Robust Face Recognition

Changxing Ding Faculty of Engineering and Information Technology University of Technology Sydney

> A thesis submitted for the degree of Doctor of Philosophy July, 2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Student: Changxing Ding Date: 06/07/2016 I would like to dedicate this thesis to my loving wife and parents.

Acknowledgements

Many people have significantly influenced me - both academically and personally - during my time at University of Technology Sydney (UTS). I would like to take this opportunity to express my sincere gratitude to them for their support during my PhD study.

My deepest gratitude goes to Prof. Dacheng Tao, who has been not just a great supervisor but also a sincere friend. Prof. Tao has taught me how to perform research from scratch and has guided me into academia. He has been a constant source of suggestions and inspiration, and I have benefitted significantly from our discussions and his mentorship. I would not have been able to publish scientific papers in top journals without his insightful instructions, high scientific standards, patient guidance, and consistent encouragement. Also, many thanks to his guidance and suggestions for my future career during the final stage of my PhD study.

I owe special thanks to Prof. Larry S. Davis at the University of Maryland, College Park (UMD) for a number of insightful discussions and suggestions on my first work on face recognition. His careful criticism bridging theory and application broadened my thinking and helped me to improve the work. I would also like to thank Dr. Jonghyun Choi from UMD for his collaboration on experiments and developing the first work. I also thank Dr. Chang Xu, Beijing University, who answered some of my general questions about machine learning and helped me develop the model for pose-invariant face recognition.

I have been so fortunate to work in the Centre for Quantum Computation and Intelligent Systems (QCIS). I appreciate the support of the center director, Prof. Chengqi Zhang, who has led QCIS to be a leading research center where I had the chance to meet and get to know many world-famous researchers. I also want to express my sincere appreciation to the other professors and staff at QCIS for their generous support: Prof. Mingsheng Ying, Prof. Jie Lu, Prof. Ivor Tsang, Prof. Yi Yang, Dr. Ling Chen, Dr. Peng Zhang, Dr. Guodong Long, and Dr. Jing Jiang. I have really enjoyed the time that I have spent with my brilliant colleagues: Dr. Wei Bian, Dr. Tianyi Zhou, Dr. Jun Li, Dr. Zhibin Hong, Dr. Meng Fang, Mingming Gong, Tongliang Liu, Maoying Qiao, Chen Gong, Qiang Li, Ruxin Wang, Shaoli Huang, Zhe Xu, Xiyu Yu, Hao Xiong, Yali Du, and Jiankang Deng. I also wish to express my appreciation to other friends I met in Sydney: Prof. Weifeng Liu, Prof. Lianwen Jin, Prof. Bo Du, Dr. Naiyang Guan, Dr. Nannan Wang, Dr. Chunyang Liu, Dr. Xianye Ben, Dr. Wankou Yang, and Dr. Shigang Liu. Their companionship has always been a source of strength in my daily life. I also owe thanks to other friends at QCIS who volunteered to have their photos included in my face database.

Thanks go to Dr. Matthew Gaston, cluster administrator, and other faculty staff. Dr. Gaston patiently answered my numerous questions and spent a lot of time setting up and managing our servers. My research could not have been conducted successfully without his hard work.

It is my honor to acknowledge sponsorship from the China Scholarship Council and UTS. Their generosity has kept me free from funding concerns. I owe a big thanks to QCIS, who generously provided me with extra scholarship funds and supported me at CVPR conferences over two successive years. I am greatly indebted to Prof. Huijun Gao and Prof. Ligang Wu, who supervised my Masters studies at the Harbin Institute of Technology. I would not have had the chance to pursue my PhD degree under Prof. Tao's supervision without their guidance and generous support.

Last but not least, I want to express my special thanks to my family: my wife Feifei Liu, my parents, and my grandparents for their selfless love and unwavering support during my PhD study. I dedicate this dissertation to them.

