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ABSTRACT

Outlier detection is an important task in data mining because outliers can be
either useful knowledge or noise. Many statistical methods have been applied
to detect outliers, but they usually assume a given distribution of data and it is
difficult to deal with high dimensional data. The Statistical Learning Theory
(SLT) established by Vapnik et aI. provides a new way to overcome these
drawbacks. According to SLT Scholkopf et al. proposed a v-Support Vector
Machine (v-SYM) and applied it to detect outliers. However, it is still diffi-
cult for data mining users to decide one key parameter in v-SYM. This paper
proposes a new SYM method to detect outliers, SVM-OD, which can avoid
this parameter. We provide the theoretical analysis based on SLT as well as
experiments to verify the effectiveness of our method. Moreover, an experi-
ment on synthetic data shows that SYM-OD can detect some local outliers
near the cluster with some distribution while v-SYM cannot do that.

I This research is partly supported by the National Key Project for Basic Research in
China (01998030508).
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1 Introduction

Outliers are abnormal observations from the main group, and are either noise
or new knowledge hidden in the data. Researchers always wish to remove
noise in the data during the pre-processing of data mining because noise may
prevent many data mining tasks. In addition, data mining users are interested
in new knowledge or unusual behaviors hidden behind data such as the fraud
behavior of credit cards. Therefore, outlier detection is one of the important
data mining tasks.

Statistics has been an important tool for outlier detection [1], and many re-
searchers have tried to define outliers using statistical terms. Ferguson
pointed out [4] that, "In a sample of moderate size taken from a certain popu-
lation it appears that one or two values are surprisingly far away from the
main group." Barnett et aI. gave another definition [1], "An outlier in a set of
data is an observation (or a subset of observations) which appears to be in-
consistent with the remainder of that set of data." Hawkins characterized an
outlier in a quite intuitive way [7], "An outlier is an observation that deviates
so much from other observations as to arouse suspicion that it was generated
by a different mechanism."

All these definitions imply that outliers in a given data set are events with a
very low probability or even those generated by the different distribution
from most data. Although statistical methods have been applied to detect
outliers, usually they need to assume some distribution of data. It is also dif-
ficult for statistical methods to deal with high dimensional data [3, 6].

To some extent, the Statistical Learning Theory (SLT) established by Yap-
nik et al. and the corresponding algorithms can overcome these drawbacks
[12]. According to this theory Scholkopf et al. proposed a v-Support Vector
Machine (v-SYM) to estimate the support of a high dimensional distribution
of data and applied it to detect outliers [11]. As pointed out by Scholkopf et
aI., a practical method has not been provided to decide the key parameter v in
v-SYM though Theorem 7 in [11] gives the confidence that v is a proper pa-
rameter to adjust. Therefore, it is still difficult for data mining users to decide
this parameter.

In fact, we find in some experiments that this parameter can be avoided if
another strategy is adopted. This strategy consists of two components: (1) a
geometric method is applied to solve v-SYM without the penalty term and (2)
the support vector with the maximal coefficient is selected as the outlier. This
method is called SYM-OD in this paper.

Vapnik et al. originally provided a standard SVM without the penalty term
to solve the classification problem and then added the penalty term to deal
with noise and nonlinear separability in the feature space [12]. In this paper,
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SVM-OD tries to detect outliers by solving v-SVM without the penalty term.
Although removing the penalty term from v-SVM may drastically change the
classification model, we can theoretically analyze why the strategy adopted in
SVM-OD is reasonable for outlier detection based on SLT and the popular
definition of outliers.

Some experiments on toy and real-world data show the effectiveness of
SVM-OD. The experiment on a synthetic data set shows that when the kernel
parameter is given, SVM-OD can detect some local outliers near the cluster
with some distribution (e.g. 01 and 02 in Fig. 1) while v-SVM cannot do
that. The details about local outliers can be found in [3]. Another interesting
phenomenon is found in the experiment on stock data that SVM-OD is insen-
sitive for some values of the kernel parameter compared with v-SVM though
this still needs to be verified by the theoretical analysis and more experi-
ments.

