of the unsaturated soil layer due to the damped sine wave loading. The 

compression patterns initially show oscillations with decreasing amplitude. As the 

damped sine wave loading stabilises (the amplitude approaches zero), the compression 

patterns resemble to the patterns proposed for the constant loading. It is also noticed that 

the two-way drainage condition results in higher settlement rate in comparison to the 

one-way drainage condition.  
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Figure 4.10. Excess pore pressures and settlement ( ) with different 

values of the parameter  due to the damped sine wave loading for (a–c) one-way 

and (d–f) two-way drainage conditions
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The significant effects of the damping parameter ‘ ’ (  and ) 

and the angular frequency ‘ ’ (  and ) on 1-D consolidation can 

be demonstrated in Figures 4.10(a – f) and Figures 4.11(a – f), respectively. Considering 

, when ‘ ’ is varying whilst ‘ ’ is constant, the higher value of ‘ ’ (i.e. 

) accelerates the damping process, in which the load amplitude approaches 

zero much faster than that with smaller ‘ ’ (i.e. ). Likewise, excess pore 
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Figure 4.11. Excess pore pressures and settlement ( ) with different 

values of the angular frequency  due to the damped sine wave loading for (a–c) 

one-way and (d–f) two-way drainage conditions
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pressures with the higher ‘ ’ tend to stabilise more quickly before being dissipated. On 

the other hand, during the early stages of consolidation, more loading-unloading cycles 

in the excess pore pressure and compression patterns are observed as ‘ ’ increases 

whilst  remains unchanged. The effects of ‘ ’ is similar to those of ‘ ’ in the 

sinusoidal loading function. Once the load amplitude approaches zero, the consolidation 

behaviour is no longer influenced by parameters ‘ ’ and ‘ ’. 

4.5. Summary 

This paper introduces the application of eigenfunction expansion and Laplace transform 

techniques to determine excess pore pressures and 1-D settlement of the unsaturated soil 

layer subjected to various time-dependent loadings. In this study, the homogeneous 

boundary conditions (one-way and two-way drainage systems) and the uniformly 

distributed initial pore pressures are adopted for the analytical development. The general 

solution consisting of the eigenfunctions is employed. Once the first order derivatives 

with respect to time are obtained, exact solutions can be computed using Laplace 

transform and Laplace inverse methods. When the soil is in saturated state, the proposed 

final solution can be simplified and transformed into the classical Terzaghi’s 

consolidation equation. This shows that the proposed solution is applicable for different 

soil states. Moreover, the validation has been conducted in the worked examples 

suggesting the proposed solution is valid for use. 

Loading functions (i.e. ramped, asymptotic, sinusoidal, and damped sine wave 

loadings) varying with time are mathematically simulated in different worked examples. 

Closed-form analytical solutions to predict variations of the excess pore-air and pore-

water pressures as well as the ground surface settlement with time have been developed. 

Through the analytical solutions, the 1-D consolidation behaviour reveals that the 

application of time-dependent loads has less significant impacts on the excess pore-air 

pressure as  increases. In contrary, the excess pore-water pressure patterns 

varying with  are significantly influenced by particular loading functions. It is 

also concluded that the dissipation process of excess pore pressures and settlement in 

the two-way drainage system proceed faster than those in the one-way drainage system. 

Besides, the effects of loading parameters (‘ ’, ‘ ’, ‘ ’, ‘ ’ and ‘ ’) presented in the 

mentioned loading functions were also investigated. In most cases, particularly in the 
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early stages of loading or consolidation process, changes in the loading function 

parameters lead to significant changes in excess pore pressures and the predicted 

settlement. More specifically, for ramped and asymptotic loadings, excess pore pressure 

dissipation rates generally increase with increasing loading rates  and ; whilst higher 

angular frequencies ‘ ’ or ‘ ’, presented in sinusoidal and damped sine wave loadings, 

contribute to more loading-unloading cycles for excess pore pressures and the ground 

surface settlement. Additionally, higher damping rate ‘ ’, shown in the damped sine 

wave loading, accelerates the damping process for the excess pore pressures and the 

settlement.
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CHAPTER 5

ANALYTICAL SOLUTION TO ONE-DIMENSIONAL 
CONSOLIDATION IN UNSATURATED SOIL DEPOSIT 

INCORPORATING TIME-DEPENDENT TEMPERATURE 
VARIATIONS 

5.1. Introduction 

Referring to the experiment-based research conducted by Alsherif & McCartney (2015), 

there is realisation that changes in temperature induce pronounced impacts on the 

deformation behaviour of compacted and unsaturated soils. This paper presents an 

analytical solution to the 1D consolidation of unsaturated soil deposit induced by the 

temperature varying with time and depth. The governing flow equations that capture the 

temperature change are adopted from Dakshanamurthy & Fredlund (1981). Fourier sine 

series and Laplace transformation techniques are employed to obtain final solutions. 

Effects of temperature varying linearly, exponentially and diurnally on changes in pore 

pressures and soil deformation are highlighted. This paper also investigates combined 

effects of temperature change and constant loading on the consolidation behaviour. 

Furthermore, effects of thermal parameters influencing the consolidation process are 

investigated and discussed. This proposed analytical solution can be used to validate the 

future numerical and experimental results for the 1D consolidation of unsaturated soils 

induced by temperature variations.     

5.2. Governing flow equations in unsaturated soils  

As suggested by Barden (1965), the flows of air and water can be described in 

accordance with the continuity of fluid phases. When the degree of saturation ( ) is 

high, the water phase is considered to be continuous whereas the air phase is not; when 

 reduces, both air and water media may be continuous; and for lower , the air phase 
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is considered to be continuous while the water phase is not. In existing literature (Qin et 

al. 2008; Shan et al. 2012; Zhou et al. 2014), flows of air and water can be assumed 

continuous and independent. It should be also noted that Fick’s law can be used to 

present the air flow (Blight 1971) while Darcy’s law describes the water flow (Childs & 

Collis-George 1950). 

A single layer soil consisting of an infinite width and a definable thickness  is 

depicted in Figure 5.1. Considering the 1D consolidation theory, it is assumed that air 

and water only flow in the vertical direction only (i.e. -direction). Figure 5.1(a) 

illustrates a typical one-way drainage system, in which the ground surface is pervious 

whereas the base is impervious to air and water. Figure 5.1(b), on the other hand, 

presents a two-way drainage system where the surface and base of the soil are pervious 

to both phases. Following Fredlund & Hasan (1979), the constitutive equations with 

respect to the air and water phases can be presented as shown below: 

                  [5-1a] 

                 [5-1b] 

where  is the total pressure ( );  and  are the excess pore-air and pore-water 

pressures ( ), respectively;  and  are the coefficients of air and water volume 

change with respect to the change of net stress ( ), respectively; and  and 

are the coefficients of air and water volume change with respect to the change of suction 

( ), respectively. The change in air and water volumes can be described in 

Figure 5.1. Single layer soil profile under: (a) the one-way drainage system and 

(b) the two-way drainage system
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accordance with Fick’s and Darcy’s laws, respectively, while capturing the non-

isothermal condition (Dakshanamurthy & Fredlund 1981), as follows: 

              [5-2a] 

                    [5-2b] 

where  and  are the air and water permeability coefficients ( ), respectively;  is 

the gravitational acceleration (i.e. );  is the initial pore-air and pore-water 

pressures ( );  is the atmospheric pressure ( );  is the universal air constant 

(i.e. ); , is the absolute temperature ( );  is the average 

temperature of the soil profile (i.e. );  is the molecular mass of air (i.e. 

);  is the porosity;  is the degree of saturation; and  is the water unit weight 

(i.e. ). 

Due to a constant applied load, the change in total stress with respect to time, as 

presented in Equations [5-1a] and [5-1b], is set as zero (i.e. ). Combining 

two pairs of Equations [5-1a] and [5-2a] as well as [5-1b] and [5-2b] results in PDEs for 

air and water flows, as presented by Dakshanamurthy & Fredlund (1981): 

                 [5-3a] 

                  [5-3b] 

where ;  

;  

; 

; and 

.         [5-4] 
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Equations [5-3a] and [5-3b] can be further simplified as follows: 

                 [5-5a] 

                  [5-5b] 

where  and  are the first order of PDEs of pore-air and pore-water pressures 

with respect to time, respectively; and  and  are the second order of PDEs of 

pore-air and pore-water pressures with respect to depth, respectively. 

Equations [5-5a] and [5-5b] describe the continuous and independent dissipation of 

excess pore-air ( ) and pore-water ( ) pressures due to changes in temperature and 

constant loading. Solutions for Equations [5-5a] and [5-5b] would present functions of 

depth  and time . 

5.3. Analytical solution  

A typical unsaturated soil is usually sophisticated in nature due to its nonlinear 

properties and intricate phase relationships within a soil element. Consideration of 

complex properties in the mathematical procedure may result in arduous numerical 

analyses, and analytical approaches may not be achievable. In order to alleviate 

difficulties in obtaining the analytical solution, following assumptions should be made:   

(1) The soil stratum is homogeneous; 

(2) The soil grains and water are incompressible; 

(3) Flows of air and water phases are continuous and independent; 

(4) Air diffusion through water is neglected; 

(5) Soil deformation only occurs in the vertical direction ( -direction); 

(6) Consolidation coefficients with respect to the air phase ( ,  and , 

respectively) and the water phase (  and , respectively) are assumed to be 

constant.  

Note that Assumption (6) may not be applicable to some cases. In engineering 

practice, an application of external load may result in changes in soil properties such as 

permeability coefficients (  and ), porosity ( ) and degree of saturation ( ) to name 

a few. This means the consolidation coefficients may eventually change, but it may be 
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acceptable to consider the consolidation coefficients to be constant during a transient 

process at a particular loading increment. 

5.3.1. Boundary and initial conditions 

The homogeneous boundary conditions, namely one-way and two-way drainage 

systems, are presented as follows: 

(c) One-way drainage condition:  

,                    [5-6] 

(d) Two-way drainage condition:  

,                         [5-7] 

where  is the thickness of the soil. Referring to existing literature (Craig 2004; 

Venkatramaiah 2006; Coduto et al. 2011), the initial conditions for both one-way and 

two-way drainage systems are: 

,              [5-8] 

where  and  are the initial excess pore-air and pore-water pressures ( ). Note 

that the initial excess pore pressures are distributed uniformly along the soil depth, 

except for the permeable boundaries. 

5.3.2. Excess pore pressure dissipation and settlement 

First, the Fourier sine series can be introduced as general solutions for Equations [5-5a] 

and [5-5b]: 

                  [5-9a] 

                  [5-9b] 

where  for the one-way drainage condition ( ); or 

       for the two-way drainage condition ( ).             [5-10] 
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In addition, the general thermal equation is proposed as functions of depth  and time 

, as follows:  

                             [5-11] 

where .                 [5-12] 

Substituting Equations [5-9] – [5-12] into Equation [5-5] gives: 

            [5-13a] 

             [5-13b] 

Truncating Equation [5-13] results in: 

              [5-14a] 

               [5-14b] 

Applying the Laplace transformation to Equations [5-14a] and [5-14b] yields: 

     

         [5-15a] 

                 [5-15b] 

where ,  and  ( ) are Laplace transformed terms with the 

subjugate variable . Solving for  and  and then presenting the results in a 

simplified matrix form as shown below: 

                    [5-16] 

where ;  

; and 
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.                          [5-17] 

Besides, the terms  and  can be obtained using the orthogonality of sine 

functions as follows: 

                [5-18a] 

               [5-18b] 

where   for the one-way drainage condition ( ); or 

        for the two-way drainage condition ( ). [5-19] 

Combining Equations [5-16] – [5-19] and then taking the Laplace inverse gives: 

                              [5-20] 

where ;  

; 

; 

; ; 

;    ; 

; and  .              [5-21] 

It should be noted that the term  follows different thermal equations, which 

will be discussed in a subsequent section. Substituting Equation [5-20] back into 

Equation [5-9] would provide solutions for excess pore pressure dissipation: 
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           [5-22a] 

                 [5-22b] 

Note that the term  equals zero when the temperature becomes constant. 

Thus, Equation [5-22], as presented under the non-isothermal condition, can convert to 

excess pore pressure equations under the isothermal condition, as shown below:  

                               [5-23a] 

                               [5-23b] 

On the other hand, Fredlund et al. (2012), and Fredlund & Hasan (1979) introduced 

the constitutive model for the soil structure linking stress and deformation state 

variables as follows:   

                  [5-24] 

where  is the volumetric strain;  is the coefficient of volume change of soil 

particle with respect to the change in the net stress ( ); and  is the coefficient of 

volume change of soil particle with respect to the change in suction ( ). The 

volumetric strain can be determined by integrating Equation [5-24] against time  while 

considering the constant loading condition (i.e. ), resulting in: 

                        [5-25] 

Then, the settlement of unsaturated soil layer can be obtained by: 

    

           [5-26] 
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Equation [5-26] predicts the time-dependent settlement of unsaturated soil deposit. 

According to Fredlund et al. (Fredlund et al. 2012), it should be noted that the volume 

change of soil particles should satisfy  and .  

5.3.3. Thermal equations  

Temperature variations can be simulated as functions of depth  and time . In this 

study, it is assumed that the temperature decreases with depth while varying linearly, 

exponentially or diurnally with time. Three adopted thermal equations are presented as 

follows: 

Linear:                          [5-27a] 

Exponential:               [5-27b] 

Diurnal sine wave:    

                         [5-27c] 

where ‘ ’ is the thermal parameter presented in the linear thermal equation ( ); ‘ ’ 

is the thermal parameter presented in the exponential thermal equation ( );  is the 

dimensionless parameter presented in the exponential thermal equation;  is the gradient 

that controls the linear distribution of temperature throughout the soil profile;  is the 

amplitude of the surface temperature fluctuation ( ); , is the 

characteristic depth ( );  is the angular frequency for the diurnal sine wave ( ); 

is the heat diffusivity ( );  is the time lag from an arbitrary starting time ( ). 

Variations in soil temperature are primarily induced by the air temperature and heat 

from solar radiation. Referring to Hillel (2003), in frost-free areas the soil temperature 

profile may vary from season to season, particularly the temperature increases with 

depth during winter and generally decreases with depth during summer. Temperature 

distributions throughout the soil profile in typical seasons are presented in Figure 5.2. 

For the sake of simplicity, this study only examines the temperature decreasing with 

depth. In relation, the parameter , as adopted in Equations [5-27a] and [5-27b], would 

range from  to , simulating a linear reduction of temperature along the soil depth. It 
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should be noted that the soil temperature profile is uniform with depth when , or 

no thermal impact on the base of soil is reported when .   

On the other hand, in real practice, the soil temperature is prone to fluctuate diurnally 

due to a regular periodic succession of days and nights (Marshall et al. 1996; Wu & 

Nofziger 1999; Hillel 2003). In this study, assuming that climatic irregularities (e.g. 

rainstorms, drought, cloudiness etc.) are neglected, Equation [5-27c] adopts the 

sinusoidal function recommended by Hillel (2003) to present the periodic temperature 

wave. Since heat is conducted throughout the soil profile at a very slow rate, the soil 

temperature would experience the damping and retarding phenomena at each 

succeeding depth (Hillel 2003). By examining Equation [5-27c], at a particular depth , 

the soil temperature reduces by a factor  (damping) and the peak temperature is 

delayed by  (retarding) compared to that at the ground surface. Time-dependent 

linear, exponential and diurnal temperature variations at various depths are depicted in 

Figure 5.3.  
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Figure 5.2. Temperature distributions along depth (modified after Hillel 2003)
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Figure 5.3. Simulated temperature changes with depth while considering (a) 

linear, (b) exponential and (c) diurnal variations with time

By alternatively substituting Equations [5-27a] – [5-27c] into Equation [5-11], the 

term  then can be determined through the analytical procedure presented in 
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Equations [5-11] – [5-22]. Full solutions for predicting excess pore pressure dissipation 

rates under non-isothermal conditions are presented in Appendix B.  

5.4. Examples 

Two main examples are presented in this study, both of which investigate the effect of 

temperature variation only and combined effects of temperature and constant loading on 

1D consolidation of unsaturated soil deposit.  Example 1 mainly studies excess pore-air 

and pore-water dissipation and consolidation settlement due to the time-dependent 

linear, exponential and diurnal temperature simulations. Example 2, on the other hand, 

highlights the influence of thermal parameters, presented in Equations [27a] – [27c], on 

the dissipation rates and settlement. Based on the existing literature (Qin et al. 2008; 

Shan et al. 2012; Zhou et al. 2014), the properties of unsaturated soil are as follows: 

Material , ,

,   , 

, ,

,  ,

;                           [5-28] 

Physical properties: , , 

,  ,   

;                [5-29]

Initial stresses: , ,

.                          [5-30]

Soil properties provided in Equations [5-28] – [5-30] are used to obtain consolidation 

coefficients for the air phase ( ,  and ) and for the water phase (  and ). Note 

that Equation [5-30] is only applicable to the consolidation process, in which combined 

effects of temperature and constant loading are considered. A sudden application of load 

results in an instantaneous compression, which in turn induces excess pore pressures 

within a soil. According to Fredlund et al. (2012), the constant load  (i.e. ) 

applied to the ground surface generates an initial excess pore-air pressure ( ) of 

and an initial excess pore-water pressure ( ) of . When only the temperature 



150 

variation is considered and no load is applied to the soil, both initial excess pore 

pressures would be equal to zero and time-dependent changes in excess pore pressures 

only correspond to changes in temperature.   

For the sake of generality, when investigating the effect of temperature variation 

only, the normalised pore pressures,  and , and normalised soil 

deformation  (i.e. ) are adopted. On the other hand, when 

combined effects of temperature and constant loading are considered, normalised excess 

pore pressures,  and , and normalised settlement  (i.e. 

) are obtained. Moreover, results and discussions in each example are 

only based on the one-way drainage boundary system.

5.4.1. Example 1 

5.4.1.1. Linear temperature variation 

In this section the linear thermal parameter  and the gradient 

 are used for evaluation and further analyses. Thus, Equation [5-27a] with 

adopted parameters can be incorporated in the analytical procedure to obtain Equation 

[B-1] in Appendix B.   

Based on Equation [B-1], Figures 5.4(a) and 5.4(b) illustrate changes in pore-air 

( ) and pore-water ( ) pressures at various depths, respectively, 

influenced by the time-dependent linear temperature while excluding the external 

applied load. By adopting a logarithmic time-scale, it can be observed that the pore-air 

pressures begin to increase rapidly at about  due to a significant increase in 

temperature, as shown in Figure 5.4(a). Referring to the ideal gas law, the increasing 

heat would lead to a notable reduction in the density of air ( ), which in turn causes the 

air to expand within the soil. Under an undrained condition, the pore-air pressure 

increases considerably as a result of expansion of air in the soil. Initially, the pore-air 

pressures near the ground surface (i.e. ) tend to increase more quickly 

compared to those at lower depths. Since the permeable surface facilitates the 

dissipation process, the dissipation of excess pore-air pressure occurring near the 

surface would subsequently decelerate the increase in the pore pressure. After , at 

any depth, the excess pore-air pressure curves remain unchanged while the temperature 
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continues to increase, indicating that the dissipation rate and increase rate due to heat 

are counterbalanced. As shown in Figure 5.4(b), the pore-water pressures also start to 

increase rapidly at about . Similar to Figure 5.4(a), the pore-water pressure near the 

ground surface initially increases at a quicker rate and then decelerates due to the 

significant dissipation. The excess pore-water pressure curves at various depths 

eventually dissipate at almost the same time (i.e. after ). It should be noted that the 

non-isothermal effect on pore-air and pore-water pressures is less evident with depth.   

Figures 5.5(a) and 5.5(b) demonstrate changes in excess pore-air ( ) and pore-

water ( ) pressures at various depths, respectively, induced by combined effects 

of time-dependent linear temperature and applied external load ( ). In general, it can 

be observed that excess pore-air and pore-water pressures increase noticeably after 
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about . At the later stages of consolidation, the excess pore-air pressures remain 

constant since the dissipation rate and increase rate due to the increasing temperature 

are counterbalanced (Figure 5.5(a)). In contrary, the excess pore-water pressures at 

various depths are fully dissipated at almost the same time (i.e. after ) (Figure 

5.5(b)).  

Figures 5.6(a) and 5.6(b) present the deformation of unsaturated soil stratum induced 

by the effect of time-dependent linear temperature variation (i.e. ) 

and by combined effects of temperature change and external applied load ( ) (i.e. 

), respectively. As shown in Figure 5.6(a), the soil begins to expand 

after  due to the significantly increasing temperature. The expansion of soil is 
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governed by increases in pore-air and pore-water pressures. After about , the soil 

gradually retracts as the excess pore-water pressure dissipates and only excess pore-air 

pressure governs the soil deformation during this stage. No further change in the soil 

stratum can be observed after approximately . Similarly, Figure 5.6(b) first 

illustrates a notable expansion of soil due to increases in excess pore pressures. The soil 

later settles as the excess pore-water pressure diminishes whereas the excess pore-air 

pressure remains constant at the later stages of consolidation. It is noted that the soil 

expansion due to heat would be much attenuated by the applied constant load ( ), 

which eventually results in soil settlement. In the adopted case, the consolidation 

settlement completes after about . 



154 

5.4.1.2. Exponential temperature variation 

In this study, thermal parameters ,  and  are adopted for 

further investigation. Equation [5-27b] with the adopted parameters can be incorporated 

in the analytical procedure to obtain Equation [B-3], as presented in Appendix B. 

As estimated from Equation [B-3], Figures 5.7(a) and 5.7(b) depict changes in pore-

air ( ) and pore-water ( ) pressures at various depths, respectively, 

caused by the time-dependent exponential temperature variation while excluding the 

external applied load. As observed, the increasing temperature results in notable 

increases in pore-air and pore-water pressures, in particular pore pressures near the 

ground surface (i.e. ) tend to increase faster than those at lower depths. When 

Figure 5.7. Changes in (a) pore-air and (b) pore-water pressures induced by the 

effect of time-dependent exponential temperature
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the temperature approaches the asymptote (i.e. ), pore pressures near the 

surface would attain the peak values at about  and then dissipate a short time 

afterwards. In contrast, it takes longer time for the pore-air and pore-water pressures at 

lower depths to achieve the peak values prior to the dissipation. It should be noted that 

the permeable surface of unsaturated soil facilitates the drainage of air and water, 

resulting in significant dissipation at the top soil deposit. Thus, excess pore pressures 

near the ground surface are prone to dissipate more quickly. However, the dissipation 

completes at almost the same time (i.e. after ) regardless of different depths.  

On the other hand, Figures 5.8(a) and 5.8(b) present changes in excess pore-air 

( ) and pore-water ( ) pressures at various depths, respectively, induced by 
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combined effects of time-dependent exponential temperature variation and external 

applied load ( ). It is observed that the exponentially increasing temperature induces 

moderate increases in excess pore-air and pore-water pressures at the early stages of 

consolidation. During these stages, it takes shorter time for excess pore pressures near 

the ground surface to attain the peak values as the temperature approaches the 

asymptote. It is also worth mentioning that the peak values may reduce with depth. 

Since there are no temperature changes after , excess pore pressures would 

eventually dissipate resembling to those under the isothermal condition.  

