
Summarizing Data with
Representative Patterns

Chunyang Liu

Faculty of Engineering and Information Technology

University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

March 2016

To my parents and my wife.

Certificate of Original Authorship

I certify that the work in this thesis has not previously been sub-

mitted for a degree nor has it been submitted as part of require-

ments for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help

that I have received in my research work and the preparation

of the thesis itself has been acknowledged. In addition, I certify

that all information sources and literature used are indicated in

the thesis.

Student: Chunyang Liu

Date: 05/03/2016

Acknowledgements

I benefited and learned a lot from my advisors, my friends, my

colleagues and my family during PhD study in University of

Technology, Sydney. I would like to take this good opportunity

to appreciate their significant helps to me.

First of all, I would like to express my appreciation and gratitude

to my academic supervisors Dr. Ling Chen and Prof. Chengqi

Zhang. I benefited significantly from various discussions and

communications with them. They always give me advices, en-

couragement, and sufficient freedom to think and explore. I also

want to thank them for kindly offering me invaluable sugges-

tions and experienced instructions on my research career and

life. I cannot image how this thesis can be accomplished without

their high scientific criterion, endless patience, generous sup-

port, and constant guidance.

Next, I wish to thank other researchers who have gave me help-

ful guidance and encouragement during my PhD study and on

conferences: Prof. Jian Pei, A/Prof. Ivor W. Tsang, Dr. Lu Qin,

and Dr. Yi Yang. From discussions with them I learned not only

much knowledge but also their attitude for doing high quality

research.

I have been fortunate to work in a center gathering the most bril-

liant researchers and best friends in the past four years: Guodong

Long, Jing Jiang, Wei Bian, Tianyi Zhou, Meng Fang, Bozhong

Liu, Zhe Xu, Mingming Gong, Ruxin Wang, Zhibin Hong, Su-

juan Hou, Wei Wu, Haishuai Wang, Xueping Peng, Alan Wang,

Zhenxing Qin, Shirui Pan, Jia Wu, Lianhua Chi, Maoying Qiao,

Tongliang Liu, Weiwei Liu, Anjin Liu, Junfu Yin, Jinjiu Li, Changx-

ing Ding, Nannan Wang, Naiyang Guan, Li Wan, Shengzheng

Wang, Xianhua Zeng, Zhijing Xu, Bo Du, Hongshu Chen, Ting

Guo, Chao Ma, Shaoli Huang, Qiang Li, Dianshuang Wu, Zhiguo

Long, Weilong Hou, Yi Ji, Ming Xie and many others. I enjoyed

the invaluable friendships with them, their kindly support and

accompany are always my source of strength and courage in

both research and daily life. I am also grateful to my dearest

friends Jiawang Liu, Weipeng Zhang, Mingjian Gao, Junfeng Ye,

and Jia Chen since my college, and Sen Li and Song Li since my

high school. They are the ones who have given me support dur-

ing both joyful and stressful times, to whom I will always be

thankful.

Finally, it is my greatest honor to thank my family: my parents

and my wife. They always believe in me, encourage me, give

me invaluable suggestions, and fully support all my decisions.

No words could possibly express my deepest gratitude for their

endless love, self-sacrifice and unwavering help. To them I ded-

icate this dissertation.

8

Abstract

The advance of technology makes data acquisition and storage become un-

precedentedly convenient. It contributes to the rapid growth of not only

the volume but also the veracity and variety of data in recent years, which

poses new challenges to the data mining area. For example, uncertain data

mining emerges due to its capability to model the inherent veracity of data;

spatial data mining attracts much research attention as the widespread of

location-based services and wearable devices. As a fundamental topic of

data mining, how to effectively and efficiently summarize data in this situ-

ation still remains to be explored.

This thesis studied the problem of summarizing data with representa-

tive patterns. The objective is to find a set of patterns, which is much more

concise but still contains rich information of the original data, and may pro-

vide valuable insights for further analysis of data. In the light of this idea,

we formally formulate the problem and provide effective and efficient solu-

tions in various scenarios.

We study the problem of summarizing probabilistic frequent patterns

over uncertain data. Probabilistic frequent pattern mining over uncertain

data has received much research attention due to the wide applicabilities

of uncertain data. It suffers from the problem of generating an exponen-

tial number of result patterns, which hinders the analysis of patterns and

calls for the need to find a small number of representative patterns to ap-

proximate all other patterns. We formally formulate the problem of proba-

bilistic representative frequent pattern (P-RFP) mining, which aims to find the

minimal set of patterns with sufficiently high probability to represent all

other patterns. The bottleneck turns out to be checking whether a pattern

can probabilistically represent another, which involves the computation of

a joint probability of the supports of two patterns. We propose a novel dy-

namic programming-based approach to address the problem and devise ef-

fective optimization strategies to improve the computation efficiency.

To enhance the practicability of P-RFP mining, we introduce a novel

approximation of the joint probability with both theoretical and empiri-

cal proofs. Based on the approximation, we propose an Approximate P-RFP

Mining (APM) algorithm, which effectively and efficiently compresses the

probabilistic frequent pattern set. The error rate of APM is guaranteed to be

very small when the database contains hundreds of transactions, which fur-

ther affirms that APM is a practical solution for summarizing probabilistic

frequent patterns.

We address the problem of directly summarizing uncertain transaction

database by formulating the problem as Minimal Probabilistic Tile Cover Min-

ing, which aims to find a high-quality probabilistic tile set covering an un-

certain database with minimal cost. We define the concept of Probabilistic

Price and Probabilistic Price Order to evaluate and compare the quality of

tiles, and propose a framework to discover the minimal probabilistic tile

cover. The bottleneck is to check whether a tile is better than another ac-

cording to the Probabilistic Price Order, which involves the computation of

a joint probability. We prove that it can be decomposed into independent

terms and calculated efficiently. Several optimization techniques are de-

vised to further improve the performance.

We analyze the problem of summarizing co-locations mined from spa-

tial databases. Co-location pattern mining finds patterns of spatial features

whose instances tend to locate together in geographic space. However, the

traditional framework of co-location pattern mining produces an exponen-

tial number of patterns because of the downward closure property, which

makes it difficult for users to understand, assess or apply the huge num-

ber of resulted patterns. To address this issue, we study the problem of

mining representative co-location patterns (RCP). We first define a covering

relationship between two co-location patterns then formally formulate the

problem of Representative Co-location Pattern mining. To solve the problem of

RCP mining, we propose the RCPFast algorithm adopting the post-mining

framework and the RCPMS algorithm pushing pattern summarization into

the co-location mining process.

10

Contents

1 Introduction 1

1.1 Uncertain Data . 2

1.2 Spatial Data . 3

1.3 Main Contributions and Roadmap 4

1.4 Publications . 6

2 Mining Probabilistic Representative Frequent Patterns From Un-

certain Data 9

2.1 Introduction . 10

2.2 Related Work . 12

2.2.1 Frequent pattern mining over uncertain data 12

2.2.2 Frequent pattern summarization 13

2.3 Problem Definition . 14

2.4 P-RFP Mining . 17

2.4.1 Framework of P-RFP Mining 17

2.4.2 Cover Set Generation . 20

2.4.3 Optimization Strategies 22

2.4.4 P-RFP Mining Algorithm 26

2.5 Performance Study . 26

2.5.1 Data sets . 26

2.5.2 Result analysis . 29

2.6 Conclusions . 30

3 Summarizing Probabilistic Frequent Patterns: A Fast Approach 33

3.1 Introduction . 34

3.2 Related Work . 36

i

Contents

3.2.1 Frequent pattern mining over uncertain data 36

3.2.2 Frequent pattern summarization 37

3.3 Background and Preliminary 38

3.4 Approximate P-RFP Mining . 41

3.4.1 Framework of APM . 42

3.4.2 Cover Set Generation . 44

3.4.3 APM Algorithm . 46

3.5 Approximation of Joint Support Probability 47

3.5.1 Preparation . 47

3.5.2 Proof of Approximation 49

3.6 Performance Study . 51

3.6.1 Empirical study of approximation 51

3.6.2 Result analysis . 53

3.7 Conclusions . 55

4 Summarizing Uncertain Transaction Databases by Probabilistic Tiles 61

4.1 Introduction . 62

4.2 Problem Definition . 66

4.2.1 Quality of Summarization 69

4.2.2 Parameter Setting . 69

4.2.3 NP-Hardness . 70

4.3 Algorithm . 71

4.3.1 Preliminaries . 71

4.3.2 MPTC Mining Framework 72

4.3.3 Generating Candidates 74

4.3.4 Constructing Tiles . 75

4.4 Probabilistic Price Order . 76

4.5 Optimization Techniques . 80

4.5.1 Optimizing Single Transaction Difference 80

4.5.2 Adaptively Computing Cover Quantity 81

4.5.3 Pruning by 3σ Property 82

4.6 Algorithm Analysis . 83

4.6.1 Appropriateness of the Greedy Strategy 83

4.6.2 Time Complexity . 85

ii

Contents

4.7 Performance Study . 87

4.7.1 Experiments on Synthetic Datasets 87

4.7.2 Experiments on Real World Datasets 93

4.8 Related Work . 99

4.8.1 Transaction data summarization 100

4.8.2 Frequent pattern summarization 101

4.9 Conclusions . 101

5 RCP Mining: Towards the Summarization of Spatial Co-location

Patterns 103

5.1 Introduction . 104

5.2 Preliminary . 108

5.2.1 Co-location Patterns . 108

5.2.2 Co-location Distance Measure 109

5.2.3 Problem Statement . 111

5.3 The RCPFast Algorithm . 112

5.4 The RCPMS Algorithm . 116

5.4.1 Optimization Strategy 118

5.4.2 Approximation Strategy 122

5.4.3 The gen cover set() Function 124

5.5 Experimental Study . 125

5.5.1 Experiments on Synthetic Data 125

5.5.2 Experiments on Real Data 129

5.6 Related Work . 131

5.7 Conclusions . 132

6 Conclusion 141

References 143

iii

Contents

iv

List of Tables

1.1 Example transaction databases. 2

2.1 An uncertain database with attribute uncertainty 15

2.2 An example of possible worlds 15

2.3 Probability of different situations in the jth transaction 22

3.1 An example of attribute uncertainty. 40

3.2 An example of possible worlds. 40

3.3 All possible situations of X1 and X2 in ti. 48

3.4 Characteristics of Datasets. 53

4.1 Examples of transaction databases. 62

4.2 An example of possible worlds. 67

4.3 Parameters used in experiments. 89

4.4 Probabilistic F1-score w.r.t. the number of transactions n. . . . 91

4.5 Probabilistic F1-score w.r.t. the number of items m. 92

4.6 Probabilistic F1-score w.r.t. the number of ground truth tiles k. 93

4.7 Probabilistic F1-score w.r.t. the probability of noise ε. 94

4.8 Characteristics of datasets. 94

5.1 A set of prevalent co-location patterns. 107

5.2 Parameters used in synthetic data generation 133

v

List of Tables

vi

List of Figures

2.1 The Number of P-RFP on Retail 27

2.2 The Number of P-RFP on IIP 27

2.3 Runtime on Retail . 28

2.4 Runtime on IIP . 28

2.5 Effect of Optimization . 29

3.1 Empirical proof of approximation. 52

3.2 The Number of P-RFP on IIP-500. 56

3.3 The Number of P-RFP on Retail-500. 56

3.4 Log Runtime on IIP-500. 57

3.5 Log Runtime on Retail-500. 57

3.6 The Number of P-RFP on IIP. 58

3.7 The Number of P-RFP on Retail. 58

3.8 The Number of P-RFP on Chess. 59

3.9 Runtime on IIP. 59

3.10 Runtime on Retail. 60

3.11 Runtime on Chess. 60

4.1 Performance w.r.t. λ on Equip. 96

4.2 Performance w.r.t. minsup on Equip. 97

4.3 Performance w.r.t. λ on IIP. 97

4.4 Performance w.r.t. minsup on IIP. 98

4.5 Number of Tiles on Equip and IIP. 98

4.6 Performance of optimization techniques. 99

4.7 Number of candidates . 99

4.8 Cost and Time w.r.t. u . 100

vii

List of Figures

5.1 A motivating example of a spatial data set. Each symbol rep-

resents an event corresponding to a spatial feature, and each

edge connecting two events represents a neighborhood rela-

tionship. 106

5.2 An example illustrating RCPFast algorithm. 114

5.3 An illustration of the optimization strategy based on Theo-

rem 5.3. Each Fi is a co-location pattern of size i. Different

types of lines represent different ways of obtaining the co-

location distance. Suppose d1 + d2 + d3 ≤ ε and d1 + d2 +

d3 + d4 > ε. 121

5.4 Examples of the approximation strategy. 123

5.5 Compression rate tests on synthetic data sets. 134

5.6 Framework comparison on synthetic data sets. 135

5.7 Performance tests with minpi and ε on synthetic data sets. . . 136

5.8 Co-location distance computation analysis on synthetic data

sets. 137

5.9 Compression rate differences between RCPMS and RCPFast

on synthetic data sets. 138

5.10 Compression rate tests on EPA and POI data sets. 138

5.11 Performance on EPA and POI data sets. 139

viii

Chapter 1

Introduction

With the explosive growth of data in the past decades, Data Mining is in-

creasingly significant and becomes a dynamic and promising research field.

As defined in [1], “Data mining is the process of discovering interesting

patterns and knowledge from large amounts of data.” It has been widely

applied in various domains, including healthcare, economics, and sociol-

ogy.

The newly advances of technologies, such as social network services,

location-based services, and wearable devices, make data acquisition un-

precedentedly convenient, which brings both opportunities and challenges

to the research community. On one hand, the rapid growth of the volume

of data enables innovative applications such as recommender systems and

customer behaviour analysis. On the other hand, the increasing veracity

and variety of data poses new challenges to the analysis and evaluation of

data.

As an important problem in data mining area, data summarization has

been extensively studied in the past decades. Nevertheless, how to con-

duct data summarization in the new scenarios still remain to be explored.

In this dissertation, we focus on summarizing data with representative pat-

terns over uncertain databases and spatial databases. We propose novel

definitions and algorithms, and investigate both the theoretical and empiri-

cal performance of the algorithms. In the remainder of this chapter, we first

provide the background of uncertain database and spatial database, then

give a brief overview of the proposed algorithms.

1

1.1. Uncertain Data

Transaction ID Items

t1 a b
t2 a

(a) A deterministic database.

Transaction ID Items

t1 a:0.6 b:0.8
t2 a:1.0 c:0.42

(b) An uncertain database.

Table 1.1: Example transaction databases.

1.1 Uncertain Data

Uncertain data mining emerges in the past decades because uncertainty is

inherent in various applications such as sensor network monitoring, mov-

ing object tracking, and protein-protein interaction data [2]. It could be

induced by different reasons including experimental error, artificial noise,

and data incompleteness. Rather than cleaning the uncertain data using

domain-specific rules, modeling the uncertainty of data is more rational

in many applications, such as medical diagnosis and risk assessment. As

a consequence, data mining over uncertain data has become an active re-

search area recently.

Table 1.1 gives a comparison between a traditional deterministic database

and an uncertain database. Table 1.1 (a) is a deterministic database, in

which each transaction is a pair comprising an ID and an itemset, such as

〈t1, {a, b}〉 and 〈t2, {a}〉. Table 1.1 (b) is an uncertain database, in which each

item is associated with a probability to indicate its existence in the transac-

tion, e.g., the probability of item a occurring in transaction t1 is 0.6.

Frequent pattern mining, which is one of the most fundamental data

mining tasks, has been introduced into uncertain databases [3] and received

a great deal of research attention [4, 5, 2, 6, 7, 8, 9]. Generally, two differ-

ent definitions of frequent patterns exist in the context of uncertain data:

expected support-based frequent patterns [3, 7], and probabilistic frequent pat-

terns [4, 5]. Both definitions consider the support of a pattern as a discrete

random variable. The former uses the expectation of the support as the

measurement, while the latter considers the probability that the support of a

pattern is no less than some specified minimum support threshold. Various

algorithms have been designed to mine frequent patterns from uncertain

data. A summarization and comparison of probabilistic frequent pattern

2

1.2. Spatial Data

mining algorithms has been reported [2].

Note that, the anti-monotonic property holds for both the expected support-

based frequent patterns, as well as the probabilistic frequent patterns. That

is, if a pattern is frequent in an uncertain database, then all of its sub-

patterns are frequent as well. This property leads to the generation of an

exponential number of result patterns. The large number of discovered fre-

quent patterns makes the understanding and further analysis of generated

patterns troublesome. Therefore, it is important to find a concise and infor-

mative representative pattern set to best approximate all other patterns.

Some initial research work has been undertaken to find a small set of rep-

resentative patterns. For example, mining probabilistic frequent closed patterns

over uncertain data has been studied in [10, 11, 12]. However, the number of

probabilistic frequent closed patterns is still large because of the restrictive

condition for a pattern being closed. For instance, in [12], the closed probabil-

ity of a pattern is computed as the sum of the probabilities of the possible

worlds of an uncertain database where the pattern is closed. We aim to re-

lax the restrictive condition to further reduce the size of frequent patterns

mined over uncertain data.

1.2 Spatial Data

Spatial database attracts increasingly research attention because of the pop-

ularization of location acquisition techniques, such as smart mobile phones

and wearable devices. As one of the most fundamental tasks in spatial data

mining, co-location mining aims to discover co-location patterns where each

is a group of spatial features whose instances are frequently located close to

each other [13]. Spatial co-location patterns yield important insights for var-

ious applications. In epidemiology, for example, different incidents of dis-

eases may exhibit co-location patterns such that one type of disease tends

to occur in spatial proximity of another [14]. In ecology, scientists are in-

terested in finding frequent co-occurrences among spatial features, such as

drought, substantial increase/drop in vegetation, and extremely high pre-

cipitation [15]. In e-commerce, companies may be interested in discovering

types of services (e.g., weather, timetabling, and ticketing queries) that are

3

1.3. Main Contributions and Roadmap

requested by geographically neighboring users, so that location-sensitive

recommendations can be provided [16]. Due to its importance, the prob-

lem of finding prevalent co-location patterns from spatial data has been ex-

plored extensively [13, 17, 18, 14, 19, 20, 21].