Fig. 1. Four clusterswith differentdistributionsand two local outliers (biggerpoints
01,02)

The other sections in this paper are organized as follows. SVM-OD and v-
SVM are introduced in Section 2 and the theoretical analysis of SVM-OD is
given in Section 3. Experiments are provided to illustrate the effectiveness of
SVM-OD in Section 4. A discussion and conclusions are given in Sections 5
and 6. The notations used in this paper are shown in Table 1.

Table 1. Notationsand theirmeanings

Notations Meaning Notations Meaning
Sample space
Sample set of size I
Outlier
Kernel function

rp (x)
(e)
n
A

Points in kernel space
Inner product
Index set of sample
Index set of SV

x
X
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2 SVM-OD for Outlier Detection

In 2001, Scholkopf et al. presented v-SYM to estimate the support of a high
dimensional distribution of data and applied it to detect outliers [11]. v-SYM
solves the following optimization problem in the kernel space:

min 0.5xllwW-p+Il/vl s.t. (weqJ(X))?P-(i' (?O, i=l ... l. (1)

The geometric description of v-SYM is shown in Fig. 2:

h
o

Fig. 2. 0 is the origin,qJis the sampleset,h is thehyper-plane.h separatesrp and 0

Sequential Minimization Optimization (SMO), an optimization method
proposed by Platt to solve classification problems [10], is extended to solve
the optimization problem in (1). After the decision functionJis obtained by
solving (1), v-SVM selects the samples Xi whose function value J(x)<O as
outliers. A key parameter v in v-SVM needs to be decided. However, it is not
easy for data mining users to decide this parameter as implied in [11]. Thus
SVM-OD, which can avoid v, is introduced as follows.

Firstly, the Gaussian Radius Basis Function (RBF) K(x,y) = exp{-IIx-
yWl2tlj is used as the kernel function in SVM-OD. The three properties ofthe
RBF kernel, which are implied in [11] and will lead to the theorems in this
paper, are discussed here.

Property 1 'if xE X, K(x,x)=l.
Property 2 For any x,yE X and#}', O<K(x,y)<l.
Property 3 In the kernel space spanned by RBF, the origin 0 and the

mapped point set qJ are linearly separable.
Proof According to Properties 1 and 2,

3 xiE X, w=qJ(x), V xjE X, (weqJ(x))>O.
Let O<&<min(wem(x)) (xE X), then V x.E X, (wem(x)) - e > 0 and (w-oi-eci),

'f' ) } } 'f' }

where 0 is the origin in the kernel space. Therefore the hyperplane (weqJ(x))-
&>0can separate qJ and the origin 0 in the kernel space. _

Secondly, SVM-OD solves the following optimization problem in the ker-
nel space:

min 0.5xllwW-p s.t. (weqJ(x))?p, i=1...l. (2)
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Although the optimization problem in (2) removes the penalty term in (1),
the solution of (2) always exists for any given data because Property 3 guar-
antees that the mapped point set rp and the origin 0 in the kernel space are
linearly separable. It can be proved that the optimization problem in (2) is
equivalent to finding the shortest distance from the origin 0 to the convex hull
C (see Fig. 3). This is the special case of the nearest point problem of two
convex hulls and the proof can be found in [8].

Fig. 3. Minimalnormalproblem(the shortestdistancefrom the origin0 to the convex
hull C)

The corresponding optimization problem is as follows:

min II:L',=JPiX,Ws.t. LiP, = 1, P~O, i=1 ... l. (3)

Many geometric methods have been designed to solve (3), e.g. the Gilbert
algorithm [5], and the MDM algorithm [9]. Since program developers can
implement these geometric algorithms very easily, we combine them with the
kernel function to solve the optimization problems in (2) or (3) in the kernel
space. In this paper, the Gilbert algorithm is used to solve the problems in (2)
or (3).

Finally, the function obtained by solving the optimization problem in (3) in
the kernel space is as follows:

j(X)=Lia,K(x,x)-p, iEA. (4)
where P=L,PiK(XyX) and i.je A.

According to the function in (4), we define a decision function class as fol-
lows:

(5)

wheree=minpi(l-K), iEA, K=maxi,jK(xi,x), i,jEO, it-j.
The decision region of a decision function fix) in the decision function

class in (5) is R~o={x:f/x)?:.Oj. The following property holds true for the deci-
sion function class in (5).