Abstract

Face recognition is one of the most important and promising biometric techniques. In face recognition, a similarity score is automatically calculated between face images to further decide their identity. Due to its non-invasive characteristics and ease of use, it has shown great potential in many real-world applications, e.g., video surveillance, access control systems, forensics and security, and social networks. This thesis addresses key challenges inherent in real-world face recognition systems including pose and illumination variations, occlusion, and image blur. To tackle these challenges, a series of robust face recognition algorithms are proposed. These can be summarized as follows:

In Chapter 2, we present a novel, manually designed face image descriptor named "Dual-Cross Patterns" (DCP). DCP efficiently encodes the seconder-order statistics of facial textures in the most informative directions within a face image. It proves to be more descriptive and discriminative than previous descriptors. We further extend DCP into a comprehensive face representation scheme named "Multi-Directional Multi-Level Dual-Cross Patterns" (MDML-DCPs). MDML-DCPs efficiently encodes the invariant characteristics of a face image from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations. MDML-DCPs achieves the best performance on the challenging FERET, FRGC 2.0, CAS-PEAL-R1, and LFW databases.

In Chapter 3, we develop a deep learning-based face image descriptor named "Multimodal Deep Face Representation" (MM-DFR) to automatically learn face representations from multimodal image data. In brief, convolutional neural networks (CNNs) are designed to extract complementary information from the original holistic face image, the frontal pose image rendered by 3D modeling, and uniformly sampled image patches. The recognition ability of each CNN is optimized by carefully integrating a number of published or newly developed tricks. A feature level fusion approach using stacked auto-encoders is designed to fuse the features extracted from the set of CNNs, which is advantageous for non-linear dimension reduction. MM-DFR achieves over 99% recognition rate on LFW using publicly available training data.

In Chapter 4, based on our research on handcrafted face image descriptors, we propose a powerful pose-invariant face recognition (PIFR) framework capable of handling the full range of pose variations within $\pm 90^{\circ}$ of yaw. The framework has two parts: the first is Patch-based Partial Representation (PBPR), and the second is Multi-task Feature Transformation Learning (MtFTL). PBPR transforms the original PIFR problem into a partial frontal face recognition problem. A robust patch-based face representation scheme is developed to represent the synthesized partial frontal faces. For each patch, a transformation dictionary is learnt under the MtFTL scheme. The transformation dictionary transforms the features of different poses into a discriminative subspace in which face matching is performed. The PBPR-MtFTL framework outperforms previous state-of-the-art PIFR methods on the FERET, CMU-PIE, and Multi-PIE databases.

In Chapter 5, based on our research on deep learning-based face image descriptors, we design a novel framework named Trunk-Branch Ensemble CNN (TBE-CNN) to handle challenges in video-based face recognition (VFR) under surveillance circumstances. Three major challenges are considered: image blur, occlusion, and pose variation. First, to learn blurrobust face representations, we artificially blur training data composed of clear still images to account for a shortfall in real-world video training data. Second, to enhance the robustness of CNN features to pose variations and occlusion, we propose the TBE-CNN architecture, which efficiently extracts complementary information from holistic face images and patches cropped around facial components. Third, to further promote

the discriminative power of the representations learnt by TBE-CNN, we propose an improved triplet loss function. With the proposed techniques, TBE-CNN achieves state-of-the-art performance on three popular video face databases: PaSC, COX Face, and YouTube Faces.

Contents

Co	ontent	ts		viii
Li	st of I	Figures		xii
Li	st of]	Fables		XX
1	Intr	oductio	n	1
	1.1	Backgı	round	1
	1.2	Facial	Feature Extraction	5
		1.2.1	Subspace Learning-based Representations	5
		1.2.2	Local Descriptor-based Representations	7
		1.2.3	Deep Learning-based Representations	11
	1.3	Classif	ication Models	12
		1.3.1	Discriminative Models	12
		1.3.2	Generative Models	13
	1.4	Pose-ir	nvariant Face Recognition	14
		1.4.1	Pose-robust Feature Extraction	17
		1.4.2	Multi-view Subspace Learning	19
		1.4.3	Face Synthesis Based on 2D Methods	20
		1.4.4	Face Synthesis Based on 3D Methods	22
		1.4.5	Hybrid Methods	23
		1.4.6	Relationships Between the Four Categories	24
	1.5	Face D	Databases	25
		1.5.1	Still Face Image Databases	26
		1.5.2	Video Face Databases	27