A common framework of co-location pattern mining uses the frequen-

cies of a set of spatial features participating in a co-location to measure the

prevalence (known as participation index [13]) and requires a user-specified

minimum threshold to find interesting patterns. Typically, if the threshold is

high, the framework may generate commonsense patterns. However, with

a low threshold, a great number of patterns will be found. This is further

exacerbated by the downward closure property that holds for the participat-

ing index measure. That is, if a set of features is prevalent with respect to

a threshold of participating index, then all of its subsets will be discovered

as prevalent co-location patterns. A huge pattern number will jeopardize

the usability of resulted patterns, as it demands great efforts to understand

or examine the discovered knowledge. Therefore, summarizing discovered

patterns with informative representative patterns can effectively facilitate

the understanding and analysis of data.

1.3 Main Contributions and Roadmap

In the remainder of this dissertation, we study summarizing the uncertain

databases and spatial databases with representative patterns. For different

data mining tasks, we develop effective and efficient algorithms and evalu-

ate the performance theoretically and empirically.

In Chapter 2, we address the problem of summarizing probabilistic fre-

quent patterns from uncertain databases by Probabilistic Representative Fre-

quent Pattern (P-RFP) mining, which aims to find the minimal set of patterns

that can cover all probabilistic frequent patterns. The cover relationship

is determined by the (ε, δ)-cover relationship proposed in this dissertation.

The approach for P-RFP mining can be divided into two steps: (1) finding

the set of patterns that can be (ε, δ)-covered by others; (2) finding minimal

P-RFP set by solving a set cover problem. The bottleneck of the approach

is checking whether a pattern (ε, δ)-covers another in the first step, which

4

1.3. Main Contributions and Roadmap

involves the computation of a joint probability of the supports of two pat-

terns. To address the issue, we propose a dynamic programming-based ap-

proach, which iteratively updates the (ε, δ)-cover probability of two patterns

in the first j transactions in an uncertain database. We also develop effective

optimization strategies to further improve the computation efficiency.

In Chapter 3, we aim to enhance the efficiency further by addressing the

bottleneck in examining whether a pattern (ε, δ)-covers another. We analyze

that the joint support probability follows a joint Poisson binomial distribu-

tion with both theoretical and empirical proofs. Based on the analysis, we

propose an Approximate P-RFP Mining (APM) algorithm that performs out-

standingly faster than the dynamic programming-based exact approach. To

our knowledge, this is the first attempt to analyze the relationship between

two probabilistic frequent patterns through an approximate approach.

In Chapter 4, we focus on directly summarizing uncertain transaction

databases by formulating the task as Minimal Probabilistic Tile Cover (MPTC)

Mining, which aims to find a tile set as a high-quality summarization of an

uncertain database. Unlike summarizing a deterministic database, the chal-

lenge is how to determine whether a tile set covers an uncertain database

or not, which is a probabilistic event. Hence, we define the concept of cover

probability, which is, informally, the probability that a tile set covers the un-

certain database. If the cover probability is greater than a threshold, the tile

set is called a probabilistic tile cover of the database. We define the cost and the

density of a tile set to measure its size and purity degree, respectively. Our

goal of MPTC mining is then to find the probabilistic tile cover with the

minimal cost, satisfying the condition that the density of the cover is suffi-

ciently high. The bottleneck is to check whether a tile is a better represen-

tative than another, which involves the computation of a joint probability.

We prove that the joint probability can be decomposed into independent

Poisson binomial distributions and design an efficient algorithm to calcu-

late it. Several optimization techniques are also devised to further improve

the performance.

In Chapter 5, we propose to summarize co-location patterns using a set

of representative co-location patterns (RCPs), which strikes a fine balance be-

tween improving compression rate and preserving prevalence information.

5

1.4. Publications

To formulate the problem of representative co-location pattern mining, we

first define a new measure to appropriately quantify the distance between

two co-location patterns in terms of their prevalence, based on which the

ε-cover relationship can be stated on a pair of co-location patterns. To solve

the problem of RCP mining, we first propose an algorithm, RCPFast, which

follows existing distance-based pattern summarization techniques to adopt

the post-mining framework that finds RCPs from the set of discovered co-

location patterns. Observing a peculiar challenge in spatial data mining,

we then develop another algorithm, called RCPMS, which employs a mine-

and-summarize framework to discover RCPs directly from the spatial data.

To our knowledge, RCPMS is the first work among existing distance-based

pattern summarization that pushes summarization into the pattern mining

process. Optimization strategies are also devised to further improve the

efficiency of RCPMS.

In Chapter 6, we summarize the main contributions of this dissertation

and conclude with remarks.

1.4 Publications

My publications during PhD candidature are listed as follows:

[1] Chunyang Liu, Ling Chen, and Chengqi Zhang. Mining Probabilis-

tic Representative Frequent Patterns from Uncertain Data. In SIAM Inter-

national Conferece on Data Mining (SDM), pages 73–81, Oral Presentation,

2013.

[2] Chunyang Liu, Ling Chen, and Chengqi Zhang. Summarizing Prob-

abilistic Frequent Patterns: a Fast Approach. In ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD), pages 527–535, Oral Pre-

sentation, 2013.

[3] Bozhong Liu, Ling Chen, Chunyang Liu, Chengqi Zhang, and Wei-

dong Qiu. RCP Mining: Towards the Summarization of Spatial Co-location

Patterns. In International Symposium on Spatial and Temporal Databases

(SSTD), pages 451–469, Oral Presentation, 2015.

[4] Chunyang Liu and Ling Chen. Summarizing Uncertain Transaction

Databases by Probabilistic Tiles. To appear in The annual International Joint

6

1.4. Publications

Conference on Neural Networks (IJCNN), 2016.

[5] Chunyang Liu, Ling Chen, Ivor W. Tsang, and Chengqi Zhang. Learn-

ing Classifiers from High Confidence Rules. Submitted to Pattern Recogni-

tion.

7

1.4. Publications

8

Chapter 2

Mining Probabilistic

Representative Frequent Patterns

From Uncertain Data

Probabilistic frequent pattern mining over uncertain data has received a

great deal of attention recently due to the wide applications of uncertain

data. Similar to its counterpart in deterministic databases, probabilistic fre-

quent pattern mining suffers from the same problem of generating an expo-

nential number of result patterns. The large number of discovered patterns

hinders further evaluation and analysis, and calls for the need to find a

small number of representative patterns to approximate all other patterns.

This chapter formally defines the problem of probabilistic representative fre-

quent pattern (P-RFP) mining, which aims to find the minimal set of patterns

with sufficiently high probability to represent all other patterns. The prob-

lem’s bottleneck turns out to be checking whether a pattern can probabilis-

tically represent another, which involves the computation of a joint proba-

bility of the supports of two patterns. To address the problem, we propose a

novel and efficient dynamic programming-based approach. Moreover, we

have devised a set of effective optimization strategies to further improve

the computation efficiency. Our experimental results demonstrate that the

proposed P-RFP mining effectively reduces the size of probabilistic frequent

patterns. Our proposed approach not only discovers the set of P-RFPs effi-

ciently, but also restores the frequency probability information of patterns

9

2.1. Introduction

with an error guarantee.

2.1 Introduction

Uncertainty is inherent in data from many different domains, including sen-

sor network monitoring, moving object tracking, and protein-protein inter-

action data [2]. Instead of cleaning uncertain data by considering only the

most possible circumstance, it is more reasonable to model the uncertainty

of data. Consequently, data mining over uncertain data has become an ac-

tive area of research in recent years. A survey of state-of-the-art uncertain

data mining techniques can be found in [22]. As one of the most funda-

mental data mining tasks, frequent pattern mining over uncertain data has

also received a great deal of research attention, since it was first introduced

in [3]. Currently, there exist two different definitions of frequent patterns in

the context of uncertain data: expected support-based frequent patterns [3, 7],

and probabilistic frequent patterns [4, 5]. Both definitions consider the support

of a pattern as a discrete random variable. The former uses the expectation

of the support as the measurement, while the latter considers the proba-

bility that the support of a pattern is no less than some specified minimum

support threshold. Various algorithms have been designed to mine frequent

patterns from uncertain data. A summarization and comparison of eight al-

gorithms, proposed to mine respectively the two types of aforementioned

frequent patterns from uncertain databases, have been reported in [2].

Note that, the anti-monotonic property holds for both the expected support-

based frequent patterns and the probabilistic frequent patterns. That is, if a

pattern is frequent in an uncertain database, then all of its sub-patterns are

frequent as well. This property leads to the generation of an exponential

number of result patterns. The large number of discovered frequent pat-

terns makes the understanding and further analysis of generated patterns

troublesome. Therefore, it is important to find a small number of represen-

tative patterns to best approximate all other patterns.

Some initial research work has been undertaken to find a small set of

representative patterns. For example, motivated by the observation that

many frequent patterns have similar items and supporting transactions,

10

2.1. Introduction

mining probabilistic frequent closed patterns over uncertain data has been stud-

ied in [10, 11, 12]. However, the number of probabilistic frequent closed

patterns is still large because of the restrictive condition for a pattern being

closed. For instance, in [12], the closed probability of a pattern is computed as

the sum of the probabilities of the possible worlds of an uncertain database

where the pattern is closed. In this work, we aim to relax the restrictive con-

dition to further reduce the size of frequent patterns mined over uncertain

data.

In the context of deterministic data, a pattern is closed if it is the longest

pattern that appears in the same set of transactions supporting its sub-

patterns. As a generalization of the concept of frequent closed patterns,

Xin et al. [23] proposed the notion of an ε-cover relationship between pat-

terns. A pattern X1 is ε-covered by another pattern X2 if X1 is a subset of X2

and (Supp(X1)− Supp(X2))/Supp(X1) ≤ ε. The goal is then to find a min-

imum set of representative patterns that can ε-cover all frequent patterns.

Since the support of a pattern Supp(X) becomes a discrete random variable

in an uncertain database, the ε-cover relationship cannot be applied directly

to probabilistic frequent patterns.

In this work, we first extend the concept of ε-cover by defining a new

(ε, δ)-cover relationship between probabilistic frequent patterns. Informally,

a pattern X1 is (ε, δ)-covered by another pattern X2 in an uncertain database

if X1 is a subset of X2, and the probability that the support distance between

X1 and X2 is no greater than ε is no less than δ. The objective of probabilistic

representative frequent pattern (P-RFP) mining is then to find the minimal

set of patterns that can (ε, δ)-cover all probabilistic frequent patterns.

The approach for P-RFP mining can be divided into two steps: (1) find-

ing the set of patterns that can be (ε, δ)-covered by others; (2) finding min-

imal P-RFPs by solving a set cover problem. The bottleneck of approach

is checking whether a pattern (ε, δ)-covers another in the first step, which

involves the computation of a joint probability of the supports of two pat-

terns. To address the problem, we propose a dynamic programming-based

approach, which iteratively updates the (ε, δ)-cover probability of two pat-

terns in the first j transactions in an uncertain database. We also develop a

set of effective optimization strategies to further improve the computation

11

2.2. Related Work

efficiency of the proposed approach.

To our knowledge, this is the first work that summarizes frequent pat-

terns mined over uncertain databases by probabilistic representative pat-

tern mining. Our experimental results show that our approach summarizes

frequent patterns effectively, and restores the patterns and their original fre-

quency probability information with a guaranteed error bound.

The remainder of the chapter is structured as follows. The next section

introduces related works to this chapter. We define important concepts and

provide a problem statement in Section 2.3. Section 2.4 describes the pro-

posed data mining approach. Experimental results are presented in Sec-

tion 2.5. Section 2.6 closes this chapter with some conclusive remarks.

2.2 Related Work

In this section, we review related research from two sub-areas: frequent

pattern mining over uncertain data and frequent pattern summarization.

2.2.1 Frequent pattern mining over uncertain data

Frequent pattern mining is first introduced in [24, 25] and then studied

in [26]. Many approaches have been proposed to mine frequent patterns

from uncertain databases in past years. Based on the definition of a fre-

quent pattern, existing work on mining frequent patterns over uncertain

data falls into two categories: expected support-based frequent pattern min-

ing [3, 27, 6, 7] and probabilistic frequent pattern mining [4, 5]. The former

employs the expectation of support as the measurement. That is, a pattern is

frequent only if its expected support is no less than a specified minimum

expected support. The latter considers the frequency probability as the mea-

surement, which refers to the probability that a pattern appears no less than

a specified minimum number of support times. A pattern is therefore fre-

quent only if its frequency probability is no less than a specified minimum

probability (i.e. Pr(Supp(X) ≥ minsup) ≥ minprob).

For mining expected support-based frequent patterns, there are three

representative algorithms: UApriori [3], UFP-growth [6], UH-Mine [7]. UApri-

12

2.2. Related Work

ori is the uncertain version of the well-known Apriori algorithm. Both UFP-

growth and UH-Mine are based on the divide-and-conquer framework that

uses the depth-first strategy to search frequent patterns. For mining proba-

bilistic frequent patterns, two representative algorithms are DP − dynamic

programming-based Apriori algorithm [4], and DC − divide-and-conquer-

based Apriori algorithm [5]. Observing that the support of a pattern in an

uncertain database can be represented by Poisson binomial distribution,

some approximate probabilistic frequent pattern mining algorithms have

also been proposed. [8, 28] respectively use the normal distribution and the

Poisson method to approximate the frequency probability of patterns. Tong

et al. [2] verified that the two types of frequent patterns mined from uncer-

tain data have a tight connection and can be unified when the size of data

is large enough. They also empirically compared the performance of eight

existing representative algorithms with uniform measures.

2.2.2 Frequent pattern summarization

Motivated by the fact that frequent pattern mining may generate an expo-

nential number of patterns due to the downward closure property, a lot of

research work has been dedicated to summarizing the complete set of pat-

terns with a small set of representative ones. Various concepts have been

proposed, such as maximal patterns [29], frequent closed patterns [30], and

non-derivable patterns [31], top-K frequent closed patterns [32, 33], and

redundancy-aware top-K patterns [34]. While all frequent patterns can be

recovered from maximal patterns, the support information is lost. Although

the set of frequent closed patterns preserve the exact support of all frequent

patterns, the number of frequent closed patterns can still be tens of thou-

sands or even more. There are several generalizations of closed patterns,

such as the pattern profiling based approaches [35, 36, 37] and the support

distance based approaches [23, 38]. It was observed in [38] that the profile-

based approaches [35, 36] have some drawbacks, such as no error guaran-

tee on restored support. This work borrows the framework of the support

distance based approaches to find probabilistic representative frequent pat-

terns.

13

2.3. Problem Definition

Recently, some research work has been undertaken to summarize fre-

quent patterns mined over uncertain data. Tang and Peterson [11] proposed

mining probabilistic frequent closed patterns, based on the concept called

probabilistic support. Tong et al. [12] pointed out that frequent closed patterns

defined on probabilistic support cannot guarantee the patterns are closed

in possible worlds which contribute to their probabilistic supports. Instead,

they defined the threshold-based frequent closed patterns over probabilistic

data, which considers the probabilities of possible worlds where a pattern

is closed. Our research relaxes the condition to further reduce the size of

patterns by considering the probabilities of possible worlds where a pattern

can ε-cover another one.

2.3 Problem Definition

This section first introduces preliminary definitions and then formulates the

problem of probabilistic representative frequent pattern (P-RFP) mining.

Xin et al. [23] defined a robust distance measure between patterns in

deterministic data.

Definition 2.1. (distance measure) Given two patterns X1 and X2, the distance

between them, denoted as d(X1, X2), is defined as 1− |T(X1)∩ T(X2)|/|T(X1)∪

T(X2)|, where T(Xi) is the set of transactions supporting pattern Xi.

Then, an ε-cover relationship is defined on two patterns where one sub-

sumes another.

Definition 2.2. (ε-cover) Given a real number ε ∈ [0, 1] and two patterns X1 and

X2, we say X1 is ε-covered by X2 if X1 ⊆ X2 and dist(X1, X2) ≤ ε.

As commonly used in frequent pattern mining, X1 ⊆ X2 denotes X1 is a

subset of X2 (e.g. {a} ⊆ {a, b}). It can be proved easily that, if X2 ε-covers

X1, (Supp(X1)− Supp(X2))/Supp(X1) ≤ ε. The goal of representative fre-

quent pattern mining then becomes finding the minimal set of patterns that

ε-cover all frequent patterns.

In the context of uncertain data, the support of a pattern, Supp(Xi), be-

comes a discrete random variable. Therefore, we cannot directly apply the

14

2.3. Problem Definition

ID Transactions

T1 a:0.7 b:0.2
T2 a:1.0 c:0.5

Table 2.1: An uncertain database with attribute uncertainty

ID Possible World Prob.

w1 {T1 : φ, T2 : {a}} 0.12
w2 {T1 : {a}, T2 : {a}} 0.28
w3 {T1 : {b}, T2 : {a}} 0.03
w4 {T1 : {a, b}, T2 : {a}} 0.07
w5 {T1 : φ, T2 : {a, c}} 0.12
w6 {T1 : {a}, T2 : {a, c}} 0.28
w7 {T1 : {b}, T2 : {a, c}} 0.03
w8 {T1 : {a, b}, T2 : {a, c}} 0.07

Table 2.2: An example of possible worlds

ε-cover relationship to probabilistic frequent patterns. Before explaining

how to extend the concept of ε-covered in the context of uncertain data,

we examine an uncertain database where attributes are associated with ex-

istential probabilities. Table 2.1 shows an uncertain transaction database

where each transaction consists of a set of probabilistic items. For example,

the probability that item a appears in the first transaction T1 is 0.7. Possible

world semantics are commonly used to explain the existence of data in an un-

certain database. For example, the database in Table 2.1 has eight possible

worlds, which are listed in Table 2.2. Each possible world is associated with

an existential probability. For instance, the probability that the first possible

world w1 exists is (1 − 0.7)× (1 − 0.2)× 1 × (1 − 0.5) = 0.12.

Considering that the occurrences of items in every possible world are

deterministic, we can define the probabilistic distance between two proba-

bilistic frequent patterns based on their distance in possible worlds.