Figures 5.9(a) and 5.9(b) show the deformation of unsaturated soil stratum induced 

by the effect of time-dependent exponential temperature variation (i.e. 
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) and by combined effects of temperature change and external applied 

load ( ) (i.e. ), respectively. As observed in Figure 5.9(a), the soil 

initially expands as the temperature increases, and then retracts to its original thickness 

once the temperature becomes constant. This is due to the fact that the soil deformation 

is ascribed initially to increases in pore pressures and subsequently to the dissipation of 

excess pore pressures. When the constant loading is considered in the analysis, a slight 

expansion of soil can be observed during the early stages of consolidation, as shown in 

Figure 5.9(b). It can be noted that the settlement pattern resembles to that under the 

isothermal condition when the temperature remains unchanged.  

5.4.1.3. Diurnal temperature variation 

This example adopts parameters , , 

, and  for the investigation. Based on the adopted values of angular 

frequency  and heat diffusivity , the characteristic depth  is estimated to be 

. Thus, Equation [5-27c] with the above mentioned parameters can be 

incorporated in the analytical procedure to obtain Equation [B-5], as presented in 

Appendix B.  

Referring to Equation [B-5], Figures 5.10(a) and 5.10(b) demonstrate changes in 

pore-air ( ) and pore-water ( ) pressures at various depths, respectively, 

induced by the time-dependent diurnal temperature variation while excluding the 

external loading. It can be observed that both excess pore-air and pore-water pressure 

patterns consist of harmonic oscillations, corresponding to a regular succession of days 

and nights. These oscillations are characterised by the periodic absorption and release of 

heat throughout the soil profile. As the heat transmission through the soil is a relatively 

slow process, the soil temperature wave would experience the damping and retarding 

phenomena (Hillel 2003), which are also clearly captured in pore-air and pore-water 

pressure curves. As observed, the peak pore pressures at lower depths are damped and 

shifted progressively in time. Both pore pressure patterns exhibit indefinite oscillations 

due to the diurnal temperature wave.  
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Figures 5.11(a) and 5.11(b) illustrate changes in excess pore-air ( ) and pore-

water ( ) pressures at various depths, respectively, caused by combined effects of 

time-dependent diurnal temperature variation and external loading ( ). It can be 

observed that both excess pore-air and pore-water pressure curves oscillate indefinitely 

while dissipating gradually with time. Similar to Figure 5.10, the amplitude of excess 

pore pressure oscillation decreases (damping) whereas the phase lag of peak pore 

pressure increases (retarding) at each succeeding depth.  

Figures 5.12(a) and 5.12(b) depict the deformation of unsaturated soil stratum 

induced by the effect of time-dependent diurnal temperature variation (i.e. 

) and by combined effects of temperature variation and external 

loading ( ) (i.e. ), respectively. It is predicted that the deformation 
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effect of time-dependent diurnal temperature variation
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of soil is mainly governed by indefinite changes in pore-air and pore-water pressures 

(Figure 5.12(a)). In particular, the soil continuously expands and retracts corresponding 

to the periodic temperature waves. On the other hand, when the temperature wave and 

constant loading are considered in the analysis, the settlement curve would increase and 

fluctuate simultaneously (Figure 5.12(b)). 
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5.4.2. Example 2 

5.4.2.1. Effects of linear thermal parameter ‘ ’ 

In this parametric study, different values for the linear thermal parameter ‘ ’, ranging 

from  to , are adopted for the analysis. Moreover, the 1D 

consolidation behaviours of unsaturated soil deposit, in terms of excess pore pressures 

and consolidation settlement, are investigated at . 

The significant effect of thermal parameter ‘ ’ on changes in pore-air ( ) and 

pore-water ( ) pressures are presented in Figures 5.13(a) and 5.13(b), 

respectively, while excluding the external loading in the analysis. As observed, higher 
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values of ‘ ’ would accelerate the linear increase in temperature, which in turn leads to 

more pronounced increases in pore-air and pore-water pressures. It is also predicted that 

pore pressures tend to increase more quickly with increasing ‘ ’. After about , the 

excess pore-air pressures attain the maximum values and then remain constant. 

Obviously, the maximum values become larger as ‘ ’ increases. Excess pore-water 

pressures, on the other hand, initially increase due to the increasing temperature but 

later fully dissipate at almost the same time (i.e. after ) regardless of values of ‘ ’.  

Figures 5.14(a) and 5.14(b), on the other hand, illustrate the influence of thermal 

parameter ‘ ’ on changes in excess pore-air ( ) and pore-water ( ) pressures, 

respectively, while considering the external applied load ( ) in the analysis. It is 

obvious that higher values of ‘ ’ would lead to more pronounced increases in excess 
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pore-air and pore-water pressures after . Similar to Figure 5.13, at the later stages 

of consolidation, the excess pore-air pressures remain unchanged whereas excess pore-

water pressures gradually dissipate and are fully dissipated after about  irrespective 

of adopted values of ‘ ’.  

The effect of thermal parameter ‘ ’ on the deformation of unsaturated soil deposit, 

including or excluding the external applied load ( ) is investigated in Figure 5.15. 

When the applied load is discarded in the analysis, the soil expands more significantly 

since ‘ ’ increases, as presented in Figure 5.15(a). After , the soil begins to retract 

due to the dissipation of excess pore-water pressure. It can be noted that the retraction in 

the soil is less considerable when ‘ ’ decreases. No further deformation of unsaturated 

soil occurs after about . When the constant loading is considered, similar soil 
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deformation is predicted in Figure 5.15(b), in which the soil first expands and then 

retracts more considerably with increasing ‘ ’.  

5.4.2.2. Effects of exponential thermal parameter ‘ ’ 

In this section, different values for the exponential thermal parameter ‘ ’, ranging from 

 to , are adopted for further analysis. It should be noted that excess 

pore-air and pore-water pressures and consolidation settlement are investigated at 

.  

Figures 5.16(a) and 5.16(b) illustrate the effects of thermal parameter ‘ ’ on changes 

in pore-air ( ) and pore-water ( ) pressures, respectively, while 
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excluding the external applied load ( ) in the analysis. As observed, it takes shorter 

time for the pore-air and pore-water pressures to attain the maximum values as ‘ ’ 

increases. In contrast, smaller ‘ ’ values decelerate the increases in pore pressures, 

which noticeably dissipate before approaching the maximum value. After the 

temperature approaches the asymptote (i.e. ), both excess pore pressures 

are prone to dissipate at the same rate regardless of ‘ ’ values. 

Figures 5.17(a) and 5.17(b) demonstrate the effect of thermal parameter ‘ ’ on 

changes in excess pore-air ( ) and pore-water ( ) pressures, respectively, 

while including the external applied load ( ) in the analysis. During the early stages of 

consolidation, it is predicted that excess pore-air and pore-water pressures increase and 

attain the maximum values with a quicker rate as ‘ ’ increases. When parameter ‘ ’ 
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becomes very small (i.e. ), the additional increases in excess pore 

pressures at the early stages would be very much attenuated. During the later stages of 

consolidation, at which the temperature approaches the asymptote and stays constant 

afterwards, dissipation of excess pore pressures is almost independent of ‘ ’ values and 

is mainly controlled by the applied load. 

Besides, the effect of thermal parameter ‘ ’ on the deformation of unsaturated soil 

including or excluding the external applied load ( ) is investigated in Figure 5.18. 

When the applied load is excluded from the analysis, increasing ‘ ’ value induces 

further soil expansion, as presented in Figure 5.18(a). It should be noted that the 

predicted peak settlement reduces as ‘ ’ decreases. Once the temperature approaches 

the asymptote, the soil begins to retract at similar rate regardless of ‘ ’ values. In the 

-0.5

0

0.5

1

1.5

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

ise
d 

Po
re

-W
at

er
 P

re
ss

ur
e (

u w
/u

w
)

Time (s)

0 102 104 106 108 1010

One-way drainage condition

ka/kw = 10

z = 0.5H

b = 5x10-5 /s
b = 5x10-4 /s

b = 5x10-3 /s

0

(b)

Figure 5.17. Combined effects of exponential thermal parameter ‘b’ and constant 

loading on changes in (a) excess pore-air and (b) excess pore-water pressures

-0.5

0

0.5

1

1.5

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
or

m
al

ise
d 

Po
re

-A
ir 

Pr
es

su
re

 (u
a/u

a)

Time (s)

0 102 104 106 108 1010

b = 5x10-5 /s

b = 5x10-4 /s
b = 5x10-3 /s

One-way drainage condition

ka/kw = 10

z = 0.5H

0

(a)



166 

case when the external loading is considered, higher values of ‘ ’ result in more 

considerable expansion of soil at the early stages, as shown in Figure 5.18(b). However, 

the influence of parameter ‘ ’ on the settlement rate is insignificant during the later 

stages of consolidation.  

5.4.2.3. Effects of heat diffusivity 

This section adopts different values for the heat diffusivity , including  and 

, for further analysis. It is noted that excess pore-air and pore-water 

pressures and consolidation settlement are investigated at . 
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Figures 5.19(a) and 5.19(b) present the effect of heat diffusivity  on changes in 

pore-air ( ) and pore-water ( ) pressures, respectively, while excluding 

the external loading ( ) in the analysis. The smaller  value implies that the heat 

transmission would proceed more slowly throughout the soil profile, exhibiting clear 

damping and retarding effects on pore pressures. Evidently, by considering the smaller 

 value, amplitudes of excess pore-air and pore-water pressure oscillations 

significantly reduce (damping) while the peak excess pore pressures are shifted in time 

(retarding). It is worth mentioning that, when  value becomes very small (i.e. 

), the effect of diurnal temperature wave is less evident and can be 

practically ignored.  
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Figures 5.20(a) and 5.20(b) show the effect of heat diffusivity  on changes in 

excess pore-air ( ) and pore-water ( ) pressures, respectively, while 

considering the external loading ( ) in the analysis. As observed, by adopting the 

smaller  value, excess pore pressures would undergo the damping and retarding 

phenomena, similar to observations made in Figure 5.19. In addition, when the external 

load is applied on the surface of unsaturated soil deposit, these excess pore pressures 

oscillate and dissipate simultaneously.    

The significant effect of heat diffusivity  on the deformation of unsaturated soil is 

investigated in Figure 5.21. When there is no external loading, the smaller  value 

results in insignificant oscillations in the settlement, indicating that a very small amount 

of heat may be absorbed and released at the mid-depth (Figure 5.21(a)). Similarly, when 
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the external loading is considered, the amplitude of settlement is significantly attenuated 

as a result of adopting the smaller  value (Figure 5.21(b)). 

5.5. Summary 

Experimental studies demonstrate that changes in temperature influence the deformation 

of unsaturated soils significantly, resulting in an essential need to develop a predictive 

model for unsaturated consolidation capturing the non-isothermal effects. This paper 

presents an analytical solution to predict the 1D consolidation of unsaturated soil 

deposit induced by temperature varying with depth and time. The governing equations 

of flow, incorporating the temperature variation effects, were first adopted. The 
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mathematical procedure adopted homogeneous drainage boundary conditions such as 

one-way and two-way drainage systems, while considering uniform initial condition. 

Fourier sine series and Laplace transformation technique were employed to obtain the 

closed-form analytical solutions.  

Time-dependent thermal functions, namely linear, exponential and diurnal sine wave, 

were mathematically simulated and then incorporated in the proposed solutions. 

Changes in excess pore pressures and settlement induced by the effect of temperature 

variation only and by combined effects of temperature variation and constant loading 

were investigated. Considering the time-dependent linear temperature, excess pore-air 

pressure attains a constant value while the excess pore-water pressure fully dissipates 

during the later stages. It was also predicted that excess pore-air and pore-water 

pressures near the ground surface tend to increase more quickly due to the exponentially 

increasing temperature and then fully dissipate as the temperature approaches a constant 

value. The diurnal temperature wave, on the other hand, highlights the damping and 

retarding phenomena that can be observed from excess pore pressure oscillations. 

Parametric studies were also conducted by investigating effects of thermal parameters 

‘ ’ and ‘ ’, and heat diffusivity  on the 1D consolidation of unsaturated soil deposit. 

It was observed that increases in ‘ ’ and ‘ ’ accelerate the increases in excess pore 

pressures, whereas the smaller  value leads to notable damping and retarding of 

predicted excess pore pressures. 
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CHAPTER 6

A CLOSED FORM ANALYTICAL SOLUTION FOR TWO-
DIMENSIONAL PLANE STRAIN CONSOLIDATION OF 

UNSATURATED SOIL STRATUM  

6.1. Introduction 

In an attempt to constitute a more reliable prediction model, this study develops a 

solution for the two-dimensional (2D) plane strain consolidation theory given by 

Dakshanamurthy & Fredlund (1980). Eigenfunction expansion and Laplace 

transformation methods are adopted in the analytical procedure along with the 

homogeneous drainage boundary conditions. This study proposes final solutions 

capturing uniform and linear distributions of the initial excess pore pressures under a 

constant surcharge. Following the proposed analytical solutions, two worked examples 

are introduced and predictions in terms of time-dependent excess pore pressures and 

degree of consolidation for 2D consolidation are graphically presented in this chapter.

6.2. Transient flow equations for 2D consolidation theory 

The flows of air and water can be presented on the basis of continuity of the fluid 

phases. The air and water phases may be assumed to flow independently and 

continuously for simple evaluations. Childs & Collis-George (1950) suggested the water 

flux in unsaturated soil would satisfy Darcy’s law, similar to the saturated soil practice. 

The air flux, on the other hand, should comply with Fick’s law, as suggested by Blight 

(1971). Considering the flux in -axis is discarded, the net flux of air and water per unit 

volume of the soil element can be summarised in the 2D coordinates ( , ) as follows: 

              [6-1a] 
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                 [6-1b] 

where  and  are coefficients of air and water permeability in -direction 

( ), respectively;  and  are coefficients of air and water permeability in -

direction ( ), respectively;  is the gravitational acceleration ( );  is 

the initial pore-air pressure ( ), respectively;  is the atmospheric pressure ( ); 

 is the universal air constant ( ); , is the absolute 

temperature ( );  is the molecular mass of air phase ( );  is the 

porosity during consolidation process;  is the degree of saturation during 

consolidation process; and  is the unit weight of water ( ). 

According to Dakshanamurthy & Fredlund (1980), the constitutive equations 

illustrating the volume changes of air ( ) and water ( ) with respect to the initial 

volume of the soil element ( ) can be expressed as: 

                 [6-2a] 

                [6-2b] 

where  and  are the total stresses in - and -directions, respectively;  and 

are excess pore-air and pore-water pressures, respectively;  and  are coefficients 

of air and water volume change with respect to the change of net stress , 

respectively; and  and  are coefficients of air and water volume change with 

respect to the change of suction , respectively. 

The total stresses provided in Equations [6-2a] and [6-2b] are assumed to be constant 

(i.e. ) during the transient process (Dakshanamurthy & Fredlund 

1980; Fredlund 1984). Equations [6-1a] and [6-1b] can be equated to Equations [6-2a] 

and [6-2b], respectively, resulting in the continuity equations as shown 

(Dakshanamurthy & Fredlund 1980): 

                [6-3a] 

                [6-3b] 
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where  and  are the interactive constants associated with the air and water phases, 

respectively;  and  are the coefficients of consolidation with respect to the air and 

water phases in -direction;  and  are the coefficients of consolidation with 

respect to the air and water phases in -direction. Additionally, the consolidation 

parameters are: 

;                   [6-4a] 

;                [6-4b] 

;                [6-4c] 

;                   [6-4d] 

;                   [6-4e] 

.         [6-4f] 

Equations [6-3a] and [6-3b] can be rewritten in simplified forms as follows: 

                 [6-5a] 

                 [6-5b] 

where  and  are the first order of PDEs of excess pore-air and pore-water 

pressures against time , respectively;  and  are the second order of PDEs of 

pore-air and pore-water pressures against depth , respectively; and  and  are 

the second order of PDEs of pore-air and pore-water pressures against length , 

respectively. 

Equations [6-5a] and [6-5b] are the 2D plane strain governing equations describing 

dissipation of excess pore-air and pore-water pressures in the soil deposits and are 

presented under inhomogeneous PDEs. Final solutions  and  are compound 

functions of length , depth , and time . 
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6.3. Analytical solution for 2D unsaturated consolidation equations  

Soil properties vary during the consolidation and this may involve the changes of 

permeability coefficients, degree of saturation ( ), porosity ( ) and numerous other 

properties. For the ease of mathematical derivations, some additional assumptions 

should be made along with those of Terzaghi’s consolidation theory (1943): 

(1) The soil stratum is assumed to be homogeneous; 

(2) The flows of air and water are assumed to be continuous and independent; 

(3) Solid skeleton and water phase are incompressible; 

(4) Effects of environmental factors such as air diffusion and temperature change can 

be disregarded; 

(5) Deformations of a soil stratum happens along - and -directions; 

(6) Consolidation parameters with respect to air phase ( ,  and ) and water 

phase ( ,  and ) are assumed to be constant during the loading process.  

The above mentioned assumptions may not be completely accurate for some cases, 

especially Assumption (6). The consolidation parameters may change due to the 

variation of the soil properties such as permeability, degree of saturation ( ), and 

porosity ( ). However, it may be acceptable to assume that these parameters are 

constant during the transient process for a particular stress increment. The assumption 

(6) is adjusted in such way that alleviates the complication in obtaining the solutions for 

Equation [6-5].  

6.3.1. Boundary and initial conditions 

Figure 6.1 illustrates a referential profile of a homogeneous soil stratum with a finite 

depth  (in -direction). A length  is considered to be the spacing between two 

installed vertical drains that facilitate horizontal drainage (in -direction). 

Representative soil elements have the length:width:depth ratio of : :  corresponding 

to coordinates ( , , ), indicating that the length and depth of the soil are variables. 

Figure 6.1(a) shows the typical drainage boundary system consisting of a permeable top 

surface and an impervious bedrock along -direction. Figure 6.1(b) demonstrates the 

drainage system with double drainage paths allowing free drainage from both top and 
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base boundaries of the soil stratum. The horizontal drainage in this study takes place 

through two side boundaries defined by vertical sand drains. Homogeneous boundary 

conditions can be summarised in Equations [6-6a] and [6-6b]: 

(a) Top drainage (one-way drainage along depth) boundary condition ( ): 

;                

.              [6-6a] 

(b) Top-base drainage (two-way drainage along depth) boundary condition ( ): 

;                

.              [6-6b]  

Figure 6.1. The profile of the homogeneous soil stratum representing (a) top

drainage boundary system and (b) top-base drainage boundary system
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The consolidation subjected to the uniform initial condition has been frequently 

reported in the literature and consolidation experiments (Venkatramaiah 2006; Qin et al. 

2008; Zhou et al. 2014). However, this condition may not be strictly accurate in 

engineering practice, particularly when the size of the loaded area on the ground surface 

is small, in comparison to the thickness of the soil deposit. To be more realistic, the 

initial conditions can be mathematically simulated by introducing two dimensionless 

parameters  and  to capture distributions of the initial excess pore pressures with 

depth. When , the initial excess pore-air and pore-water pressures are respectively 

presented in the domains  and  as follows: 

;                                         [6-7a] 

;                               [6-7b] 

where  and  are maximum initial pore-air and pore-water pressures ( ), 

respectively. The introduction of the newly proposed parameters  and  is to control 

the gradient of variations of excess pore-air and pore-water pressures with depth, 

respectively. Both parameters range from  to  and initial pore pressures may vary 

with depth corresponding to the variations of these parameters. For instance, when 

, the distribution of initial excess pore pressures is uniform along -

direction; when both   and  are in between  and , the initial excess pore pressures 

decrease linearly with depth; and when , the triangular distribution will be 

formed with zero initial pressures at . A schematic distribution of initial excess 

pore pressures due to variations of  and  is presented in Figure 6.2. 

Uniform distribution of
initial excess pore pressures

Linear distribution of initial
excess pore pressures

Triangular distribution of
initial excess pore pressures

w = 0 a = 0 0 < w < 1 0 < a < 1 w = 1 a = 1

(a) (b) (c)

Figure 6.2. Different distributions of initial excess pore pressures along depth: (a) 

uniform distribution, (b) trapezoidal distribution and (c) triangular distribution
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6.3.2. Eigenfunction expansion and Laplace transformation methods 

Based on the eigenfunction expansion method for a higher dimensional PDE, the 

general solutions for the set of nonlinear inhomogeneous equations (i.e. Equations [6-

5a] and [6-5b]) incorporating homogeneous drainage boundary conditions (i.e. 

Equations [6-6a] and [6-6b]) can be presented in homogeneous forms as below: 

                 [6-8a] 

                 [6-8b] 

where  and  are eigenfunctions in the domain  with respect to air and 

water phases, respectively;  and  are eigenfunctions in the domain  with 

respect to air and water phases, respectively; and  and  are generalised 

Fourier coefficients for air and water, respectively, varying against . 

The above solutions are written as products of functions of ,  and . The functions 

of  and , known as eigenfunctions, are derived based on the homogeneous boundary 

conditions and consist of Fourier sine series (Haberman 2012). The eigenvalues 

corresponding to particular sine functions are determined by the material constants of 

the system, geometrical factors and boundary conditions. It can be noted that 

eigenfunctions describe the natural vibrations and their eigenvalues present the natural 

frequencies of vibration. In this study, the eigenvalues are categorised into two terms 

and  representing two distinctive permeability conditions. The term  ( ; 

and ) introduces an isotropic permeability condition ( ) to the soil 

system, whereas  presents an anisotropic permeability condition ( ). Based on 

the solution of heat diffusion, the sets of eigenfunctions and eigenvalues are shown as 

below: 

(a) Isotropic permeability condition ( ):  [6-9a] 
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(b) Anisotropic permeability condition ( ): [6-9b] 

where  

,   for double side drainage condition over domain  ( ); 

and 

,  for top drainage condition over domain  ( ); or 

,   for top-base drainage condition over domain .                    [6-10] 

Equation [6-8] then can be rewritten whilst incorporating the eigenfunctions given in 

Equation [6-9]: 

               [6-11a] 

               [6-11b] 

The above homogeneous solutions can be substituted into Equations [6-5a] and [6-

5b], and the expansion of the governing equations yields in: 

(a) Isotropic permeability condition ( ): 

                    [6-12a] 

           [6-12b] 

(b) Anisotropic permeability condition ( ): 

                     [6-13a] 

           [6-13b] 

where ;  ;  

; and  .          [6-14] 
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Truncating Equations [6-12] and [6-13] to a set of ordinary differential equations 

(ODEs) gives: 

(a) Isotropic permeability condition ( ): 

               [6-15a] 

               [6-15b] 

with ; and 

(b) Anisotropic permeability condition ( ): 

               [6-16a] 

               [6-16b] 

with ; and 

Then, the Laplace transformation method is applied to Equations [6-15] and [6-16]. 

The variable  is converted to the complex argument . For the sake of simplicity, a new 

set of Laplace transformed equations can be presented under a matrix form as follows: 

                     [6-17] 

where ,  for ; or 

    ,  for ;  

; and .              [6-18] 

Solving for  and  ( ; and ) presented in Equation 

[6-17] results in: 

                     [6-19] 
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where ,  for ; or 

                      ,  for .             [6-20] 

It can be noticed that  and  ( ; and ) are 

independent of the variable . They can be obtained using initial conditions provided in 

Equation [6-7]. The generalised Fourier coefficients for air and water can be obtained 

by taking Laplace inverse of Equation [6-19], leading to: 

                   [6-21] 

Where  ( ; and ); and 

,  for ; or                                

                        ,   for ;   [6-22] 

with ; 

; 

;     ; 

;    ; 

;  ;  

;  ; 
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; ;  

; ; 

; and 

.               [6-23] 

By substituting the obtained Fourier coefficients  and  into Equation [6-

11], the finalised solutions will be: 

(a) Isotropic permeability condition ( ): 

           [6-24a] 

        [6-24b] 

(b) Anisotropic permeability condition ( ): 

                    [6-25a] 

           [6-25b] 

Equations [6-24] and [6-25] present closed-form solutions to simulate the dissipation 

process of excess pore-air and pore-water pressures under a constant and uniform load. 

