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Abstract

Face recognition is one of the most important and promising biometric

techniques. In face recognition, a similarity score is automatically

calculated between face images to further decide their identity. Due

to its non-invasive characteristics and ease of use, it has shown great

potential in many real-world applications, e.g., video surveillance, access

control systems, forensics and security, and social networks. This thesis

addresses key challenges inherent in real-world face recognition systems

including pose and illumination variations, occlusion, and image blur. To

tackle these challenges, a series of robust face recognition algorithms are

proposed. These can be summarized as follows:

In Chapter 2, we present a novel, manually designed face image de-

scriptor named “Dual-Cross Patterns” (DCP). DCP efficiently encodes

the seconder-order statistics of facial textures in the most informative

directions within a face image. It proves to be more descriptive and dis-

criminative than previous descriptors. We further extend DCP into a com-

prehensive face representation scheme named “Multi-Directional Multi-

Level Dual-Cross Patterns” (MDML-DCPs). MDML-DCPs efficiently

encodes the invariant characteristics of a face image from multiple levels

into patterns that are highly discriminative of inter-personal differences

but robust to intra-personal variations. MDML-DCPs achieves the best

performance on the challenging FERET, FRGC 2.0, CAS-PEAL-R1, and

LFW databases.

In Chapter 3, we develop a deep learning-based face image descriptor

named “Multimodal Deep Face Representation” (MM-DFR) to auto-

matically learn face representations from multimodal image data. In

brief, convolutional neural networks (CNNs) are designed to extract



complementary information from the original holistic face image, the

frontal pose image rendered by 3D modeling, and uniformly sampled

image patches. The recognition ability of each CNN is optimized

by carefully integrating a number of published or newly developed

tricks. A feature level fusion approach using stacked auto-encoders is

designed to fuse the features extracted from the set of CNNs, which is

advantageous for non-linear dimension reduction. MM-DFR achieves

over 99% recognition rate on LFW using publicly available training data.

In Chapter 4, based on our research on handcrafted face image descriptors,

we propose a powerful pose-invariant face recognition (PIFR) framework

capable of handling the full range of pose variations within ±90◦ of

yaw. The framework has two parts: the first is Patch-based Partial

Representation (PBPR), and the second is Multi-task Feature Transfor-

mation Learning (MtFTL). PBPR transforms the original PIFR problem

into a partial frontal face recognition problem. A robust patch-based face

representation scheme is developed to represent the synthesized partial

frontal faces. For each patch, a transformation dictionary is learnt under

the MtFTL scheme. The transformation dictionary transforms the features

of different poses into a discriminative subspace in which face matching is

performed. The PBPR-MtFTL framework outperforms previous state-of-

the-art PIFR methods on the FERET, CMU-PIE, and Multi-PIE databases.

In Chapter 5, based on our research on deep learning-based face image

descriptors, we design a novel framework named Trunk-Branch Ensemble

CNN (TBE-CNN) to handle challenges in video-based face recognition

(VFR) under surveillance circumstances. Three major challenges are

considered: image blur, occlusion, and pose variation. First, to learn blur-

robust face representations, we artificially blur training data composed of

clear still images to account for a shortfall in real-world video training

data. Second, to enhance the robustness of CNN features to pose

variations and occlusion, we propose the TBE-CNN architecture, which

efficiently extracts complementary information from holistic face images

and patches cropped around facial components. Third, to further promote



the discriminative power of the representations learnt by TBE-CNN, we

propose an improved triplet loss function. With the proposed techniques,

TBE-CNN achieves state-of-the-art performance on three popular video

face databases: PaSC, COX Face, and YouTube Faces.
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