Definition 2.3. (probabilistic distance measure) Given an uncertain database

D, and two patterns X1 and X2, let PW = {w1, . . . , wm} be the set of possible

worlds derived from D, the distance between X1 and X2 in a possible world wj ∈

15

2.3. Problem Definition

PW is

dist(X1, X2; wj) = 1 −
|T(X1; wj) ∩ T(X2; wj)|

|T(X1; wj) ∪ T(X2; wj)|
(2.1)

where T(Xi ; wj) is the set of transactions containing pattern Xi in the possible

world wj. Then, the probabilistic distance between X1 and X2, denoted by dist(X1, X2),

is a random variable. The probability mass function of dist(X1, X2) is:

Pr(dist(X1, X2) = d) = ∑
wj∈PW ,dist(X1,X2;wj)=d

Pr(wj) (2.2)

That is, the probability that the distance between two probabilistic fre-

quent patterns is d equals to the sum of the probabilities of possible worlds

where the distance between the two patterns is d.

For example, consider the uncertain database in Table 2.1. Let X1 =

{a} and X2 = {a, b}. The probability that the distance between X1 and

X2 is equal to 0.5, Pr(dist(X1, X2) = 0.5), can be computed by adding the

probabilities of the possible worlds w4 and w8. This is because only in the

two possible worlds, the distance between the two patterns is 0.5. Therefore,

Pr(dist(X1, X2) = 0.5) = 0.14.

Based on the probabilistic distance measure, we define the ε-cover prob-

ability as follows.

Definition 2.4. (ε-cover probability) Given an uncertain database D, two patterns

X1 and X2, and a distance threshold ε, the ε-cover probability of X1 and X2 is

Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε).

Definition 2.5. ((ε, δ)-cover) Given an uncertain database D, two patterns X1

and X2, a distance threshold ε and a cover probability threshold δ, we say X2 (ε, δ)-

covers X1 if X1 ⊆ X2 and Prcover(X1, X2; ε) ≥ δ.

Our goal is then to obtain the minimal set of patterns that will (ε, δ)-

cover all the probabilistic frequent patterns. The formal statement of the

probabilistic representative frequent pattern (P-RFP) mining is as follows.

Definition 2.6. (Problem Statement) Given an uncertain database D, a set of

probabilistic frequent patterns F , a probabilistic distance threshold ε and a cover

16

2.4. P-RFP Mining

probability threshold δ, the problem of probabilistic representative frequent pattern

(P-RFP) mining is to find the minimal set of patterns R so that, for any frequent

pattern X ∈ F , there exists a representative pattern X′ ∈ R where X′ (ε, δ)-covers

X.

It is obvious that when ε = 0, the probabilistic representative pattern set

is probabilistic closed patterns, and when ε = 1, it is probabilistic maximal

patterns.

2.4 P-RFP Mining

This section first describes the framework of our proposed approach. Then,

we explain the details of the main steps for P-RFP mining.

2.4.1 Framework of P-RFP Mining

Before presenting the framework of our approach for P-RFP mining, we

develop some important lemmas between two patterns where one (ε, δ)-

covers another.

Lemma 2.1. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, the distance between X1 and X2 in the possible world wj can be

represented by the support of the patterns in wj:

dist(X1, X2; wj) = 1 −
Supp(X2; wj)

Supp(X1; wj)
(2.3)

Proof. Since X2 (ε, δ)-covers X1, then X1 ⊆ X2,

dist(X1, X2; wj) =1 −
|T(X1; wj) ∩ T(X2; wj)|

|T(X1; wj) ∪ T(X2; wj)|

=1 −
|T(X2; wj)|

|T(X1; wj)|

=1 −
Supp(X2; wj)

Supp(X1; wj)
,

17

2.4. P-RFP Mining

which proves the lemma.

Lemma 2.2. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, the probabilistic distance dist(X1, X2) can be represented by the

support distribution of X1 and X2:

dist(X1, X2) = 1 −
Supp(X2)

Supp(X1)
(2.4)

Proof. Supp(Xi) is a discrete random variable with the following probability

density function.

Pr(Supp(Xi) = k) = ∑
wj∈PW ,Supp(X;wj)=k

Pr(wj) (2.5)

According to the definition of probabilistic distance and Lemma 2.1, we

have

Pr(dist(X1, X2) = d) = ∑
wj∈PW ,dist(X1,X2;wj)=d

Pr(wj)

= ∑
wj∈PW ,1−

Supp(X2;wj)

Supp(X1;wj)
=d

Pr(wj)

For brevity, let W ′ = {wj |wj ∈ PW , Supp(X1; wj) = k, Supp(X2; wj) =

(1 − d)k}, where k ∈ [0, |D|], then

Pr(dist(X1, X2) = d) =
|D|

∑
k=1

∑
wj∈W ′

Pr(wj)

=
|D|

∑
k=1

Pr(Supp(X2) = k, Supp(X1) = (1 − d)k)

= Pr

((
1 −

Supp(X2)

Supp(X1)

)
= d

)
,

which proves the lemma.

18

2.4. P-RFP Mining

Lemma 2.3. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, we have

Pr (Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ (2.6)

Proof. Since X2 (ε, δ)-covers X1, according to Lemma 2.2, we have

Pr(dist(X1, X2) ≤ ε)

= Pr

(
1 −

Supp(X2)

Supp(X1)
≤ ε

)

= Pr(Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ,

which proves the lemma.

Lemma 2.4. Given an uncertain database D, two patterns X1 and X2, a sup-

port threshold minsup and a frequency probability threshold minprob, if X2 (ε, δ)-

covers X1, and X1 is a probabilistic frequent pattern w.r.t. minsup and minprob,

then X2 is a probabilistic frequent pattern w.r.t. (1− ε)minsup and (δ ·minprob).

Proof. Since X1 is a probabilistic frequent pattern w.r.t. minsup and minprob,

we have Pr (Supp(X1) ≥ minsup) ≥ minprob, which infers,

Pr((1 − ε)Supp(X1) ≥ (1 − ε)minsup) ≥ minprob

From Lemma 2.3, we have,

Pr(Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ

Hence, Pr (Supp(X2) ≥ (1 − ε)minsup) ≥ δ · minprob. That is, X2 is a prob-

abilistic frequent pattern w.r.t. (1 − ε)minsup and (δ · minprob).

According to Lemma 2.4, to find the representative patterns to (ε, δ)-

cover the complete set of probabilistic frequent patterns w.r.t. minsup and

minprob, denoted as F, we need to consider the set of pseudo probabilis-

tic frequent patterns w.r.t (1 − ε)minsup and (δ · minprob), denoted as F̂.

19

2.4. P-RFP Mining

Given the two sets F and F̂, our approach for P-RFP mining consists of the

following two steps.

1. Generate the cover set for every pattern in F̂. For each pattern X in F̂,

the cover set of X, denoted as C(X), is a set of probabilistic frequent

patterns in F that can be (ε, δ)-covered by X. That is, C(X) ⊆ F.

2. Find the minimal pattern set R ⊆ F̂ to (ε, δ)-cover all probabilistic fre-

quent patterns in F.

After finding the cover sets for patterns in F̂ in the first step, the second

step is equivalent to finding a minimal number of cover sets that cover all

patterns in F. This is known as a set cover problem, which is NP-hard. Sim-

ilar to [38], we adopt a well-known greedy set cover algorithm [39], which

achieves polynomial complexity. Therefore, in the following, we focus on

describing the first step, which generates the cover set for each pseudo prob-

abilistic frequent pattern in F̂. The framework of our approach is illustrated

in Algorithm 2.1.

2.4.2 Cover Set Generation

To generate the cover set for a pattern X2 in F̂, for each pattern X1 in F so

that X1 ⊆ X2, we need to check if X2 (ε, δ)-covers X1. That is, we need

to examine whether the ε-cover probability between X1 and X2 is no less

than δ (i.e., Pr(dist(X1, X2) ≤ ε) ≥ δ). According to Lemma 2.3, the ε-

cover probability Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε) is equivalent to

Pr(Supp(X2) ≥ (1 − ε)Supp(X1)). Let Supp(X1) = l, and Supp(X2) = k.

Then, the ε-cover probability between X1 and X2 is equal to,

|D|

∑
l=0

l

∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k) (2.7)

To compute the value of Equation (2.7) to find out whether it is no less than

δ, we introduce the joint support probability distribution as follows.

Definition 2.7 (joint support probability). Given an uncertain database D and

20

2.4. P-RFP Mining

patterns X1 and X2, the joint support probability mass function is

Pr(Supp(X1) = l, Supp(X2) = k) (2.8)

= ∑
wi∈PW ,Supp(X1;wi)=l,Supp(X2;wi)=k

Pr(wi)

To split the computation of the joint support probability of X1 and X2

into smaller sub-problems, we define the partial joint support probability

distribution as follows.

Definition 2.8 (partial joint support probability). Given an uncertain database

D and patterns X1 and X2, the j-partial joint support probability is the joint sup-

port probability of X1 and X2 in the first j transactions of D. The j-partial joint

support mass function is

Prj(Supp(X1) = l, Supp(X2) = k) = ∑
wi∈PW ,Suppj(X1;wi)=l,Suppj(X2;wi)=k

Pr(wi)

It can be proved that the partial joint support probability can be com-

puted in a recursive strategy.

Lemma 2.5. Given an uncertain database D and patterns X1 and X2, X1 ⊆ X2,

j, k, l ∈ Z and 0 ≤ k ≤ l ≤ j ≤ |D|, then:

Prj(Supp(X1) = l, Supp(X2) = k) (2.9)

=Prj−1(Supp(X1) = l, Supp(X2) = k)(1 − pX1
j)

+Prj−1(Supp(X1) = l − 1, Supp(X2) = k)(pX1
j − pX2

j)

+Prj−1(Supp(X1) = l − 1, Supp(X2) = k − 1)pX2
j

where pXi
j is the probability that Xi occurs in the jth transaction. The boundary

case is: Prj(Supp(X1) = 0, Supp(X2) = 0) = ∏
j
m=1(1 − pX1

m).

Proof. In jth-transaction tj ∈ D, there are only three existence possibilities

of X1 and X2, since X1 ⊆ X2. Table 2.3 lists the three situations and their

respective existential probabilities. Therefore, we can split the computation

of Prj(Supp(X1) = l, Supp(X2) = k) into the three situations with corre-

sponding probability. The equation of the boundary case is intuitive.

21

2.4. P-RFP Mining

Situation Probability

X1 ⊆ tj, X2 ⊆ tj pX2
j

X1 ⊆ tj, X2 � tj pX1
j − pX2

j

X1 � tj, X2 � tj 1 − pX1
j

Table 2.3: Probability of different situations in the jth transaction

Lemma 2.5 enables us to compute the cover probability iteratively using

a dynamic programming scheme. This equation is the foundation of our

approach. Although it is feasible and effective, we can accelerate it through

certain optimization techniques, which are stated in the next section.

2.4.3 Optimization Strategies

While Lemma 2.5 approves the cover probability between two patterns can

be updated transaction by transaction, the transactions which support nei-

ther of the two patterns can actually be skipped.

Lemma 2.6. Given an uncertain database D, two patterns X1 and X2 s.t. X1 ⊆

X2, and a probabilistic distance threshold ε, Prcover(X1, X2; ε) computed on D is

equal to that computed on D(X1), where D(X1) is {t|P(X1 ⊆ t) > 0, t ∈ D} ⊆

D.

Lemma 2.6 is intuitive. According to Definition 2.3 and Definition 2.4,

only the transactions supporting at least the sub-pattern X1 will contribute

to the value of probabilistic distance, which in turn affects the ε-cover prob-

ability. This lemma allows us to compute the ε-cover probability on a pro-

jected sub-database, which significantly reduces the runtime of computa-

tion.

Lemma 2.7. Given an uncertain database D and two patterns X1 and X2 s.t.

X1 ⊆ X2, if X2 (ε, δ)-covers X1, then ∀X s.t. X1 ⊆ X ⊆ X2, we have X2 (ε, δ)-

covers X.

Proof. Since X2 (ε, δ)-covers X1, according to Lemma 2.3 we have

Pr(Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ

22

2.4. P-RFP Mining

Algorithm 2.1 P-RFP Mining Framework

Input: D, F, F̂, ε and δ
Output: Minimal P-RFP Set R

1: R ← ∅

2: CoverSets ← ∅

3: for all X2 ∈ F̂ do
4: NoCoverSet ← ∅

5: for all X1 ∈ F such that X1 ⊆ X2 do
6: if isCover(X1, X2) = True then
7: CoverSets[X2].add(X1)
8: else
9: NoCoverSet.add(X1)

10: R = setCover(CoverSets, F)
11: return R

∀X that X1 ⊆ X ⊆ X2, we have Supp(X1; wj) ≥ Supp(X; wj) ≥ Supp(X2; wj)

in every possible world wj. Therefore, Pr(Supp(X2) ≥ (1 − ε)Supp(X1)) ≥

δ ⇒

Pr(Supp(X2) ≥ (1 − ε)Supp(X1) ≥ (1 − ε)Supp(X)) ≥ δ

Hence, X2 (ε, δ)-covers X.

According to Lemma 2.7, we have the following corollary.

Corollary 2.1. Given an uncertain database D and two patterns X1 and X2, X1 ⊆

X2, if X2 cannot (ε, δ)-cover X1, then ∀X ⊆ X1, X2 cannot (ε, δ)-cover X.

Lemma 2.7 and Corollary 2.1 reduce the number of pattern pairs, for

which the cover probability needs to be computed.

Lemma 2.8. Given an uncertain database D, two patterns X1 and X2 s.t. X1 ⊆

X2, a distance threshold ε, and a cover probability threshold δ, if ∃j, 1 ≤ j ≤ |D|

such that ∏
j
m=1(1 − pX1

m + pX2
m) ≥ δ, then X2 (ε, δ)-covers X1, where pXi

m is the

probability that Xi occurs in the m-th transaction.

23

2.4. P-RFP Mining

Algorithm 2.2 Function isCover

Input: X1, X2

Output: If X2 (ε, δ)-covers X1, then return True, else False
1: for all X ∈ CoverSets[X2] do
2: if X ⊆ X1 then
3: return True
4: for all X ∈ NoCoverSet[X2] do
5: if X ⊇ X1 then
6: return False
7: Q(|D(X1)|) ← ∏

|D(X1)|
m=1 (1 − pX1

m + pX2
m)

8: if Q(|D(X1)|) ≥ δ then
9: return True

10: for l = 0 to |D(X1)| do
11: for k = �(1 − ε)l� to l − 1 do
12: Pcover+ = Pr(Supp(X1) = l, Supp(X2) = k)
13: if Pcover ≥ δ then
14: return True
15: return False

Proof. According to the definition of cover probability, we have

Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε)

=
|D|

∑
l=0

l

∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k)

≥
|D|

∑
l=0

Pr(Supp(X1) = l, Supp(X2) = l)

Let Q(j) = ∑
j
l=0 Pr(Supp(X1) = l, Supp(X2) = l). If Q(|D|) ≥ δ, then

Prcover(X1, X2; ε) ≥ δ must be valid due to Q(|D|) ≤ Pr(dist(X1, X2) ≤ ε).

Now we prove that Q(j) can be computed using continued multiplications.

Q(j) =
j

∑
l=0

Prj(Supp(X1) = l, Supp(X2) = l)

=Prj(Supp(X1) = 0, Supp(X2) = 0)

+
j

∑
l=1

Prj(Supp(X1) = l, Supp(X2) = l)

24

2.4. P-RFP Mining

Consider that there are only two situations in the jth transaction: both X1

and X2 occur or neither of them occur, we have

Q(j) =Prj(Supp(X1) = 0, Supp(X2) = 0)

+
j

∑
l=1

{
Prj−1(Supp(X1) = l, Supp(X2) = l)(1 − pX1

j)
}

+
j

∑
l=1

{
Prj−1(Supp(X1) = l − 1, Supp(X2) = l − 1)pX2

j

}
=Prj(Supp(X1) = 0, Supp(X2) = 0)

+
j

∑
l=0

{
Prj−1(Supp(X1) = l, Supp(X2) = l)(1 − pX1

j)
}

− Prj−1(Supp(X1) = 0, Supp(X2) = 0)(1 − pX1
j)

+
j

∑
l=0

{
Prj−1(Supp(X1) = l, Supp(X2) = l)pX2

j

}
=Q(j − 1)(1 − pX1

j + pX2
j)

Therefore,

Q(j) = Q(j − 1)(1 − pX1
j + pX2

j)

= Q(j − 2)(1 − pX1
j−1 + pX2

j−1)(1 − pX1
j + pX2

j)

...

=
j

∏
m=1

(1 − pX1
m + pX2

m)

Since Q(j) ≤ Prcover(X1, X2; ε), if ∏
j
m=1(1 − pX1

m + pX2
m) ≥ δ, then X2 (ε, δ)-

cover X1.

Lemma 2.8 defines a lower bound of ε-cover probability, which can be

computed efficiently using continued multiplication. If the lower bound is

less than the cover probability threshold δ, we can immediately decide X2

cannot (ε, δ)-cover X1 without computing their real ε-cover probability.

25

2.5. Performance Study

2.4.4 P-RFP Mining Algorithm

The overall framework of our P-RFP mining algorithm is shown in Algo-

rithm 2.1. From lines 3 − 9, we find the cover set for each pattern X2 in

the pseudo probabilistic frequent patterns F̂. The most important step is to

check whether X2 covers X1 ∈ F (line 6). The details of the function isCover

is illustrated in Algorithm 2.2, where lines 1− 3 implement the optimization

stated by Lemma 2.7, and lines 4 − 6 apply the Corollary 2.1. Lines 7 − 9 in

the function isCover use Lemma 2.8 to efficiently discover the lower bound

of ε-cover probability. Note that, according to Lemma 2.6, the lower bound,

as well as the real ε-cover probability, can be computed on a sub-database

D(X1). Finally, from lines 10− 14, we use the dynamic programming based

scheme to compute the ε-cover probability. As mentioned before, the func-

tion setCover in Algorithm 2.1 is solved using the greedy algorithm in [39].