Complete analytical solutions capturing both uniformly and linearly distributed initial 

excess pore pressures are presented in Appendix C. The application of eigenfunction 

expansion provides a direct and simple computation to solve inhomogeneous equations 

given by Dakshanamurthy & Fredlund (1980). This method allows the general solutions 

to be expressed in a series of the eigenfunctions of the related homogeneous problem 

and thus providing the convenience in handling the nonlinear problem. For the 

anisotropic soil, if the horizontal permeability coefficient ( ) is equal to the vertical 

permeability coefficient ( ), Equation [6-25] then becomes similar to Equation [6-24]. 
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Furthermore, when the soil is in a fully saturated state, the coefficient of permeability, 

the initial excess pore pressure and all consolidation parameters with respect to air 

phase will be zero. In addition, the coefficients of volume change of water  and 

are equal to the classical volume change coefficient, . As a result, Equation [6-24] 

will be converted to the conventional 2D consolidation equation for saturated soils. 

Considering the uniform distribution of excess pore-water pressure ( ) and the 

typical top drainage boundary condition, Equation [6-25] predicting the excess pore-

water pressure dissipation can be presented as follows: 

         

           [6-26] 

Assuming the horizontal length is boundless, the coefficient of water permeability in 

-direction ( ) will be discarded and Equation [6-26] will become Terzaghi’s 

traditional equation for 1D consolidation for fully saturated soils. 

6.4. Average degree of consolidation of 2D unsaturated soil system  

In this study, the coefficients of volume change with respect to air and water phases are 

assumed to be constant during the consolidation for a particular stress increment, similar 

to the traditional assumptions for Terzaghi’s consolidation theory (1943). Under the 

constant loading, the constitutive model for 2D plane strain deformation proposed by 

Dakshanamurthy & Fredlund (1980) can be rearranged as below: 

                 [6-27] 

where  is the volumetric strain; , is the coefficient of volume change 

of the soil element with respect to the change in the net stress; and , is 

the coefficient of volume change of the soil element with respect to the change in 

suction. The volumetric strain can be obtained by integrating Equation [6-27] against 

time  at which : 

   [6-28] 



183 

The average degree of consolidation, denoted as , can be determined based on the 

volumetric strain  provided in Equation [6-28]: 

                                            [6-29] 

where  is the ground surface settlement corresponding to time ; and 

 is the final ground surface settlement when time  approaches infinity. 

Equation [6-29] represents a function of time  describing the settlement response of 

the unsaturated soil deposit subjected to a constant load at a particular time.  

6.5. Worked examples 

This study provides two worked examples investigating 2D consolidation behaviour 

against the applications of uniformly and linearly distributed initial excess pore 

pressures with depth. Each example considers both top and top-base drainage boundary 

conditions whilst adopting the following soil properties (Qin et al. 2008; Qin et al. 

2010c; Shan et al. 2012; Ho et al. 2013; Zhou et al. 2014): 

Material properties: ; ;  ; 

    ; ;  ; 

    ;  ; ; 

;  ; 

;    .   [6-30] 

Physical properties: ; ; 

    ;   .            [6-31] 

The sudden application of load to an unsaturated soil stratum results in instantaneous 

undrained compression and consequently, immediate increase in pore pressures, known 

as initial excess pore pressures. Based on the existing estimations provided by Fredlund 

& Hasan (1979), and Conte (2004), an external loading  may immediately 

generate an initial excess pore-air pressure  and an initial excess pore-water 

pressure . Detailed explanation regarding the estimation of the initial 

excess pore pressures is presented in Appendix D. It is assumed that these initial excess 
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pore pressures are ubiquitous of values  and  in the soil deposit, except for 

permeable boundaries. All the given parameters in Equations [6-30] and [6-31] are 

employed to obtain the consolidation coefficients presented in Equation [6-4].  

Example 1 investigates effects of air to the water permeability ratio,  (isotropic 

permeability ratio), and the horizontal to vertical permeability ratio,  (anisotropic 

permeability ratio), on the 2D consolidation process. The ratio  varies in the 

range of  to , in which  is a variable while  is kept constant (i.e. 

). Similarly, assuming the diagonal permeability  is zero, the ratio 

 changes from  to  as  increases whilst  remains unchanged (i.e. 

 and ). In this investigation, the uniform distribution of 

initial excess pore pressures is employed for both isotropic and anisotropic permeability 

conditions ( ). In contrast, Example 2 adopts linear distribution of initial 

pore pressures, in which  and  are in the range between  and . Example 2 is to 

study the variations of the dissipation rates as well as the degree of consolidation due to 

the changes in  and . It should be noted that, although soil cementation and visco-

plastic behaviour can significantly influence the time-dependent deformation of soil 

(Nguyen et al. 2014; Le et al. 2015), these areas have not been captured in this study. 

6.5.1. Worked example 1 

In this example, the uniform distribution of initial excess pore pressures is applied 

throughout the soil depth. This means that the dimensionless parameters  and  can 

be discarded and Equation [6-7] then becomes: 

                  [6-32a] 

                  [6-32b] 

The terms  and  can be determined using the orthogonality of sine 

function based on Equations [6-32a] and [6-32b], respectively. The obtained  and 

 are then substituted into Equations [6-24] and [6-25]. A complete set of 

equations  and  are presented in Equations [C-1] – [C-3] in 

Appendix C. Equations [C-1] and [C-2] predict the dissipation process of excess pore 

pressures adopting isotropic and anisotropic permeability conditions, respectively. For 



185 

the graphical presentation, the point of investigation is located at  (i.e. 

) and  (i.e. ). Figures 6.3 and 6.4 obtained from Equation [C-1]

depict the changes in normalised excess pore pressures (i.e.  and ) against 

different values of , whilst Figures 6.5 and 6.6 obtained from Equation [C-2] 

show the changes in excess pore pressures investigating variations of .  

Figures 6.3(a) and 6.4(a) illustrate a group of parallel curves of excess pore-air 

pressure for different values of . It can be observed that higher values of 

result in a higher dissipation rate of excess pore-air pressure. This graphically indicates 

that the normalised curves are shifted to the left. Figures 6.3(b) and 6.4(b) show the 

typical double inverse S curves demonstrating the dissipation pattern for water. The 
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dissipation process can be separated into two stages due to the distinctive double S-

shaped pattern. It is observed that the required time for an upper inverse S curve to be 

formed, is about the same time that the excess pore-air pressure is fully dissipated. 

During this time, the process is identified as the first stage of dissipation. The second 

stage begins when different curves tend to converge into a single curve. Besides, the 

consideration of the horizontal drainage in 2D consolidation helps to accelerate the 

changes in excess pore pressures. This indicates that the consolidation with both vertical 

and horizontal drainage conditions proceeds more quickly than that with vertical 

drainage condition as expected (see Figures 6.3 and 6.4).  
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For the analysis of anisotropic permeability condition, when considering 

 whilst  and  are constant, it is obvious that different values 

of  significantly influence the dissipation rate for both air and water phases. As 

evidenced in Figures 6.5 and 6.6, the dissipation process with higher  (eg.  – ) 

tends to progress relatively faster than that of smaller , but it may also reduce the 

effects of vertical drainage on the dissipation. This can be explained that the vertical 

drains installed in the soil stratum provides shorter drainage path in the horizontal 

dimension and allows appreciably large amount of excess pore-air and pore-water 

pressures to be horizontally dissipated. As the result, when  increases, the rate of 

dissipation in the top drainage condition is found to be very similar to that in the top-
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base drainage condition. For instance, by examining  of  in Figures 6.5 and 6.6, 

the excess pore pressures under both boundary conditions are reported to diminish at 

almost the same time (i.e.  for pore-air pressure and  for pore-water 

pressure).  

The average degree of consolidation ( ) can be determined by combining Equations 

[6-29] and [6-32]. A complete set of equations to predict  is presented in Equations [C-

4] – [C-8] in Appendix C. Figures 6.7 and 6.8 illustrate the variation patterns of 

against time factor  for isotropic and anisotropic permeability conditions, respectively. 

In this study, the time factor  is defined as  for the isotropic 

permeability and  for the anisotropic permeability. Similar to the 

0

0.25

0.5

0.75

1

1.25

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

Po
re

-W
at

er
 P

re
ss

ur
e 

R
at

io
 (u

w
/u

w
)

Time (s)

Top-base drainage boundary condition

x/L = 0.5 and z/H = 0.8 

10

6

8

2

4

kx/kz = 1

1 102 104 106 108 1010

(b)

Anisotropic permeability 
(kx = kz and ka/kw = 10)

0

Figure 6.6. Dissipation of (a) excess pore-air and (b) excess pore-water pressures

varying with kx/kz under top-base drainage boundary condition

0

0.25

0.5

0.75

1

1.25

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

Po
re

-A
ir

 P
re

ss
ur

e 
R

at
io

 (u
a/u

a)

Time (s)

Top-base drainage 
boundary condition

x/L = 0.5 and 
z/H = 0.8 10

6

8

2

4

kx/kz = 1

1 102 104 106 108 1010

(a)

Anisotropic permeability 
(kx = kz and ka/kw = 10)

0



189 

excess pore-water pressure, the pattern of  can be divided into two stages based on the 

typical double S curve. The first stage includes simultaneous dissipation of both excess 

pore-air and pore-water pressures, whereas later stages only present an air-free 

consolidation similar to that of saturated soils. For the case of isotropic permeability 

( ), the double S curve can be easily identified when  is greater than . 

The higher  may also result in more rapid dissipation of pore-air pressure and 

induces an instantaneous rate of consolidation at the beginning of the loading process. 

With an assistance of vertical drains, the soil stratum is prone to settle more quickly 

than that in the 1D field (see Figure 6.7).  Based on numerical predictions reported in 

Figures 6.3, 6.4 and 6.7, it can be observed that the consolidation rate in the top-base 

drainage condition is slightly faster compared to that in the top drainage condition only. 

However, since the adopted vertical drain spacing ( ) is smaller than the soil 

depth ( ), the horizontal consolidation is more significant than the vertical 

consolidation. Thus, effects of vertical drainage are much attenuated since horizontal 

drainage is introduced to the soil system. This indicates that larger amount of excess 

pore pressures preferably dissipate through horizontal boundaries in this case study.  An 

equivalent concept can be seen in Figure 6.8. The increase in  accelerates the 

consolidation process, but it may as well hinder the dissipation through vertical 

boundaries, resulting in similar consolidation rate in both top and top-base drainage 

conditions.  

In this study, for the sake of simplicity, the Mandel-Cryer effect has been neglected 

in the computation process. The Mandel-Cryer effect, which induces an additional 

increase in excess pore-water pressure prior to dissipation, is often captured in the 

coupled consolidation theory for fully saturated soils (Mandel 1953; Cryer 1963). This 

may consequently reduce the consolidation rate as the Poisson’s ratio decreases. This 

aspect was pointed out in the coupled solution provided by Gibson (1970). However, 

according to Wong et al. (1998), Vu (2008), and Conte (2004), the Mandel-Cryer effect 

is considered to be minimal in unsaturated soils. Based on the coupled solution 

proposed by Wong et al. (1998), under a constant loading, the maximum increase in 

pore-water pressure in a specimen, induced by the mentioned effect, is relatively small. 

Vu (2008) investigated the volume change problems in expansive soils considering 

variations of matric suction due to moisture infiltration and confirmed that the Mandel-
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Cryer effect would play a little role in the study. Through the numerical analysis, Conte 

(2004) further reported that this effect may be significantly alleviated when the depth of 

the soil increases or the Poisson’s ratio decreases. Moreover, Conte (2004) numerically 

demonstrated the insignificant difference in the degree of consolidation in both coupled 

and uncoupled solutions for unsaturated soils, indicating that the simple uncoupled 

solution may generally provide a valid approximation to the coupled theory. 

Examining the isotropic permeability consolidation only ( ), Figures 6.9 and 

6.10 illustrate excess pore pressure isochrones varying with  (in both domains  and ) 

under the top and top-base drainage boundary systems, respectively. The ratio  of 
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 is considered for this analysis. The pore-air and pore-water pressure isochrones 

represent typical patterns induced by the uniform distribution of initial pore pressures 

along -direction. These sets of isochrones satisfy both drainage boundary conditions 

and confirm the traditional consolidation theory in which excess pore pressures 

gradually dissipate as time increases (Figures 6.9(a) and 6.10(a)). For the -direction, 

the pore pressure isochrones are influenced by the double side drainage due to the 

vertical sand drains, in which pressures at the left ( ) and right ( ) boundaries 

are zero (Figures 6.9(b) and 6.10(b)).  
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Figure 6.9. Excess pore pressure isochrones against (a) depth ratio and (b) length 

ratio due to effects of ka/kw under top drainage boundary condition
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6.5.2. Worked example 2 

Example 2 generally analyses the effects of the proposed parameters  and , 

introduced in Equation [6-7], on the 2D consolidation process. The initial excess pore 

pressures are assumed to be distributed linearly with depth, thus, the simulated initial 

conditions will have  and  greater than . The variations of normalised excess pore-

air ( ) and pore-water ( ) pressures as well as 

the average degree of consolidation ( ) will be analysed in this study. The Fourier 

coefficients  and  can be computed using the orthogonality of the sine 

function based on Equation [6-7]. A complete set of equations for  and 
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 are presented in Equations [C-9] – [C-12] in Appendix C. Equations [C-9] 

and [C-10] estimate the dissipation of excess pore pressures adopting isotropic and 

anisotropic permeability conditions, respectively. For the sake of the graphical 

representation, this worked example only highlights the isotropic permeability 

condition. The location of an investigated point is similar to Section 5.1 and 

. Under the top drainage boundary condition, Figure 6.11 illustrates the changes in 

excess pore pressures with increasing  (from  to ) and constant  ( ), whereas 

Figure 6.12 investigates a reverse effect of  and  on the changes in excess pore 

pressures. Besides, Figures 6.13 and 6.14 are plotted to investigate the same effects for 

the top-base drainage boundary system.  
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As shown in Figure 6.11(a), variations in  (whilst  is constant) have insignificant 

effects on the dissipation rate of excess pore-air pressure. It can be observed that the 

excess pore-air pressure curves with different values of  almost overlap, and the full 

dissipation is achieved at the same time (i.e. about ). In fact, increasing 

leads to reduction of the average initial pore-air pressure, and the initial pore-water 

pressure becomes more considerable at the beginning of the dissipation process. Thus, 

the insignificant excess pore-air pressure may result in a relatively slower change in the 

pore-water pressure during the first stage (Figure 6.11(b)). At the second stage, pore-

water pressures (adopting different values of ) diminish with almost the same rate.   
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Example 2 investigates the effects of  on the dissipation of excess pore pressures. 

As illustrated in Figure 6.12(a), the data obtained from Equation [C-9] indicates that the 

variations in  (whilst  is constant) have insignificant effects on the excess pore-air 

pressure. However, it is observed that the increase in  accelerates the excess pore-

water pressure dissipation during the first stage. Similar to the effects of , the 

increasing  reduces the average initial pore-water pressure, and that eventually 

becomes less significant compared to the initial pore-air pressure, leading to a quicker 

rate of excess pore-water pressure dissipation at the first stage. When , the excess 

pore-water pressure is fully dissipated before the excess pore-air pressure diminishes 

(Figure 6.12(b)). Figures 6.13 and 6.14 demonstrate the similar consolidation behaviour 

in the top-base drainage boundary condition. As expected, the inclusion of both 
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horizontal and vertical drainage in the soil increases the dissipation rate of excess pore-

air and pore-water pressures.  

The average degree of consolidation ( ) can be estimated by combining Equations 

[6-7] and [6-29]. A complete set of equations to predict  is presented in Equations [C-

13] – [C-17] in Appendix C. Figure 6.15 predicts the variation of  against the time 

factor  incorporating the effects of  and  under the top drainage condition whereas 

Figure 6.16 shows similar study under the top-base drainage condition. It is apparent 

that noticeable changes in  occur in the later stages of consolidation. In particular, the 

increasing  decelerates the consolidation whereas the increasing  accelerates the 
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consolidation process (Figure 6.15). Such behaviour is mainly due to the impact of 

and  on the dissipation rate of excess pore pressures, which was explained earlier. 

Similar time-dependent variations of  can be observed in Figure 6.16. The 

consolidation ends at about the same time regardless of values of  and  (i.e. before 

 for both top and top-base drainage conditions).  

Figures 6.17 and 6.18 introduce the excess pore pressure isochrones (along - and -

directions) under the top and top-base drainage boundary conditions, respectively, 

whilst  and the ratio  are adopted. Figure 6.17(a) shows 

some minor increases in excess pore-air and pore-water pressures at the impervious 

boundary ( ). This phenomenon happens as the result of redistribution of the 
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existing initial excess pore pressures to achieve the pressure equilibrium throughout the 

soil stratum. Under the instantaneous loading, the soil medium only allows some excess 

pore pressures to dissipate through the permeable top surface at the very early stages of 

the consolidation, whilst the remaining excess pore pressures are pushed down towards 

the impervious base. This explains why the excess pore-air and pore-water pressure 

ratios are greater than  at  at the early stages. As time elapses, the pore pressure 

isochrones are believed to recover to their original pattern as presented in Figure 6.8. 

Additionally, Figure 6.17(b) presents a set of pore pressure isochrones along the -axis. 

It can be observed that pressures are zero at  and  due to two vertical sand 

drains. Unlike the top drainage condition, the isochrones in top-base drainage condition 

(over -direction) do not exceed  as the result of shorter drainage path (Figure 6.18). 
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6.6. Summary 

This study has provided a closed form analytical solution for the 2D plane strain 

consolidation of unsaturated soils using the eigenfunction expansion and Laplace 

transform techniques. The analytical development captures the applications of uniform 

and linear distributions of initial excess pore pressures. At first, the eigenfunctions and 

eigenvalues are determined based on the homogeneous boundary conditions. By 

substituting these eigenfunctions into the given governing equations of flow, the new 

ordinary differential equations are derived. Then, the Laplace transform method is 

applied to obtain an exact solution for the newly derived differential equations.  

Two worked examples have been introduced in this study. Example 1 has 

investigated the effects of both isotropic and anisotropic permeability conditions 

capturing the uniformly distributed initial pore pressures. As expected, for the isotropic 

permeability, the change in  results in the typical double S-shaped curves for the 

excess pore-water pressure dissipation and average degree of consolidation, and single 

curves for the excess pore-air pressure dissipation. For the anisotropic permeability, it 
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has been observed that the increase in  results in slightly faster 2D consolidation 

rate. In addition, the consolidation rate of the top drainage boundary system has been 

found to be similar to that of the top-base drainage system as  increases. Example 

2 has presented the consolidation process when considering the linearly distributed 

initial pore pressures. In this example, the effects of both initial pore-air and pore-water 

pressure distributions have been investigated. Generally, the distribution of initial 

excess pore pressures has insignificant effects on the excess pore-air dissipation but 

significantly influences the excess pore-water pressure dissipation rate. Two sets of 

isochrones along - and -directions have been presented in both examples. For the case 

of linearly distributed initial pore pressures, several minor increases in excess pore 

pressures have been observed at the impervious base boundary during the early stages 

of consolidation. This phenomenon occurs to redistribute the pore pressures in the soil 

stratum under the external surcharge. 
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CHAPTER 7

ANALYTICAL SOLUTION FOR THE TWO-DIMENSIONAL 
PLANE STRAIN CONSOLIDATION OF AN UNSATURATED SOIL 

STRATUM SUBJECTED TO TIME-DEPENDENT LOADING  

7.1. Introduction 

Having realised a limited analytical study about 2D plane strain consolidation system, 

particularly for unsaturated soils subjected to different types of loading, this chapter 

introduces a closed-form analytical solution predicting the dissipation of excess pore-air 

and pore-water pressures and settlement using the continuity equations proposed by 

Dakshanamurthy & Fredlund (1980). The mathematical development adopts 

eigenfunction expansion and Laplace transformation methods along with homogeneous 

drainage boundary conditions and uniform initial conditions. Four different time-

dependent loadings, namely, ramping, asymptotic, sinusoid and damped sine wave, are 

simulated and incorporated into the solution. Examples for mentioned loading cases and 

validation for ramped loading will be provided hereafter. 

7.2. Governing equations of 2D plane-strain consolidation 

The typical unsaturated soil is a three-phase geomaterial primarily consisting of air, 

water and soil skeleton. Immediately after the surcharge, the excess pore-air and pore-

water pressures can be generated and gradually dissipated with time through permeable 

boundaries. This phenomenon eventually results in a considerable reduction in the soil 

volume. The following continuity equations for 2D consolidation of unsaturated soils in 

the Cartesian coordinate system ( , ) are conceptually based on the model proposed by 

Dakshanamurthy & Fredlund (1980): 

              [7-1a] 
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              [7-1b] 

where  and  is the total stress in - and -directions, respectively ( );  and 

are excess pore-air and pore-water pressures, respectively ( );  and  are 

interactive constants with respect to air and water phases, respectively; ,  and 

are the consolidation coefficients for air phases ( ); and ,  and  are the 

consolidation coefficients for water phases ( ). The consolidation parameters can be 

expressed as follows: 

                   [7-2a] 

                 [7-2b] 

                [7-2c] 

                   [7-2d] 

                   [7-2e] 

                   [7-2f] 

                   [7-2g] 

                    [7-2h] 

where  and  are coefficients of air and water permeability in -direction ( ), 

respectively;  and  are coefficients of air and water permeability in -direction, 

respectively;  is the gravitational acceleration ( );  is the initial pore-air 

pressure;  is the atmospheric pressure;  is the universal air constant 

( ); , is the absolute temperature ( );  is the molecular 

mass of air phase ( );  is the soil porosity;  is the degree of saturation; 

 is the unit weight of water ( );  and  are coefficients of air and 

water volume change with respect to the change of net stress ( ), respectively; and 

 and  are coefficients of air and water volume change with respect to the change 
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of suction, respectively. Equations [7-1a] and [7-1b] can be rewritten in simplified 

forms as follows: 

               [7-3a] 

               [7-3b] 

Equations [7-3a] and [7-3b] are a set of continuity equations describing flows of air 

and water phases. It should be noted that when the applied surcharge is time-dependent, 

 and . The continuity equations consist of three variables, 

(horizontal direction),  (vertical direction) and  (time); and can be presented under 

PDEs. 