CONTENTS

	1.6	Contril	butions and Related Publications	28
2	Mul	ti-Direc	tional Multi-Level Dual-Cross Patterns	32
	2.1	Introdu	uction	33
	2.2	Dual-C	Cross Patterns	34
		2.2.1	Local Sampling	35
		2.2.2	Pattern Encoding	36
		2.2.3	Dual-Cross Grouping	37
		2.2.4	DCP Face Image Descriptor	37
	2.3	Multi-	Directional Multi-Level Dual-Cross Patterns	39
		2.3.1	The MDML-DCPs Scheme	39
		2.3.2	Implementation Details	41
	2.4	Face R	ecognition Algorithm	42
		2.4.1	WPCA	42
		2.4.2	PCA combined with PLDA	43
	2.5	Experi	ments	44
		2.5.1	Empirical Justification for Dual-Cross Grouping	46
		2.5.2	Parameter Selection of DCP	47
		2.5.3	Evaluation of the Performance of DCP	49
		2.5.4	The Contribution of Multi-directional Filtering	57
		2.5.5	Performance Evaluation of MDML-DCPs	58
	2.6	Conclu	sion	64
3	Mul	timodal	Deep Face Representation	67
	3.1	Introdu	uction	67
	3.2	Related	d Studies	70
		3.2.1	Face Image Representation	70
		3.2.2	Multimodal-based Face Recognition	70
	3.3	Multin	nodal Deep Face Representation	72
		3.3.1	Single CNN Architecture	72
		3.3.2	Combination of CNNs using Stacked Auto-Encoder	76
	3.4	Face M	fatching with MM-DFR	78
	3.5	Experi	ments	79

CONTENTS

		3.5.1	Performance Comparison with Single CNN Model	82
		3.5.2	Performance of the Eight CNNs in MM-DFR	83
		3.5.3	Fusion of CNNs with SAE	85
		3.5.4	Performance of MM-DFR with Joint Bayesian	86
		3.5.5	Face Identification on CASIA-WebFace Database	87
	3.6	Conclu	ision	88
4	Mul	ti-task]	Pose-Invariant Face Recognition	90
	4.1	Introdu	action	91
	4.2	Relate	d Studies	94
	4.3	Face R	epresentation for the Pose Problem	94
		4.3.1	Face Pose Normalization	96
		4.3.2	Unoccluded Facial Texture Detection	96
		4.3.3	Patch-based Face Representation	97
	4.4	Multi-	task Feature Transformation Learning	99
		4.4.1	Feature Transformation Learning	100
		4.4.2	Iterative Optimization Algorithm	102
		4.4.3	Theoretical Analysis	104
	4.5	Face M	Iatching with PBPR-MtFTL	106
	4.6	Experi	mental Evaluation	107
		4.6.1	Comparison on CMU-PIE and FERET	109
		4.6.2	Comparison with Single-task Baselines	109
		4.6.3	Recognition across Pose and Illumination	113
		4.6.4	Recognition across Pose and Recording Session	114
		4.6.5	Recognition across Pose, Illumination, and Recording Session	117
		4.6.6	Parameter Evaluation for MtFTL	118
		4.6.7	Performance in the Fully-Automatic Mode	120
		4.6.8	Extension to Unconstrained Face Verification	121
	4.7	Conclu	ision	123
	4.8	Proof	of Theorem 1	124
	4.9	Proof	of Theorem 2	124

5	Tru	nk-Brai	nch Ensemble Convolutional Neural Networks for Video-bas	ed
	Face	e Recog	nition	126
	5.1	Introd	uction	. 127
	5.2	Relate	d Works	. 129
		5.2.1	Video-based Face Recognition	. 129
		5.2.2	Deep Learning Methods for Face Recognition	. 131
	5.3	Trunk	-Branch Ensemble CNN for VFR	. 132
		5.3.1	Artificially Simulated Video Data	. 133
		5.3.2	Trunk-Branch Ensemble CNN	. 134
	5.4	TBE-C	CNN Training	. 137
		5.4.1	Mean Distance Regularized Triplet Loss	. 137
	5.5	VFR v	with TBE-CNN	. 140
	5.6	Experi	iments	. 141
		5.6.1	Implementation Details of TBE-CNN	. 143
		5.6.2	Effectiveness of Simulated Video Training Data	. 143
		5.6.3	Effectiveness of MDR-TL	. 145
		5.6.4	Effectiveness of Trunk-Branch Fusion	. 147
		5.6.5	Performance Comparison on PaSC	. 149
		5.6.6	Performance Comparison on COX Face	. 153
		5.6.7	Performance Comparison on YouTube Faces	. 153
	5.7	Conclu	usion	. 155
6	Con	clusion	s and Future Work	157
Re	eferen	ces		160