2.5 Performance Study

This section evaluates the effectiveness of P-RFPs, the performance of our

approach for P-RFP mining, and the optimization strategies.

2.5.1 Data sets

Two datasets are used in our experiments. The first is the Retail dataset

from the Frequent Itemset Mining (FIMI) Dataset Repository.1 This is one

of the standard datasets used in frequent pattern mining in deterministic

databases. In order to bring uncertainty into the dataset, following previous

works [7], we synthesize an existential probability for each item based on a

Gaussian distribution with the mean of 0.9 and the variance of 0.125. This

dataset is an uncertain database that associates uncertainty to attributes.

The second one is the iceberg sighting record from 1993 to 1997 on the

North Atlantic from the International Ice Patrol (IIP) Iceberg Sightings Database.2

The IIP Iceberg Sighting Database collects information of iceberg activities

1http://fimi.cs.helsinki.fi/data/
2http://nsidc.org/data/g00807.html

26

2.5. Performance Study

0.004 0.005 0.006 0.007 0.008 0.009 0.010
minsup

0

50

100

150

200

250

300

350

400

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. minsup

F

R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
minprob

0

100

200

300

400

500

600

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. minprob

F

R

0.05 0.10 0.15 0.20 0.25
ε

0

50

100

150

200

250

300

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. ε

F

R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ

0

50

100

150

200

250

300

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. δ

F

R

Figure 2.1: The Number of P-RFP on Retail

0.004 0.005 0.006 0.007 0.008 0.009 0.010
minsup

0

50

100

150

200

250

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. minsup

F

R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
minprob

0

50

100

150

200

250

300

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. minprob

F

R

0.05 0.10 0.15 0.20 0.25 0.30
ε

0

50

100

150

200

250

300

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. ε

F

R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ

0

50

100

150

200

250

300

T
h
e
 N

u
m

b
e
r

o
f

P
-R

F
P

Size vs. δ

F

R

Figure 2.2: The Number of P-RFP on IIP

in the North Atlantic. Each transaction in the database contains the informa-

tion of date, location, size, shape, reporting source and a confidence level.

27

2.5. Performance Study

0.004 0.005 0.006 0.007 0.008 0.009 0.010
minsup

0

10000

20000

30000

40000

50000

60000

R
u
n
ti

m
e
(s

)

Runtime vs. minsup

Runtime

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
minprob

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

R
u
n
ti

m
e
(s

)

Runtime vs. minprob

Runtime

0.05 0.10 0.15 0.20 0.25
ε

0

10000

20000

30000

40000

50000

60000

70000

80000

R
u
n
ti

m
e
(s

)

Runtime vs. ε

Runtime

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ

0

5000

10000

15000

20000

25000

30000

35000

40000

R
u
n
ti

m
e
(s

)

Runtime vs. δ

Runtime

Figure 2.3: Runtime on Retail

0.004 0.005 0.006 0.007 0.008 0.009 0.010
minsup

0

5000

10000

15000

20000

25000

30000

35000

R
u
n
ti

m
e
(s

)

Runtime vs. minsup

Runtime

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
minprob

0

5000

10000

15000

20000

25000

30000

35000

R
u
n
ti

m
e
(s

)

Runtime vs. minprob

Runtime

0.05 0.10 0.15 0.20 0.25 0.30
ε

0

10000

20000

30000

40000

50000

60000

70000

R
u
n
ti

m
e
(s

)

Runtime vs. ε

Runtime

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ

0

5000

10000

15000

20000

25000

30000

35000

R
u
n
ti

m
e
(s

)

Runtime vs. δ

Runtime

Figure 2.4: Runtime on IIP

The confidence level has six possible attributes, R/V (Radar and visual), R

(Radar only), V (Visual), MEA (Measured), EST (Estimated) and GBL (Gar-

28

2.5. Performance Study

0.10 0.15 0.20 0.25 0.30 0.35 0.40
ε

0

2000

4000

6000

8000

10000

12000

14000

R
u
n
ti

m
e
(s

)

Runtime vs. ε on Retail

Basic

Optimized

0.2 0.3 0.4 0.5 0.6 0.7 0.8
δ

0

200

400

600

800

1000

1200

R
u
n
ti

m
e
(s

)

Runtime vs. δ on Retail

Basic

Optimized

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
ε

0

5000

10000

15000

20000

25000

R
u
n
ti

m
e
(s

)

Runtime vs. ε on IIP

Basic

Optimized

0.2 0.3 0.4 0.5 0.6 0.7 0.8
δ

0

500

1000

1500

2000

2500

R
u
n
ti

m
e
(s

)

Runtime vs. δ on IIP

Basic

Optimized

Figure 2.5: Effect of Optimization

bled), which indicate different reliabilities of that tuple. We translate confi-

dence levels to probabilities 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3, respectively. This

dataset is an uncertain database that associates uncertainty to tuples.

2.5.2 Result analysis

We first evaluate the compression rate of the P-RFPs, with respect to the

variation of parameters. We randomly select 1000 transactions from the two

datasets respectively to conduct the experiment. The sizes of R (the set of

P-RFPs), and F (the set of probabilistic frequent patterns), with respect to

the variations of minsup, minprob, ε, and δ, on the two datasets are shown

in Figures 2.1 and 2.2 respectively. The default values of the four parame-

ters are set to 0.5%, 0.8, 0.2 and 0.2 respectively. It can be observed from the

results on both datasets, when minsup and minprob are low, the compres-

sion rate of P-RFPs is high because there are more probabilistic frequent

patterns. For the variations of ε and δ, obviously, the high compression rate

can be achieved if the probabilistic distance threshold ε is high and/or the

cover probability threshold δ is low.

29

2.6. Conclusions

We then examine the runtime of the proposed algorithm for P-RFP min-

ing. Figures 2.3 and 2.4 show the runtime vs. minsup, minprob, ε, and δ

curves on 1000 transactions randomly selected from the two datasets, re-

spectively. The default values of the four parameters are same as in the first

experiment. It is intuitive that, when ε is increasing or minsup, minprob and

δ are decreasing, the runtime will increase because more pattern pairs are

engaged in cover probability checking. We find that the growth of both ε

and δ lead to a trade-off between the number of P-RFPs and runtime.

We also evaluate the effectiveness of the optimization strategies pro-

posed in Section 2.4.3. We randomly select 500 transactions from the two

datasets, respectively, to carry out this experiment. The default values for

the experiments on the Retail dataset are: minsup = 4%, minprob = 0.8,

ε = 0.1 and δ = 0.2. On the IIP dataset, the four parameters are set to 10%,

0.8, 0.1 and 0.2 by default, respectively. Figure 2.5 shows the runtime of the

basic version of our algorithm, and the runtime of the algorithm integrated

with optimization strategies, with respect to the variation of ε and δ on the

two datasets, respectively. The results clearly reveal the effectiveness of the

optimization strategies by demonstrating that the optimized algorithm sig-

nificantly reduces the runtime.

2.6 Conclusions

Due to the downward closure property, the number of probabilistic frequent

patterns mined over uncertain data can be so large that they hinder fur-

ther analysis and exploitation. This chapter proposes the P-RFP mining,

which aims to find a small set of patterns to represent the complete set of

probabilistic frequent patterns. To address the data uncertainty issue, we

define the concept of probabilistic distance and an (ε, δ)-cover relationship

between two patterns. The P-RFP set is the minimal set of patterns that

(ε, δ)-cover the complete set of probabilistic frequent patterns. We develop

a P-RFP mining algorithm that uses a dynamic programming based scheme

to efficiently check whether one pattern (ε, δ)-covers another. We also ex-

ploit effective optimization strategies to further improve the computation

efficiency. Our experimental results demonstrate that the devised data min-

30

2.6. Conclusions

ing algorithm effectively and efficiently discovers the set of P-RFPs, which

can substantially reduce the size of probabilistic frequent patterns.

This work extends the measure defined in deterministic databases to

quantify the distance between two patterns in terms of their supporting

transactions. Since the supports of patterns are random variables in the

context of uncertain data, other distance measures, such as Kullback-Leibler

divergence, might be applicable. We will study the effectiveness of proba-

bilistic representative frequent patterns defined on different distance mea-

sures.

31

2.6. Conclusions

32

Chapter 3

Summarizing Probabilistic

Frequent Patterns: A Fast

Approach

Mining probabilistic frequent patterns from uncertain data has received a

great deal of attention in recent years due to the wide applications. How-

ever, probabilistic frequent pattern mining suffers from the problem that an

exponential number of result patterns are generated, which seriously hin-

ders further evaluation and analysis. In this chapter, we focus on the prob-

lem of mining probabilistic representative frequent patterns (P-RFP), which

is the minimal set of patterns with adequately high probability to repre-

sent all frequent patterns. Observing the bottleneck in checking whether a

pattern can probabilistically represent another, which involves the compu-

tation of a joint probability of the supports of two patterns, we introduce a

novel approximation of the joint probability with both theoretical and em-

pirical proofs. Based on the approximation, we propose an Approximate P-

RFP Mining (APM) algorithm, which effectively and efficiently compresses

the set of probabilistic frequent patterns. To our knowledge, this is the first

attempt to analyze the relationship between two probabilistic frequent pat-

terns through an approximate approach. Our experiments on both synthetic

and real-world datasets demonstrate that the APM algorithm accelerates P-

RFP mining dramatically, achieving orders of magnitudes faster than an

exact solution. Moreover, the error rate of APM is guaranteed to be very

33

3.1. Introduction

small when the database contains hundreds of transactions, which further

affirms that APM is a practical solution for summarizing probabilistic fre-

quent patterns.

3.1 Introduction

Data uncertainty is inherent in various applications such as sensor net-

work monitoring, moving object tracking, and protein-protein interaction

data [2]. It could be induced by different reasons including experimental

error, artificial noise, and data incompleteness. Rather than cleaning the un-

certain data using domain-specific rules, modeling the uncertainty of data

is more rational in many applications, such as medical diagnosis and risk

assessment. As a consequence, data mining over uncertain data has become

an active research area recently. A survey of state-of-the-art uncertain data

mining techniques may be found in [22].

As one of the most fundamental data mining tasks, frequent pattern

mining has also been introduced into uncertain databases [3] and received

a great deal of research attention [4, 5, 2, 6, 7, 8]. Generally, there exist

two different definitions of frequent patterns in the context of uncertain

data: expected support-based frequent patterns [3, 7] and probabilistic frequent

patterns [4, 5]. Both definitions consider the support of a pattern as a discrete

random variable. The former uses the expectation of the support as the

measurement, while the latter considers the probability that the support of a

pattern is no less than some specified minimum support threshold. Despite

the different frequentness metrics employed, both the expected support-

based frequent patterns and the probabilistic frequent patterns enjoy the

anti-monotonic property [3, 4]. That is, if a pattern is frequent in an uncer-

tain database, then all of its sub-patterns are frequent as well. This property

leads to the generation of an exponential number of result patterns. The

large number of discovered frequent patterns makes the understanding and

further analysis of generated patterns troublesome. Therefore, similar to the

counterpart of the problem in deterministic data, it is indeed important to

find a small number of representative patterns to best approximate all other

probabilistic frequent patterns.

34

3.1. Introduction

Some initial research work has been undertaken to find a small set of rep-

resentative patterns. For example, mining probabilistic frequent closed patterns

over uncertain data has been studied in [10, 11, 12]. However, the number of

probabilistic frequent closed patterns is still large because of the restrictive

condition for a pattern being closed. For instance, in [12], the closed probabil-

ity of a pattern is computed as the sum of the probabilities of the possible

worlds of an uncertain database where the pattern is closed.

In the context of deterministic data, Xin et al. [23] has proposed the no-

tion of an ε-covered relationship between patterns as a generalization of the

concept of frequent closed patterns to further reduce the size of closed pat-

terns. A pattern X1 is ε-covered by another pattern X2 if X1 is a subset of

X2 and (Supp(X1)− Supp(X2))/Supp(X1) ≤ ε. The goal is then to find a

minimal set of representative patterns that can ε-cover all frequent patterns.

Motivated by this idea in deterministic data, in our previous work, we

have proposed to relax the restrictive condition of probabilistic frequent

closed patterns to mine probabilistic representative frequent patterns (P-

RFP) [40]. In particular, we extend the concept of ε-cover to define the (ε, δ)-

covered relationship between probabilistic frequent patterns, addressing the

fact that the support of a pattern becomes a discrete random variable in

an uncertain database. Informally, a pattern X1 is (ε, δ)-covered by another

pattern X2 in an uncertain database if X1 is a subset of X2, and the proba-

bility that the support distance between X1 and X2 is no greater than ε is no

less than δ.

We have devised a dynamic programming-based approach to discover

the minimal set of P-RFPs. Although this approach can compute exactly the

probability that the support distance between two patterns is no greater

than ε, it is not sufficiently efficient due to the bottleneck in examining

whether a pattern (ε, δ)-covers another, which involves the computation of

a joint probability of the supports of the two patterns. In this work, we ana-

lyze that the joint support probability follows a joint Poisson binomial dis-

tribution with both theoretical and empirical proofs. Based on the analysis,

we propose an Approximate P-RFP Mining (APM) algorithm that performs

outstandingly faster than the dynamic programming-based exact approach.

To our knowledge, this is the first attempt to analyze the relationship

35

3.2. Related Work

between two probabilistic frequent patterns through an approximate ap-

proach. Our experimental results show that our approach summarizes fre-

quent patterns efficiently and effectively, and restores the patterns and their

original frequency probability information with a guaranteed error bound.

To summarize, our contributions are as follows.

• We construct a mathematical model for the joint probability of the sup-

ports of a pattern pair and study an approximation of the joint support

probability.

• We develop an efficient algorithm to discover the minimal set of P-

RFPs using accurate approximation techniques to estimate the proba-

bility that one pattern represents another.

• We conduct extensive experiments on both real-world and synthetic

data to evaluate the performance of the proposed approach by com-

paring against an exact solution.

The remainder of the chapter is structured as follows. The next sec-

tion reviews existing works related to this chapter. We define important

concepts and provide the problem statement in Section 3.3. Section 3.4 de-

scribes the proposed data mining approach. The theoretical proof of the ap-

proximation of the joint support probability is demonstrated in Section 3.5.

We evaluate the performance of the proposed approach in Section 3.6 and

close this chapter with some conclusive remarks in Section 3.7.

3.2 Related Work

In this section, we review related research from two sub-areas: frequent

pattern mining over uncertain data and frequent pattern summarization.

3.2.1 Frequent pattern mining over uncertain data

Mining frequent patterns from uncertain databases has been studied exten-

sively in the past years. Existing work on frequent pattern mining from un-

certain data falls into two categories: expected support-based frequent pattern

36

3.2. Related Work

mining [3, 6, 7] and probabilistic frequent pattern mining [4, 5]. The former uti-

lizes the expectation of support as the frequentness metric. That is, a pattern

is frequent only if its expected support is no less than a specified minimum

expected support. The latter considers the frequency probability as the mea-

surement, which refers to the probability that a pattern appears no less than

a specified minimum support times. Thus, a pattern is frequent only if its

frequency probability is no less than a specified minimum probability (i.e.

Pr(Supp(X) ≥ minsup) ≥ minprob).

There are three representative algorithms for mining expected support-

based frequent patterns: UApriori [3], UFP-growth [6] and UH-Mine [7].

UApriori is the uncertain version of the well-known Apriori algorithm.

Both UFP-growth and UH-Mine employ the divide-and-conquer framework

that searches frequent patterns with depth-first strategy. For mining proba-

bilistic frequent patterns, there are two representative algorithms: Dynamic

Programming-based (DP) Apriori algorithm [4], and Divide-and-Conquer-

based (DC) Apriori algorithm [5]. Tong et al. [2] verified that the two types

of definitions of frequent patterns mined from uncertain data are closely re-

lated from a mathematical perspective and can be unified when the size of

data is sufficiently large.

Considering that the support of a pattern in an uncertain database fol-

lows a Poisson binomial distribution, some approximate algorithms for min-

ing probabilistic frequent patterns have been proposed as well. For exam-

ple, both the Normal and Poisson distribution have been used to approx-

imate the frequency probabilities of patterns [8, 28]. Compared with our

work, existing approximate approaches focus on the approximation of the

support probability of only one pattern. The approximation of joint proba-

bility of the supports of two patterns is much more challenging because the

dependency of two random variables needs to be taken into account.

3.2.2 Frequent pattern summarization

Motivated by the fact that frequent pattern mining may generate an ex-

ponential number of patterns due to the anti-monotonicity, numerous re-

search work has been dedicated to frequent pattern summarization, which

37

3.3. Background and Preliminary

aims to obtain a much smaller set of patterns to represent the complete set

of frequent patterns. A variety of definitions have been proposed, such

as maximal patterns [29], frequent closed patterns [30] and non-derivable

patterns [31]. While all frequent patterns can be recovered from maximal

patterns, the loss of support information is unacceptable in some circum-

stances. For frequent closed patterns, although the exact support of all fre-

quent patterns can be preserved, the number of frequent closed patterns can

still be tens of thousands, or even more. There are several generalizations of

closed patterns, such as the pattern profiling-based approaches [35, 36, 37]

and the support distance-based approaches [23, 38]. It was observed in [38]

that the profile-based approaches [35, 36] have some drawbacks, such as no

error guarantee on restored support. Hence, in our work, we borrow the

framework of the support distance-based approaches to find probabilistic

representative frequent patterns.

Some research work has been undertaken to summarize frequent pat-

terns in the context of uncertain data. Tang and Peterson [11] proposed

mining probabilistic frequent closed patterns, based on the concept called

probabilistic support. Tong et al. [12] pointed out that frequent closed patterns

defined on probabilistic support cannot guarantee the patterns are closed

in possible worlds which contribute to their probabilistic supports. Instead,

they defined the threshold-based frequent closed patterns over probabilistic

data, which considers the probabilities of possible worlds where a pattern

is closed. Our research relaxes the condition to further reduce the size of

patterns by considering the probabilities of possible worlds where a pattern

can ε-cover another one.

3.3 Background and Preliminary

In this section, we review the relevant concepts introduced in previous work

and formally state the problem of probabilistic representative frequent pat-

tern (P-RFP) mining.