Property 4 For each decision function in the decision function class in (5)
fix),

f/xk)<O and "if iE O-{kj, f/x)?:.O.
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Proofflx)='Ea,K(x,x)-p+al1-K(x,xk))-8 (iEA) and according to Property
2,0<8 <1, O<K<l.
(1) kE A, that is, xk is a support vector, therefore L,a,K(xk'x)-p=O (iEA). Ac-
cording to Property 1,flxk)=al1-K(xk'xk))-8=-e<0.
(2) V je n -{k}, Lia,K(x/x)-p?'o (ie A). According to the definition of e,

h/x}?al1-K(x/xk))-8?'0.
Therefore Property 4 holds true. _

Then SVM-OD selects a function jjx) in the decision function class in (5),
where 0 is the index of ao and ao=max,a, (iEA), as the decision function and
the support vector Xo with the maximal coefficient ao as the outlier. After re-
moving the outlier Xo from the given data set, according to the same strategy
we re-train the data and select the other outlier. The theoretical analysis for
this strategy will be given in the next section.

The steps of SVM-OD are described below:
Step 1 Use the Gilbert algorithm to solve the optimization problem in (2)

or (3) in the kernel space.
Step 2 Select the support vector with the maximal coefficient as an outlier.
Step 3 Remove this outlier from the given data set and go to Step 1.

3 Theoretical Analysis

According to statistics, a sample Xo will be regarded as an outlier if it falls in
the region with a very low probability compared with other samples in the
given set. The statistical methods to detect outliers usually assume some
given distribution of data and then detect outliers according to the estimated
probability. However, the real distribution of data is often unknown. When
analyzing v-SVM according to SLT, Scholkopf et al. provided the bound of
the probability of the non-decision region, where outliers fall.

Definition 1 (Definition 6 in [11)) Suppose thatfis a real-valued function
on X. Fix BE R. For XEX, let d(XJ,B)=max{O,B-j(x)}. And for a given data set
X, we define D(X,f,B)=Li(X,f,B) (xE X).

Then the following two theorems can be proved according to the results in
[11], Definition 1 and four properties discussed in Section 2.

Theorem 2 Suppose that an independent identically distributed sample set
X of size I is generated from an unknown distribution P that does not contain
discrete components. For a decision function hex) in the decision function
class in (5), the corresponding decision region is R~o={x: flx)?O}, kE A. Then
with probability 1-~ over randomly drawn training sequences X of size I, for
all ~ >0 and any kEA,
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PIx: x!l Rk..J-:::2x(k+log(t/2t5))/l
where c/=4c2, c2=ln(2)/c2, c=103, f =y~lwkll, and IIwJI=(IiJ.;p;la;2K(xil,x)YI2
(il,i2EA -(k}), k=(C/y2 )log(c)y2 )+(e/f )log(e((21-1)f /c+1))+2.

Proof According to Property 4, fJxk)=-E: and ViE D.-{k), fJx)?:.O. So
D=D(x'h,O) =E:,where D is defined in Definition 1. Theorem 2 holds true
according to Theorem 17 in [11]. •

Theorem 3 For any decision function in the decision function class in (5)
h(x), (kE A), IIwkW=I;Pi~K(x?x}, (i,jE A-{k), kE A). Then

IIwoli =minkllwJl2iff «:=maxpk (kE A).
Proof For oE A and any kEA k:/:o, ak+I;aiK(x",x)=ao+ IpjK(x",x}=p where

iEA -{k},jEA-{o} andp is defined in the function in (4). So Iia!«x",x)=ao-
ak+IpjK(x",x} (iE A-{k},jE A-{oJ).
IIwoW=I;p;ajK(x?x}(i,j E A-{o})=I;p;ajK(x;,x}(i,j E A)-2aoI;aiK(x",x)(i E A-
{o} )-ao

2

IIwkW=I;ppjK(x?Xj)(i,j E A-{kJ)=Iip;ajK(x?x}(i,j E A)-2aXpiK(x",x)(i E A-
{k} )-a/
So IIwoW-lIwkW=2akIia;K(x",x) (iE A-{kJ) - 2aoI;a,K(x",x) (iE A-{oJ) + a/ - aoz