List of Figures

1.1	A typical face recognition system pipeline. The image is selected from	
	the CASIA-WebFace database [Yi et al., 2014]	2
1.2	The two typical factors that affect facial appearance: variations exhib-	
	ited by the face itself and variations caused by imaging conditions.	4
1.3	The evolution of facial feature extraction methods.	5
1.4	The evolution of local descriptors for face image representation. A	
	yellow background represents handcrafted local descriptors and a	
	green background indicates learning-based local descriptors	7
1.5	The principle of LBP-based face representation.	8
1.6	A comparison between handcrafted descriptors and learning-based	
	descriptors during local sampling. (a) Handcrafted descriptors sample	
	very limited numbers of pixels in the local patch; (b) learning-based	
	descriptors can sample as many pixels as desired	10
1.7	(a) The three degrees of freedom of face pose variation: yaw, pitch,	
	and roll. (b) A typical PIFR framework. Different to the traditional	
	near-frontal face recognition (NFFR), PIFR aims to recognize faces	
	captured under arbitrary poses	15
1.8	The challenges for face recognition caused by pose variation. (a) Self-	
	occlusion: the marked area in the frontal face is invisible in the non-	
	frontal face; (b) loss of semantic correspondence: the position of facial	
	textures varies nonlinearly following the pose change; (c) nonlinear	
	warping of facial textures; (d) accompanying variations in resolution,	
	illumination, and expression.	16

1.9	Feature extraction from semantically corresponding patches or land-	
	marks. (a) Semantic correspondence realized at the facial component	
	level [Brunelli and Poggio, 1993, Pentland et al., 1994]; (b) semantic	
	correspondence by detecting dense facial landmarks [Chen et al., 2013,	
	Ding et al., 2016, Wiskott et al., 1997]; (c) tight semantic correspon-	
	dence realized using various techniques, e.g., 3D face model [Li et al.,	
	2009, Yi et al., 2013] and MRF [Arashloo and Kittler, 2011].	17
1.10	The common framework of deep neural network-based pose-robust	
	feature extraction methods [Kan et al., 2014, Zhang et al., 2013, Zhu	
	et al., 2013].	18
1.11	The framework of multi-view subspace learning-based PIFR approaches [Kan
	et al., 2012, Li et al., 2009, Prince et al., 2008, Sharma et al., 2012].	
	The continuous pose range is divided into P discrete pose spaces, and	
	pose-specific projections (i.e., W_1, W_2, \cdots, W_P) to the latent subspace	
	are learnt.	19
1.12	Three main 2D-based pose normalization schemes. (a) Piece-wise	
	warping; (b) patch-wise warping; and (c) pixel-wise displacement	21
1.13	The pipeline for 3D pose normalization from a single face image	
	proposed in [Ding et al., 2015]. Face regions that are free from	
	occlusion are detected and employed for face recognition.	22
1.14	The evolution of face databases.	26
1.15	Structure of this thesis.	29
0.1	Level compliant of Dual Cross Detterms Sinteen points are compled	
2.1	Local sampling of Dual-Cross Patterns. Sixteen points are sampled	
	around the central pixel O . The sampled points A_0 to A_7 are uniformly	
	spaced on an inner circle of radius R_{in} , while B_0 to B_7 are evenly distributed on the autorian circle with radius R_0	25
2.2	distributed on the exterior circle with radius R_{ex}	35
2.2	Face representation using Dual-Cross Patterns. The normalized face	
	image is encoded by the two cross encoders, respectively. Concatena-	
	tion of the regional DCP code histograms forms the DCP-based face	20
	representation	38