7.3. Analytical solution for excess pore pressure dissipation  

The vertical drain assisted preloading is one of the most commonly used ground 

improvement methods in geotechnical practice to shorten the duration of soil 

consolidation by facilitating the drainage characteristics in soils. According to Horne 

(1964), and Walker & Indraratna (2009), the drainage in horizontal direction, induced 

by vertical drains, may proceed much faster due to the reduced drainage path and 

consideration of the horizontal permeability. This study presents a referential profile of 

an unsaturated soil stratum with a finite thickness  and two vertical drains, whose 

internal space is denoted as  (see Figure 7.1). Figure 7.1(a) demonstrates a 

homogeneous soil stratum with a pervious ground surface and impervious bedrock, 

allowing air and water phases to dissipate through the top (pervious ground surface) and 

the lateral (vertical drains) boundaries. Figure 7.1(b) shows a soil system consisting of 

both pervious top and base, indicating free drainage from all boundaries. The two 

mentioned drainage boundary conditions can be presented as below: 

Vertical boundary:   

(a) Top drainage:   ; 

;            [7-4a]  

(b) Top and base drainage:  ; 

;             [7-4b] 



205 

Lateral boundary:   ; 

     .              [7-4c] 

It is assumed that, immediately after the loading ( ), the uniformly distributed 

initial excess pore-air and pore-water pressures are generated, in the domain 

and : 

                               [7-5a] 

                                [7-5b] 

where  and  are the initial excess pore-air and pore-water pressures ubiquitous 

along the soil depth, respectively. Unsaturated soils are complex in nature and lack 
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homogeneity due to their texture assemblage. For simplicity, the following assumptions 

should be made:  

(1) The homogeneous soil is considered throughout the entire stratum;  

(2) Solid skeleton and water are incompressible phases;  

(3) Environmental factors such as air diffusion and temperature change are neglected;  

(4) The air and water flows continuously and independently;  

(5) The external loading is boundless and uniformly distributed, thus the settlement 

induced by the external loading is considered to occur along the vertical direction; 

and 

(6) Consolidation parameters with respect to air phase ( ,  and ) and water phase 

( ,  and ) are assumed constant during the loading process. 

Assumption (5) may be applicable for both flexible and rigid foundations when the 

loaded area is significantly large (see Figure 7.1). Thus, although the horizontal and 

vertical drainage conditions are considered in the 2D consolidation, it is acceptable to 

assume that the settlement occurs along the vertical direction as the external loading is 

boundless and uniform. Assumption (6), on the other hand, may not be strictly accurate 

for some cases as the consolidation parameters may vary due to the changes of the soil 

properties such as permeability coefficients (  and ), degree of saturation ( ), and 

porosity ( ). It should be also noted that the permeability coefficients are functions of 

both water content and degree of saturation (Dakshanamurthy & Fredlund 1980; 

Fredlund et al. 2012). However, to achieve the closed-form solution in this study, it is 

necessary to assume these soil properties remain constant during the loading process. 

Moreover, in consolidation studies for unsaturated soils, constant properties have been 

already adopted in several existing analytical methods proposed by Qin et al. (2008; 

2010b), Shan et al. (2012), and Zhou et al. (2014).  

General solutions to Equations [7-3a] and [7-3b] can be expanded using the Fourier 

sine series of the related homogeneous problems (Haberman 2012), thus, 

                 [7-6a] 

                 [7-6b] 
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where  and  are generalised Fourier coefficients for air and water, 

respectively, varying against ; 

,   for lateral drainage condition over domain  ( ); and 

,  for top drainage condition over domain  ( ); or 

,   for top and base drainage condition over domain .             [7-7] 

The Fourier sine functions, also known as eigenfunctions, of variables  and  are 

obtained based on the drainage boundary conditions provided in Equation [7-4]. The 

term-by-term differentiations with respect to time  in Equation [7-6] yield in: 

                [7-8a] 

                [7-8b] 

Substituting Equations [7-8a] and [7-8b] into Equations [7-3b] and [7-3b], 

respectively, gives: 

     

           [7-9a] 

                     [7-9b] 

By computing orthogonality of sine functions, Equation [7-9] can be presented as 

follows: 

(a) Isotropic permeability condition ( ): 

            [7-10a] 

           [7-10b] 

(b) Anisotropic permeability condition ( ): 

            [7-11a] 

           [7-11b] 
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with ; and 

where ; ; 

; ; 

;    ; 

; 

,   for the top drainage condition; or 

       , for the top and base drainage condition.        [7-12] 

The terms  and  ( ; and ), known as separation 

constants, introduce an isotropic permeability condition ( ) and an anisotropic 

permeability condition ( ) to the soil stratum, respectively. Equations [7-10] and 

[7-11] are now ODEs with a variable . To solve the first order derivatives, Equations 

[7-10] and [7-11] are converted into Laplace transformed equations with a complex 

subjugate : 

(a) Isotropic permeability condition ( ): 

;                    [7-13a] 

;                   [7-13b] 

(b) Anisotropic permeability condition ( ): 

;                    [7-14a] 

;                   [7-14b] 



209 

where ,  ( ; and ) and  are Laplace 

transformed functions with complex argument ; and , describes the ratio 

of the changes in horizontal and vertical stresses at a point. Based on the elastic theory 

introduced by Jumikis (1969), these changes depend on the applied loads, point of 

investigation, and dimensions of the foundation. In the 2D consolidation, when the 

external loading is considered to be uniform and boundless (Assumption (5)), the 

value may be assumed constant throughout the compression process. However, under a 

non-uniform loading,  value may change during the consolidation due to the lateral 

deformation of the soil. 

The terms  and  can be determined using orthogonality of sine functions 

based on Equation [7-5]: 

;              [7-15a] 

.                         [7-15b] 

The terms  and  obtained from Equation [7-15] now can be substituted 

back into Equations [7-13] and [7-14], which are now rewritten in a matrix form as 

below: 

                              [7-16] 

where ,  for ; or 

      ,  for ; 

;   ; and 

.                              [7-17] 
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Solving for  and  ( ; ) results in: 

                              [7-18] 

where  

(a) Isotropic permeability condition ( ): 

; 

;               [7-19] 

(b) Anisotropic permeability condition ( ):  

; 

.           [7-20] 

Then, taking the Laplace inverse of Equation [7-18] gives: 

                 [7-21] 

where ;  
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(a) Isotropic permeability condition ( ): 

;  

; 

;    ; 

;  ;  

;  ;                         [7-22] 

(b) Anisotropic permeability condition ( ): 

; 

; 

;   ; 

; ;  

; .              [7-23] 

In Equation [7-21], the term  follows different time-dependent loading 

functions and will be determined in Section 5. The final solution describing the 

dissipation of excess pore pressures can be deduced as follows: 

              [7-24] 

where .                  [7-25] 
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It should be noted that, when the term  is equal to zero, Equation [7-24] 

will predict the change in excess pore pressures only restricted to a special case of 

constant loading.  

7.4. Normalised settlement of 2D unsaturated soil consolidation 

Assuming coefficients of volume change for the air and water phases are constant 

during the consolidation for a particular stress increment, the constitutive model for 2D 

plane strain condition proposed by Dakshanamurthy & Fredlund (1980) is derived as 

below: 

               [7-26] 

where  is the volumetric strain; , is the coefficient of volume change of the soil 

element with respect to the change in the net stress ( ); and , is the coefficient 

of volume change of the soil element with respect to the change in suction. 

Integrating Equation [7-26] against time  at domain  yields in: 

                              [7-27] 

The normalised settlement, denoted as , can be determined based on the volumetric 

strain  provided in Equation [7-27]: 

                                                 [7-28] 

where  is the ground surface settlement corresponding to time ; and  is the 

maximum ground surface settlement. In Equation [7-28], the normalised settlement , 

which is a function of time , indicates the settlement response under different types of 

loadings at a particular time. 
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7.5. Worked examples 

In this study, four different types of time-dependent loadings, namely ramping, 

asymptotic, sinusoid, and damped sine wave, are simulated and presented in separate 

examples. The analytical procedure accommodates the simulated loading functions to 

obtain a closed-form solution for 2D plane strain consolidation. Based on the proposed 

solution, the study further investigates the effects of air to water permeability ratio 

( ) on the change of normalised excess pore pressures (i.e.  and ) 

and normalised settlement ( ) of the homogeneous soil stratum under the applied loads. 

In addition, parametric studies are conducted by investigating effects of loading 

parameters on the changes of the normalised pore pressures and the settlement. The soil 

properties adopted in this study are as follows: 

Material properties: ; ; ; 

    

; ; ;

; ; 

;   .            [7-29] 

Physical properties: 

;   .            [7-30] 

An external loading exerted on the ground surface of unsaturated soil causes 

immediate undrained compression and induces initial excess pore-air and pore-water 

pressures. Based on the existing equations for initial pore pressures proposed by 

Fredlund & Hasan (1979), it is estimated that, under the isotropic condition, an initial 

loading  will result in the immediate increases of pore-air pressure 

 and pore-water pressure . When time elapses, the excess pore 

pressures begin to change correspondingly depending on the applied loads. The 

evaluations of the initial excess pore pressures are provided in Appendix D. For the 

permeability ratio , the air permeability  is varying from  to 

whilst the water permeability  is kept constant as . Furthermore, the 

properties provided in Equations [7-29] and [7-30] will be employed to determine the 

consolidation coefficients with respect to the air phase ( ,  and ) and the water 
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phase ( ,  and ). For the sake of generality, the point of investigation, where 

excess pore-air and pore-water pressure dissipation rates are estimated, is considered to 

be at  and  for each case of loading. Considering the isotropic loading 

condition, the term  is adopted in the worked examples. 

7.5.1. Consolidation under ramped loading 

An external ramped loading can be used to simulate the linearly imposed surcharge 

during construction.  A general ramped function can be presented in Equation [7-31]: 

                    [7-31] 

where  is the initial surcharge ( ) and ‘ ’ is the linear loading rate ( ). 

Equation [7-31] can be substituted back into the inverse Laplace transformed 

 as presented in Equation [7-24]. The complete analytical solutions are 

presented in Equations [E-1] and [E-2] in Appendix E. Figure 7.2 depicts the loading 

varying linearly with an initial surcharge  and a linear loading rate 

, which are adopted in this study.  

Based on Equation [E-1], Figures 7.3(a) and 7.3(b) illustrate the excess pore-air and 

pore-water pressure dissipation patterns varying with , respectively. Considering 

a logarithmic time-scale, when the loading time is short, the dissipation of excess pore 

pressures induced by ramped loading is similar to that induced by constant loading (Qin 
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et al. 2008; Shan et al. 2012; Zhou et al. 2014). After a considerable duration (i.e., 

), when , the excess pore-air pressure has almost diminished (Figure 

7.3(a)). In contrast, for all values of , the excess pore-water pressure patterns start 
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to increase significantly after  due to the slow dissipation rate of the excess pore-

water pressure (Figure 7.3(b)).  
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On the other hand, variations in the normalised settlement  for ramped loading, 

which can be obtained from Equation [7-28], are presented in a semi-logarithmic plot 

(Figure 7.3(c)). There is a noticeable variation in  with different values of  in 

the early stages of compression. During this stage, it can be observed that settlement 

tends to proceed more quickly as  increases. These patterns later converge into 

almost a single curve and continue to increase until they become constant after a long 

time. Before , the normalised settlement is similar to that induced by constant 

loading. This is due to the insignificant increase in the ramped loading during this time. 

However, the compression patterns begin to increase drastically due to the significantly 

increasing load after .  

For the parametric study, significant effects of the linear loading rate ‘ ’, ranging 

from  to , on predictions of the 2D consolidation can be 

demonstrated in Figure 7.4. The permeability ratio  is adopted in this case. 

Note that the increasing load rate ‘ ’ may result in a quicker increase in the ramped 

loading, which in turn induces higher excess pore pressures after  (Figures 7.4(a) 

and 7.4(b)). Likewise, the higher loading rate ‘ ’ (e.g., ) increases the 

rate of settlement during the later stages of consolidation compared to a smaller rate ‘ ’ 

(e.g., ) (Figure 7.4(c)). 
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When the horizontal length is infinite, the coefficient of permeability for both air and 

water phases in the -direction (  and ) can be neglected and the  value is 

considered to be . Thus, the solutions for 2D plane strain consolidation (i.e., Equations 

[E-1] and [E-2]) convert to the solution for 1D consolidation, as provided in Equation 

[E-4] in Appendix E. As reported in Figure 7.5, the validation is conducted against the 

existing analytical solution adapted for ramped loading given by Zhou et al. (2014). In 

this comparison, the parameters  and  are adopted as equivalent 

to the normalised loading parameters demonstrated by Zhou et al. (2014). As observed, 

the analytical predictions obtained from Equation [E-4] show good agreement with the 

existing results in literature, suggesting that the proposed solution is reliable (Figure 

7.5). 

7.5.2. Consolidation under asymptotic loading 

During construction, the ground surface of the unsaturated soil deposit may be subjected 

to asymptotic loading as mathematically simulated in Equation [7-32]: 

                  [7-32] 

where ‘ ’ is the parameter influencing the load magnitude and ‘ ’ is the loading 

parameter controlling the rate of asymptotic loading. Equation [7-32] can be substituted 

back into the inverse Laplace transformed  as presented in Equation [7-24]. 
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The complete analytical solutions are presented in Equations [E-6] and [E-7] in 

Appendix E. Figure 7.6 shows that the loading varies exponentially with time when 

adopting the parameters  and .  
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Based on Equation [E-6], Figures 7.7(a) and 7.7(b) illustrate the changes in the 

excess pore-air and pore-water pressures induced by the asymptotic loading, 

respectively. At the beginning of the loading process, there is no significant change in 

both the excess pore-air and pore-water pressures, similar to the case of ramped loading 
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shown in Section 5.1. Because the loading accelerates, the excess pore-air and pore-

water pressures with  increase exponentially and reach their highest value at 

about . In comparison, the excess pore pressures with  tend to dissipate 

more quickly; as a result, the excess pore pressures reach the highest value before .  

Figure 7.7(c) presents the normalised settlement  varying with different values of 

 due to the asymptotic loading, which can be obtained based on Equation [7-28]. 

It can be observed that the settlement patterns drastically increase during the early 

stages of compression as the loading begins to accelerate. When the loading approaches 

the asymptote, the settlement continues to increase at a slow rate while forming inverse 

S-shaped curves. It can be observed that there is a noticeable variation in the settlement 

during the later stages, in which the increasing  may result in a faster reduction of 

the soil volume. The soil eventually experiences no further volume reduction after 

. It is worth mentioning that  in this case is less than  as the average load 

intensity is less than . 

The effects of the exponential loading rate ‘ ’, ranging from  to 

, on the 2D consolidation are illustrated in Figure 7.8. Considering the permeability 

ratio , the excess pore-air and pore-water pressures take a shorter time to 

achieve their highest values when the loading rate ‘ ’ increases (Figures 7.8(a) and 

7.8(b)). It can also be predicted that the highest value of the excess pore pressure is 

prone to increase with the ‘ ’ value. As observed in Figures 7.8(a) and 7.8(b), prior to 

significant dissipation, the excess pore-air and pore-water pressures tend to increase 

faster as the loading parameter ‘ ’ increases. Moreover, as evident in Figures 7.8(a) and 

7.8(b), when the dissipated excess pore pressures are counter-balanced by the increasing 

external loading, the excess pore pressures stay rather constant. In Figure 7.8(c), the 

settlement of the soil stratum with a higher ‘ ’ value (e.g., ) proceeds faster 

than that with a smaller ‘ ’ value (e.g., ) during the early stages of the 

consolidation process. 

7.5.3. Consolidation under sinusoidal loading 

A sinusoidal loading may present the road traffic loading or heavy train imposed on the 

unsaturated ground and can be formulated in Equation [7-33] as follows: 
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                  [7-33] 

where ‘ ’ is the parameter influencing the loading amplitude; and ‘ ’ is the angular 

frequency ( ) for sinusoidal loading function. Equation [7-33] is substituted into 

the inverse Laplace transformed  as presented in Equation [7-24]. The 

complete analytical solutions are presented in Equations [E-9] and [E-10] in Appendix 

E. Figure 7.9 shows the external loading varying periodically with an angular frequency 

 and parameter .  

Figures 7.10(a) and 7.10(b) respectively illustrate the change in excess pore-air and 

pore-water pressures based on Equations [E-9]. Under the sinusoidal loading, after a 

long period of time, the excess pore pressures do not fully dissipate but rather oscillate 

continuously with constant amplitudes depending on the dissipation rate of excess pore 

pressures. This phenomenon is due to the fact that the simulated load function consists 

of loading-unloading curves, which influence the change in excess pore pressures. 

Referring to the logarithmic time-scale, it can be observed that, when , the 

excess pore-air pressure has already diminished before  due to the high dissipation 

rate. This results in no oscillation of excess pore-air pressure during the later stages 

(Figure 7.10(a)). However, for any value of , the excess pore-water pressure 

continues oscillating indefinitely because of the slow dissipation rate (Figure 7.10(b)). 
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Figure 7.10(c) depicts the change in the normalised settlement  for the sinusoidal 

loading, as defined by Equation [7-28]. The settlement patterns initially form inverse S 

curves when  at a relatively slow rate and then oscillate indefinitely after 
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. Such phenomenon indicates that the air and water are squeezed out during the 

loading process and then absorbed in during the unloading process. This may lead to the 

continuous changes in the soil volume with time.  
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Figure 7.11. Influence of angular frequency ‘ ’ on (a) excess pore-air pressure; 

(b) excess pore-water pressure; and (c) settlement with ka/kw = 0.1
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The effects of the angular frequency ‘ ’, including  and , 

on the excess pore pressures and the consolidation settlement are demonstrated in 

Figure 7.11. Taking  for the analysis, it can be observed that the smaller 

angular frequency ‘ ’ (e.g. ) leads to a slow loading rate and thus, 

allowing sufficient time for excess pore-air and pore-water pressures to dissipate 

(Figures 7.11(a) and 7.11(b)). This eventually results in insignificant oscillations (due to 

the small amplitude) in the excess pore pressures. In contrary, the higher angular 

frequency ‘ ’ (e.g. ) produces more significant oscillations (due to the 

big amplitude) whilst increases the vibration frequency for excess pore pressures. It can 

also be observed that, in the later stages, the increasing-decreasing (due to loading-

unloading process) patterns of normalised settlement with higher ‘ ’ tends to proceed 

more quickly than that with smaller ‘ ’ (Figure 7.11(c)).  

7.5.4. Consolidation under damped sine wave loading 

Another road traffic loading such as a damped sine wave loading is mathematically 

simulated in Equation [7-34] as follows: 

                  [7-34] 

where ‘ ’ is the parameter influencing the loading amplitude; ‘ ’ is the loading 

parameter controlling damping rate; and ‘ ’ is the angular frequency ( ) for 

damped loading function. Equation [7-34] can be substituted into the inverse Laplace 

transformed  as presented in Equation [7-24]. The complete analytical 

solutions are presented in Equations [E-12] and [E-13] in Appendix E. In this study, 

Figure 7.12 shows a typical damped sine wave loading with an angular frequency 

, loading parameters  and .  

As obtained in Equation [E-12], Figures 7.13(a) and 7.13(b) depict the excess pore-

air and pore-water pressure dissipation rates varying with , respectively. A 

typical damped sine wave presented in Figure 7.12 consists of vibrations with the 

highest peak to peak amplitude at the very beginning. However, as time passes, the 

amplitude exponentially approaches zero and the loading will stabilise at a constant 

value . Correspondingly, the excess pore pressures appear to vibrate continuously at 

the early stages and then gradually dissipate after . It can be observed that the 
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change in the excess pore pressures after  is similar to that induced by the constant 

loading (Qin et al. 2008; Shan et al. 2012; Zhou et al. 2014).  

Figure 7.13(c) depicts the change in the normalised settlement  due to the damped 

sine wave loading, defined by Equation [7-28]. The normalised settlement initially 

oscillates corresponding to the loading-unloading process. As the damped sine wave 

loading stabilises after , the soil volume gradually decreases resembling to the 

patterns proposed for the constant loading. The soil volume is subjected to no further 

deformation after . 

The significant effects of the damping parameter ‘ ’ (  and ) and 

the angular frequency ‘ ’ (  and ) on the 2D consolidation 

are presented in Figures 7.14 and 7.15, respectively. Considering  and 

, the higher value of the parameter ‘ ’ (e.g. ) will 

accelerate the damping process, in which the amplitude approaches zero faster than that 

with smaller ‘ ’ (e.g. ); and as the result, the excess pore-air and pore-water 

pressures (Figures 7.14(a) and 7.14(b), respectively) and the normalised settlement 

(Figure 7.14(c)) stabilise more quickly. It is noticed that both adopted ‘ ’ values induce 

the same dissipation rate for excess pore pressures after . Likewise, the change in 

parameter ‘ ’ no longer influences the settlement rate after this time. 
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In a case when ‘ ’ is varying whilst ‘ ’ remains unchanged ( ), at the 

beginning of consolidation, the higher angular frequency ‘ ’ (e.g. ) will 

shorten the wavelength and induce more oscillations in excess pore pressures (Figures 
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Figure 7.13. Variations in (a) excess pore-air pressure; (b) excess pore-water

pressure; and (c) settlement with different ka/kw due to damped sine wave loading
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7.15(a) and 7.15(b)) and normalised settlement (Figure 7.15(c)), compared to that with 

the smaller angular frequency ‘ ’ (e.g. ). As expected, once the 

damped loading stabilises, the consolidation of unsaturated soil is no longer influenced 
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Figure 7.14. Influence of exponential loading rate ‘c’ on (a) excess pore-air 

pressure; (b) excess pore-water pressure; and (c) settlement with ka/kw = 0.1
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by the parameter ‘ ’. This indicates that, for any value of ‘ ’, the similar excess pore 

pressure dissipation rate as well as similar settlement rate can be observed after . 
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7.5.5. Parametric study on pore pressure isochrones 

The effects of parameter ‘ ’, ranging from  to , on the 

distribution of excess pore pressures along - and -domains can be depicted in Figures 

7.16(a) and 7.16(b), respectively. A set of normalised excess pore-air ( ) and pore-

water ( ) pressure isochrones against the time factor  can be predicted under the 

ramped loading with different values of ‘ ’. The time factor  in this study is defined as 

 and  is adopted for the analysis. At 

(e.g. ), it can be noticed that the isochrones (along both - and -

directions) with higher ‘ ’ (e.g. ) represents higher excess pore 

pressures due to the higher applied loads. In other words, these isochrones confirm that 

the excess pore pressures increase with increasing ‘ ’. As expected, the excess pore-air 

and pore-water pressures increase with distance from the permeable boundaries. 
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The effects of exponential parameter ‘ ’, ranging from  to , on 

the distribution of excess pore pressures along - and -domains are depicted in Figures 

7.17(a) and 7.17(b), respectively. These pressure isochrones describe the change in 

excess pore-air ( ) and pore-water ( ) pressures against the time factor  due 

to the asymptotic loading with different values of ‘ ’. The permeability ratio 

 is adopted for the analysis. When the asymptotic loading starts to increase 

significantly at  (e.g. ), it can be observed that the 

isochrones (along both - and -directions) with higher ‘ ’ (e.g. ) represent 

higher excess pore pressures, induced by the higher applied loads. However, at the later 

stages, when  increases, it is predicted that the excess pore pressures will be similar 

regardless of different values of ‘ ’. Similar to the case of ramped loading, excess pore 

pressures induced by the asymptotic loading increase with distance from the permeable 

boundaries. 
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7.6. Summary 

This chapter has investigated the 2D plane strain consolidation behaviour, in terms of 

changes in excess pore-air and pore-water pressures as well as the ground surface 

settlement, of the unsaturated soil stratum subjected to different time-dependent 

loadings. The proposed analytical solution adopts the eigenfunction expansion and 

Laplace transformation techniques. For the mathematical procedure, the general 

solution consisting of the eigenfunctions is first obtained and substituted into the 

governing equations. The derived governing equations then are truncated into ordinary 

differential equations using term by term differentiation and orthogonality of sine 

functions. When the Laplace complex variables are all converted, the inverse Laplace 

technique is used to obtain the final solution. The verification for ramped loading 

conducted in this chapter shows a good agreement with the analytical results in the 

literature.   