=2a/aO-ak+IpiK(x",x))-2aoI;a,K(x ••x))+akz-ao2 (iEA-{o})
=2akaO-ak2-ao2+2( ak-a)Ip,K(x ••x) (iE A-{oJ)
= -(ao-a/-2(aO-ak)Iia!«X",X;) (iEA-{o})
= -(aO-ak)(aO-ak+2Iia!«x",x)) (iEA-{oJ)
= -(ao-ak)(Iia!«X",X)+ IpjK(x",x}) (iE A-{o), jE A-{k}).

According to Properties 1 and 2 of RBF, the following inequality always
holds true:

V i,jE D., K(x;,x} >0.
And V iE A, a;>O, therefore IIwJ=minkllw;W iff ao=maxkak (kE A). •

Note that e in Theorem 2 is a constant for any decision function in the de-
cision function class in (5). Therefore Theorem 2 shows that the smaller
value of IIwW, the lower bound of probability of the non-decision region de-
cided by the decision function. Furthermore, Theorem 3 shows that we can
obtain the smaller value of IIwW if the function !,,(x) in the decision function
class in (5), where 0 is the index of ao' is chosen as the decision function. This
means that the probability of the non-decision region decided by!,,(x) is low
compared with others. In addition, according to Property 4, the following
inequalities hold true: ViE D.-{o}, !,,(x)?:.Oand!,,(x)<O. This means that the
support vector Xo with the maximal coefficient falls in the non-decision region
decided by f/x). Thus we select Xo as an outlier.
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4 Experiments

Experiment 1. This experiment is performed on a synthetic data set includ-
ing local outliers. There are respectively 400 and 100 points in the clusters C1
and C2 with the uniform distribution and respectively 300 and 200 points in
the clusters C3 and C4 with the Gaussian distribution. In addition, there are
two local outliers 01 and 02 near the cluster C1 (see Fig. 1). The details
about local outliers can be found in [3]. The goal of this experiment is to test
whether v-SVM and SVM-OD only detect these two local outliers since other
points are regarded as the normal data from some distributions. (J=5 is set as
the kernel parameter value. In Fig. 1, bigger points are two local outliers. In
Fig. 4 and Fig. 5, bigger points are some "outliers" detected by v-SVM and
SVM-OD. Comparing SVM-OD and v-SVM, we find that SVM-OD can de-
tect 01 and 02 after two loops. However, v-SVM either does not detect both
01 and 02 or detect other normal data other than these two local outliers (see
Fig. 4 and Fig. 5) when the different values of v are tested. So in this experi-
ment SVM-OD is more effective for detecting some kinds of local outliers
than v-SVM.

Of~~?
02

(a) first loop of SVM-OD (b) second loop of SVM-OD

Fig. 4. (a) only 02 is detected as "outlier", (b) only 01 is detected as "outlier"
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-Cl 1

Of~~'
02

Of~;~'
02

(a) v=O.007 (b) v=O.008

Oft~'
02,

-.<:3

Of:::~~~,
oz

(c) v=O.0095 (d) v=O.0098

Of':~~'
oz

..

(e) v=O.Ol (f) v=O.05
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Fig. 5. (a) 1 "outlier" is detected (without both 01 and 02), (b) 2 "outliers" are de-
tected (without both 01 and 02), (c) 3 "outliers" are detected (without both 01 and
02), (d) 4 "outliers" are detected (without 01 and with 02), (e) 5 "outliers" are de-
tected (with both 01, 02 and others), (t) many "outliers" are detected (with both 01,
02 and others)

Experiment 2. This experiment is performed on the first 5000 samples of
the MNIST test set because there are fewer outliers in these samples than the
last 5000. Data can be available from the website
"yann.lecun.com/exdb/mnist/". In both SVM-OD and v-SVM, (1=8x256 is
selected as the kernel parameter value. For ten hand-digits (0-9), the penalty
factor v in v-SVM is 5.57%, 5.47%, 5.9%, 5.71%, 5.88%, 7.3%, 5.41%,
6.51%,5.84%, and 4.81%, respectively. Classes (0-9) are labeled on the left
side of Fig. 6 and Fig. 7. From both Fig. 6 and Fig. 7, a number of samples
detected are either abnormal or mislabeled. The results of this experiment
show that SVM-OD is effective for outlier detection. What is more important
is that SVM-OD avoids adjusting the penalty factor v, while this parameter is
needed in v-SVM.