- 2.3 Framework of the MDML-DCPs face representation scheme. MDML-DCPs-H1 and MDML-DCPs-H2 are extracted from the rectified image by similarity transformation. MDML-DCPs-H3, MDML-DCPs-C1 to C6 are extracted from the affine-transformed image. The MDML-DCPs face representation is the set of the above nine feature vectors. 40
 2.4 (a) The 49 facial feature points detected by the face alignment algorithm. (b) MDML-DCPs-H3 employs 21 facial feature points over all facial components. MDML-DCPs-C1 to C6 respectively select 10
 - facial feature points on both eyebrows, 12 points on both eyes, 11 points on the left eye and left eyebrow, 11 points on the right eye and right eyebrow, 9 points on nose, and 18 points on mouth. Around each facial feature point, MD-DCPs are extracted from $J \times J$ (in this figure, J = 4) non-overlapping regions within the patch of size $M \times M$ pixels. 41
- 2.5 (a) Sample images from FERET (first row), CAS-PEAL-R1 (second row) and FRGC 2.0 (third row) containing typical variations in each database. (b) Samples of normalized images of size 128×128 pixels. 44

2.6 Sample images from LFW. Images in the two rows are aligned by a similarity transformation and an affine transformation, respectively.

- 2.7 Another two representative grouping modes for the eight sampling directions of DCP. Sampled points of the same colour belong to the same subset.
 2.8 Joint Shannon entropy as a function of *R_{in}* and *R_{ex}*. Three grouping modes are evaluated in this figure: modes (a) and (b) in Fig. 2.7 and
- the dual-cross grouping.472.9The mean rank-1 identification rates of DCP and LBP on four FERET
probe sets as a function of N.482.10Performance comparison between DCP and MsLBP on the four face
- datasets.
 57

 2.11 ROC curves of the MDML-DCPs method and other state-of-the-art methods in the unrestricted paradigm.
 65

3.2	Flowchart of the proposed multimodal deep face representation (MM-	
	DFR) framework. MM-DFR is essentially composed of two steps:	
	multimodal feature extraction using a set of CNNs, and feature-level	
	fusion of the set of CNN features using SAE. CNN-H1 is deeper than	
	the other CNNs	69
3.3	The normalized holistic face images and image patches as input for	
	MM-DFR. (a) The original holistic face image and the 3D pose	
	normalized holistic image; (b) Image patches uniformly sampled from	
	the original face image. Due to facial symmetry and the augmentation	
	by horizontal flipping, we only leverage the six patches illustrated in	
	the first two columns.	76
3.4	The principle of patch sampling adopted in this chapter. A set of	
	3D landmarks are uniformly labeled on the 3D face model, and are	
	projected to the 2D image. Centering around each landmark, a square	
	patch of size 100×100 pixels is cropped, as illustrated in Fig. 3.3b.	77
3.5	More examples about the uniformly detected landmarks that are	
	projected from a generic 3D face model to 2D images	77
3.6	Training data distribution for NN1 and NN2. This figure plots the	
	number of images for each subject in the training set. The long-tail	
	distribution characteristic [Zhou et al., 2015] of the original training	
	data is improved after the aggressive data augmentation for NN2	81
3.7	Performance comparison on LFW with different usage strategies of	
	ReLU nonlinearity.	83
3.8	ROC curves of different usage strategies of the ReLU nonlinearity on	
	LFW	85
3.9	Performance comparison between the proposed MM-DFR approach	
	and single modality-based CNN on the face verification task	87
3.10	CMS curves by different combinations of modalities on the face	_
	identification task.	89