Xin et al. [23] defined a robust distance measure between patterns in

deterministic data.

38

3.3. Background and Preliminary

Definition 3.1. (distance measure) Given two patterns X1 and X2, the distance

between them, denoted as dist(X1, X2), is defined as

dist(X1, X2) = 1 −
|T(X1) ∩ T(X2)|

|T(X1) ∪ T(X2)|
, (3.1)

where T(Xi) is the set of transactions supporting pattern Xi.

Then, an ε-cover relationship is defined on two patterns where one sub-

sumes another.

Definition 3.2. (ε-covered) Given a real number ε ∈ [0, 1] and two patterns X1

and X2, we say X1 is ε-covered by X2 if X1 ⊆ X2 and dist(X1, X2) ≤ ε.

It can be proved easily that, if X2 ε-covers X1, then

Supp(X1)− Supp(X2)

Supp(X1)
≤ ε.

The goal of representative frequent pattern mining then becomes finding

the minimal set of patterns that ε-cover all frequent patterns.

In the context of uncertain data, the support of a pattern, Supp(Xi), be-

comes a discrete random variable. Therefore, we cannot directly apply the ε-

cover relationship to probabilistic frequent patterns. Before explaining how

to extend the concept of ε-covered in the context of uncertain data, we ex-

amine an uncertain database where attributes are associated with existential

probabilities.

Table 3.1 shows an uncertain transaction database where each transac-

tion consists of a set of probabilistic items. For example, the probability that

item a appears in the first transaction T1 is 0.7. Possible world semantics are

commonly used to explain the existence of data in an uncertain database.

For example, the database in Table 3.1 has eight possible worlds, which

are listed in Table 3.2. Each possible world is associated with an existen-

tial probability. For instance, the probability that the first possible world w1

exists is (1 − 0.7)× (1 − 0.2)× 1 × (1 − 0.5) = 0.12.

Considering that the occurrences of items in every possible world are

deterministic, we can define the probabilistic distance between two proba-

bilistic frequent patterns based on their distance in possible worlds.

39

3.3. Background and Preliminary

ID Transactions

T1 a:0.7 b:0.2
T2 a:1.0 c:0.5

Table 3.1: An example of attribute uncertainty.

ID Possible World Prob.

w1 {T1 : φ, T2 : {a}} 0.12
w2 {T1 : {a}, T2 : {a}} 0.28
w3 {T1 : {b}, T2 : {a}} 0.03
w4 {T1 : {a, b}, T2 : {a}} 0.07
w5 {T1 : φ, T2 : {a, c}} 0.12
w6 {T1 : {a}, T2 : {a, c}} 0.28
w7 {T1 : {b}, T2 : {a, c}} 0.03
w8 {T1 : {a, b}, T2 : {a, c}} 0.07

Table 3.2: An example of possible worlds.

Definition 3.3. (probabilistic distance measure) Given an uncertain database

D, and two patterns X1 and X2, let PW = {w1, . . . , wm} be the set of possible

worlds derived from D, the distance between X1 and X2 in a possible world wj ∈

PW is

dist(X1, X2; wj) = 1 −
|T(X1; wj) ∩ T(X2; wj)|

|T(X1; wj) ∪ T(X2; wj)|
(3.2)

where T(Xi ; wj) is the set of transactions containing pattern Xi in the possible

world wj. Then, the probabilistic distance between X1 and X2, denoted by dist(X1, X2),

is a random variable. The probability mass function of dist(X1, X2) is:

Pr(dist(X1, X2) = d) = ∑
wj∈PW

dist(X1,X2;wj)=d

Pr(wj) (3.3)

That is, the probability that the distance between two probabilistic fre-

quent patterns is d can be computed by the sum of the probabilities of cor-

responding possible worlds.

For example, consider the uncertain database in Table 3.1. Let X1 =

{a} and X2 = {a, b}. The probability that the distance between X1 and

40

3.4. Approximate P-RFP Mining

X2 is equal to 0.5, Pr(dist(X1, X2) = 0.5), can be computed by adding the

probabilities of the possible worlds w4 and w8. This is because only in the

two possible worlds, the distance between the two patterns is 0.5. Therefore,

Pr(dist(X1, X2) = 0.5) = 0.14.

Based on the probabilistic distance measure, we define the ε-cover prob-

ability as follows.

Definition 3.4. (ε-cover probability) Given an uncertain database D, two patterns

X1 and X2, and a distance threshold ε, the ε-cover probability of X1 and X2 is

defined as Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε).

Definition 3.5. ((ε, δ)-covered) Given an uncertain database D, two patterns X1

and X2, a distance threshold ε and a ε-cover probability threshold δ, X2 (ε, δ)-covers

X1 if and only if X1 ⊆ X2 and Prcover(X1, X2; ε) ≥ δ.

Our goal is then to obtain the minimal set of patterns that will (ε, δ)-

cover all the probabilistic frequent patterns. The formal statement of the

probabilistic representative frequent pattern (P-RFP) mining is as follows.

Definition 3.6. (Problem Statement) Given an uncertain database D, a set of

probabilistic frequent patterns F , a probabilistic distance threshold ε and a ε-cover

probability threshold δ, the problem of probabilistic representative frequent pattern

(P-RFP) mining is to find the minimal set of patterns R so that, for any frequent

pattern X ∈ F , there exists a representative pattern X′ ∈ R where X′ (ε, δ)-covers

X.

It is obvious that when ε = 0, the probabilistic representative pattern set

is equivalent to the set of probabilistic closed patterns, and when ε = 1, it is

the same as probabilistic maximal pattern set.

3.4 Approximate P-RFP Mining

This section first describes the framework of our proposed approach. Then,

we explain the details of the main steps of the Approximate P-RFP Mining

(APM) algorithm.

41

3.4. Approximate P-RFP Mining

3.4.1 Framework of APM

Before presenting the framework of our approximate approach for P-RFP

mining, we develop some important lemmas between two patterns where

one (ε, δ)-covers another.

Lemma 3.1. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, the distance between X1 and X2 in the possible world wj can be

represented by the support of the patterns in wj:

dist(X1, X2; wj) = 1 −
Supp(X2; wj)

Supp(X1; wj)
(3.4)

Lemma 3.2. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, the probabilistic distance dist(X1, X2) can be represented by the

support distribution of X1 and X2:

dist(X1, X2) = 1 −
Supp(X2)

Supp(X1)
(3.5)

Lemma 3.3. Given an uncertain database D and two patterns X1 and X2 s.t. X2

(ε, δ)-covers X1, we have

Pr (Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ (3.6)

These lemmas are obvious expansions of the concepts in deterministic

data. The detailed proofs are stated in [40].

Lemma 3.4. Given an uncertain database D, two patterns X1 and X2, a sup-

port threshold minsup and a frequency probability threshold minprob, if X2 (ε, δ)-

covers X1, and X1 is a probabilistic frequent pattern w.r.t. minsup and minprob,

then X2 is a probabilistic frequent pattern w.r.t. (1− ε)minsup and (δ ·minprob).

42

3.4. Approximate P-RFP Mining

Proof. Since X1 is a probabilistic frequent pattern w.r.t. minsup and minprob,

we have Pr (Supp(X1) ≥ minsup) ≥ minprob, which infers,

Pr((1 − ε)Supp(X1) ≥ (1 − ε)minsup) ≥ minprob (3.7)

From Lemma 3.3, we have,

Pr(Supp(X2) ≥ (1 − ε)Supp(X1)) ≥ δ (3.8)

Consider that the events in Equation 3.7 and 3.8 are independent, we

have Pr (Supp(X2) ≥ (1 − ε)minsup) ≥ δ · minprob. That is, X2 is a proba-

bilistic frequent pattern w.r.t. ((1 − ε)minsup) and (δ · minprob).

Denoting the set of probabilistic frequent patterns as F, Lemma 3.4 indi-

cates that if pattern X can (ε, δ)-cover another pattern Y in F, then X must

be probabilistic frequent w.r.t. (1 − ε)minsup and minprob. We call such a

pattern pseudo probabilistic frequent and denote the set of pseudo proba-

bilistic frequent patterns as F̂. In order to achieve the minimal set of prob-

abilistic representative frequent patterns, we have to find a subset of F̂ that

can (ε, δ)-cover all patterns of F. Given the two sets F and F̂, our approach

for P-RFP mining consists of the following two steps.

1. Generate the cover set for every pattern in F̂. For each pattern X in F̂,

the cover set of X, denoted as C(X), is a set of probabilistic frequent

patterns in F that can be (ε, δ)-covered by X. That is, C(X) ⊆ F.

2. Find the minimal pattern set R ⊆ F̂ to (ε, δ)-cover all probabilistic fre-

quent patterns in F.

After finding the cover sets for patterns in F̂ in the first step, the sec-

ond step is equivalent to finding a minimal number of cover sets that cover

all patterns in F. This is known as a set-covering problem, which is NP-

hard. Similar to [38] and [40], we adopt a well-known greedy set-covering

algorithm [39], which achieves polynomial complexity. Therefore, in the

following, we focus on describing the first step, which generates the cover

set for each pseudo probabilistic frequent pattern in F̂.

43

3.4. Approximate P-RFP Mining

3.4.2 Cover Set Generation

To generate the cover set for a pattern X2 in F̂, for each pattern X1 in F such

that X1 ⊆ X2, we need to check if X2 (ε, δ)-covers X1. That is, we need to

examine whether the ε-cover probability between X1 and X2 is no less than

δ (i.e., Pr(dist(X1, X2) ≤ ε) ≥ δ). According to Lemma 3.3, we have that the

ε-cover probability Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε) is equivalent to

Pr(Supp(X2) ≥ (1 − ε)Supp(X1)). Then, the ε-cover probability between

X1 and X2 is equal to the following sum.

|D|

∑
l=minsup

l

∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k) (3.9)

To compute the ε-cover probability to find out whether it is no less than δ,

we introduce the joint support probability distribution as follows.

Definition 3.7. (joint support probability) Given an uncertain database D and

patterns X1 and X2, the joint support probability mass function is

Pr (Supp(X1) = l, Supp(X2) = k) = ∑
wi∈PW ,

Supp(X1;wi)=l
Supp(X2;wi)=k

Pr(wi)

Although Definition 3.7 implies a brute-force solution, it is not feasible

to implement because the number of possible worlds is exponential. There-

fore, we establish the following approximation of joint support probability.

Theorem 3.1. Given an uncertain database D and patterns X1 and X2, the joint

support probability can be approximated by a bivariate normal distribution, which

means

Pr(Supp(X1) = l, Supp(X2) = k) ≈ φ
(

Σ
− 1

2 (X − μ)
)

(3.10)

where X =
[
l k

]�
, μ is the vector of mean values of Supp(X1) and Supp(X2),

and Σ is the covariance matrix of X1 and X2.

44

3.4. Approximate P-RFP Mining

Algorithm 3.1 APM Algorithm Framework

Input: D, F, F̂, ε and δ
Output: Minimal P-RFP Set R

1: R ← ∅

2: CoverSets ← ∅

3: for all X2 ∈ F̂ do
4: NoCoverSet ← ∅

5: for all X1 ∈ F such that X1 ⊆ X2 do
6: if isCover(X1, X2) = True then
7: CoverSets[X2].add(X1)
8: else
9: NoCoverSet.add(X1)

10: R ← setCover(CoverSets, F)
11: return R

Theorem 3.1 provides a solution to compute the joint support proba-

bility of a pair of patterns via normal distribution, rather than mining in

the complete database. The detailed theoretical proof is elaborated in Sec-

tion 3.5, and the empirical simulation is illustrated in Section 3.6. Similar

to univariate normal distribution, we can optimize our approach with the

well-known 3σ property [41].

Corollary 3.1. Given an uncertain database D, and patterns X1 and X2, let the

mean value and variance of Supp(Xj) be μj, σ2
j , j = 1, 2, l1 = max{minsup, μ1 −

3σ1}, l2 = min{|D|, μ1 + 3σ1}, k1 = max{�(1 − ε)l�, μ2 − 3σ2}, and k2 =

min{l, μ2 + 3σ2}, then

|D|

∑
l=minsup

l

∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k)

≈
l2

∑
l=l1

k2

∑
k=k1

Pr(Supp(X1) = l, Supp(X2) = k) (3.11)

Note that for better precision, we use σ1 to calculate the support lower

bound and upper bound for both X1 and X2 because the contour of bivariate

normal distribution is an ellipse, and σ1 is the length of semi major axis.

Based on Corollary 3.1, we can reduce the computational complexity of ε-

45

3.4. Approximate P-RFP Mining

cover probability from O(|D|2) to O(9σ2
1) significantly. To accelerate the

progress of cover set generation further, we also take advantage of some

optimization strategies in [40].

Lemma 3.5. Given an uncertain database D, two patterns X1 and X2 s.t. X1 ⊆

X2, and a probabilistic distance threshold ε, Prcover(X1, X2; ε) computed on D is

equal to that on D(X1), where D(X1) is {t|P(X1 ⊆ t) > 0, t ∈ D} ⊆ D.

Lemma 3.5 is intuitive because only the transactions supporting at least

the sub-pattern X1 will contribute to the value of probabilistic distance,

which in turn affects the ε-cover probability. This lemma allows us to com-

pute the ε-cover probability on a projected sub-database, which significantly

reduces the runtime of computation.

Lemma 3.6. Given an uncertain database D and two patterns X1 and X2 s.t.

X1 ⊆ X2, if X2 (ε, δ)-covers X1, then ∀X s.t. X1 ⊆ X ⊆ X2, we have X2 (ε, δ)-

covers X.

According to Lemma 3.6, we have the following corollary.

Corollary 3.2. Given an uncertain database D and two patterns X1 and X2, X1 ⊆

X2, if X2 cannot (ε, δ)-cover X1, then ∀X ⊆ X1, X2 cannot (ε, δ)-cover X.

Lemma 3.6 and Corollary 3.2 reduce the number of pattern pairs, for

which the ε-cover probability needs to be computed. The complete proofs

of Lemma 3.5, Lemma 3.6 and Corollary 3.2 are stated in [40].

3.4.3 APM Algorithm

The overall framework of our APM algorithm is shown in Algorithm 3.1.

From line 3 to line 9, we find the cover set for each pseudo probabilistic

frequent pattern X2 in F̂. The most important step is to check whether X2

covers X1 in F (line 6). The details of the function isCover is illustrated

in Algorithm 3.2, where lines 1 − 3 implement the optimization stated by

Lemma 3.6, and lines 4 − 6 apply the Corollary 3.2. Finally, from line 7

to line 12, we use the approximation-based scheme to compute the ε-cover

probability. As mentioned before, the function setCover in Algorithm 3.1 is

solved using the greedy algorithm in [39].

46

3.5. Approximation of Joint Support Probability

Algorithm 3.2 Function isCover

Input: X1, X2

Output: If X2 (ε, δ)-covers X1, then return True, else False
1: for all X ∈ CoverSets[X2] do
2: if X ⊆ X1 then
3: return True
4: for all X ∈ NoCoverSet[X2] do
5: if X ⊇ X1 then
6: return False
7: l1 = max{minsup, μ1 − 3σ1}
8: l2 = min{|D(X1)|, μ1 + 3σ1}
9: k1 = max{�(1 − ε)l�, μ2 − 3σ2}

10: k2 = min{l, μ2 + 3σ2}
11: for l = l1 to l2 do
12: for k = k1 to k2 do
13: Pcover+ = Pr(Supp(X1) = l, Supp(X2) = k)
14: if Pcover ≥ δ then
15: return True
16: return False

3.5 Approximation of Joint Support Probability

In this section, we present the detailed proof of the bivariate normal distribution-

based approximation of the joint support probability of two patterns. Given

an uncertain database D, two patterns X1 and X2, s.t. X1 ⊆ X2, and the cor-

responding support random variables, denoted as Xn(1)
and Xn(2)

hereafter,

where n is the size of D, our goal is to prove that [Xn(1)
Xn(2)

]� converges to

a bivariate normal distribution when n → ∞.

3.5.1 Preparation

Suppose the existence probabilities of patterns X1 and X2 in the ith transac-

tion ti are pni(1)
and pni(2)

, then

Xni(j)
∼ Bern

(
pni(j)

)
, j = 1, 2

because Xni(j)
follows Bernoulli distribution.

The support of pattern Xj, Xn(j)
, can be computed as Xn(j)

= ∑
n
i=1 Xni(j)

, j =

47

3.5. Approximation of Joint Support Probability

Situation Probability

X1 � ti, X2 � ti 1 − pni(1)

X1 ⊆ ti, X2 � ti pni(1)
− pni(2)

X1 ⊆ ti, X2 ⊆ ti pni(2)

Table 3.3: All possible situations of X1 and X2 in ti.

1, 2. Since both Xn(1)
and Xn(2)

follow Poisson binomial distribution, the

mean value and variance of Xn(j)
are

μn(j)
=

n

∑
i=1

pni(j)
, σ2

n(j)
=

n

∑
i=1

pni(j)

(
1 − pni(j)

)
, j = 1, 2

The covariance of Xn(1)
and Xn(2)

is

Cov
(

Xn(1)
, Xn(2)

)
=

N

∑
i=1

N

∑
j=1

Cov(Xni(1)
, Xnj(2)

)

Table 3.3 illustrates all possible existence situations of patterns X1 and X2

in transaction ti. Assuming for any i and j such that i �= j, Xni(1)
and Xnj(2)

are independent, we have Cov(Xni(1)
, Xnj(2)

) = 0. Table 3.3 indicates that

E(Xni(1)
· Xni(2)

) = pni(2)
and Cov

(
Xn(1)

, Xn(2)

)
= ∑

N
i=1

((
1 − pni(1)

)
pni(2)

)
For brevity, let Xni =

[
Xni(1)

Xni(2)

]�
and denote the sum of Xni over

database as

Xn =
n

∑
i=1

Xni =
[

Xn(1)
Xn(2)

]�
(3.12)

Then, {Xn}, n = 1, 2, · · · is a sequence of random vectors:

X1 = X11

X2 = X21 + X22

· · ·

Xk = Xk1 + Xk2 + Xk3 + · · ·+ Xkk

· · ·

48

3.5. Approximation of Joint Support Probability

{Xni} is called a triangular array, which is manipulated commonly in the

study of sum of independent vectors.