5
6
7
8
9
o

II II II II II II II II II II
II II II II II II II ;::'II

--

I .
II

1
2
3
4

Fig. 6. v-SYM detects some outliers in the first 5000 examples of MNIST (0-9) test
set._-------------------2 _3___ _ _4___ __ _ _
,,--- ---------,,--- ---------7_______ _ _s___________ _ _9____________ _ _
0 _

Fig. 7. SYM-OD detects some outliers in the first 5000 examples of MNIST (0-9) test
set

Experiment 3. This experiment is conducted on the stock data including
909 daily samples from the beginning of 1998 to the end of 2001. The name
of stock is not provided for the commercial reason. In Fig. 8 and Fig. 9, the
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horizontal coordinate refers to the stock return and the vertical coordinate the
trading volume. The penalty factor v in v-SYM is 5.5% and the kernel pa-
rameter (J in SYM-OD and v-SYM are shown in Fig. 8 and Fig. 9. Bigger
points in these two figures are outliers detected by SYM-OD and v-SVM
respectively. The goal of this experiment is to show that SVM-OD can also
detect those points far away from the main group, though it is still necessary
to verify whether or not outliers detected by SYM-OD and v-SYM are un-
usual behaviors in the stock market. An interesting phenomenon is also found
that SYM-OD is more insensitive for some values of the kernel parameter
than v-SYM though more experiments and the theoretical analysis are needed
(see Fig. 8 and Fig. 9).
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Fig. 8. Outliers (bigger points) detected by SYM-OD are shown in these four figures
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While Section 3 explains why it is reasonable for SVM-OD to select the sup-
port vector with the maximal coefficient as an outlier, SVM-OD does not tell
us the number of outliers in a given data set and the stopping criteria of the
algorithm. In fact, the number of outliers depends on the user's prior knowl-
edge about the fraction of outliers. Actually, the number of outliers is a more
intuitive concept than the penalty factor v in v-SVM and the user can more
easily know the approximate ratio of outliers compared with v.

v-SVM does not provide a relationship between the fraction of outliers and
v although v is proved to be the upper bound of the fraction of outliers
[11]. It is still difficult for the user to decide v even if they know the fraction
of outliers in advance. For example, Table 1 in [11] showed that when v is

i.·.~':...ooM" ••• , •••. •. 'tt

0.2

5 Discussion
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4%, the fraction of outliers is 0.6% and when v is 5%, the fraction of outliers
is 1.4%. However, when the user knows the fraction of outliers (e.g. 1.4%)
before detecting outliers, which value of v (4%, 5%, or another upper bound
of 1.4%) should be selected to obtain 1.4% samples as outliers? SVM-OD
can avoid this problem when the user knows the approximate fraction of out-
liers. There is the similar problem in another work about detecting outliers
based on support vector clustering [2].

In addition, Table 1 in [11] pointed out that the training time of v-SVM in-
creases as the fraction of outliers detected becomes more. There is a similar
property for the training cost of SVM-OD. This paper does not compare the
training costs of these two methods, which is a topic for the future work.

6 Conclusion

This paper has proposed a new method to detect outliers called SVM-OD.
Compared to v-SVM, SVM-OD can be used by data mining users more easily
since it avoids the penalty factor v required in v-SVM. We have verified the
effectiveness of SVM-OD according to the theoretical analysis based on SLT
and some experiments on both toy and real-world data. The experiment on a
synthetic data set shows that when the kernel parameter is fixed, SVM-OD
can detect some local outliers while v-SVM cannot do that. In the experiment
on stock data, it is found that SVM-OD is insensitive for some values of the
kernel parameter compared with v-SVM. In the future work, we will try to
give a theoretical explanation to this phenomenon and compare SVM-OD
with more methods to detect outliers on more real-world data from the differ-
ent sides, e.g. the training cost and the effectiveness.
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