4.1	(a) The rigid rotation of the head results in self-occlusion as well as	
	nonlinear facial texture deformation. (b) The pose problem is com-	
	bined with other factors, e.g., variations in expression and illumination,	
	to affect face recognition.	92
4.2	Overview of the proposed PBPR-MtFTL framework for pose-invariant	
	face recognition, as applied to the recognition of arbitrary pose probe	
	faces	93
4.3	Overview of the proposed PBPR face representation method. PBPR is	
	applied to arbitrary pose face images. The final PBPR representation	
	is a set of patch-level DCP features after dimension reduction by PCA.	95
4.4	Illustration of facial contour detection. (a) The 3D generic shape model	
	is projected to the 2D plane and its facial contour is detected; (b) the	
	region containing the facial contour of the 2D face image is estimated;	
	(c) candidate facial contour points; (d) facial contour obtained by point	
	set registration.	98
4.5	Examples of facial contour detection for unconstrained face images in	
	the LFW dataset.	98
4.6	Pose normalization for non-frontal images. The boundary between	
	unoccluded and occluded facial texture is detected by the method	
	illustrated in Fig. 4.3. (a) $-90^{\circ} \le yaw \le -45^{\circ}$; (b) $-30^{\circ} \le yaw \le$	
	$+30^{\circ}$; (c) $+45^{\circ} \le yaw \le +90^{\circ}$. The image quality is degraded with	
	the increase in value of the yaw angles, and the amount of unoccluded	
	facial texture for recognition decreases.	100
4.7	Performance comparison of MtFTL and the three single-task baselines	
	on the Multi-PIE database with varying numbers of training subjects.	
	(a) yaw = $\pm 90^{\circ}$; (b) yaw = $\pm 75^{\circ}$; (c) yaw = $\pm 60^{\circ}$	112
4.8	Performance comparison on combined variations of pose and illumi-	
	nation. The probe sets 081 and 191 are with hybrid yaw and pitch	
	variations. The other probe sets contain only yaw variations from -90°	
	to $+90^{\circ}$	113
4.9	Performance comparison of different methods on combined variations	
	of pose and recording session.	117

4.10	Performance comparison of different methods on combined variations	
	of pose, illumination, and recording session.	118
4.11	Influence of the parameters μ , d , and λ to the performance of MtFTL.	
	(a) evaluation against the value of μ while d and λ are set at 200 and	
	0.5, respectively; (b) evaluation against the value of d while μ and λ	
	are set at 0.1 and 0.5, respectively; (c) evaluation against the value of	
	λ while μ and d are set at 0.1 and 200, respectively	120
4.12	Performance comparison of the proposed PBPR-MtFTL framework	
	in the SA and FA modes. In the FA mode, both facial feature point	
	detection and pose estimation are completely automatic. Note that	
	the identification error in the FA mode incorporates the failure in face	
	detection	121
4.13	Many image pairs defined in LFW contain no frontal faces. The first	
	line shows the first images in the image pairs, while the second line	
	shows the second images in the image pairs.	122
5.1	Video frames captured by surveillance or mobile devices suffer from	
	severe image blur, dramatic pose variations, and occlusion. (a) Image	
	blur caused by the motion of the subject, camera shake (for mobile	
	devices), and out-of-focus capture. (b) Faces in videos usually exhibit	
	occlusion and a large range of pose variations	128
5.2	Examples of the original still face images and simulated video frames.	
	(a) original still images; (b) simulated video frames by applying	
	artificial out-of-focus blur (the two figures on the left) and motion blur	
	(the two figures on the right)	133

5.3	Model architecture for Trunk-Branch Ensemble CNN (TBE-CNN).	
	Note that a max pooling layer is omitted for simplicity following	
	each convolution module, e.g., Conv1 and Inception 3. TBE-CNN is	
	composed of one trunk network that learns representations for holistic	
	face images and two branch networks that learn representations for	
	image patches cropped around facial components. The trunk network	
	and the branch networks share the same low- and middle-level layers,	
	and they have individual high-level layers. The output feature maps	
	of the trunk network and branch networks are fused by concatenation.	
	The output of the last fully connected layer is utilized as the final face	
	representation of one video frame	135
5.4	The principle of Mean Distance Regularized Triplet Loss (MDR-TL).	
	(a) Triplets sampled in the training batch satisfy the triplet constraint	
	(Eq. 5.4). However, due to the non-uniform intra-class and inter-class	
	sample distributions, it is hard to select an ideal threshold for face	
	verification. (b) MDR-TL regularizes triplet loss by setting a margin	
	for the distance between subject mean representations so that samples	
	of different subjects are uniformly distributed	138
5.5	Illustration of TBE-CNN training with MDR-TL. MDR-TL is em-	
	ployed to further enhance the discriminative power of learnt face	
	representations.	138
5.6	Sample video frames after normalization: PaSC (first row), COX Face	
	(second row), and YouTube Faces (third row). For each database,	
	the four frames on the left are sampled from a video recorded under	
	relatively good conditions, and the four frames on the right are selected	
	from low-quality video.	141
5.7	ROC curves of the trunk network trained with different types of	
	training data on the PaSC database. (a) Comparison on the control	
	set; (b) comparison on the handheld set.	145
5.8	Verification rates at 1% FAR with different loss functions on the PaSC	
	database. SI and TS stand for two representative types of training data.	
	(a) Comparison on the control set; (b) comparison on the handheld set.	146