Until now, we have laid the groundwork in preparation of the proof that

{Xn} holds asymptotic normality in the next subsection.

3.5.2 Proof of Approximation

With the aforementioned concepts, we propose the following theorem, from

which Theorem 3.1 can be induced directly.

Theorem 3.2. Let {Xni ∈ R
2}, n = 1, 2, . . ., i = 1, 2, . . . , n be a triangular array

of random vectors such that: (1) for all n ≥ 1, Xn1, . . . , Xnn are independent, (2)

for all 1 ≤ i ≤ n, Xni follows a bivariate Bernoulli distribution, Xn = ∑
n
i=1 Xni,

then

Σ
− 1

2
n (Xn − μn)

d
→ N(0, I) (3.13)

where μn and Σn are the mean and covariance of Xn, respectively.

Theorem 3.2 provides an important bridge between the joint support

distribution of a pair of patterns and the bivariate normal distribution. Not-

ing that suppose the cumulative density functions of Xn and X are Fn and

F, Xn
d
→ X if and only if for any continuous point x of F, limn→∞ Fn(x) =

F(x). Before giving the detailed proof of theorem3.2, two necessary lemmas

should be presented first.

Lemma 3.7. Let Xni ∈ R
mi, i = 1, . . . , kn, be independent random vectors with

mi ≤ m (a fixed integer), n = 1, 2, . . . , kn → ∞ as n → ∞, and infi,n λmin[Cov(Xni)] >

0, where λmin[A] is the smallest eigenvalue of A. Let cni ∈ R
mi be vectors such

that

lim
n→∞

(
max1≤i≤kn

‖cni‖
2

∑
kn
i=1 ‖cni‖2

)
= 0 (3.14)

If supi,n E‖Xni‖
2+δ

< ∞ for some δ > 0, then

∑
kn
i=1 cT

ni(Xni − EXni)[
∑

kn
i=1 Cov(cni

TXni)
]1/2

d
→ N(0, I) (3.15)

49

3.5. Approximation of Joint Support Probability

More details of Lemma 3.7 are stated in [41]. Given a sequence of ran-

dom vectors {Xn}, Lemma3.7 provides a solution to prove the convergence

of all possible linear combinations of {Xn}. Nevertheless, it is not equiva-

lent to the convergence of the random vector itself. Hence, we refer to the

next lemma to bridge the gap.

Lemma 3.8 (Cramér-Wold Theorem[42]). Suppose that Xn and X are k-dimensional

random vectors. Then Xn
d
→ X if and only if

t�Xn
d
→ t�X (3.16)

for all vectors t ∈ R
k.

The Cramér-Wold theorem states that the convergence of a k-dimensional

random vector is closely related to the totality of its one-dimensional projec-

tions. With Lemma 3.7 and Lemma 3.8, the complete proof of Theorem 3.2

is as follows.

Proof of Theorem 3.2. Let kn = n, and ∀i, 1 ≤ i ≤ n, mi = 2.

The determinant of covariance matrix is

det[Cov(Xni)] = (1 − ρ)σ2
ni(1)

σ2
ni(2)

(3.17)

Considering that X1 and X2 are two patterns with different parameters, the

correlation coefficient between their support distribution satisfies 0 < ρ <

1. Consequently, Cov(Xni) is a positive definite matrix and infi,n λmin[Cov(Xni)] >

0.

Let δ = 2, since all components of Xni are no greater than the size of

database n, we have

‖Xni‖
4 =

[(
Xni(1)

)2
+
(

Xni(2)

)2
]2

≤ 4n4 ≤ ∞ (3.18)

For all i = 1, 2, . . . , n, assume cni =
[

c1 c2

]�
, where c1, c2 ∈ R. Then,

lim
n→∞

(
max1≤i≤n ‖cni‖

2

∑
n
i=1 ‖cni‖2

)
= lim

n→∞

(
1

n

)
= 0

50

3.6. Performance Study

Therefore, Lemma 3.7 indicates that

∑
kn
i=1 cT

ni(Xni − EXni)[
∑

kn
i=1 Cov(cT

niXni)
]

1
2

d
→ N(0, I)

With Lemma 3.8, finally we have

Σ
− 1

2
n (Xn − μn)

d
→ X

Hence, we prove Theorem 3.2.

To further improve the accuracy of our approximation, we should take

the continuity correction [43] into account, because we are using a continu-

ous distribution to approximate a discrete distribution. The final equation

needs to be changed slightly as follows.

Pr (Supp(X1) = l, Supp(X2) = k) ≈ φ

(
X + 0.5 − μ√

|Σ|

)

where X =
[

l k
]�

, μ is the vector of mean values of Supp(X1) and Supp(X2),

and Σ is the corresponding covariance matrix. Since Theorem 3.2 is equiva-

lent to Theorem 3.1, it is served as a solid theoretical background to support

our algorithm. We will demonstrate the empirical proof and assess our ap-

proach subsequently.

3.6 Performance Study

In this section, we first empirically study the performance of the joint sup-

port probability approximation, then evaluate the effectiveness and effi-

ciency of the APM algorithm.

3.6.1 Empirical study of approximation

We evaluate the accuracy of the approximation of joint support probability

with simulation. Two probability support vectors of a pattern X1 and its

51

3.6. Performance Study

Figure 3.1: Empirical proof of approximation.

super pattern X2 are constructed from a synthetic uncertain database with

N = 100, 200, . . . , 1000 transactions. The uncertainty is incorporated accord-

ing to the standard normal distribution. Then, we perform both the exact

and approximate algorithms to obtain the joint support probability on the

sample space.

For each setting of N, we run the experiment for 500 times. Figure 3.1 (a)

shows the average and maximum absolute error (e.g., |Pra(x, y)− Pre(x, y)|,

where Pra and Pre are the approximate and exact probability) w.r.t. the vari-

ation of the database size. Figure 3.1 (b) demonstrates the average, mini-

mum and maximum error (e.g., Pra(x, y) − Pre(x, y)) between the real and

approximate value w.r.t. the variation of the database size. It is shown that

the error decreases rapidly when N is increasing. When N = 500, which is

much less than the size of a regular database, the average absolute error is

less than 10−7.

52

3.6. Performance Study

Dataset Number of Transactions Number of Items Average Length

IIP 35161 467 4.0
Retail 88162 16470 10.3
Chess 3196 75 6.7

Table 3.4: Characteristics of Datasets.

3.6.2 Result analysis

3.6.2.1 Data sets

Three datasets have been used in our experiments. Two of them, the Retail

dataset and the Chess dataset, are from the Frequent Itemset Mining (FIMI)

Dataset Repository.1 These are standard datasets used for frequent pattern

mining in deterministic databases. In order to bring uncertainty into the

datasets, we synthesize an existential probability for each item based on a

Gaussian distribution with the mean of 0.9 and the variance of 0.125. The

two datasets are uncertain databases with uncertainties associated with at-

tributes.

The other one is the iceberg sighting record from 1993 to 1997 on the

North Atlantic from the International Ice Patrol (IIP) Iceberg Sightings Database,

which is also used in the experiments in last chapter.2 Each transaction in

the database contains the information of date, location, size, shape, report-

ing source and a confidence level. There are six possible attributes of the

confidence level, R/V (Radar and visual), R (Radar only), V (Visual), MEA

(Measured), EST (Estimated) and GBL (Garbled), which indicate different

reliabilities. We convert the confidence levels to probabilities 0.8, 0.7, 0.6,

0.5, 0.4 and 0.3, respectively. This dataset forms an uncertain database that

associates uncertainties to tuples. The statistics of the datasets are shown in

Table 3.4.

1http://fimi.cs.helsinki.fi/data/
2http://nsidc.org/data/g00807.html

53

3.6. Performance Study

3.6.2.2 Performance of APM algorithm

To analyze the performance of the APM algorithm, we carry out two sets of

experiments. In the first set, we compare the effectiveness and efficiency of

the APM against the dynamic programming-based exact method [40]. Due

to the low efficiency of the exact method, we randomly select 500 transac-

tions respectively from two datasets, Retail and IIP. The sizes of FP (the

set of probabilistic frequent patterns), DP (the set of P-RFPs mined by the

dynamic programming-based approach), and APM (the set of P-RFPs pro-

duced by the APM algorithm) with respect to the variations of minsup,

minprob, ε and δ, on the two datasets are shown respectively in Figures 3.2

and 3.3. The default values of the four parameters are set to 0.5%, 0.8, 0.2

and 0.5, respectively. It can be observed that the result of the APM algo-

rithm is very close to that of the exact method, while both of them are able

to reduce the size of the probabilistic frequent pattern set effectively. The

runtime of two methods are demonstrated in Figures 3.4 and 3.5. It is im-

pressive that the APM algorithm accelerates P-RFP mining significantly.

Then, we examine the performance of the APM algorithm on the com-

plete database of IIP, Retail, and Chess datasets. The comparisons between

the number of P-RFPs and the number of frequent patterns are illustrated

in Figures 3.6, 3.7 and 3.8. These charts indicate that the APM algorithm can

reduce the size of frequent pattern set effectively. Figures 3.9,3.10 and 3.11

show the runtime vs. minsup, minprob, ε, and δ curves of the APM algo-

rithm without and with the 3σ pruning technique, which are called APM

and APM + Pruning, on the three datasets, respectively. The default val-

ues of the four parameters for the IIP and Retail datasets are 0.5%, 0.8, 0.2,

and 0.5. For the chess dataset, the default parameters are 0.6%, 0.5, 0.15,

and 0.8. It is intuitive that, when ε is increasing or minsup, minprob and

δ are decreasing, the runtime will increase because more pattern pairs are

engaged in the cover probability checking. We can find that the APM algo-

rithm can mine P-RFP set quickly, and the pruning technique accelerates it

even further.

54

3.7. Conclusions

3.7 Conclusions

Due to the downward closure property, the number of probabilistic frequent

patterns mined over uncertain data can be so large that they hinder further

analysis and exploitation. This chapter proposes the APM algorithm, which

aims to efficiently and effectively find a small set of patterns to represent the

complete set of probabilistic frequent patterns. To address the high compu-

tational complexity in examining the joint support probability, we introduce

an approximation of the joint support probability with both theoretical and

empirical proofs. Our experimental results demonstrate that the devised al-

gorithm can substantially reduce the size of probabilistic frequent patterns

efficiently.

This work adopts the measure defined in deterministic databases to quan-

tify the distance between two patterns in terms of their supporting transac-

tions. Since the supports of patterns are random variables in the context

of uncertain data, other distance measures, such as Kullback-Leibler diver-

gence, might be applicable. As an ongoing work, we will study the effec-

tiveness of probabilistic representative frequent patterns defined on differ-

ent distance measures.

55

3.7. Conclusions

Figure 3.2: The Number of P-RFP on IIP-500.

Figure 3.3: The Number of P-RFP on Retail-500.

56

3.7. Conclusions

Figure 3.4: Log Runtime on IIP-500.

Figure 3.5: Log Runtime on Retail-500.

57

3.7. Conclusions

Figure 3.6: The Number of P-RFP on IIP.

Figure 3.7: The Number of P-RFP on Retail.

58

3.7. Conclusions

Figure 3.8: The Number of P-RFP on Chess.

Figure 3.9: Runtime on IIP.

59

3.7. Conclusions

Figure 3.10: Runtime on Retail.

Figure 3.11: Runtime on Chess.

60

Chapter 4

Summarizing Uncertain

Transaction Databases by

Probabilistic Tiles

Transaction data mining is ubiquitous in various domains and has been re-

searched extensively. In recent years, observing that uncertainty is inherent

in many real world applications, uncertain data mining has attracted much

research attention. Among the research problems, summarization is impor-

tant because it produces concise and informative results, which facilitates

further analysis. However, there are few works exploring how to effectively

summarize uncertain transaction data. In this chapter, we formulate the

problem of summarizing uncertain transaction data as Minimal Probabilis-

tic Tile Cover Mining, which aims to find a high-quality probabilistic tile set

covering an uncertain database with minimal cost. We define the concept of

Probabilistic Price and Probabilistic Price Order to evaluate and compare the

quality of tiles, and propose a framework to discover the minimal proba-

bilistic tile cover. The bottleneck is to check whether a tile is better than

another according to the Probabilistic Price Order, which involves the compu-

tation of a joint probability. We prove that it can be decomposed into inde-

pendent terms and calculated efficiently. Several optimization techniques

are devised to further improve the performance. Experimental results on

both synthetic and real world datasets demonstrate the conciseness of the

produced tiles and the effectiveness and efficiency of our approach.

61

4.1. Introduction

Transaction ID Items

t1 a b
t2 a

(a) A deterministic database.

Transaction ID Items

t1 a:0.6 b:0.8
t2 a:1.0 c:0.42

(b) An uncertain database.

Table 4.1: Examples of transaction databases.

4.1 Introduction

Transaction data is ubiquitous throughout various domains, such as retail

business, bioinformatics and text analysis [44]. It is also closely related

to other data representations, such as binary matrix and bipartite graph,

which further extends its potential applicability. Thus, mining transaction

databases is an important and active research area. However, the analysis

of transaction databases suffer from the issues of data abundance and re-

dundancy, especially in recent years because of the emergence of big data.

Table 4.1 (a) is an example of transaction database. Each transaction is a

pair comprising an ID and an itemset, such as 〈t1, {a, b}〉 and 〈t2, {a}〉. For

brevity, we indicate a transaction by its ID hereafter.

A great deal of research effort has been dedicated to summarizing trans-

action databases with a small number of meaningful representatives. In

order to capture the correlation between transactions and items simultane-

ously, many state-of-the-art algorithms address this problem by producing

a set of representatives, in which a representative is a pair of a transaction

set and an itemset, such as tile in [45], hyperrectangle in [46] and approximate

binary pattern in [47]. Since these terms indicate a similar concept, we use

the name tile in this chapter, which is proposed first. For example, given

the transaction database D in Table 4.1 (a), both R1 = {t1, t2} × {a} and

R2 = {t1} × {b} are possible tiles. D can be covered by R = {R1, R2},

because D ⊆ R1 ∪ R2.

Recently, uncertain data mining has attracted much research attention,

because data uncertainty is inherent in many real world applications, such

as sensor network monitoring, moving object tracking and protein-protein

interaction data [2]. Table 4.1 (b) shows an example of an uncertain transac-

tion database, in which each item is associated with a probability to indicate

62

4.1. Introduction

its existence in the transaction.

While many approaches and techniques have been developed for dif-

ferent uncertain data mining tasks, few research has been undertaken in

summarization, though it is important for many real world applications.

A motivating example comes from the equipment rental industry. An

equipment rental company usually has multiple branches at different loca-

tions, which can be represented by their latitudes and longitudes. For ex-

ample, a branch B1 may be located at (33◦48′17′′S, 150◦48′14′′E). In order to

support business operations (e.g., designing sales promotion strategies for

branches), potential equipment demands are gathered by different means,

such as mail surveys or customer interviews. A potential demand may be

recorded as Crane: (32◦49′12′′S, 151◦48′47′′E), in which the latitude and lon-

gitude represent the location of the demand — in this case a construction

site. Simply assuming the equipment will be rented from the nearest branch

is not reasonable, especially if the construction site is almost equally close to

multiple branches. The issue can be alleviated by introducing uncertainty.

For example, we may record the information as Crane: {(B1:0.42), (B2:0.58)},

which indicates that cranes may be rented at branches B1 and B2 with prob-

abilities 0.42 and 0.58, respectively, where the probabilities can be inferred

from the distances between the location of demand and the two branches.

Then, the equipment demand information can be organized into an uncer-

tain transaction database, in which each transaction corresponds to a piece

of equipment and each item represents a branch. Meanwhile, each item is

associated with a probability, indicating how likely the corresponding piece

of equipment will be rented from the branch. We may find knowledge by

mining tiles from such an uncertain transaction database, such as a set of

equipments being rented from a group of branches, which can then be used

to design and apply sales promotion strategies and inventory management

for a branch group.

Mining tiles from uncertain transaction database can also assist data

analysis and management of applications in other domains. For example,

in the bioinformatics domain, the relationship between biological entities

(e.g., genes, phenotypes and proteins) can be represented by a transaction

database, in which each transaction consists of the related entities of an en-

63

4.1. Introduction

tity. Due to experimental errors and the unreliability of some data sources,

some connections may not be meaningful [48]. In order to measure the good-

ness, uncertainty has been introduced to evaluate the strength of a connec-

tion from multiple aspects, including the reliability, rarity, and relevance.

This associates each connection with a probability and, consequently, an

uncertain transaction database can be constructed. Mining tiles from this

database will produce a concise set of strongly correlated entities, which

may assist further analysis, such as the relationship between genes and phe-

notypes.

Motivated by its importance and wide applicability, in this chapter, we

focus on summarizing uncertain transaction databases and formulate the

task as Minimal Probabilistic Tile Cover (MPTC) Mining, which aims to find

a tile set as a high-quality summarization of an uncertain database. Unlike

summarizing a deterministic database, the challenge is how to determine

whether a tile set covers an uncertain database or not, because it becomes

a probabilistic event. For example, given the uncertain database D in Ta-

ble 4.1 (b) and tiles R1 = {t1, t2} × {a} and R2 = {t1} × {b}, we cannot tell

whether R = {R1, R2} covers D, because it depends on the occurrence of

item c in transaction t2, which happens with a probability 0.42. Hence, we

define the concept of cover probability. Informally, it is the probability that a

tile set R covers the uncertain database D. If the cover probability is greater

than a threshold η, R is called a probabilistic tile cover of D.

However, the probabilistic tile cover of a given uncertain database is

not unique. There are two special cases among all probabilistic tile covers:

(1) the tile set R′ consists of singletons constructed for individual entries

of a given uncertain database; (2) the tile set R′′ contains only one tile R

covering the whole database. Both R′ and R′′ are not good summarizations

in most circumstances, because the former is not concise while the latter

is too noisy. Therefore, we define the cost and the density of a tile set to

measure its size and purity degree respectively. Our goal of MPTC mining

is then to find the probabilistic tile cover with the minimal cost, satisfying

the condition that the density of the cover is sufficiently high.