Time-dependent ramped, asymptotic, sinusoidal, and damped sine wave loadings 

have been mathematically simulated and incorporated in the solution. Considering 

logarithmic time-scale, when  increases, the excess pore-air pressure induced by 

the adopted loads may be dissipated significantly whilst the load is being applied. 

However, for any value of , the change in excess pore-water pressure 

correspondingly reflects the loading pattern due to the slow dissipation rate. For 

parametric studies, the effects of loading parameters ‘ ’, ‘ ’, ‘ ’, ‘ ’ and ‘ ’ in the 

mentioned loading functions have been also investigated. Results of these studies reveal 

that, for the ramped and asymptotic loadings, excess pore pressure dissipation rates 

generally increase with increasing loading rates ‘ ’ and ‘ ’; whilst higher angular 

frequencies ‘ ’ and ‘ ’, as presented in the sinusoidal and damped sine wave loadings, 

may shorten the wavelength and increase more oscillations for excess pore pressures 

and the ground surface settlement. Additionally, higher damping parameter ‘ ’, shown 

in the damped loading, accelerates the damping process for the excess pore pressures 

and settlement. Moreover, under the ramped and asymptotic loadings, excess pore 

pressure isochrones in both vertical and horizontal directions have been analysed to 

confirm the validity for the parametric studies. It can be found that the isochrones with 

higher loading parameters (i.e. ‘ ’ and ‘ ’) will present higher excess pore pressures. As 
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expected, the excess pore pressures in both cases increase with distance from the 

vertical drainage boundaries. 
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CHAPTER 8

ANALYTICAL SOLUTION TO AXISYMMETRIC 
CONSOLIDATION IN UNSATURATED SOILS WITH LINEARLY 

DEPTH-DEPENDENT INITIAL CONDITIONS  

8.1. Introduction 

This chapter proposes an analytical solution to predict the consolidation of unsaturated 

soils considering both radial and vertical flows. In addition, both uniformly and linearly 

distributed initial excess pore-air and pore-water pressures along the depth will be 

captured in this study. The uncoupled polar governing equations of flow with respect to 

air and water phases are first derived from the 3D Cartesian equations given by 

Fredlund et al. (2012). Based on an assumption of the free strain case, separation of 

variables and Laplace transformation techniques are used in this study to obtain the final 

solution. Graphical presentations are provided to demonstrate the effects of the air to 

water permeability ratio, different radii, and depth-dependent initial conditions on the 

changes in excess pore-air and pore-water pressures. Additionally, the matric suction 

change, the degree of consolidation and the excess pore pressure isochrones against 

time are graphically presented.

8.2. Polar governing equations of flow 

The installation of vertical drain wells can be categorized in square and triangular 

patterns. According to Barron (1948), most drain well systems are installed in triangular 

patterns due to economic reasons. Figure 8.1(a) presents the plan of the drain well 

pattern and the influence zone of each well. Figure 8.1(b) depicts the details of the 

typical well within an unsaturated soil stratum. Dimensions of the soil system include a 

depth  and a radius of the influence zone . The vertical drain well with the radius 

is located at the centre of the influence zone. When a constant loading is applied to the 



235 

soil, the air and water phases will dissipate through the boundary of the drain well and 

through the permeable top boundary only or permeable top and base boundaries of the 

soil simultaneously. 

In the literature for consolidation theory of unsaturated soils, the flows of air and 

water phases within the soil are assumed to be independent and continuous (Fredlund & 

Hasan 1979; Dakshanamurthy & Fredlund 1980; Darkshanamurthy et al. 1984). 

Particularly, the air flow follows Fick’s law, whereas Darcy’s law is employed to 

describe the flow of water. Both air and water flows are usually simulated under the 

Cartesian governing equations for unsaturated soils (Fredlund & Hasan 1979; 

Dakshanamurthy & Fredlund 1980; Darkshanamurthy et al. 1984). Prior to the 

evaluation of the axisymmetric consolidation, the Cartesian equations should be 

transformed into the polar forms. The detailed polar transformation of governing 

equations is provided in Appendix F. Through mathematical derivations obtained from 

the net flux of the air and water phases per unit volume and constitutive equations for 

soil deformation, a set of uncoupled governing flow equations can be presented as 

follows: 
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Figure 8.1. Vertical drain system: (a) triangular drain well pattern and (b) details

of a typical well
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(a) Polar governing equations considering the radial flow only: 

                 [8-1a] 

                 [8-1b] 

(b) Polar governing equations considering both radial and vertical flows: 

               [8-2a] 

              [8-2b] 

where  and  are the excess pore-air and pore-water pressures ( ), respectively; 

 and  are the first order derivatives against time for excess pore-air and pore-

water pressure functions, respectively;  and  are the first order derivatives 

against radius for excess pore-air and pore-water pressure functions, respectively; 

and  are the second order derivatives against radius for excess pore-air and pore-

water pressure functions, respectively;  and  are the second order derivatives 

against depth for excess pore-air and pore-water pressure functions, respectively. 

Additionally, the consolidation coefficients are: 

                  [8-3a] 

                [8-3b] 

                [8-3c] 

                    [8-3d] 

                   [8-3e] 

                   [8-3d] 

where  and  are the coefficients of air and water permeability in the radial 

domain ( ), respectively;  and  are the coefficients of air and water 

permeability in the vertical domain ( ), respectively;  and  are the coefficients 
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of air and water volume change with respect to the change of net stress ( ), 

respectively;  and  are the coefficients of air and water volume change with 

respect to the change of suction ( ), respectively;  is the gravitational constant 

(i.e. );  is the initial pore-air pressure at the soil surface ( );  is the 

atmospheric pressure (i.e. );  is the universal air constant (i.e. ); 

, is the absolute temperature ( );  is the temperature in degree 

Celsius;  is the molecular mass of air (i.e. );  is the porosity during 

consolidation process;  is the degree of saturation during consolidation process; and 

 is the water unit weight ( ). 

8.3. Analytical solution  

8.3.1. Boundary and initial conditions 

It is assumed that the boundary of the influence zone of the soil (i.e. ) is 

impermeable whereas the surface of the drain cylinder (i.e. ) is permeable, thus, 

               [8-4] 

In addition, the pervious top – impervious base (PTIB) and pervious top – pervious 

base (PTPB) boundary conditions can be presented as below: 

(a) The PTIB condition: 

              [8-5a] 

(b) The PTPB condition:  

               [8-5b] 

Most literature and laboratory experiments have assumed that, immediately after 

loading, the initial excess pore pressures are distributed uniformly throughout depth 

(Craig 2004; Venkatramaiah 2006; Coduto et al. 2011). However, this uniform initial 

condition may be only applicable when the external applied loading is indefinite and 

uniformly applied on the surface of the soil. In a case when footings built on the ground 

are small or the soil stratum is thick, the initial excess pore pressures generated by 
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loading may decrease with depth. A simplified simulation for such initial condition can 

be presented adopting a linear distribution of excess pore pressures (Rowe 2001; Aysen 

2002; Venkatramaiah 2006; Fang 2013). In this study, simulations for the linear 

distribution of initial excess pore pressures at  and , are adopted as 

follows:   

                  [8-6a] 

                  [8-6b] 

where  and  are the initial pore-air and pore-water pressures at the soil surface, 

respectively; and  and  are the dimensionless parameters controlling the gradients 

of initial pore-air and pore-water pressure distributions. Note that the proposed 

parameters  and  would range from  to . Figure 8.2 shows the distribution of 

initial pore pressures in response of changes of  and . When , the initial 

excess pore pressures are distributed uniformly along -direction (Figure 8.2(a)); when 

 and  parameters are between  and , the initial condition presents trapezoidal 

distribution (Figure 8.2(b)); and when , the triangular distribution of initial 

excess pore pressures is produced (Figure 8.2(c)). 
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Figure 8.2. Initial conditions: (a) uniform, (b) trapezoidal and (c) triangular 

distributions of initial excess pore pressures
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8.3.2. Excess pore pressure dissipation 

A natural soil usually consists of nonlinear properties which may further require 

arduous numerical approaches to estimate the soil compression. In order to achieve an 

analytical solution, the following assumptions have been made in this study:  

(1) The soil stratum is homogeneous; 

(2) The air and water flows are continuous and independent; 

(3) The soil grain and pore-water are incompressible; 

(4) Environmental factors (e.g. air diffusion, temperature change) are neglected; 

(5) Well resistance and smear effects are discarded; 

(6) Consolidation parameters for air phase ( ,  and ) and water phase ( , 

and ) are constant for the applied stress increment; 

It should be noted that the unit weight of water ( ) is assumed to remain constant, 

implying that pore-water is incompressible, as mentioned in Assumption (3). On the 

other hand, Assumption (6) may not be completely accurate for some cases. In 

particular, the soil properties such as permeability (  and ), degree of saturation 

( ), and porosity ( ) in a soil stratum vary during the consolidation induced by a 

constant load, thus the consolidation parameters would eventually change. However, it 

may be acceptable to assume that these parameters are constant during the transient 

process for a particular stress increment.  

For the sake of generality, Equations [8-2a] and [8-2b] are considered for the 

analytical procedure. Firstly, general solutions for  and  can be written as products 

of functions with respect to dimensions  and  and time . In addition, based on the 

homogeneous boundary conditions for the depth given in Equations [8-5a] and [8-5b], 

Fourier sine series can represent functions of the depth . Hence, 

              [8-7a] 

             [8-7b] 
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where , are the eigenfunctions for the domain ; 

, are the eigenfunctions for the domain ;  and  are the 

generalized Fourier coefficients with respect to air and water phases, respectively; 

 and . Note that  resembles to , 

and  resembles to  due to similar boundary conditions, as provided in 

Equations [8-4] and [8-5]. Under the PTIB boundary condition, the term  can be 

defined as: 

,    ( )              [8-8a] 

or  for the PTPB boundary condition is given by: 

,      ( )              [8-8b] 

Then substituting Equations [8-7a] and [8-7b] into Equations [8-2a] and [8-2b], 

respectively, results in: 

        [8-9a] 

     [8-9b] 

Applying the separation of variables to Equations [8-9a] and [8-9b] gives: 

           [8-10a] 

           [8-10b] 

where ; and .            [8-11] 

Then, two sets of ordinary differential equations (ODEs) can be obtained as below:  

, ( ; )            [8-12a] 
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,  ( ; )          [8-12b] 

owing to the fact that  

,   ( ; )              [8-13] 

Note that  and  are eigenvalues while  and  are constant values (

; ). Based on Equation [8-12], Fourier Bessel series are taken as 

the solution for the radial function  ( ), resulting in: 

                 [8-14] 

where  and  are the Bessel constants; and  and  are the 

Bessel functions of the first kind and the second kind of order zero, respectively. 

Incorporating the radial boundary condition in Equation [8-4] into Equation [8-14] 

yields in: 

                 [8-15] 

where ; and  and  are the Bessel functions of the first kind 

and the second kind of order one at . To assure  as well as , the 

following condition must be satisfied: 

               [8-16] 

Note that the eigenvalue  ( ) is the  root of Equation [8-16]. Besides, 

the relationship between constants  and  in Equation [8-15] can be obtained as 

follows: 
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                   [8-17] 

Combining Equations [8-14] and [8-17], the radial function  ( ) 

becomes: 

                  [8-18] 

where .             [8-19] 

To obtain the generalized Fourier coefficients  and  ( ; 

), the Laplace transformation should be first applied to the function of time 

in Equations [8-12a] and [8-12b], thus, 

           [8-20a] 

           [8-20b] 

where  and  ( ; ) are the Laplace transformed 

equations with complex subjugate . Solving simultaneously for  and 

( ; ) gives: 

              [8-21a] 

              [8-21b] 

Constant terms  and  ( ; ) in Equation [8-21] can 

be obtained using the orthogonalities of Bessel and sine functions, as shown below: 
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           [8-22a] 

          [8-22b] 

where ;  

;  

; and  

.            [8-23]  

Combining Equations [8-21] – [8-23] and then taking the Laplace inverse to obtain 

the generalized Fourier coefficients  and  ( ; ): 

              [8-24a] 

             [8-24b] 

where ; 

;    ; 

;  ;  

; and .            [8-25] 
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Substituting Equations [8-18] and [8-24] into Equation [8-7] gives the solutions as 

shown below: 

          [8-26a] 

          [8-26b] 

Note that the Bessel constant  presented in Equations [8-18] and [8-24] is cancelled 

out when the solutions are formed. The proposed equations provided in Equations [8-

26a] and [8-26b] present the time-dependent changes in the excess pore-air and pore-

water pressures, respectively, along dimensions  and . Similar approach can be 

conducted to obtain solutions for Equations [8-1a] and [8-1b], in which the vertical 

permeability coefficient ( ) is discarded and both top and base boundaries of the soil 

are considered to be undrained. Complete set of analytical solutions for axisymmetric 

consolidation with or without the vertical flow are presented in Appendix G. In 

addition, for the consolidation with the vertical flow, both cases of uniform and linear 

distributions of initial excess pore pressures along the soil depth are also captured in the 

solutions presented in Appendix G. 

8.3.3. Average degree of consolidation 

The average excess pore-air and pore-water pressures (i.e.  and , respectively) can 

be obtained by averaging the pore pressures in both - and -directions as follows: 

             [8-27a] 

             [8-27b] 

The constitutive model for the soil skeleton can be adopted from Fredlund et al. 

(2012). It is assumed that the volume change coefficients with respect to air and water 

phases are constant during the consolidation process at a particular stress increment. 

When , the constitutive relationship under the 3D 

loading condition is presented as below: 
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                 [8-28] 

where  and  are the coefficients of volume change of the soil element with respect 

to the change in the net stress and change in suction ( ), respectively. It is worth 

noting that  and . By integrating Equation [8-28] 

against the time variable , the average volumetric strain  is presented as follows: 

              [8-29] 

The average degree of consolidation, , based on the volumetric strain , can be 

derived as follows: 

                    [8-30] 

where  is the final average volumetric strain when time  approaches infinity. 

Equation [8-30] describes the time-dependent response of consolidation settlement of 

the unsaturated soil due to a constant load at a particular time. Complete equations 

presenting the average degree of consolidation  are provided in Appendix G. 

8.4. Examples  

In this study, the axisymmetric consolidation with and without the vertical flows of air 

and water phases are investigated in two examples. The uniformly and linearly 

distributed initial excess pore pressures, simulated by the parameters  and , are 

highlighted in the axisymmetric consolidation considering both radial and vertical 

flows. Following Conte (2004, 2006) and Fredlund et al. (2012), this study adopts: 

Volume change coefficients , , 

, ; 

Material properties   ,   ; 

Physical properties   ,   ,  

,  , 

;            

Dimensions    ,   ,  

; 
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Other properties   ,  , 

,   . [8-31] 

The above soil properties are assumed to be constant during the consolidation 

process. An instantaneous compression induced by the external applied load 

generates initial excess pore-air and pore-water pressures (i.e.,  and , respectively). 

Considering that the soil is loaded three-dimensionally under isotropic conditions, 

changes in excess pore pressures can be determined using a method given by Fredlund 

& Hasan (1979), and Fredlund et al. (2012). Detailed evaluations for the initial excess 

pore-air and pore-water pressures are provided in Appendix H. On the other hand, when 

considering the triangular vertical drain system, both adopted values of radii of 

influence zone  and sand drain  are realistic and practical for evaluations of 

axisymmetric consolidation. In particular, the centre to centre spacing ( ) for the 

adopted  is determined to be  (i.e. ), which is in the 

desirable range of spacing (  – ) recommended by Holtz (1987). Additionally, 

the adopted  is also in the design range (  – ) given by Holtz et al. 

(1991) and Smoltczyk (2003). 

For the sake of simplicity, the diagonal permeability  is discarded and only 

isotropic permeability condition (i.e.  and 

) is considered in this study. Thus, the coefficients of consolidation can be 

obtained based on given properties presented in Equation [8-31]: 

,  

,               [8-32] 

Example 1 demonstrates changes in excess pore pressure dissipation and settlement 

due to the only radial flows of air and water. These changes are examined against the 

permeability ratio ( ) and radial distances from the well ( ). Example 2, on the 

other hand, presents the consolidation process including both radial and vertical flows, 

and captures: (a) uniform initial condition (i.e. ); and (b) linear initial 

condition (i.e. ). The effects of  on the axisymmetric consolidation 

behavior under the PTIB and PTPB boundary conditions are investigated in Example 

2(a) whereas significant effects of  and  are highlighted in Example 2(b). 
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Additionally, the excess pore pressure isochrones and the matric suction changes ( ) 

are presented in both examples.  

8.4.1. Example 1 – Axisymmetric consolidation with radial flow only 

Since only radial flow is considered in this example, the uniform initial excess pore 

pressures over the radial domain,  and , may be adopted. The changes in the 

normalised pore-air ( ) and pore-water ( ) pressures, and the degree of 

consolidation ( ) are analysed in this section.  

Adopting Equation [G-3] in Appendix G, Figure 8.3 illustrates dissipation curves of 

the excess pore pressures at different radii, while adopting . In general, it 
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can be observed that the excess pore-air (Figure 8.3(a)) and pore-water (Figure 8.3(b)) 

pressures dissipate more quickly for the points closer to the drain well. When the radius 

considerably increases (i.e. ), the effects of radial distance on the dissipation 

rate become insignificant. While the excess pore-air pressure is fully dissipated, there is 

a delay period in the excess pore-water pressure curve, known as plateau (Figure 

8.3(b)). It can be observed that the increase in the radius of the point of interest results 

in longer plateau and thus a clear double S-shaped pattern for the excess pore-water 

pressure dissipation.  

Figure 8.4 demonstrates changes in excess pore pressures with different 

values. It is worth noting that the air permeability  is varying while the water 
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permeability  is kept constant at . In addition, the radius 

is taken for the investigation. Figure 8.4(a) illustrates parallel curves of excess pore-air 

pressure due to different  values. It can be noted that, when  increases, the 

excess pore-air pressure is prone to dissipate faster. When  is very high, for 

instance , the excess pore-air pressure may dissipate instantaneously. This 

observation was also reported by Conte (2004). Figure 8.4(b) shows the typical excess 

pore-water pressure dissipation varying with  when time elapses. It can be 

observed that the dissipation at the early stages of consolidation proceeds more quickly 

as the result of increasing . After the excess pore-air pressure completely 

diminishes, a plateau may occur in the excess pore-water pressure patterns when 

. It should be noted that the plateau gets longer as  increases. 

Afterwards, the curves of excess pore-water pressure dissipation converge to a single 

curve and complete dissipation occurs at approximately the same time (i.e. after 

).  

Figure 8.5 shows the normalised matric suction change ( ) varying with 

values at . Initially, the matric suction decreases and attains the lowest 

value due to the excess pore-air pressure dissipation. It can be observed that the 

decrease in the suction proceeds faster as the result of increasing . After the 

plateau period, the suction gradually increases as the excess pore-water pressure 
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dissipates while the excess pore-air pressure diminished completely. As observed, there 

is no further change in the matric suction after .  

Based on Equation [G-5] in Appendix G, Figure 8.6 illustrates the variations of the 

average degree of consolidation ( ) against time factor  (i.e. ) 

with different  values. It is obvious that  patterns consist of double inverse S 

curves when , similar to the excess pore-water pressure dissipation 

process. The early stages of consolidation are governed by the simultaneous dissipation 

of both excess pore-air and pore-water pressures; and once the excess pore-air pressure 

is fully dissipated in the soil system,  patterns converge to only one curve and 

gradually approach  at the later stages. It is worth noting that the later stages of 

consolidation of unsaturated soils resembles to the classical consolidation introduced by 

Terzaghi (1943) since the process during this time is excess pore-air pressure-free. On 

the other hand, the soil stratum tends to settle more quickly at the beginning of the 

consolidation as  increases. 

Figure 8.7 represents groups of excess pore pressure isochrones along the radius 

varying with  while  is adopted in this analysis. The results in this study 

generally demonstrate expected dissipation characteristics comparable to the given 

boundary condition (i.e. Equation [8-4]), in which excess pore pressures are zero at 
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 and approach highest values at . It is also noted that the dissipation rate of 

the excess pore-air pressure is faster than that of the excess pore-water pressure.  

8.4.2. Example 2 – Axisymmetric consolidation with both radial and vertical flows 

8.4.2.1. Uniform initial condition ( ) 

The condition  indicates that, under the undrained compression, the initial 

excess pore pressures  and  are ubiquitously distributed throughout the soil depth. 

Variations of normalised pore pressures,  and , and degree of 

consolidation, , will be investigated in this section. Throughout the analysis, the point 

of investigation is located at  and .  
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Considering Equations [G-9] and [G-10] in Appendix G, Figure 8.8 depicts the 

dissipation rate of excess pore pressures varying with  under the PTIB and PTPB 

boundaries, along with the radial drainage boundary. As expected, variations of 

result in single inverse S curves for the excess pore-air pressure (Figure 8.8(a)) and 

typical double inverse S curves for the excess pore-water pressure (Figure 8.8(b)). It can 

be also observed that the excess pore pressure dissipations assisted by the PTIB 

boundaries of the soil have comparable rates with those in PTPB boundaries. This result 

indicates that the radial flow, induced by drain wells, controls the dissipation while the 
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effects of the vertical flow on the dissipation process are less significant. It should be 

noted that the dissipation rate under the PTIB boundary condition comparatively 

resembles to that presented in Figure 8.4. Besides, the Mandel-Cryer effect during the 

compression (Mandel 1953; Cryer 1963), which has been widely known as the 

phenomenon being characterized by the Poisson’s ratio and leading to increases in the 

excess pore-water pressure prior to the dissipation, can be discarded in this analysis. 

Rigorous numerical studies conducted by Conte (2004) and Wong et al. (1998) 

elucidate that the mentioned effect plays a minor role in the consolidation of unsaturated 

soils. Moreover, Fredlund et al. (2012) also confirms that the consideration of Mandel-

Cryer effect in the computation may be unnecessary since the uncoupled theory of 

consolidation provides a decent approximation to the fully coupled approach. 

On the other hand, Figure 8.9 shows the normalised matric suction change ( ) 

varying with time while adopting the PTIB and PTPB boundary conditions. As 

observed, although the matric suction in the PTPB boundary system tends to initially 

decrease and then increase slightly faster than that in the PTIB boundary system, the 

matric suctions in both boundary conditions eventually become constant at about the 

same time (i.e. after ). It is worth noting that, while the total stresses remain 

unchanged due to the constant external loading, the consolidation process may be 
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attributed initially to the increase in the net stress ( ), and subsequently to the increase 

in the matric suction ( ) during the later stages of consolidation. 
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Figure 8.10 presents changes in the average degree of consolidation ( ) against time 

factor  (i.e. ) under the PTIB and PTPB boundary conditions, as 

referred to Equation [G-12] in Appendix G. Similar to Figure 8.6, the results of  show 

the expected double inverse S curves, when . It can be observed that, 

although there are clear differences in  for the PTIB and PTPB boundary systems at 

the early stages, the consolidation process ends almost at the same time (i.e. after 

 or after ).  

Figures 8.11 and 8.12 represent groups of excess pore pressure isochrones varying 

with  (along the - and -directions) under the PTIB and PTPB boundary systems, 

respectively. The ratio  is taken for this investigation. As observed, the 

isochrones in Figures 8.11(a) and 8.12(a) satisfy the radial boundary condition given in 

Equation [8-4], and also those in Figures 8.11(b) and 8.12(b) satisfy the vertical 

boundary condition, as provided in Equations [8-5a] and [8-5b], respectively. It can be 

found that the excess pore pressures in the PTPB boundary system dissipate just slightly 
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faster than those in the PTIB boundary system. This suggests that the effects of the 

vertical flow may be less significant as the soil thickness increases.  