5.9	ROC curves of MDR-TL and triplet loss functions on the handheld set	
	of PaSC. (a) SI training data; (b) TS training data	147
5.10	Verification rates (%) at 1% FAR by the trunk network and TBE-CNN.	
	Comparison is based on the softmax loss. (a) Performance comparison	
	without BN layers; (b) performance comparison with BN layers	148
5.11	ROC curves of the trunk network and TBE-CNN on the handheld set	
	of PaSC. (a) Without BN layers; (b) with BN layers	148
5.12	ROC curves of TBE-CNN and state-of-the-art methods on the PaSC	
	control and handheld sets. The original face detection results from the	
	database are employed for all methods. (a) Control set; (b) handheld	
	set	149
5.13	ROC curves of TBE-CNN and state-of-the-art methods on the YouTube	
	Faces database under the "restricted" protocol.	155

List of Tables

2.1	Feature Size of the Investigated Face Image Descriptors	50
2.2	Identification Rates for Different Descriptors on FERET	52
2.3	Rank-1 Identification Rates for Different Face Image Descriptors on	
	the Nine Probe Sets of PEAL	54
2.4	Verification Results on the FRGC 2.0 Experiment 1	55
2.5	Verification Results on the FRGC 2.0 Experiment 4	55
2.6	Mean Verification Accuracy on the LFW View 2 Data	56
2.7	Identification Rates for Different Methods on FERET	60
2.8	Rank-1 Identification Rates for Different Methods on the Nine Probe	
	Sets of PEAL	61
2.9	Verification Rates at 0.1% FAR for Different Methods on the FRGC	
	2.0 Experiments 1 and 4	63
2.10	Mean Verification Accuracy on the LFW View 2 Data	66
3.1	Details of the model architecture for NN1	74
3.2	Details of the model architecture for NN2	75
3.3	Performance Comparison on LFW using Single CNN Model on	
	Holistic Face Image	84
3.4	Performance Comparison on LFW of Eight Individual CNNs	84
3.5	Performance Evaluation of MM-DFR with JB	87
3.6	The rank-1 identification rates by Different Combinations of Modali-	
	ties on CASIA-WebFace Database	88
4.1	Model Parameters Estimated on the Validation Subsets for Different	

LIST OF TABLES

4.2	Performance Comparison with State-of-the-art PIFR Methods on CMU-	
	PIE	110
4.3	Performance Comparison with State-of-the-art PIFR Methods on FERE	Γ111
4.4	Rank-1 Identification Rates on Combined Variations of Pose and	
	Illumination on Multi-PIE	115
4.5	Rank-1 Identification Rates on Combined Variations of Pose and	
	Recording Session on Multi-PIE	116
4.6	Rank-1 Identification Rates on Combined Variations of Pose, Illumi-	
	nation, and Recording Session on Multi-PIE	119
4.7	Performance comparison on LFW with state-of-the-art methods based	
	on single face representation	123
5.1	Trunk Network Parameters (GoogLeNet)	136
5.2	Verification Rates (%) at 1% FAR on PaSC with Different Types of	
	Training Data	145
5.3	Verification Rates (%) at 1% FAR of Different Methods on PaSC	150
5.4	Rank-1 Identification Rates (%) under the V2S/S2V Settings for	
	Different Methods on the COX Face Database	151
5.5	Rank-1 Identification Rates (%) under the V2V Setting for Different	
	Methods on the COX Face Database	152
5.6	Mean Verification Accuracy on the YouTube Faces Database (Re-	
	stricted Protocol)	154