The huge search space of possible tiles poses a critical challenge to MPTC

mining. It is infeasible to enumerate all possible tiles, because the number of

64

4.1. Introduction

possible tiles is exponential. Observing that the problem of MPTC mining

is related to the set cover problem [39], which is known to be NP-hard, we

propose the concept of Probabilistic Price Order to compare the qualities of

tiles, and develop a framework to mine the MPTC with a greedy strategy.

Our framework consists of two steps. We first generate a set of candi-

dates. Then, we iteratively construct tiles based on the candidate set with a

greedy strategy and insert the result tile into the result set. The bottleneck

is to check whether a tile is a better representative than another according

to the Probabilistic Price Order, which involves the computation of a joint

probability. We prove that the joint probability can be decomposed into in-

dependent Poisson binomial distributions and design an efficient algorithm

to calculate it. We also devise optimization techniques to further improve

the performance.

Our main contributions are summarized as follows.

• We formalize the problem of Minimal Probabilistic Tile Cover Mining

and develop a framework to discover the minimal probabilistic tile

cover with a greedy strategy.

• We present the concept of Probabilistic Price Order and design an effi-

cient algorithm to determine it by decomposing a joint probability into

independent terms, then propose several optimization techniques to

further improve the efficiency of the algorithm.

• We conduct extensive experiments to evaluate the performance of the

proposed MPTC mining framework and optimization techniques on

both synthetic and real world data.

The rest of this chapter is organized as follows. We state some defini-

tions and formulate the problem of Minimal Probabilistic Tile Cover Min-

ing in Section 4.2. Then, a framework to discover the minimal probabilistic

tile cover is presented in Section 4.3. We define the concept of Probabilistic

Price Order and devise an algorithm to calculate it in Section 4.4. Several

optimization techniques are proposed to improve the efficiency of the algo-

rithm in Section 4.5. Section 4.6 provides a detailed analysis of the proposed

algorithm. We conduct extensive experiments to evaluate the performance

65

4.2. Problem Definition

of the proposed MPTC mining framework and optimization techniques on

both synthetic and real world data in Section 4.7. Some related works are

discussed in Section 4.8. Section 4.9 concludes the chapter.

4.2 Problem Definition

In this section, we first introduce relevant concepts. Then, the problem of

minimal probabilistic tile cover (MPTC) mining is formally defined.

Let I = {e1, e2, . . . , em} be a universal set of items and D = {t1, t2, . . . , tn}

be an uncertain database consisting of a set of transactions, in which m and

n are the number of items and transactions, respectively. Each transaction

tj ∈ D is a subset of I (i.e., tj ⊆ I). Each item ei in transaction tj is associated

with a probability Pr(ei ∈ tj) ∈ [0, 1] indicating the existence likelihood of

ei in tj. Then, the concept of tile is defined as follows.

Definition 4.1. (Tile) Given a universal set of items I , and an uncertain database

D, a tile R is the Cartesian product of a transaction set T ⊆ D, and an itemset

I ⊆ I , i.e., R = T × I.

For example, given the uncertain database D in Table 4.1 (b), R1 =

{t1, t2} × {a, b} and R2 = {t1} × {b, c} are tiles.

Considering that a transaction database is similar to a binary matrix, we

call the pair of a transaction and an item (tj, ei) a cell. Then, a tile is also a set

of cells. For example, R1 = {t1, t2} × {a, b} = {(t1, a), (t2, a), (t1, b), (t2, b)}

and, similarly, R2 = {(t1, b), (t1, c)}. The union and intersection operations

of two tiles can thus be performed on corresponding sets of cells. For exam-

ple, R1 ∪ R2 = {(t1, a), (t2, a), (t1, b), (t2, b), (t2, c)}, and R1 ∩ R2 = {(t1, b)}.

Next, we formulate the cover relation between an uncertain database D

and a set of tiles R. If D is a deterministic database, the relationship D ⊆ R

is certain, which means all of the cells in D also fall in R. However, in the

context of an uncertain database, D ⊆ R becomes a probabilistic event, be-

cause the existence of each cell (t, e) ∈ D is uncertain. To define the cover

relation between D and R, we first adopt the commonly used Possible World

Semantics to explain the existence of data in an uncertain database. A pos-

sible world is a set of deterministic transactions derived from an uncertain

66

4.2. Problem Definition

ID t1 t2 Probability

w1 ∅ {a} 0.0464
w2 ∅ {a, c} 0.0336
w3 {b} {a} 0.1856
w4 {b} {a, c} 0.1344
w5 {a} {a} 0.0696
w6 {a} {a, c} 0.0504
w7 {a, b} {a} 0.2784
w8 {a, b} {a, c} 0.2016

Table 4.2: An example of possible worlds.

database. Each possible world has an existential probability. For exam-

ple, we can derive eight possible worlds from the database in Table 4.1 (b),

which are listed in Table 4.2. The probability that the first possible world w1

exists is (1 − 0.6)× (1 − 0.8)× 1 × (1 − 0.42) = 0.0464.

According to the possible world semantics, we define the concept of

cover probability to characterize the cover relation between an uncertain database

and a tile set.

Definition 4.2. (Cover Probability) Given an uncertain database D and a tile set

R, the cover probability of D and R, denoted by Pcover(D,R), is defined as follows:

Pcover(D,R) = Pr(D ⊆ R) = ∑
w∈PW ,D(w)⊆R

Pr(w)

where PW is the set of possible worlds derived from D and D(w) is the database

instance in possible world w.

For example, given the uncertain database D in Table 4.1 (b), and the tile

set R = {R1, R2}, where R1 = {t1, t2}× {a} and R2 = {t1} × {b}, the cover

probability Pcover(D,R) = 0.58, because R covers D in possible worlds w1,

w3, w5 and w7.

Note that we can also compute the cover probability by:

Pcover(D,R) = ∏
(t,e)∈D\R

(1 − Pr(e ∈ t)), (4.1)

67

4.2. Problem Definition

based on the fact that the event D ⊆ R happens only if all cells in D \R do

not exist.

Cover probability provides a measure to evaluate how likely a tile set R

may cover an uncertain database D. We then define a tile set as a probabilistic

tile cover based on cover probability as follows.

Definition 4.3. (Probabilistic Tile Cover) Given an uncertain database D, a tile

set R, and a cover probability threshold η, if Pcover(D,R) > η, then R is a proba-

bilistic tile cover of D.

However, as we have discussed in the first section, multiple probabilistic

tile covers exist for an uncertain database. For the purpose of summarizing

an uncertain database with succinct and high-quality representatives, we

define the cost and density of a tile set to measure the efficacy and quality of

tiles respectively.

Definition 4.4. (Cost) Given a tile R = T × I, the cost of R, denoted as c(R), is

defined as |T|+ |I|. The cost of a tile set R is c(R) = ∑R∈R c(R).

For example, the cost of the tile R = {t1} × {a, b} is c(R) = 3.

Definition 4.5. (Density) Given an uncertain database D and a tile R = T × I,

the density of R is defined as d(R;D) = |R ∩ D|/(|T| · |I|). The density of a

tile set R is d(R;D) = |R ∩ D|/|R|, where |R ∩ D| = | ∪R∈R R ∩ D| and

|R| = | ∪R∈R R|.

|R ∩ D| is the cardinality of the intersection of cells of R and database

D. Since the existence of each cell (t, e) ∈ R ∩D is a Bernoulli trial, |R ∩D|

is a random variable. Similarly, |R ∩ D| is also a random variable. Hence,

calculating the density is complex.

For example, given the uncertain database D in Table 4.1 (b), the density

of R = {t1} × {a, b} could be 0, 0.5 and 1 (the corresponding values of

|R ∩ D| are 0, 1 and 2), with probabilities 0.08, 0.44 and 0.48, respectively.

Hereafter, we will use d(R) and d(R) when D is clear from the context.

Then, the problem of minimal probabilistic tile cover mining can be stated

as follows.

68

4.2. Problem Definition

Problem 4.1. (Minimal Probabilistic Tile Cover Mining) Given an uncertain

database D, a cover probability threshold η, a density threshold θ and a density

probability threshold ξ, the objective of minimal probabilistic tile cover mining is to

find a probabilistic tile cover R of D with minimal cost c(R) and sufficient density,

arg min
R

c(R) (4.2)

s.t. Pcover(D,R) > η, Pr[d(R) > θ] > ξ

Before describing our algorithm for MPTC mining, we discuss some

properties of the defined problem.

4.2.1 Quality of Summarization

The quality of MPTC is guaranteed by the constraints of the cover proba-

bility and the density. Consider the two types of error, false negative and

false positive, which can be represented by D \R and R \ D, respectively.

The false negative error is constrained by the cover probability condition:

Pr(D ⊆ R) > η. Because D ⊆ R ⇔ D \R = ∅, this constrain ensures that

the probability of generating no false negative is greater than η.

According to the constraint Pr[d(R) > θ] > ξ, we have

Pr[d(R) > θ] = Pr

[
|R ∩ D|

|R|
> θ

]
= Pr

[
|R \ D|

|R|
< 1 − θ

]
,

where |R \ D|/|R| is called the false discovery rate. Hence, the constraint of

density guarantees that the probability that the false discovery rate is less

than 1 − θ is greater than ξ.

Hence, MPTC can summarize an uncertain database with both guaran-

teed false negative and false positive errors.

4.2.2 Parameter Setting

The problem of MPTC mining involves three parameters, η, θ and ξ. We

discuss the semantics and connections between the parameters, which serve

as a guide to choose appropriate parameter values.

69

4.2. Problem Definition

The cover probability threshold η can be set first. Recall that the cover

probability Pcover(D,R) can be alternatively computed as ∏(t,e)∈D\R(1 −

Pr(e ∈ t)), which is the production of the non-occurrence probabilities of

cells that are not covered by R. Therefore, instead of directly setting η,

users may set two parameters u and v, where u is the percentage of cells

that are allowed to be uncovered, and v is the average existential probability

of each uncovered cell. Then, η = (1 − v)u%×|D|. For example, given a

database of 1000 cells, if a user wants to find a MPTC such that at most 2%

of cells are uncovered and the average existential probability of each cell

is 0.1, the user can set u = 2 and v = 0.1, which is equivalent to setting

η = (1 − 0.1)2%×1000 ≈ 0.122.

Once the cover probability η has been set, given an uncertain database

D, the density of a tile set R satisfying the condition Pcover(D,R) > η is

upper bounded.

Given an uncertain database D and a cover probability threshold η, sup-

pose {X1, . . . , Xr} are the Bernoulli random variables indicating the exis-

tence of all cells {c1, . . . , cr} in D. Without loss of generality, we assume

Pr(Xi = 1) ≥ Pr(Xj = 1) for any 1 ≤ i < j ≤ r. Then, the upper bound

of density d∗ can be obtained as follows. We iteratively add the singleton

tile constructed from the cell c in D with the largest existential probability

to a tile set R, until the cover probability of R is larger than η. The result

is the tile set with maximal density given the cover probability constraint,

because adding any other tiles will decrease the density, and removing any

tile from it will violate the cover probability constraint. We denote the ex-

pected value of the density of R as the upper bound d∗. Then, users may

set the density threshold θ to be λ · d∗, λ ∈ (0, 1), expressing to how much

degree the density threshold is smaller than d∗. ξ is easier to set since it is a

probability threshold in [0, 1].

4.2.3 NP-Hardness

Since its counterpart in deterministic databases is NP-hard [44], compared

with the problem of MPTC mining, mining tiles from deterministic database

can be regarded as a special case where all existential probabilities of cells

70

4.3. Algorithm

are either 0 or 1. Therefore, the problem of MPTC mining is also NP-Hard.

4.3 Algorithm

In this section, we present some preliminaries and then propose the frame-

work for MPTC mining.

4.3.1 Preliminaries

According to the definition of Problem 4.1, a tile is more interesting if it cov-

ers more cells of the database with lower cost (i.e., smaller size). Therefore,

we first define the concept of Probabilistic Cover Quantity to count the num-

ber of cells that can be covered by a tile. Then, we define Probabilistic Price

to measure the covering efficiency of a tile.

Definition 4.6. (Probabilistic Cover Quantity) Given an uncertain database D, a

tile R, and a cell set Z ⊂ D that has been covered by previously mined tiles, the

probabilistic cover quantity of R given Z and D, denoted by q(R; Z,D), is defined

as q(R; Z,D) = |(R \ Z) ∩D| and the probability mass function of q(R; Z,D)

is Pr[q(R; Z,D) = k] = ∑w∈Wk
Pr(w) where Wk = {w ∈ PW||(R \ Z) ∩

D(w)| = k}. Similarly, the probabilistic cover quantity of a tile set R given Z and

D is q(R; Z,D) = |(∪R∈RR \ Z) ∩D|.

The probabilistic cover quantity q(R; Z,D) is a random variable. It de-

scribes the number of uncovered cells in D that are covered by R. We use

q(R; Z) and q(R; Z) for brevity when D is clear from the context.

For example, given the uncertain database D in Table 4.1 (b), let tile R1 =

{t1, t2}× {a, b}, and the covered cell set Z = {(t1, a), (t2, a)}, the probabilis-

tic cover quantity of R1 given Z is q(R1; Z) = |(R1 \ Z) ∩D| = |{(t1, b)}| =

1, which is a random variable such that Pr[q(R1; Z) = 1] = Pr(b ∈ t1).

Definition 4.7. (Probabilistic Price) Given an uncertain database D, a covered

cell set Z ⊂ D, and a tile R, the probabilistic price of R is defined as ρ(R; Z) =

c(R)/q(R; Z) . Similarly, the probabilistic price of a tile set R is ρ(R; Z) =

c(R)/q(R; Z).

71

4.3. Algorithm

That is, the probabilistic price of a tile is the cost of the tile divided by

its probabilistic cover quantity. Hence, a tile R covers an uncertain database

more efficiently when the probabilistic price tends to be lower. However,

because of q(R; Z), the probabilistic price is also a random variable. As a

result, we cannot directly compare two tiles by their probabilistic prices.

One possible solution is to use their expected values. For example, given

two tiles R1 and R2, we prefer R1 if E[ρ(R1; Z)] < E[ρ(R2; Z)]. However, re-

cent works have shown that considering only the expected value has some

drawbacks such as the decision may not be confident because it neglects

the distribution information [4]. Therefore, in our work, we define the Prob-

abilistic Price Order to compare two tiles as follows.

Definition 4.8. (Probabilistic Price Order) Given an uncertain database D, a cov-

ered cell set Z, and two tiles R1 and R2, we say R1 precedes R2 in terms of the

Probabilistic Price Order, denoted by R1 ≺ρ R2, if and only if

Pr [ρ(R1; Z) < ρ(R2; Z)] > Pr [ρ(R1; Z) > ρ(R2; Z)]

Similarly, given two tile sets R1 and R2, R1 ≺ρ R2 if and only if,

Pr [ρ(R1; Z) < ρ(R2; Z)] > Pr [ρ(R1; Z) > ρ(R2; Z)]

For example, consider the database D in Table 4.1 (b) again. Suppose

tiles R1 = {t1} × {a, b}, R2 = {t2} × {a, c} and covered cell set Z = ∅.

Then, the probability of ρ(R1; Z) < ρ(R2; Z) is 0.256, while the probability of

ρ(R1; Z) > ρ(R2; Z) is 0.288 (the detailed calculation of the probabilities will

be explained in Section 4.4). Thus, according to probabilistic price order,

R2 is preferred to R1. However, we notice the opposite result if using the

expected values, i.e., E[ρ(R1; Z)] = 1.4 < E[ρ(R2; Z)] = 1.42.

4.3.2 MPTC Mining Framework

We now present the framework for solving the MPTC mining problem with

a greedy strategy based on the probabilistic price order.

We observe that the MPTC mining problem is related to the set cover

problem [39]. Given a universal set of elements I and a family of sets S ,

72

4.3. Algorithm

Algorithm 4.1 MPTC Mining

Input: D, minsup, minprob, η, θ, ξ
Output: MPTC R∗

1: R∗ ← ∅

2: Candidate set C ← generate candidates(D)
3: while Pcover(D,R∗) < η do
4: R∗ ← ∅

5: for I in C do
6: R ← get tile(I, T (I), θ, ξ)
7: if R∗ ∪ {R} ≺ρ R∗ ∪ {R∗} then
8: R∗ ← R
9: R∗ ← R∗ ∪ {R∗}

10: return R∗

the Set Cover Problem is to find a minimal subset S∗ of S that completely

covers the elements of I . The set cover problem is known to be NP-hard.

An intuitive and effective solution is the greedy approach [39], which iter-

atively chooses the set covering most uncovered items, until all items are

covered.

Motivated by the greedy solution of the set cover problem, we propose

a two-step framework to solve the MPTC mining problem:

Step 1 generates a candidate set for producing tiles;

Step 2 constructs tiles based on the candidates and keep the best one

iteratively, until reaching the threshold of cover probability.

The complete framework is shown in Algorithm 4.1. Line 1 initializes

the result set R∗. We generate the candidate set C in line 2. The choice

of candidates will be discussed in Section 4.3.3. Lines 3 − 9 construct tiles

based on the candidate set C and select the best one iteratively. In particular,

line 3 examines whether the cover probability of current R∗ is greater than

the user-specified threshold η. In lines 5 − 8, we find the tile for each can-

didate I in C by invoking the function get tile,and keep the smallest one in

terms of the probabilistic price order. We explain the details of the function

get tile in Section 4.3.4, and discuss how to determine the probabilistic price

order of two tiles in Section 4.4. The result tile is inserted into the result set

in line 9.

73

4.3. Algorithm

4.3.3 Generating Candidates

Since enumerating an exponential number of possible tiles is infeasible, our

approach first generates a set of candidates to reduce the search space. It is

clear that choosing a good set of candidates is very important. Generally, a

good candidate set should satisfy two criteria: (1) it should lead to a high-

quality probabilistic tile cover; (2) it should be as small as possible for the

sake of efficiency.

