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Abstract

Modern consumer electronics (e.g. smart phones) have made video ac-

quisition convenient for the general public. Consequently, the number

of videos freely available on the Internet has been exploding, thanks

also to the appearance of large video hosting websites (e.g. Youtube).

Recognizing complex events from these unconstrained videos has been

receiving increasing interest in the multimedia and computer vision field.

Compared with visual concepts such as actions, scenes and objects, event

detection is more challenging in the following aspects. Firstly, an event

is a higher level semantic abstraction of video sequences than a concept

and consists of multiple concepts. Secondly, a concept can be detected in

a shorter video sequence or even in a single frame but an event is usually

contained in a longer video clip. Thirdly, different video sequences of a

particular event may have dramatic variations.

The most commonly used technique for complex event detection is to

aggregate low-level visual features and then feed them to sophisticated

statistical classification machines. However, these methodologies fail to

provide any interpretation of the abundant semantic information contained

in a complex video event, which impedes efficient high-level event

analysis, especially when the training exemplars are scarce in real-world

applications. A recent trend in this direction is to employ some high-level

semantic representation, which can be advantageous for subsequent event

analysis tasks. These approaches lead to improved generalization capabil-

ity and allow zero-shot learning (i.e. recognizing new events that are never

seen in the training phase). In addition, they provide a meaningful way to

aggregate low-level features, and yield more interpretable results, hence

may facilitate other video analysis tasks such as retrieval on top of many

low-level features, and have roots in object and action recognition.

Although some promising results have been achieved, current event

analysis systems still have some inherent limitations. 1) They fail to

consider the fact that only a few shots in a long video are relevant to the

event of interest while others are irrelevant or even misleading. 2) They

are not capable of leveraging the mutual benefits of Multimedia Event

Detection (MED) and Multimedia Event Recounting (MER), especially



when the number of training exemplars is small. 3) They did not consider

the differences of the classifier’s prediction capability on individual testing

videos. 4) The unreliability of the semantic concept detectors, due to

lack of labeled training videos, has been largely unaddressed. To solve

these challenges, in this thesis, we aim to develop a series of statistical

learning methods to explore semantic concepts for complex event analysis

in unconstrained video clips. Our works are summarized as follows:

In Chapter 2, we propose a novel semantic pooling approach for chal-

lenging tasks on long untrimmed Internet videos, especially when only

a few shots/segments are relevant to the event of interest while many

other shots are irrelevant or event misleading. The commonly adopted

pooling strategies aggregate the shots indifferently in one way or another,

resulting in a great loss of information. Instead, we first define a novel

notion of semantic saliency that assess the relevance of each shot with

the event of interest. We then prioritize the shots according to their

saliency scores since shots that are semantically more salient are expected

to contribute more to the final event analysis. Next, we propose a

new isotonic regularizer that is able to exploit the constructed seman-

tic ordering information. The resulting nearly-isotonic SVM classifier

exhibits higher discriminative power in event detection and recognition

tasks. Computationally, we develop an efficient implementation using the

proximal gradient algorithm, and we prove new and closed-form proximal

steps.

In Chapter 3, we develop a joint event detection and evidence recounting

framework with limited supervision, which is able to leverage the mutual

benefits of MED and MER. Different from most existing systems that

perform MER as a post-processing step on top of the MED results,

the proposed framework simultaneously detects high-level events and

localizes the indicative concepts of the events. Our premise is that a

good recounting algorithm should not only explain the detection result,

but should also be able to assist detection in the first place. Coupled

in a joint optimization framework, recounting improves detection by

pruning irrelevant noisy concepts while detection directs recounting to

the most discriminative evidences. To better utilize the powerful and

interpretable semantic video representation, we segment each video into

several shots and exploit the rich temporal structures at shot level. The

consequent computational challenge is carefully addressed through a

significant improvement of the current ADMM algorithm, which, after

eliminating all inner loops and equipping novel closed-form solutions for

all intermediate steps, enables us to efficiently process extremely large



video corpora.

In Chapter 4, we propose an Event-Driven Concept Weighting framework

to automatically detect events without the use of visual training exemplars.

In principle, zero-shot learning makes it possible to train an event detection

model based on the assumption that events (e.g. birthday party) can be

described by multiple mid-level semantic concepts (e.g. “blowing candle”,

“birthday cake”). Towards this goal, we first pre-train a bundle of concept

classifiers using data from other sources, which are applied on all test

videos to obtain multiple prediction score vectors. Existing methods

generally combine the predictions of the concept classifiers with fixed

weights, and ignore the fact that each concept classifier may perform better

or worse for different subset of videos. To address this issue, we propose to

learn the optimal weights of the concept classifiers for each testing video

by exploring a set of online available videos which have free-form text

descriptions of their content. To be specific, our method is built upon

the local smoothness property, which assumes that visually similar videos

have comparable labels within a local region of the same space.

In Chapter 5, we develop a novel approach to estimate the reliability

of the concept classifiers without labeled training videos. The EDCW
framework proposed in Chapter 4, as well as most existing works on

semantic event search, ignore the fact that not all concept classifiers

are equally reliable, especially when they are trained from other source

domains. For example, “face” in video frames can now be reasonably

accurately detected, but in contrast, the action “brush teeth” remains hard

to recognize in short video clips. Consequently, a relevant concept can

be of limited use or even misuse if its classifier is highly unreliable.

Therefore, when combining concept scores, we propose to take their

relevance, predictive power, and reliability all into account. This is

achieved through a novel extension of the spectral meta-learner, which

provided a principled way to estimate classifier accuracies using purely

unlabeled data.
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