Figure 8.13 depicts excess pore pressure isochrones at a particular time  at 

various radii while adopting . It can be observed that the excess pore-air 

and pore-water pressures tend to increase when the point of interest is farther away from 

the drain well. In contrast, the excess pore pressures reduce as the radius decreases. This 

is due to the fact that a considerable portion of pressures preferably dissipate through 

the permeable boundary. When the radius considerably increases (i.e. ), the 

effects of radial distance on the pore pressure isochrones will be less pronounced.  

8.4.2.2. Linear initial condition ( ) 

This section highlights the effects of the proposed parameters  and  on the 

axisymmetric consolidation, as presented in Equations [8-6a] and [8-6b], respectively. 

Since , the initial excess pore pressures are linearly distributed along the soil 
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depth. In this study, the normalised pore-air ( ) and pore-water ( ) pressures 

are presented and discussed. Additionally, the point at  and 

is selected for further analysis.  

Based on Equation [G-17] in Appendix G, Figure 8.14 shows the effects of  on the 

excess pore pressure dissipation rates when  and PTIB boundary condition 

are adopted. In this analysis, the parameter  varies from  to  while  remains 

constant equal to . As demonstrated in Figure 8.14(a), the increasing  values lead 

to a reduction in the average initial excess pore-air pressure at the beginning of 

consolidation. The excess pore-air pressures (with different  values) begin to dissipate 

significantly at about  and are then fully dissipated at almost the same time 
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(i.e. after ). In Figure 8.14(b), it is observed that the increasing  values result 

in a slower rate of the excess pore-water pressure dissipation during the plateau period. 

However, at the later stages of consolidation, excess pore-water pressures (with 

different  values) fully dissipate with approximately the same rate.  

Figure 8.15, on the other hand, investigates the influence of  on the dissipation 

rates while considering  and PTIB boundary condition. The parameter  is 

varying from  to  whereas  is kept constant equal to  in this case. As observed, 

there is no variation in the excess pore-air pressure dissipation despite different 

values (Figure 8.15(a)). When  increases, the average initial excess pore-water 
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pressure decreases at the beginning of consolidation (Figure 8.15(b)). Nevertheless, at 

the later stages of consolidation, all excess pore-water pressures (with different 

values) diminish at almost the same time (i.e. after ).  

Figure 8.16 demonstrates changes in the matric suction due to variations of  and 

when adopting  and PTIB boundary condition. As shown in Figure 8.16(a), 

increasing  leads to smaller suction at the beginning of consolidation since the average 

initial excess pore-air pressure reduces while the initial pore-water pressure remains 

unchanged. This observation is contrary to the effects of , in which the increasing 

leads to higher suction at the beginning of consolidation due to a considerable reduction 

in the average initial excess pore-water pressure, as presented in Figure 8.16(b). At the 
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later stages, in both cases, matric suctions will increase gradually and approach a 

constant value at approximately the same time (i.e. after ).  

Figure 8.17, referred to Equation [G-20] in Appendix G, illustrates the changes in the 

average degree of consolidation ( ) against time factor  (i.e. ) due 

to the effects of  and , while  and PTIB condition are considered. As 

observed,  patterns initially increase with almost similar rates and then begin to vary 

during the later stages of consolidation, at which the increasing  decelerates the 

consolidation (Figure 8.17(a)) whereas the increasing  accelerates the consolidation 

process (Figure 8.17(b)). This is due to the fact that  curves are dependent on the 

dissipation rate of excess pore-water pressure, particularly a faster rate of excess pore-
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water pressure dissipation leads to faster consolidation rate and vice versa. It can be 

observed that consolidation completes almost at the same time regardless of values of 

and  (i.e. after ). 

Figures 8.18 and 8.19 demonstrate the excess pore pressure isochrones varying with 

 (along - and -directions) considering the PTIB and PTPB boundary systems, 

respectively, while adopting  and the ratio . The pressure 

isochrones in Figures 8.18(a) and 8.19(a) satisfy the radial boundary condition 

presented in Equations [8-4]. Under an undrained compression, linearly distributed 

initial excess pore pressures generated by the applied constant load ( ) are clearly 

captured in Figures 8.18(b) and 8.19(b). It is observed that the excess pore pressures 

under the PTIB boundary conditions undergo the pressure redistribution process, in 

which some pressures dissipate through the permeable top surface while the rest is 

transferred toward the base of the soil (i.e. at ). This phenomenon results in 

notable increases in both excess pore-air and pore-water pressures with time towards the 

bottom of the soil deposit (Figure 8.18(b)). Considering the PTPB boundary condition, 
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the redistribution of excess pore pressures also occurs to achieve the pressure 

equilibrium. Evidently, the maximum values of excess pore pressures at a particular 

time no longer occur consistently at the mid-depth but move toward the base of the soil 

due to the pressure redistribution (Figure 8.19(b)).  

Figure 8.20 shows excess pore pressure isochrones at  at various radii 

while adopting  and . Similar to the result presented in 

Figure 8.13, the excess pore-air and pore-water pressures increase when the point is 

farther away from the drain well. The effects of radial distance on the pressure 

isochrones become less significant when the radius considerably increases (i.e. 

). 
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8.5. Summary 

This chapter has provided an analytical solution to predict the axisymmetric 

consolidation of unsaturated soils using variables separation and Laplace transformation 

techniques. The mathematical method captures the uniformly and linearly distributed 

excess pore pressures as initial conditions. The 3D Cartesian governing equations were 

first transformed into the polar equations. Subsequently, final solutions predicting 

excess pore pressure dissipation rates were obtained using Fourier Bessel and sine 

series, and Laplace transforms. 

In this study, two examples have been presented to illustrate the capabilities of the 

proposed analytical approach. The axisymmetric consolidation with only radial flow has 

been presented in Example 1, whereas the case considering both radial and vertical 

flows has been investigated in Example 2. Overall, both examples show the significant 

effects of the air to water permeability ratio ( ) on the dissipation process, in 

which changes in the ratio result in a single inverse S curves for the excess pore-air 
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pressure, and double inverse S curves for the excess pore-water pressures and degree of 

consolidation. Besides, the excess pore pressures tend to dissipate faster for the points 

closer to the drain well. In Example 2, considering the uniform distribution of initial 

excess pore pressures, it can be concluded that the radial flow governs the axisymmetric 

consolidation while effects of vertical flow are less notable. It should also be noted that 

the compression process is ascribed to the increase in matric suction at the later stages 

of consolidation. On the other hand, the linear distribution of initial excess pore 

pressures with depth has considerable impacts on the dissipation process. In particular, 

the rapid reduction in both initial excess pore pressures with depth would lead to 

reduced average excess pore-air and pore-water pressures at the beginning of 

consolidation. Furthermore, the effects of initial pore pressures cause the pressure 

redistribution phenomenon in which, under the applied loads, some excess pore 

pressures are transferred toward the base of the soil, resulting in notable increases in the 

excess pore pressures. 
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CHAPTER 9

AXISYMMETRIC CONSOLIDATION IN UNSATURATED SOIL 
DEPOSIT SUBJECTED TO TIME-DEPENDENT LOADINGS  

9.1. Introduction 

This chapter provides an analytical solution to axisymmetric consolidation while 

capturing the radial and vertical flows of air and water phases. Polar governing flow 

equations are derived and coupled with simulated time-dependent applied loads, namely 

ramping, asymptotic, sinusoid and damped sine wave. Uniformly distributed initial 

excess pore-air and pore-water pressures are adopted in the analytical procedure. 

Standard approaches such as the separation of variables and Laplace transformation are 

used to obtain the final solutions. The permeability ratio and loading parameters against 

the dissipation of excess pore pressures and consolidation settlement are demonstrated 

graphically. In those cases of ramped and asymptotic loadings, the matric suction and 

net stress varying with time are discussed in the worked examples. 

9.2. Polar governing equations of flow 

For simplification the existing literature (Fredlund & Hasan 1979; Dakshanamurthy & 

Fredlund 1980; Darkshanamurthy et al. 1984) assumed that the flows of air and water 

phases are independent and continuous during consolidation. The flows are empirically 

derived to form a set of 3D Cartesian equations that describe the air and water flux per 

unit volume in a soil element as shown below: 

      [9-1a] 

               [9-1b] 
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where ,  and  are the coefficients of air permeability in the -, - and -

domain ( ), respectively; ,  and  are the coefficients of water 

permeability in the -, - and -domain ( ), respectively;  and  are excess pore-

air and pore-water pressures, respectively;  is the initial pore-air pressure ( ); 

is the atmospheric pressure ( );  is the universal air constant ( ); 

, is the absolute temperature ( );  is the temperature ( );  is the 

molecular mass of air phase ( );  is the porosity during consolidation process; 

is the degree of saturation during consolidation process;  is the gravitational constant 

( ); and  is the water unit weight ( ). Cartesian coordinates ( , 

, ) presented in Equation [9-1] can be expressed in polar coordinates as follows: 

                     [9-2a] 

                     [9-2b] 

                      [9-2c] 

hence, 

                    [9-3a] 

                    [9-3b] 

Assuming  and , the polar transformation can be 

conducted by combining Equations [9-1], [9-2] and [9-3], thus, 

             [9-4a] 

                [9-4b] 

where  and  are the coefficients of air and water permeability in the -domain 

( ), respectively. Note that the pore pressures within a soil element are independent 

of  under the axially symmetric case. The constitutive relationship between soil 

deformation and stress state variables under the 3D loading condition can be adopted as: 

               [9-5a] 
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               [9-5b] 

where  and  are the coefficients of volume change of air and water with respect to 

the change of net stress ( ), respectively;  and  are the coefficients of 

volume change of air and water with respect to the change of suction ( ), 

respectively; ,  and  are the total stresses in the -, - and -domains ( ), 

respectively. By equating Equations [9-4a] and [9-4b] to Equations [9-5a] and [9-5b], 

respectively, the results would provide the governing flow equations including time-

dependent loadings as follows: 

             [9-6a] 

        [9-6b] 

where  and  are the first order partial differential equations (PDEs) of excess 

pore-air and pore-water pressures with respect to time, respectively;  and  are 

the first order PDEs of excess pore-air and pore-water pressures with respect to the -

domain, respectively;  and  are the second order PDEs of excess pore-air and 

pore-water pressures with respect to the -domain, respectively;  and  are the 

second order PDEs of excess pore-air and pore-water pressures with respect to the -

domain, respectively; and ,  and  are the first order PDEs with respect to time 

of loadings in the -, - and -domains, respectively. In addition, 

                   [9-7a] 

                 [9-7b] 

                [9-7c] 

                   [9-7d] 

                   [9-7e] 

                   [9-7f] 
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                   [9-7g] 

                    [9-7h] 

The detailed polar transformation of the governing flow equations is clearly 

presented by Ho et al. (2016). It should be noted that the solutions for  and  in 

Equation [9-6] would consist of functions of radial and vertical coordinates, and time. 

9.3. Analytical solution  

9.3.1. Boundary and initial conditions 

A simplified elevation of the drain well system is depicted in Figure 9.1. The system 

consists of the radius  of the influence zone and finite depth . A typical drain well, 

of which the radius is denoted as , is installed at the middle of the influence zone. 

Under undrained conditions, an application of external loads would generate excess 

pore-air and pore-water pressures, but after a certain time these excess pore pressures 

would gradually dissipate towards the drain wells and permeable vertical boundaries. 

Figure 9.1(a) presents a pervious top – impervious base (PTIB) boundary condition, 

Vertical drain well

Air and water Air and water

Zone of influence

r

z

r

z

H

rw

re

(a) (b)

Figure 9.1. Simplified elevation of the vertical drain well system under (a) PTIB 

and (b) PTPB boundary conditions
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indicating upward flows of air and water during the loading process. Figure 9.1(b) 

shows a pervious top – pervious base (PTPB) boundary condition that describes free 

drainage at both ends of the soil deposit.  

Following Barron (1948), the surface of a sand drain cylinder is considered to be 

permeable to air and water whereas the boundary of the influence zone is assumed to be 

impermeable, so the radial boundary conditions when  are:      

                   [9-8a] 

                  [9-8b] 

Drainage also takes place towards the permeable vertical boundaries, as shown 

below:  

(a) The PTIB boundary condition when : 

                   [9-9a] 

                  [9-9b] 

(b) The PTPB boundary condition when : 

                 [9-10a] 

                 [9-10b] 

The initial conditions at  and  are: 

                  [9-11a] 

                  [9-11b] 

As soon as loads are applied onto the ground surface, it is assumed that initial excess 

pore pressures  and , are distributed ubiquitously into the soil, except for the 

permeable boundaries.  

9.3.2. Excess pore-air and pore-water pressures 

Before presenting the analytical procedure, it is worth mentioning the conventional 

assumptions from existing literature (Fredlund & Hasan 1979; Dakshanamurthy & 
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Fredlund 1980; Darkshanamurthy et al. 1984; Fredlund et al. 2012) and some additional 

assumptions that satisfy the polar governing flow equations for unsaturated soils 

adopted in this study:  

(1) The soil stratum is homogeneous; 

(2) The flows of air and water are continuous and independent; 

(3) Solid grain and pore-water are incompressible; 

(4) Air diffusion is neglected; 

(5) Isothermal condition is considered; 

(6) Well resistance and smear effects are ignored; 

(7) The loaded area is very large and the external load is uniform, thus the soil stratum 

only deforms along the -direction; 

(8) The consolidation coefficients for air ( , ,  and ) and water ( , , 

and ) are assumed to be constant during the loading process.  

The above assumptions, especially Assumption (8), may not be strictly accurate for 

some applications. In particular, the consolidation coefficients with respect to air and 

water phases may vary during the loading process due to variable soil properties such as 

permeability coefficients, porosity, degree of saturation, and volume change coefficients 

to name but a few. To successfully obtain the analytical solution, these properties must 

be kept constant throughout consolidation, although the soil properties for each stress 

increment can be revised and updated under the transient process.  

The following general solutions are adopted for the PDEs presented in Equation [9-

6]: 

                                 [9-12a] 

                                          [9-12b] 

where , are the eigenfunction of radial domain; 

, are the eigenfunction of vertical domain; and 

 and  are the generalized Fourier coefficients with respect to air and 

water phases, respectively.        
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Note that  and  due to similar boundary 

drainage conditions. Employing the Fourier sine series as a solution of the eigenfunction 

, Equations [9-12a] and [9-12b] become: 

                              [9-13a] 

                                [9-13b] 

where  for the PTIB boundary condition; or 

          for the PTPB boundary condition ( ).     [9-14] 

Under an axisymmetric condition the entire drain well system can be treated as a unit 

mass of the soil, hence  can be adopted, while combining Equations 

[9-6], [9-13] and [9-14] and then separating the variables by introducing constants 

and  ( ; ) would yield: 

                    [9-15a] 

                            [9-15b] 

where ; ; 

;   ; and 

   for the PTIB boundary condition; or 

     for the PTPB boundary condition.             [9-16] 

The parameter  in Equation [9-15] depends on the loaded area and dimensions of 

the footing built on top of deposits of unsaturated soil, referred to the elastic theory by 

Jumikis (1969). It should be noted that for free strain consolidation, when the loaded 

area is very large and the applied load is uniform,  can be considered as being constant 
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during the loading stage. For non-uniform loads,  may vary as the soil deforms 

laterally. It can be noted that only large and uniformly distributed loads are considered 

in this study. 

After separating the variables, two sets of ordinary differential equations (ODEs) are 

obtained as follows: 

          [9-17a] 

           [9-17b] 

In relation to Equation [9-17], the separation constants  and  ( ; 

) can be expressed as: 

                [9-18a] 

                                     [9-18b] 

Fourier Bessel series is adopted as the solution for the eigenfunction , giving:  

                             [9-19] 

where  and  ( ) are the Bessel constants; and  and 

 are the Bessel functions of the first kind and the second kind of order zero, 

respectively. By referring to the radial boundary condition in Equation [9-8], 
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                [9-20a] 

                       [9-20b] 

where ; and  and  are the Bessel functions of the first kind 

and the second kind of order at . To avoid constants  and  equal to zero, the 

following condition must be satisfied: 

                                         [9-21] 

which results in:  

                [9-22] 

It should be noted that the eigenvalue  ( ) is the  root of Equation [9-

22]. Adopting Equation [9-20b], the constant  can be expressed as a function of , as 

shown in Equation [9-23]: 

                                              [9-23] 

Then substituting Equation [9-23] into Equation [9-19] leads to: 

                                         [9-24] 

where .             [9-25] 

The constant  presented in Equation [9-16] can now be determined using the 

orthogonality of the Fourier Bessel series: 
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                           [9-26] 

where ; and             

.            [9-27] 

Incorporating Equations [9-17], [9-26] and [9-27] yields: 

           [9-28a] 

       [9-28b] 

where  for PTIB boundary condition; or 

        for PTPB boundary condition.             [9-29] 

Laplace transforming Equation [9-28] gives: 

                         [9-30a] 

                     [9-30b] 

In addition, the terms  and  ( ; ) are constant and 

can be obtained using orthogonalities of Bessel and sine functions: 
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                     [9-31a] 

                    [9-31b] 

Combining Equations [9-30] and [9-31] and then rewriting the derived equations into 

a simplified matrix form result in: 

                             [9-32] 

where ;   ; 

; and .             [9-33] 

Solving for  and  ( ; ) gives: 

                             [9-34] 

where ; and 

.              [9-35] 

The generalized Fourier coefficients for air and water can be obtained by taking the 

Laplace inverse of Equation [9-34], leading to: 
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               [9-36] 

where ; 

; 

  ;  

;    ; 

;  ;  

; and  .                [9-37] 

In Equation [9-36], the term  may change depending on different loading 

functions. Note that the exclusion of the term  in the analytical model 

would lead to a case of soil deformation induced by a constant loading. The final 

solutions for predicting the dissipation rates of excess pore pressures can be deduced as 

follows: 

              [9-38] 

where .                  [9-39] 

Note that the constant term  in the eigenfunction  is cancelled out when the 

final solution is formed. Equation [9-38] predicts the dissipation rates of excess pore-air 

and pore-pressures induced by a particular loading. A full set of analytical solutions for 

the consolidation of deposits of unsaturated soil under various types of external loadings 

are presented in Appendix I. 
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9.3.3. Normalised settlement 

By assuming that the coefficients of volume change of the soil are constant during 

consolidation, the constitutive model for the soil structure can be presented as: 

                           [9-40] 

where  and  are the coefficients of volume change of the soil element with respect 

to changes in the net stress and suction ( ), respectively. Integrating Equation [9-

40] against time leads to: 

                                        [9-41] 

where  is the volumetric strain of the soil. Consolidation settlement occurs due to the 

dissipation of excess pore pressure, so for the sake of simplicity, settlement can be 

normalised as set out below: 

                               [9-42] 

where  and  are the normalised and maximum settlement, respectively. Equation 

[9-42] is a function of time  describing the settlement response of the unsaturated soil 

due to an external applied load at a particular time. Recent studies report that soil 

cementation and visco-plastic behaviour of soft soils also have considerable impacts on 

the time-dependent deformation (Nguyen et al. 2014; Le et al. 2015). However, these 

factors are not included in this study. 

9.4. Worked Examples 

In this study, unsaturated soil consolidation induced by time-dependent loadings is 

predicted against variations of air to water permeability ratio ( ) and loading 

parameters. The normalised excess pore-air ( ) and pore-water pressures 

( ) and consolidation settlement ( ) are analysed further. Moreover, the 

external loadings used in this study such as ramping, asymptotic, sinusoid and damped 
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sine wave are the four primary loadings available in engineering practice and they are 

good representatives for practical simulations (construction, road traffic etc.). Figure 9.2 

presents four types of time-dependent loads with various loading parameters exerted on 

the unsaturated soil deposit. The loadings are simulated mathematically as follows: 

Ramping:                         [9-43a] 

Asymptotic:                  [9-43b] 

Sinusoid:                      [9-43c] 

Damped sine wave:              [9-43d] 

where  is the initial surcharge ( ); ‘ ’ is the linear loading rate ( ); ‘ ’ and ‘ ’ 

are the exponential loading rates of the asymptotic and damped sine wave functions (

), respectively; ‘ ’ and ‘ ’ are the angular frequencies of the sinusoidal and damped 

sine wave functions ( ), respectively; ,  and  are the loading constants. On the 

other hand, the unsaturated soil properties adopted in the worked examples are as 

follows: 
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Soil properties:  , ,  

    , ,  

    ,  , 

    ,   ; 

Physical properties: ,   ,  

    ,  ;            

Other properties:  ,  , 

    ,   ;   

Soil dimensions:  ,   ,  

    ; 

Loading constants:  ,  . 

By referring to Fredlund et al. (2012), under an instantaneous condition, an 

application of initial surcharge  (i.e., ) results in an initial excess pore-air 

pressure  and pore-water pressure  of  and , respectively, but after a 

certain time the excess pore pressures vary with time, depending on the applied loads. 

On the other hand, variations of  (i.e., from  to ) are mainly based on 

changes in the air permeability coefficient while the water permeability coefficient is 

kept constant (i.e., ). For the purpose of generalization, consolidation will be 

examined under PTIB boundary conditions at  and , and the 

stress ratio  and the isotropic permeability condition (i.e., ) are used in the 

worked examples. 

9.4.1. Ramped loading 

The ramped loading function (e.g., construction surcharge) in Equation [9-43a] is 

incorporated into the inverse Laplace transformed  to produce the final 

solution. Complete analytical solutions for the case of ramped loading are presented in 

Equations [I-1] and [I-2], in Appendix I.  

Figure 9.3 shows the dissipation rates of excess pore-air and pore-water pressures 

induced by ramped loading under the PTIB condition. The loading rate 

is adopted for this analysis. As Figure 9.3(a) shows, in a semi-logarithmic plot there 

appears to be a pronounced increase in the dissipation of excess pore-air pressure at 
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latter stages of consolidation (i.e., after about ) when , but as 

increases the ramped loading may have insignificant impacts on the dissipation rate. 
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This indicates that the dissipation of excess pore-air pressure has almost been completed 

before . In Figure 9.3(b), for all  values, the excess pore-water pressure 
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begins to increase dramatically during the latter stages because the dissipation rate of 

excess pore-water pressure is relatively slow compared to the loading rate. However, it 

is observed that the excess pore-water pressure approaches a constant value after about 

. This indicates that, considering the selected material properties, the dissipation 

rate of the excess pore-water pressure is counterbalanced with the loading rate (or 

excess pore-water pressure generation rate).  

Variations of the normalised settlement  due to the ramped loading are illustrated 

in Figure 9.4. As observed, the settlement curves are similar to those induced by a 

constant loading at the beginning of consolidation, in which the settlement generally 

proceeds faster as  increases, thus characterizing inverse sigmoid shapes. 

However, for all the  values, the settlement curves increase dramatically after 

 as a result of a significantly increasing load.  

For the parametric study, the significant effects of the linear loading rate ‘ ’ (i.e., 

ranging from  to ) on the dissipation of excess pore pressure 

under PTIB condition are depicted in Figure 9.5. It should be noted that the 

permeability ratio  is used for this analysis. As observed, increasing ‘ ’ 

leads to a noticeable increase in the ramped loading after , which then induces 

larger excess pore-air and pore-water pressures at latter stages of consolidation. 

Moreover, the ramped loading with higher ‘ ’ (i.e., ) causes the 

unsaturated soil deposit to consolidate faster, as shown in Figure 9.6.  

9.4.2. Asymptotic loading 

The asymptotic loading function (e.g., construction surcharge, embankment) in 

Equation [9-43b] is incorporated into the inverse Laplace term . Complete 

analytical solutions for axisymmetric consolidation induced by the asymptotic loading 

are presented in Equations [I-3] and [I-4], in Appendix I. 

Figure 9.7 shows the dissipation rates of excess pore-air and pore-water pressures 

due to the asymptotic loading while considering the PTIB condition. The loading rate 

 is adopted for this analysis. Note that an increase in the applied load 

begins to accelerate as time elapses, until it reaches the asymptote of  at about . 

As with the load, under a semi-logarithmic scale, patterns of excess pore-air and pore-
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water pressure having  would increase exponentially until they attain the 

highest value at about . For , both excess pore pressures may 
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approach their highest value before . Note that the highest value of excess pore 

pressures tends to decrease when  increases noticeably. 
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The normalised settlement  of unsaturated soil subjected to asymptotic loading is 

presented in Figure 9.8. Unlike the impact of ramped loading, the settlement curves 

increase dramatically during the early stages of consolidation, but then settlement 

begins to decelerate when the applied load approaches the asymptote. At latter stages of 

consolidation, the settlement of unsaturated soil deposit proceeds faster as  

increases. The volume of soil continues to decrease at a slow rate until no further 

reduction in volume is observed after . 

Figures 9.9 and 9.10, on the other hand, demonstrate the effects of the loading 

parameter ‘ ’ (i.e., ranging from  to ) on the dissipation and 

settlement under the PTIB condition, respectively, while considering . In 

Figure 9.9, the excess pore-air and pore-water pressures attain their highest value at a 

slower rate when ‘ ’ decreases. It should be noted that the highest value of excess pore 

pressures may reduce as ‘ ’ decreases because a large amount of excess pore pressures 

already dissipated before the loading approaches the asymptote. As reported in Figure 

9.10, the settlement curves with a higher ‘ ’ are prone to proceed faster during the early 

stages of consolidation, then they converge into a single curve and continue to increase 

at a very slow rate until no further reduction in volume is observed after . 

9.4.3. Sinusoidal loading 

The sinusoidal loading function (e.g., road traffic or heavy train loadings) in Equation 

[9-43c] can be substituted into the term  to obtain the final solution. 

Complete analytical solutions for axisymmetric consolidation due to sinusoidal loading 

are presented in Equations [I-5] and [I-6], in Appendix I. 

Figure 9.11 depicts the changes in excess pore-air and pore-water pressures induced 

by sinusoidal loading under the PTIB boundary condition. The angular frequency 

 is adopted for the analysis. Both excess pore pressure curves 

consist of harmonic oscillations that correspond to the external loading-unloading 

process. It should be noted that the stiffness of unsaturated soils, particularly compacted 

clays, may be different depending on the loading-unloading cycles and suction 

variations (Mendoza et al. 2005). However, as a simplifying assumption to solve the 

governing equations, the stiffness is assumed constant under the sinusoidal loading. It 
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should be noted that for small stress increments, the stiffness may be reasonably 

assumed constant for practical applications. Unlike other loading functions, the 
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sinusoidal load results in permanent oscillations in excess pore pressures after a long 

period of time. Figure 9.11(a) shows that the sinusoidal amplitude of excess pore-air 

-1.4

0

1.4

2.8

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

No
rm

ali
ze

d 
Ex

ce
ss

 P
or

e-
W

ate
r P

re
ss

ur
e (

u w/
u atm

)

Time (s)
1 102 104 106 10810710 103 105 109

(b)

PTIB
boundary
condition

qz

z = 0.5H

r = 0.5(r  + r )w e

= 2 /107 rad/s
= 2 /108 rad/s

q0 = 100 kPa, B = 1

Isotropic permeability: kr = kz

ka/kw = 0.1

Figure 9.13. Effects of the angular frequency ‘ ’ on the dissipation rates of (a)

excess pore-air and (b) excess pore-water pressures

-0.8

0

0.8

1.6

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

No
rm

al
iz

ed
 E

xc
es

s P
or

e-
Ai

r P
re

ss
ur

e (
u a

/u
atm

)

Time (s)

1 102 104 106 10810710 103 105 109

(a)

PTIB
boundary
condition

qz

z = 0.5H

r = 0.5(r  + r )w e

= 2 /107 rad/s
= 2 /108 rad/s

q0 = 100 kPa, B = 1

Isotropic permeability: kr = kz

ka/kw = 0.1

-1

-0.5

0

0.5

1
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

No
rm

ali
ze

d S
ett

lem
en

t (
S* )

Time (s)
1 102 104 106 10810710 103 105 109

= 2 /107 rad/s
= 2 /108 rad/s

q0 = 100 kPa, B = 1

ka/kw = 0.1

Isotropic permeability: kr = kz

PTIB boundary condition
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pressure curve is attenuated significantly when  increases. This result indicates 

that the excess pore-air pressure with higher values of , particularly , 

is almost fully dissipated at the latter stages of consolidation, so the applied load only 

has minor impacts on the dissipation process. However, the amplitudes of excess pore-

water pressures, except for , are almost identical after a long time, as shown 

in Figure 9.11(b). 

The normalised settlement  of unsaturated soils subjected to sinusoidal loading is 

presented in Figure 9.12. As with the dissipation process, the pattern of settlement 

includes indefinite oscillations in response to the unloading-loading process of a typical 

sinusoidal loading. During the early stages, the patterns of settlement form inverse 

sigmoid curves at a slow rate when . These patterns begin to oscillate 

indefinitely after  because the air and water are squeezed out of the soil stratum 

during the loading process and then absorbed back in during the unloading process. This 

repetitive process leads to continuous changes in the volume of the soil over time. 

The significant impact of the angular frequency ‘ ’ (i.e.,  and 

) on axisymmetric consolidation can be seen in Figures 9.13 and 9.14. The 

parametric study uses  for the analysis. Figure 9.13 shows that, as 

expected, loading with a smaller ‘ ’ reduces the number of oscillations in both excess 

pore pressures. Furthermore, a decrease in the frequency ‘ ’ may allow sufficient time 

for excess pore pressures to dissipate and therefore the amplitudes of pore pressure 

oscillation would attenuate significantly at the latter stages of consolidation. However, 

loading with a smaller ‘ ’ causes a noticeable increase in the amplitude of settlement 

curve due to the slow loading-unloading process, as shown in Figure 9.14. Moreover, 

the soil subjected to sinusoidal loading with a smaller ‘ ’ tends to proceed at a slower 

rate at the latter stages compared to that with a higher ‘ ’.  

9.4.4. Damped sine wave loading 

The damped loading function (e.g., road traffic loadings) in Equation [9-43d] can be 

substituted back into the inverse Laplace term  to obtain the final solution. 

Complete analytical solutions for the case of damped sine wave loading are presented in 

Equations [I-7] and [I-8] in Appendix I.  
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Figure 9.15 shows the dissipation rates of excess pore-air and pore-water pressures 

induced by the damped sine wave loading under the PTIB boundary condition. The 

loading rate  and the angular frequency  are used 

for this analysis. In the semi-logarithmic graph, both excess pore pressure curves 

oscillate with exponentially decreasing amplitudes in response to the applied damped 

loading. The excess pore pressures eventually stabilize as the amplitude approaches zero 

(i.e., at about ). Note that the patterns of dissipation after  are very similar to 

those induced by a constant loading. During this time the increasing  causes the 

excess pore-air pressure (Figure 9.15(a)) to dissipate faster, whereas the excess pore-

water pressure, for all  values, converge to a single curve and then dissipate at a 

relatively slow rate (Figure 9.15(b)). 

 Similarly, the normalised settlement curves initially oscillate in response to the 

loading-unloading process, as shown in Figure 9.16. Once the loading amplitude 

approaches zero the settlement patterns stabilize and continue to increase at a very slow 

rate. The soil experiences no further deformation after . 

Figures 9.17 and 9.18 demonstrate effects of the loading parameter ‘ ’ (i.e., 

and ) on the dissipation of excess pore pressures and consolidation 

settlement, respectively, while adopting  and . As 

noted, the smaller ‘ ’ accelerates the damping process and significantly reduces the 

number of oscillations. This result indicates that the amplitudes of excess pore-air and 

pore-water pressure dissipation and settlement patterns with smaller ‘ ’ approach zero 

faster than those with higher ‘ ’, but after  the ‘ ’ value no longer influences the 

dissipation and settlement rates. 

Figures 9.19 and 9.20, on the other hand, investigate the effects of ‘ ’ (i.e., 

 and ) on the dissipation of excess pore pressure and 

consolidation settlement, respectively, while considering  and 

. When predicting both dissipation and settlement, a smaller angular frequency 

‘ ’ would reduce the number of oscillations while increasing the wavelength. Similar to 

the effects of ‘ ’, when the damped loading stabilizes after , the parameter ‘ ’ 

would have no impact on the dissipation and settlement rates of the unsaturated soil. 
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9.4.5. Variations in matric suction and net stress 

This section investigates the variations in matric suction and net stress induced by the 

ramped and asymptotic loadings. Changes in matric suction ( ) and net stress ( ) are 

mainly attributed to time-dependent variations of excess pore-air and pore-water 

pressures, and external applied stresses. Effects of the permeability ratio  and 

loading parameters ‘ ’ and ‘ ’ on the normalised suction change ( ) and 

normalised net stress change ( ) are analysed.  

Figure 9.21 presents changes in the matric suction and net stress induced by the 

ramped loading under the PTIB condition. At the beginning of consolidation, the 

suction decreases at a very slow rate when . Figure 9.21(a) shows that a 

plateau occurs after the initial reduction of matric suction, and it increases in length as 
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 increases. A long time after loading, the suction decreases dramatically since the 

excess pore-water pressures increase significantly compared to the excess pore-air 

pressures. Particularly, when , the excess pore-air pressures are almost fully 

dissipated while excess pore-water pressures continue to increase with load. Figure 

9.21(b) shows that the net stress increases much faster as  increases.  

By considering the PTIB boundaries, the effects of the linear loading rate ‘ ’ (i.e., 

ranging from  to ) on changes of matric suction and net 

stress are also investigated in Figure 9.22. As Figure 9.22(a) illustrates, increasing ‘ ’ 

results in a greater reduction in the suction due to a significant increase in the excess 

pore-water pressure induced by the ramped loading. The net stress, as shown in Figure 

9.22(b), tends to increase more slowly as ‘ ’ increases because the excess pore-air 

pressure increases with ‘ ’.  
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Figure 9.23 demonstrates changes in the matric suction and net stress induced by the 

asymptotic loading under the PTIB condition. Figure 9.23(a) shows that the matric 

suction initially decreases and then attains the lowest value due to the full dissipation of 

excess pore-air pressure. After the plateau period, most of suction patterns, except for 

, significantly increase and approach zero at the same time (i.e., after 

). In Figure 9.23(b), for , the net stress patterns decrease moderately at 

the early stages as a result of a noticeable increase in the excess pore-air pressure, but 

they eventually increases and remains constant once the excess pore-air pressure has 

diminished. It can be observed that the net stress increases more quickly with higher 

 values.  

Figure 9.24 illustrates the effects of the asymptotic loading parameter ‘ ’ (i.e., 

ranging from  to ) on changes in the matric suction and net stress 
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while considering the PTIB condition. Here, an increase in ‘ ’ reduces the matric 

suction faster at the beginning of consolidation, characterizing a clear inverse sigmoid 

shape, as documented in Figure 9.24(a). After this initial reduction, a plateau appears 

and may increase in length if ‘ ’ increases. The emergence of plateau period indicates 

that both excess pore pressures have already approached the highest values and 

remained constant temporarily prior to dissipation. When ‘ ’ decreases, the plateau in 

the suctions becomes less obvious. Eventually, the suctions begin to increase at the 

same rate regardless of the ‘ ’ values until they approach a constant value after . 

In Figure 9.24(b), there is a slight reduction in the net stress at the beginning of 

consolidation due to an increase in the excess pore-air pressure, but note that the net 

stresses decreases faster as ‘ ’ increases. The curves subsequently increase at an almost 

similar rate until they attain a constant value after .  
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9.5. Summary 

The chapter has proposed an analytical method to predict the axisymmetric 

consolidation of deposits of unsaturated soil subjected to various time-dependent 

loadings. To obtain the analytical solutions, the mathematical procedure used the 

separation of variables and Laplace transformation techniques. The polar governing 

equations for air and water flows were first determined and presented as a set of PDEs, 

and then general solutions were introduced for those equations. Fourier Bessel and sine 

series were used to present the functions of radial and vertical flows, respectively. Later, 

the Laplace and inverse Laplace transformations were applied to obtain the generalized 

Fourier coefficients and the analytical solutions capturing effects of time-dependent 

loadings were eventually attained. 

The analytical solutions incorporated four time-dependent loading functions, namely 

ramping, asymptotic, sinusoid, and damped sine wave, and the results were presented 

through semi-logarithmic graphs. Investigating the effects of permeability ratio 

and loading parameters ‘ ’, ‘ ’, ‘ ’, ‘ ’ and ‘ ’ on the axisymmetric consolidation of 

unsaturated soils has been the primary purpose of this study. In general, it is concluded 

that applied loads have minor impacts on changes in excess pore-air pressure for greater 

 values, but they significantly influence changes in excess pore-water pressure for 

all  values. The parametric studies show that increasing the loading rates ‘ ’ and 

‘ ’, as proposed in the ramped and asymptotic loadings respectively, would result in 

larger excess pore pressures, whereas the smaller angular frequencies ‘ ’ and ‘ ’ 

presented in the sinusoidal and damped sine wave loadings respectively, would 

expectedly lead to a reduced number of oscillations in both dissipation and settlement. 

Moreover, the parameter ‘ ’ would help to accelerate the damping process for the 

dissipation and settlement. The effects of the ratio  and loading parameters ‘ ’ 

and ‘ ’ on the changes of normalised matric suction and normalised net stress have been 

also investigated in this study. It is predicted, for both ramped and asymptotic loading 

cases, that increasing  would lead to a faster initial reduction in suction and 

increase in net stress. A larger value of ‘ ’ results in a greater reduction in suction and a 

slower increase in net stress, whereas a larger value of ‘ ’ accelerates the initial 

reduction of matric suction and net stress. 
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS 

10.1. Summary 

Most engineered structures have been built in the arid and semi-arid regions, where the 

flux boundary problems frequently take place. In these areas, the strata that lie above the 

water table are generally in an unsaturated state. Humans live in direct contact with the 

unsaturated zone, known as the vadose zone, and induce significant impacts on the 

upper ground. These impacts result in a greater need to include unsaturated soil 

mechanics in geotechnical studies, especially consolidation theory, for the sake of 

proper structural development. The main objective of this study is to develop novel 

analytical models to evaluate the time-dependent settlement of an unsaturated soil 

stratum.  

Chapter 1 generally provided an overview of unsaturated soil studies, particularly the 

consolidation theory and existing predictive models. In addition, the outline and 

structure of the thesis were also highlighted. Chapter 2, on the other hand, presented a 

comprehensive literature reviews in regards to development of consolidation theory. In 

this chapter, definition of unsaturated soils along with important properties was first 

introduced. This section was then followed by some relevant studies associated with 

problematic soils, such as collapsible and expansive soils, in arid climatic regions. 

Chapter 2 also sufficiently discussed the selection of independent stress state variables 

for constitutive formulations. In particular, combinations of stress variables could be 

determined on the basis of equilibrium analyses for the unsaturated soil structure. 

Chapter 2 further showed the volume-mass constitutive equations proposed by Fredlund 

and his co-workers, describing the volume change of unsaturated soils. Moreover, the 

proposed models were proven to be valid through rigorous experiments (i.e., triaxial and 

oedometer tests) conducted by various researchers. Alternative frameworks such as 
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elastoplastic (EP) models for the volume change prediction were also highlighted in this 

chapter. Finally, literature review regarding consolidation studies of fully saturated and 

unsaturated soils was presented. Likewise, several existing models predicting 

consolidation for both cases were sufficiently discussed in Chapter 2.  

Chapter 3 presented a novel analytical solution for the one-dimensional (1D) 

consolidation of a single-layer unsaturated soil using eigenfunction expansion and 

Laplace transformation methods. Homogeneous boundary conditions, namely one-way 

and two-way drainage systems, and two typical cases of initial conditions, including 

uniform and linear distributions of the initial excess pore pressures, were adopted for 

the mathematical derivation. Fourier sine series was used to describe the flow patterns 

whereas the application of Laplace transformation produced a generalised Fourier 

coefficient (function of time). Consolidation behaviour, in terms of excess pore 

pressures and settlement, were mainly investigated against the permeability ratio 

( ). Furthermore, pore pressure isochrones along the vertical direction were 

graphically presented and discussed. For the verification, the analytical solution showed 

a good agreement with results obtained from literature, indicating that proposed 

equations are valid for use. 

In Chapter 4, the analytical solution for the 1D consolidation of unsaturated soils was 

further extended capturing the effects of time-dependent loadings. Four external loads 

available in engineering practice, such as ramping, asymptotic, sinusoid and damped 

sine wave, were mathematically simulated and incorporated in the proposed equations. 

Changes in excess pore-air and pore-water pressure and consolidation settlement were 

predicted against the permeability ratio, . Verification for the case of asymptotic 

loading confirmed the validity of the obtained solutions. Chapter 5, on the other hand, 

provided an analytical model to predict the soil deformation induced by temperature 

varying with depth and time. Thermal functions were simulated such that temperature 

would decrease with depth and vary linearly, exponentially and diurnally with time. 

Combined effects of temperature variations and constant loading on the excess pore 

pressure dissipation rates at different depths were highlighted. Soil settlement induced 

by the temperature changes only and by combined temperature and loading effects was 

also predicted and discussed. 
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Chapters 6 and 7 provided analytical solutions for the 2D plane strain consolidation 

of unsaturated soils subjected to the constant loading and time-dependent loadings (i.e. 

ramping, asymptotic, sinusoid and damped sine wave), respectively. The studies used 

Fourier sine series to describe the horizontal and vertical flows (in - and -directions, 

respectively) while Laplace transformation was applied to obtain the function of time. 

In Chapter 6, uniform and linearly depth dependent initial conditions were adopted for 

the mathematical derivation. Both chapters analysed the 2D plane strain consolidation 

against the permeability ratio . In addition, influences of isotropic and anisotropic 

permeability conditions on the consolidation were clearly addressed, particularly in 

Chapter 6. Pore pressure isochrones over flow domains were graphically presented in 

both chapters. For Chapter 7, effects of loading parameters were analysed through 

excess pore pressures, settlement and pressure isochrones. Transition exercise from the 

2D consolidation equation for the ramped loading to the 1D equation was conducted for 

verification purposes. A good agreement between the analytical predictions and results 

available in literature indicates that the proposed solutions are valid. 

Lastly, Chapters 8 and 9 provided analytical solutions to predict the axisymmetric 

consolidation of unsaturated soils subjected to the constant loading and various time-

dependent loadings (i.e. ramping, asymptotic, sinusoid and damped sine wave), 

respectively, under the free strain condition. The vertical drain assisted consolidation 

could be modelled assuming axisymmetric condition around the drain well. Fourier 

Bessel series and Laplace transformation were adopted to obtain final solutions. Time-

dependent changes in excess pore pressures and settlement varying with  were 

investigated in both chapters. Chapter 8 demonstrates effects of radial distance from the 

drain well on the dissipation rate. Besides, variations of suction change were 

investigated based on different values of . Likewise, Chapter 9 graphically 

presented changes in suction and net stress for each loading case.  

10.2. Conclusions 

In late 1970s, the consolidation studies for unsaturated soils became more prevalent as 

Fredlund & Hasan (1979) successfully proposed the governing equations describing 

independent flows of air and water within a soil element. Later, Dakshanamurthy & 

Fredlund (1980), and Dakshanamurthy et al. (1984) accomplished the consolidation 
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theories by expanding the existing equations to two-dimensional (2D) and three-

dimensional (3D) consolidation equations, respectively. Unlike saturated soil 

mechanics, the consideration of the air phase in these theories has been a major 

challenge in estimating the dissipation of excess pore pressures and settlement. 

Past decades have seen a notable growth in numerical models to predict the time-

dependent deformation of unsaturated soils. Evidently, some well-recognised solutions 

were obtained using the finite element method for coupled 3D consolidation (e.g. Wong 

et al. 1998), the finite element approximation for coupled and uncoupled 2D plane strain 

consolidation (e.g. Conte 2004), and the differential quadrature method (DQM) for 

axisymmetric consolidation (e.g. Zhou 2013). On the other hand, there has been limited 

analytical research due to the complexity of consolidation problems. Most analytical 

procedure have been conducted adopting consolidation theory proposed by Fredlund & 

Hasan (1979). Among initial studies, Qin et al. (2008) provided an analytical solution 

for the 1D consolidation employing Cayley-Hamilton and Laplace transformation 

techniques. Although the verification exercise demonstrates the validity of the analytical 

prediction, the adopted procedure exhibits some cumbersome evaluations associated 

with complex arguments. The solution proposed by Qin et al. (2008) therefore may 

offer limited application. Shan et al. (2012) and Zhou et al. (2014) dealt with 

unsaturated consolidation problems using alternative solutions,  and , respectively, 

such that the nonhomogeneous partial differential equations (PDEs) would be converted 

to the homogeneous forms to handle final solutions easily. Final equations in these 

studies, however, are not properly presented, leading to uncertainty in verification. 

Furthermore, final solution provided by Zhou et al. (2014) may be mathematically 

undefined when the soil becomes fully saturated.  

In an attempt to propose a simple yet effective solution for the consolidation of 

unsaturated soil deposits, eigenfunction expansion and Laplace transformation 

techniques have been adopted for the analytical development. The selection of the 

above mentioned techniques would allow the general solution to be expressed in a series 

of the eigenfunction of the related homogeneous problem. This indicates that the 

nonhomogeneous equations for unsaturated consolidation can be solved directly without 

an intermediate step of converting the nonhomogeneous PDEs to the homogeneous 

PDEs as performed by Shan et al. (2012). Furthermore, these techniques would also 
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produce a closed-form solution that can smoothly convert to the classical solution for 

saturated soils given by Terzaghi (1925). Governing equations proposed by Fredlund 

and his co-workers (e.g. Fredlund & Hasan 1979; Dakshanamurthy & Fredlund 1980, 

1981; Darkshanamurthy et al. 1984) were adopted for mathematical formulations. 

The development of analytical solutions for the unsaturated consolidation would 

provide fundamental understandings of time-dependent deformation of unsaturated soils 

and influencing factors (e.g. external loads, temperature variations etc.). For the study of 

the 1D consolidation of unsaturated soils, the permeability ratio  has significant 

impacts on the rates of excess pore-air and pore-water pressure dissipation and 

consolidation settlement. In particular, when considering a uniform initial condition, 

increasing  values characterise a double inverse sigmoid in both excess pore-

water and settlement curves, and a single inverse sigmoid in excess-air pressure curves. 

It is also found that the excess pore-air pressure tends to dissipate more quickly as 

 increases. Furthermore, the complete dissipation of excess-pore air pressure 

would result in delay period in the excess pore-water pressure curve. On the other hand, 

the study demonstrates that the consolidation in the two-way drainage system proceeds 

faster than that in the one-way drainage system. For the case of linear initial condition, 

the rapid reduction in distributions of initial pore pressures with depth would lead to 

reduced average excess pore-air and pore-water pressures at the beginning of 

consolidation. During the dissipation process, both excess pore pressure patterns (with 

the similar  value) vary due to different initial conditions. However, these 

pressures would later diminish at the same time. Validation exercise of this study was 

implemented by comparing results with an existing model (Shan et al. 2012), suggesting 

that the proposed equations are valid for practical use. 

On the other hand, effects of time-dependent loadings, namely ramping, asymptotic, 

sinusoid and damped sine wave, on the 1D consolidation of unsaturated soils were 

sufficiently investigated. Changes in excess pore-water pressure (for any value of 

) correspondingly reflect the above mentioned loading patterns due to the slow 

dissipation process. However, as  increases, the excess pore-air pressure, induced 

by adopted loads, may dissipate significantly while the load is being applied. Thus, 

external loadings, except for the damped sine wave, may have less pronounced impacts 

on the excess pore-air pressure dissipation with large  values. Verification 



303 

exercise shows a good agreement between the proposed model and existing results 

given by Shan et al. (2012).  

In addition, significant influences of time-dependent temperature variations on the 

1D deformation of unsaturated soils were rigorously studied. Changes in temperature 

were simulated under the time-dependent linear, exponential and diurnal functions, and 

then were incorporated in the general solution. For the time-dependent linear 

temperature variations, excess pore-air pressure attains a constant value whereas the 

excess pore-water pressure diminishes a very long time after the heat begins to increase. 

Besides, when the temperature increases exponentially, it is predicted that excess pore 

pressures near the ground surface would increase faster than those at lower depths. Once 

the temperature approaches the maximum value, both excess pore-air and pore-water 

pressures would be fully dissipated. For the case of diurnal temperature wave, 

oscillations in the excess pore pressure curves can be observed. These oscillations are 

characterised by heat generated on the basis of regular succession of days and nights. 

Since heat is transmitted through the soil profile very slowly, the excess pore pressure 

curves would experience the damping and retarding effects.    

For the study of the 2D plane strain consolidation, the isotropic permeability (i.e., 

) and anisotropic permeability (i.e., ) conditions were highlighted. 

Under the constant loading, it is predicted that increases in the horizontal to vertical 

permeability ratio ( ) lead to faster dissipation rate of excess pore pressures, and 

thus faster consolidation rate. Indeed, effects of vertical drainage boundaries on the 

dissipation process are much attenuated with increasing . It was also concluded 

that the rate of consolidation under the one-way drainage system would be very similar 

to that under the two-way drainage system because the vertical drains installed in the 

soil stratum allows a large amount of excess pore pressures to be dissipated 

horizontally. It is worth mentioning that the proposed equations for 2D consolidation of 

unsaturated soils subjected to the constant loading can convert back to the classical 

consolidation equation presented by Terzaghi (1925). Considering the soil compression 

under the time-dependent loadings (i.e. ramping, asymptotic, sinusoid and damped sine 

wave), the excess pore-water pressures and settlement would change corresponding to a 

particular loading function, similar to the 1D consolidation study. Excess pore-air 

pressure with large , on the other hand, is insignificantly affected by the external 
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applied loads, except for the case of damped sine wave. With the adopted loading 

parameters, the damped loading results in significant oscillations in excess pore 

pressures and settlement at the beginning of consolidation regardless of  values. 

For the study of axisymmetric consolidation of unsaturated soils induced by the 

radial flows of air and water only, the excess pore-air and pore-water pressures are 

prone to dissipate more quickly for the point of investigation closer to the drain well. 

For the consolidation induced by both radial and vertical flows, it is predicted that the 

excess pore pressure dissipations assisted by the pervious top – impervious base (PTIB) 

boundaries of the soil have comparable rates with those in the pervious top – pervious 

base (PTPB) boundaries. This finding implies that the radial flow, as induced by the 

drains, governs the dissipation process. The study also shows that the consolidation of 

unsaturated soil deposits is ascribed initially to the increase in the net stress and 

subsequently to the increase in the matric suction. On the other hand, significant effects 

of radial distance on the pore pressure isochrones were highlighted. More specifically, 

excess pore-air and pore-water pressures tend to increase when the point of 

investigation is farther away from the drain well. However, if the point of interest is 

very close to the boundary of influence zone ( ), the effects of radial distance will be 

insignificant.    

This research has established a comprehensive catalogue of analytical models for the 

consolidation of unsaturated soils capturing various initial and loading conditions. The 

research areas are systematically provided in three categories: (1) 1D consolidation, (2) 

2D plane strain consolidation, and (3) free strain axisymmetric consolidation. The 

proposed solutions, which predict excess pore pressure dissipation and settlement, can 

smoothly convert back to the traditional equation given by Terzaghi (1925) when the 

soil is fully saturated. Additionally, verification exercises indicate that these solutions 

are valid for practical use. In particular, practicing engineers may adopt some 

programmable methods such as Microsoft Excel and MATLAB software to generate 

results from these proposed equations and predict time-dependent deformation of 

unsaturated soil deposits.  



305 

10.3. Recommendations for future studies 

Although the unsaturated consolidation studies have been systematically presented in 

this thesis, the research areas can be further expanded to conduct the following aspects: 

The proposed analytical models were determined based on the assumption of 

constant stiffness parameters for unsaturated soils. This indicates that the coefficients 

of volume change (i.e., , ,  and ) are considered to be constant within a 

very small stress increment. This assumption is acceptable for predicting soil 

deformation during a transient process at a particular stress increment. Furthermore, 

it is also necessary to adopt this assumption in order to achieve the analytical 

procedure. To improve the reliability of the model, volume change coefficients can 

be expressed as nonlinear functions capturing complex rheological effects such as 

viscoelastic behaviour. 

Current research emphasises the consolidation analyses for the homogeneous single-

layer soil only. In order to conduct a more rigorous and reliable analysis, multi-

layered unsaturated soils, whose properties may vary in each layer, are recommended 

for the future work.  

For the sake of simple evaluations, the coefficients of permeability with respect to 

the air phase ( ) and water phase ( ) were assumed constant during the 

consolidation. They are, however, functions of the porosity and the degree of 

saturation of soil and change with time. These coefficients have been reported as 

nonlinear properties in many existing literature. Thus, for the future work, it is 

recommended that these permeability coefficients can be simulated as functions of 

void ratio (volumetric strain), and included in the solution. 

For the sake of simplicity purposes, the proposed analytical solutions were obtained 

capturing the typical homogeneous boundary conditions. The future study may 

include the time-dependent boundary conditions to derive more rigorous equations.  

In the study of axisymmetric consolidation, the analytical procedure was conducted 

on the basis of free strain analysis only. There have been some theoretical 

uncertainties when dealing with the equal strain consolidation of unsaturated soils. 

Future research may invest more on the equal strain hypothesis for the sake of proper 

estimation. Besides, the effects of smear zone properties and well resistance are 

essential for the axisymmetric consolidation studies.  
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There has been hitherto limited research on the elastic visco-plastic (EVP) to 

evaluate creep behaviour of unsaturated soils. Theoretically, when the excess pore 

pressures have diminished, the soil stratum may continue to settle due to the 

rearrangement of soil structure under loading. The future study can develop the EVP 

theory for unsaturated soils employing the proposed consolidation equations.    
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APPENDIX A – Dissipation rates of excess pore pressures induced by 

time-dependent loadings in the 1D consolidation  

Substituting Equation [4-30] into Equation [4-21] results in the closed-form solution for 

excess pore-air and pore-water pressures as follows: 

                          [A-1a] 

              [A-1b] 

Substituting Equation [4-33] into Equation [4-21] results in the closed-form solution 

for excess pore-air and pore-water pressures as follows: 

         [A-2a] 

        [A-2b] 
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Substituting Equation [4-36] into Equation [4-21] results in the closed-form solution 

for excess pore-air and pore-water pressures as follows: 

                   [A-3a] 

                             [A-3b] 

Substituting Equation [4-39] into Equation [4-21] results in the closed-form solution 

for excess pore-air and pore-water pressures as follows: 

                           [A-4a] 

               [A-4b]
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APPENDIX B – Predicted excess pore pressures due to temperature 

variations in the 1D consolidation 

Following Equations [5-9] – [5-22] while incorporating Equation [5-27a], the excess 

pore-air and pore-water pressures induced by the time-dependent linear temperature and 

constant loading can be determined as follows:   

                                              [B-1a] 

        [B-1b] 

where ;    ;  

;  ; 

; ; and 

, for the one-way drainage condition ( ); or 

, for the two-way drainage condition ( ).   [B-2] 

Following Equations [5-9] – [5-22] while incorporating Equation [5-27b], the excess 

pore-air and pore-water pressures induced by the time-dependent exponential 

temperature and constant loading can be predicted as follows:   

                        [B-3a] 
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                    [B-3b] 

where ;    ;  

;  ;  

; ; and     

, for the one-way drainage condition ( ); or 

     , for the two-way drainage condition ( ).   [B-4] 

Following in Equations [5-9] – [5-22] while incorporating Equation [5-27c], the 

excess pore-air and pore-water pressures induced by the time-dependent diurnal 

temperature wave and constant loading can be estimated as follows: 

             [B-5a] 

             [B-5b]  

where ;  ;  ; 

; ;  
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; ; 

; 

; 

; 

; 

; 

;       [B-6] 

in which 

i. One-way drainage condition: 

; 

; or 

ii. Two-way drainage condition: 

; and  

.     [B-7] 
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APPENDIX C – Dissipation rates of excess pore pressures and average 

degree of consolidation in the 2D plane strain consolidation 

Worked example 1 

By combining Equations [6-24], [6-25] and [6-32], the closed-form solutions describing 

the dissipation of excess pore pressures adopting isotropic and anisotropic permeability 

conditions are presented as follows:   

(a) Isotropic permeability condition ( ): 

     [C-1a] 

    [C-1b] 

(b) Anisotropic permeability condition ( ): 

                 [C-2a] 

                 [C-2b] 

where    for top drainage boundary system;  

        for top-base drainage boundary system; 

;   ;  

;   ; 

;  ;  

; and .            [C-3] 
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The average degree of consolidation can be obtained capturing the constant initial 

condition: 

                                               [C-4]  

where 

;  

;             [C-5] 

with   for top drainage boundary system; or 

        for top-base drainage boundary system;  [C-6] 

(a) Isotropic permeability condition ( ): 

  

                      [C-7a] 

    

    [C-7b] 

(b) Anisotropic permeability condition ( ): 

          [C-8a] 

         [C-8b] 

Worked example 2 

By introducing the initial condition provided in Equation [6-7] to Equations [6-24] and 

[6-25], the exact solutions predicting the dissipation of excess pore pressures are as 

below:    
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(a) Isotropic permeability condition ( ): 

      [C-9a] 

     [C-9b] 

(b) Anisotropic permeability condition ( ): 

              [C-10a] 

           [C-10b] 

where     

(i) Top drainage boundary condition: 

;  

; 

;  

; 

; 

; 

; 

; and 

;                                                                         [C-11] 

(ii) Top-base drainage boundary condition: 

; 

; 

; 
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; 

; 

;  

;  

; and  

.                       [C-12] 

The average degree of consolidation can be obtained capturing the linear initial 

condition: 

                                                        [C-13] 

where 

;  

;

                           [C-14] 

with    for top drainage boundary system; or 

      for top-base drainage boundary system;       [C-15] 

(a) Isotropic permeability condition ( ): 

  

         [C-16a] 

  

  [C-16b] 
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(b) Anisotropic permeability condition ( ): 

          [C-17a] 

        [C-17b] 
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APPENDIX D – Evaluation of initial excess pore pressures due to a 

change in total stress in the 2D plane strain consolidation  

Considering the isotropic loading condition, the changes in excess pore-air and pore-

water pressures in response to the applied total loads can be expressed in terms of 

change in the total minor principal stress (Fredlund & Hasan 1979; Fredlund et al. 

2012): 

                                      [D-1a] 

                   [D-1b] 

where  and  are changes in excess pore-air and pore-water pressures due to 

applied loads, respectively;  is the change in the minor principal stresses;  and 

are tangent pore pressure parameters with respect to air and water phases under an 

undrained compression, respectively. The parameters of interest  and  can be 

further developed as follows (Fredlund & Hasan 1979; Fredlund et al. 2012): 

                    [D-2a] 

                    [D-2b] 

where ;  ; 

;  ; and 

.                   [D-3] 

The term  in Equation [D-3] is the volumetric coefficient of solubility. On the other 

hand, the solutions for parameters  and  require an iterative procedure as they 

contain the absolute pore-air pressure. It should be noted that, in the undrained loading 

condition, the increase in the total stress applied on a soil may result in the reduction of 

matric suction. When the total stress becomes appreciably large, all air bubbles dissolve 

in water and the pore-air and pore-water pressures approach a single value, indicating 

the matric suction equals to zero (Lloret & Alonso 1980; Fredlund et al. 2012). In this 
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situation, the tangent parameters  and  will approach  as the change in the total 

stress is almost similar to the change in the pore-water pressure. 
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APPENDIX E – Solutions predicting excess pore pressure dissipation 

rates induced by time-dependent loadings in the 2D consolidation 

i. Consolidation under ramped loading 

The dissipation of excess pore-air and pore-water pressures can be estimated by 

substituting Equation [7-31] into Equation [7-24]: 

(a) Isotropic permeability condition ( ): 

                    [E-1a] 

                    [E-1b] 

(b) Anisotropic permeability condition ( ): 

                     [E-2a] 

               [E-2b] 

where ;  ; 
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;    ;   

; and  .                 [E-3] 

When the coefficient of permeability in -direction for both air and water phases are 

neglected, Equations [E-1] and [E-2] become: 

                              [E-4a] 

                              [E-4b] 

where ,   for the top drainage condition; or 

                  for the top and base drainage condition.   [E-5] 

ii. Consolidation under asymptotic loading 

The dissipation of excess pore-air and pore-water pressures can be estimated by 

substituting Equation [7-32] into Equation [7-24]: 

(a) Isotropic permeability condition ( ): 

 [E-6a] 

 [E-6b] 
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(b) Anisotropic permeability condition ( ): 

                    [E-7a] 

                  [E-7b] 

where ; and .                [E-8] 

iii. Consolidation under sinusoidal loading 

The dissipation of excess pore-air and pore-water pressures can be estimated by 

substituting Equation [7-33] into Equation [7-24]: 

(a) Isotropic permeability condition ( ): 

                  [E-9a] 

                  [E-9b] 
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(b) Anisotropic permeability condition ( ): 

  [E-10a] 

  [E-10b] 

where ;  ; 

;  

;  

;   

; 

;    

;  

; and  

.               [E-11] 

iv. Consolidation under damped sine wave loading 

The dissipation of excess pore-air and pore-water pressures can be estimated by 

substituting Equation [7-34] into Equation [7-24]: 
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(a) Isotropic permeability condition ( ): 

                     [E-12a] 

                     [E-12b] 

(b) Anisotropic permeability condition ( ): 

               [E-13a] 

                [E-13b] 
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where ;  ; 

;  

;  

;  

;  

;  

; 

; and 

.                         [E-14] 
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APPENDIX F – Polar transformation for x- and y-coordinates 

The net flux of air and water per unit volume of the element in Cartesian coordinates 

( , , ) can be presented as follows: 

(a) Volume change in the 2D Cartesian system: 

             [F-1a] 

                [F-1b] 

(b) Volume change in the 3D Cartesian system:  

      [F-2a] 

              [F-2b] 

Cartesian coordinates ( , ) can be transformed into the following set of polar 

coordinates ( , ): 

          [F-3] 

Also, 

           [F-4] 

Differentiating the equation of the radius  in Equation [F-3] with respect to  and 

results in: 

                  [F-5a] 

                  [F-5b] 
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Then, differentiating the equation of the polar angle  in Equation [F-4] with respect 

to  and  gives: 

              [F-6a] 

               [F-6b] 

Considering excess pore pressures  and  as functions of both  and : 

(a) In the -direction: 

               [F-7a] 

               [F-7b] 

(b) In the -direction: 

               [F-8a] 

               [F-8b] 

Taking the second derivatives of Equations [F-7] and [F-8] with respect to  and , 

respectively, gives: 

(a) In the -direction: 

              [F-9a] 

              [F-9b] 

(b) In the -direction: 

            [F-10a] 

            [F-10b] 
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Thus, 

        [F-11a] 

    [F-11b] 

and 

        [F-12a] 

    [F-12b] 

Adding Equations [F-11a] and [F-12a] as well as Equations [F-11b] and [F-12b] 

yields: 

               [F-13a] 

              [F-13b] 

For the case of axial symmetry, the pore pressures  and  are independent of , 

thus, 

                [F-14a] 

                [F-14b] 

Assuming  and , Equation [F-14] can be 

substituted into Equations [F-1] and [F-2]:  

(a) Volume change in radial direction only: 

            [F-15a] 

                [F-15b] 
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(b) Volume change in radial and vertical directions: 

          [F-16a] 

             [F-16b] 

Following Fredlund et al. (2012), the 3D constitutive equations linking the soil 

deformation and stress state variables can be expressed in the polar coordinates ( , , ), 

as presented below: 

             [F-17a] 

                  [F-17b] 

where ,  and  are the total stress in -, - and -directions, respectively. Under 

the constant loading condition, let set . Equations [F-

15] and [F-16] can be equated to Equation [F-17], giving: 

(a) Polar governing equations considering the radial flow only: 

              [F-18a] 

              [F-18b] 

(b) Polar governing equations considering both radial and vertical flows: 

            [F-19a] 

            [F-19b] 

Equations [F-18] and [F-19] present the governing flow equations in the 

axisymmetric condition. Simplified forms of these equations can be found in Equations 

[8-1] and [8-2]. Note that the consolidation coefficients for air (i.e. ,  and ) and 

water (i.e. ,  and ) phases are defined in Equation [8-3]. 
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APPENDIX G – Solutions for excess pore pressure dissipation and 

average degree of consolidation in the axisymmetric consolidation 

Example 1 - Axisymmetric consolidation with radial flow only 

In this example, during the consolidation process, pore-air and pore-water dissipate in 

the radial direction only. Thus, initial conditions can be presented as follows: 

                              [G-1a] 

                              [G-1b] 

Constant terms  and  ( ) then become:          

                    [G-2a] 

                   [G-2b] 

By repeating the analytical procedure in Equations [8-9] – [8-26] while discarding 

the permeability coefficients in the domain  (i.e.  and ) and the Fourier sine 

series, solutions predicting excess pore-air and pore-water pressure dissipation for 

Equation [8-1] can be obtained and then combined with Equation [G-2] become:  

           [G-3a] 

           [G-3b] 

where ,  

,    , 

,  ,  
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, and .              [G-4] 

In addition, the average degree of consolidation  can be presented as below: 

   [G-5] 

where ; and  

. [G-6]  

Example 2 - Axisymmetric consolidation with both radial and vertical flows 

(a) Uniform initial condition ( ) 

When , the constant terms  and  ( ; ), as 

presented in Equation [8-23], can be obtained as follows: 

                   [G-7a] 

                   [G-7b] 

where    for the PTIB boundary condition; or 

 for the PTPB boundary condition.   [G-8] 

Solutions predicting excess pore-air and pore-water pressure dissipation can be 

further expanded from Equation [8-26] while combining with Equation [G-7], resulting 

in: 
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(i) The PTIB boundary condition: 

  [G-9a] 

 [G-9b] 

(ii) The PTPB boundary condition: 

  

        [G-10a] 

  

        [G-10b] 

where ,   ,  

, and  .  [G-11] 

The average degree of consolidation  capturing the uniform initial condition can be 

further expressed from Equation [8-30]: 

           [G-12] 

where 

(i) The PTIB boundary condition: 

  

    [G-13a] 
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        [G-13b] 

(ii) The PTPB boundary condition: 

           [G-14a] 

           [G-14b] 

(b) Linear initial condition ( ) 

When both  and , the constant terms  and  ( ; 

), as presented in Equation [8-23], are as follows:

(i) The PTIB boundary condition: 

               [G-15a] 

               [G-15b] 

(ii) The PTPB boundary condition: 

              [G-16a] 

              [G-16b] 
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Solutions predicting excess pore-air and pore-water pressure dissipation can be 

expanded from Equation [8-26] while combining with Equations [G-15] and [G-16], 

giving: 

(i) The PTIB boundary condition: 

  [G-17a] 

 [G-17b] 

(ii) The PTPB boundary condition: 

[G-18a] 

  

        [G-18b] 

where ; 

;  

; 

; 

;  

; 

; and  

.                     [G-19] 
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The average degree of consolidation  capturing the linear initial condition is 

expressed as follows: 

  

          [G-20] 

where  

(i) The PTIB boundary condition: 

  

   [G-21a] 

  

        [G-21b] 

(ii) The PTPB boundary condition: 

           [G-22a] 

[G-
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APPENDIX H – Initial excess pore pressures in response to constant 

loading in the axisymmetric consolidation 

Following Fredlund et al. (2012), the 3D constitutive equation for the soil structure and 

air phase in the polar coordinates ( , , ) can be expressed considering the total stress 

increments ,  and  as follows: 

                                                [H-1a] 

              [H-1b] 

Under an isotropic loading condition, total stress increments in the polar system 

would be equal (i.e., ), thus Equation [H-1] becomes: 

                                                 [H-2a] 

               [H-2b] 

The volume changes,  and , due to pore fluid compression and air 

compression, respectively, can be expressed as: 

                 [H-3a] 

                   [H-3b] 

where  is the volumetric coefficient of solubility; and  

, is the compressibility of water.    [H-4] 

Combining Equations [H-2a] and [H-3a] and Equations [H-2b] and [H-3b], resulting 

in: 

             [H-5a] 

              [H-5b] 
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Simulataneously solving Equations [H-5a] and [H-5a] to determine the changes in 

excess pore-air and pore-water pressures in response to the change in total stress, thus, 

                   [H-6a] 

                   [H-6b]  

where ;  ; 

; and  .  [H-7] 

The terms  and  are the pore pressure parameters with respect to the air and 

water phases, respectively, under the isotropic loading condition. Since terms , 

and  contain the absolute pore-air pressure, an iterative technique is required to solve 

for  and . Referring to Fredlund et al. (2012), it is worth noting that suction (i.e. 

) reduces with the increasing isotropic stress. As the stress increases 

significantly, the parameters  and  would approach  and subsequently suction 

becomes zero. 
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APPENDIX I – Excess pore pressure dissipation rates induced by 

time-dependent loadings in the axisymmetric consolidation 

i. Ramped loading 

By substituting Equation [9-43a] into Equation [9-38], the excess pore-air and pore-

water pressures generated by an application of the ramped loading can be determined as 

follows: 

                                [I-1a] 

                                 [I-1b] 

where ; ; 

; and  .       [I-2] 

ii. Asymptotic loading 

By substituting Equation [9-43b] into Equation [9-38], the excess pore-air and pore-

water pressures induced by the asymptotic loading can be estimated as shown: 

                                  [I-3a] 
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            [I-3b] 

where ; and .   [I-4] 

iii. Sinusoidal loading 

By substituting Equation [9-43c] into Equation [9-38], the excess pore-air and pore-

water pressures induced by the applied sinusoidal loading can be determined as shown: 

  [I-5a] 

  [I-5b] 

where ; ; 

;   

;  

; and  

.       [I-6] 



352 

iv. Damped sine wave loading 

By substituting Equation [9-43d] into Equation [9-38], the excess pore-air and pore-

water pressures generated by the damped sine wave loading can be determined as 

follows: 

   

                                                     [I-7a] 

       

                                [I-7b] 

where ; ; 

;  

;  

; and 

.                   [I-8] 
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