Similar to summarizing deterministic data [44], a reasonable choice of

candidates for mining MPTC from uncertain databases is the probabilistic

frequent pattern set F . Given an uncertain database D, an itemset I is a

probabilistic frequent pattern if the probability that the support of I is no

less than minsup is greater than minprob (i.e., Pr(Supp(I) ≥ minsup) >

minprob), where the support of I is the number of occurrence of I in D. A

probabilistic frequent pattern captures the items that are likely to appear in

the same set of transactions, which is suitable for the construction of tiles. If

a tile R = T × I such that I ∈ F , then it guarantees that Pr(|T| > minsup) ≥

minprob, which indicates that the tile R will not be too small.

Nevertheless, the probabilistic frequent pattern set may be large and re-

dundant since it enjoys the anti-monotonic property [4]. To alleviate this is-

sue, we use the summarized set − probabilistic representative frequent patterns

(P-RFP) [40] − as candidates, which is more concise and less redundant. In-

terested readers may refer to [40] for details. We also insert all individual

items (i.e., members of I) into the candidate set in order to ensure that the

produced tile set is possible to completely cover the uncertain database.

After the generation process, the candidate set is checked in Line 5 of

Algorithm 4.1. There are several choices of orders to iterate it, such as al-

phabetical order, descending frequency order or descending length order.

Considering that longer patterns tend to generate larger tiles, we prefer to

check the longer pattern first for the conciseness of the result. Note that

given a current result probabilistic tile set R∗ and two probabilistic tiles R1

and R2, which are constructed from candidates I1 and I2, respectively, the

74

4.3. Algorithm

order of iterating affects the result only when

Pr [ρ(R∗ ∪ {R1}; Z) < ρ(R∗ ∪ {R2}; Z)]

=Pr [ρ(R∗ ∪ {R1}; Z) > ρ(R∗ ∪ {R2}; Z)] . (4.3)

Otherwise, the one ranked higher with respect to the probabilistic price or-

der would be preferred no matter whether it occurred earlier or later.

4.3.4 Constructing Tiles

Given a candidate I, the function get tile constructs a tile R∗ = T∗ × I,

where T∗ ⊆ T (I) and T (I) is the set of supporting transactions of I in

the uncertain database D.

The basic idea is to enumerate all possible tiles R = T × I, such that T ⊆

T (I). Although a high-quality tile can be generated, the process is time-

consuming because the number of possible tiles is exponential (i.e. 2|T (I)|).

Hence, we design a greedy strategy to iteratively add a transaction into the

result set, and finally return a tile covering more cells with lower cost.

Algorithm 4.2 illustrates the function get tile. Line 1 initializes the result

tile R∗. Line 2 constructs a set of tiles R(I) from I and T (I), where each

tile R in R(I) is {t} × I, such that t ∈ T (I). Then, we sort R(I) in the

descending probabilistic price order (line 3). Lines 4− 9 search for the result

tile greedily. The algorithm checks each tile R constructed from sorted R(I)

(line 4) and merge R into R∗ only if the updated tile R′ precedes the current

tile R∗ and the density of the resulted tile setR∪{R′} satisfies the constraint

Pr(d(R∪ {R′}) > θ) > ξ (lines 6 − 7). Otherwise, the algorithm stops and

return R∗ as the result (lines 8 − 10).

According to the definition of density, we have d(R) = |R ∩ D|/|R|.

The denominator can be easily computed given a tile set. Calculating the

numerator is more complex because it is a random variable. Let X = |R ∩

D| = ∑i Xi, where each Xi is a random variable indicating the event e ∈ t for

cell ci = (t, e) ∈ R∩D (i.e., Pr(Xi = 1) = Pr(e ∈ t)). We denote Pr(Xi = 1)

as pi. Since all Xis are independent Bernoulli trials, X follows a Poisson

binomial distribution, whose expected value and variance are μ = ∑i pi

75

4.4. Probabilistic Price Order

Algorithm 4.2 Function get tile

Input: Itemset I, Supporting Transaction Set of I, T (I), density thresholds
θ and ξ

Output: Probabilistic Tile R∗

1: R∗ ← ∅

2: R(I) ← {{t} × I|t ∈ T (I)}
3: Sort R(I) in the descending probabilistic price order
4: for R in R(I) do
5: R′ ← R∗ ∪ R
6: if R′ ≺ρ R∗ and Pr[d(R∪ {R′}) > θ] > ξ then
7: R∗ ← R′

8: else
9: break

10: return R∗

and σ2 = ∑i pi(1 − pi), respectively. According to [8], the density d(R) can

be well approximated by a normal distribution:

Pr[d(R) > θ] ≈ 1 − Φ [(θ · |R| − 0.5− μ)/σ] , (4.4)

where Φ is the cumulative distribution function of the standard normal dis-

tribution. According to the Berry-Esseen Theorem [49], the upper bound of

the approximation error is C ·ψ, in which ψ = ∑
n
i=1 |pi(1 − pi)(1 − 2pi)| /σ3

and C < 0.7915.

The bottleneck of get tile function is then how to determine whether

R′ ≺ρ R∗, which involves the calculation of probability Pr [ρ(R′; Z) < ρ(R∗; Z)].

We discuss the details in the next section.

4.4 Probabilistic Price Order

In this section, we discuss how to efficiently determine the probabilistic

price order of two tiles. That is, to calculate the probability Pr [ρ(R1; Z) < ρ(R2; Z)],

where R1 and R2 are two tiles, and Z is the set of covered cells.

Let q1 and q2 be the maximal values of probabilistic cover quantities of

q(R1; Z) and q(R2; Z), respectively. According to the definition of proba-

76

4.4. Probabilistic Price Order

bilistic price, we have the following,

Pr [ρ(R1; Z) < ρ(R2; Z)] =
q2

∑
k=0

q1

∑
l=�c(R1)·k/c(R2)�

Pr [q(R1; Z) = l, q(R2; Z) = k]

(4.5)

Hence, to determine the probabilistic price order, we need to calculate the

joint probability Pr [q(R1; Z) = l, q(R2; Z) = k].

We observe that the probabilistic cover quantity q(H; Z) of a tile R is a

random variable following a Poisson binomial distribution, which is stated

in Theorem 4.1.

Theorem 4.1. Given an uncertain database D, a tile R and a covered cell set Z,

the probabilistic cover quantity of R given Z, q(R; Z), follows a Poisson binomial

distribution, with the following expected value and variance.

E [q(R; Z)] = ∑
(t,e)∈(R\Z)∩D

Pr(e ∈ t)

Var [q(R; Z)] = ∑
(t,e)∈(R\Z)∩D

Pr(e ∈ t) · (1 − Pr(e ∈ t))

To prove Theorem 4.1, we represent the existence of each cell in (R \Z)∩

D by a binary random variable, then q(R; Z) becomes the sum of Bernoulli

trials, which follows a Poisson binomial distribution. The expected value

and variance can be derived accordingly.

Proof. Let XR∩D and XZ be sets of Bernoulli random variables indicating the

existence of cells in R ∩ D and Z, respectively. Then, we order the random

variables as follows:

XR∩D = {X1, X2, . . . , Xα, Xα+1, . . . , Xβ}

XZ = {Xα+1, Xα+2 . . . , Xγ}, 1 ≤ α ≤ β ≤ γ

Hence, X(R\Z)∩D = {X1, X2, . . . , Xα}.

Since q(R; Z) = |(R \ Z) ∩ D|, we have q(R; Z) = ∑
α
i=1 Xi. Therefore,

q(R; Z) is the sum of independent Bernoulli trials, which follows a Poisson

binomial distribution. Then, the expected value and variance of q(R; Z) can

77

4.4. Probabilistic Price Order

be deduced according to the property of Poisson binomial distribution.

E [q(R; Z)] =
α

∑
i=1

Pr(Xi = 1) = ∑
(t,e)∈R\Z

Pr(e ∈ t)

Var [q(R; Z)] =
α

∑
i=1

Pr(Xi = 1) · (1 − Pr(Xi = 1))

= ∑
(t,e)∈R\Z

Pr(e ∈ t) · (1 − Pr(e ∈ t))

which proves the theorem.

Theorem 4.1 indicates that Pr [q(R1; Z) = k, q(R2; Z) = l] is a joint prob-

ability of two Poisson binomial distributions. Both an exact method [40] and

an approximate approach [50] have been proposed for computing the joint

probability. However, the exact method is not adequately efficient, while

the approximate solution requires the number of Bernoulli trials to be large

enough. Since the joint probability is not arbitrary but produced from the

cover quantities of two probabilistic tiles, we propose a technique to decom-

pose it into three independent distributions, which enhances the efficiency

without loss of accuracy. The details are stated in Theorem 4.2.

Theorem 4.2. Given two tiles R1 and R2, a covered cell set Z, and two integers

k and l, 0 ≤ k ≤ q1 and 0 ≤ l ≤ q2, where q1 and q2 are the maximum value

of q(R1; Z) and q(R2; Z), the joint probability of q(R1; Z) and q(R2; Z) can be

calculated as follows.

Pr [q(R1; Z) = k, q(R2; Z) = l]

=
q0

∑
i=0

Pr [q(R1 ∩ R2; Z) = i] · Pr [q(R1 \ R2; Z) = k − i] ·

Pr [q(R2 \ R1; Z) = l − i] (4.6)

where q0 is the maximum value of q(R1 ∩ R2; Z).

Theorem 4.2 can be proved by separating the cells in R1 and R2 into dis-

joint parts: R1 \R2, R2 \R1 and R1 ∩R2, whose probabilistic cover quantities

are mutually independent.

78

4.4. Probabilistic Price Order

Proof. Let X1 and X2 be sets of Bernoulli random variables indicating the

existence of cells in R1 \ Z and R2 \ Z, respectively. Similar to the proof of

Theorem 4.1, we order the random variables as follows:

X1 = {X1, X2, . . . , Xβ}

X2 = {Xα+1, Xα+2 . . . , Xq}, 1 ≤ α ≤ β ≤ q

Suppose X1 and X2 are two random variables, such that X1 = ∑
β
i=1 Xi and

X2 = ∑
q
i=α+1 Xi. Then, both X1 and X2 follow Poisson binomial distribution.

The joint probability can be expressed using X1 and X2 as follows.

Pr [q(R1; Z) = k, q(R2; Z) = l] = Pr [X1 = k, X2 = l]

Let

Y1 =
α

∑
i=1

Xi, Y2 =
β

∑
i=α+1

Xi, Y3 =
q

∑
i=β+1

Xi

That is, Y1 = q(R1 \ R2; Z), Y2 = q(R1 ∩ R2; Z) and Y3 = q(R2 \ R1; Z).

Since X1 = Y1 +Y2 and X2 = Y2 +Y3, the joint probability can be computed

as follows.

Pr(X1 = k, X2 = l)

=Pr(Y1 + Y2 = k, Y2 + Y3 = l)

=
β−α

∑
y2=0

Pr(Y2 = y2) · Pr(Y1 = k − y2, Y3 = l − y2|Y2 = y2)

Consider that the transactions in R1 \ R2, R1 ∩ R2 and R2 \ R1 do not have

intersections, Y1, Y2 and Y3 are mutually independent. Hence,

Pr(Y1 + Y2 = k, Y2 + Y3 = l)

=
β−α

∑
y2=0

Pr(Y2 = y2) · Pr(Y1 = k − y2) · Pr(Y3 = l − y2)

=
q0

∑
i=0

Pr [q(R1 ∩ R2; Z) = i] · Pr [q(R1 \ R2; Z) = k − i] · Pr [q(R2 \ R1; Z) = l − i]

79

4.5. Optimization Techniques

which proves the theorem.

Until now, we have a general solution for determining the probabilistic

price order, which can be applied in both Algorithms 4.1 (e.g., line 7) and 4.2

(e.g., line 6).

4.5 Optimization Techniques

In this section, we introduce three optimization techniques to accelerate the

computation for determining the probabilistic price order.

4.5.1 Optimizing Single Transaction Difference

Note that, in line 6 of Algorithm 4.2, the two tiles, R′ and R∗, differ by one

transaction only. With this condition, we can determine the probabilistic

price order more efficiently.

Theorem 4.3. Given two tiles R1 = T1 × I, R2 = T2 × I, and ΔR = {t} × I,

such that R1 = R2 ∪ ΔR, then

Pr [ρ(R1; Z) < ρ(R2; Z)] =
Δq

∑
i=0

c(R2)·i

∑
j=0

Pr[q(ΔR; Z) = i] · Pr[q(R2; Z) = j]

(4.7)

where Δq is the maximum values of q(ΔR; Z), and Z is the set of covered cells.

Theorem 4.3 can be proved based on the definition of probabilistic price

and the idea that c(R1) = |T2 ∪ {t}| + |I| = c(R2) + 1 and q(R1; Z) =

q(R2; Z) + q(ΔR; Z).

Proof. According to the definition of probabilistic price,

Pr [ρ(R2; Z) < ρ(R1; Z)] = Pr

[
c(R2)

q(R2; Z)
<

c(R1)

q(R1; Z)

]

80

4.5. Optimization Techniques

Since R2 = R1 ∪ΔR, we have c(R2) = c(R1)+ 1 and q(R2; Z) = q(R1; Z)+

q(ΔR; Z). Hence,

Pr

[
c(R2)

q(R2; Z)
<

c(R1)

q(R1; Z)

]

= Pr

[
c(R1) + 1

q(R1; Z) + q(ΔR; Z)
<

c(R1)

q(R1; Z)

]

= Pr [q(R1; Z) < c(R1)q(ΔR; Z)]

=
Δq

∑
i=0

c(R1)·i

∑
j=0

Pr[q(ΔR; Z) = i, q(R1; Z) = j]

Consider that q(ΔR; Z) and q(R1; Z) are independent, we have

Pr

[
c(R2)

q(R2; Z)
<

c(R1)

q(R1; Z)

]

=
Δq

∑
i=0

c(R1)·i

∑
j=0

Pr[q(ΔR; Z) = i] · Pr[q(R1; Z) = j]

which proves the theorem.

4.5.2 Adaptively Computing Cover Quantity

Computing the probability Pr [q(R; Z) = k] is essential for determining the

probabilistic price order. As discussed in Theorem 4.1, q(R; Z) follows a

Poisson binomial distribution. The probability mass function of Poisson bi-

nomial distribution can be calculated by exact approaches [4, 5] or approxi-

mate methods [8, 28].

Again, both types of approach have certain limitations. Suppose q(R; Z)

is the sum of N Bernoulli trials. If we use the exact approach, then the al-

gorithm will be very inefficient when N is large. On the other hand, the

approximate approach may produce a noticeable error when N is small.

Hence, we combine both the exact and approximate approach into an adap-

tive method, which chooses the solution automatically depends on N.

Empirical results show that the error of approximation is less than 0.03

when the number of Bernoulli trials is more than 100. Thus, we use the

81

4.5. Optimization Techniques

approximate approach only if N is no less than 100. Otherwise, an exact

algorithm is employed. The details of the exact algorithm and the approxi-

mate approach used are described in [4, 8].

4.5.3 Pruning by 3σ Property

Since q(R1; Z) and q(R2; Z) follow Poisson binomial distributions, they can

be well-approximated by normal distributions when the maximum values

of q(R1; Z) and q(R2; Z), denoted by q1 and q2, are large enough. If they can

be well-approximated by normal distributions, we can employ the 3σ prop-

erty of normal distribution [41] and further improve the performance of

determining the probabilistic price order. Suppose the expected value and

standard deviation of q(Ri ; Z) are μi and σi, respectively. Denote q(R; Z) as

q(R) and ρ(R; Z) as ρ(R) for brevity. The joint probability can be calculated

by

Pr [ρ(R1) < ρ(R2)] =
k2

∑
k=k1

l2

∑
l=l1

Pr [q(R1) = l, q(R2) = k]

where k1 = max{0, μ2 − 3σ2}, k2 = min{q2, μ2 + 3σ2}, l1 = max{
⌈

c(R1)·k
c(R2)

⌉
, μ1 −

3σ1}, and l2 = min{q1, μ1 + 3σ1}.

Given a random variable X ∼ N(μ, σ), we have Pr(μ − 3σ ≤ X ≤ μ +

3σ) ≈ 99.7%. Hence, if l or k is out of the range [μ1 − 3σ1, μ1 + 3σ1] or

[μ2 − 3σ2, μ2 + 3σ2], respectively, we can safely skip the calculation. This

property can also be similarly applied to Theorem 4.3 for the situation when

two tiles differ by one transaction by

Pr [ρ(R1) < ρ(R2)] =
i2

∑
i=i1

j2

∑
j=j1

Pr[q(ΔR) = i] · Pr[q(R2) = j]

where i1 = max{0, Δμ − 3Δσ}, i2 = min{Δq, Δμ + 3Δσ}, j1 = max{0, μ2 −

3σ2}, and j2 = min{c(R2) · i, μ2 + 3σ2}.

82

4.6. Algorithm Analysis

4.6 Algorithm Analysis

In this section, we analyze the proposed greedy strategy by providing the

approximation ratio, then discuss the time complexity.

4.6.1 Appropriateness of the Greedy Strategy

Since our approach is related to the greedy algorithm for weighted set cover

problem, which achieves an approximation ratio of ln(n) + 1 over the opti-

mal solution, we discuss the approximation ratio of MPTC in this section.

Theorem 4.4. Given an itemset I and its supporting transactions T (I), the func-

tion get tile produces the tile R = T × I such that for any R′ ⊆ T (I) × I,

R ≺ρ R′.

Weprove Theorem 4.4 by the following idea. Suppose the tile R∗ satisfies

that R∗ ≺ρ R′ for all R′ ∈ T (I). Given Ri = {ti} × I ⊆ R∗ and Rj = {tj} ×

I ⊆ T (I)× I, if Rj ≺ρ Ri, then Rj ⊆ R∗. This claim implies that R∗ can be

generated by iteratively adding transactions in the ascending probabilistic

price order till the probabilistic price of result set increasing, which is the

same as the process of the function get tile.

Proof. Suppose the tile R∗ = T∗ × I ⊆ T (I) × I satisfies that for all R′ ⊆

T (I)× I, R∗ ≺ρ R′. We first prove that given two tiles Ri = {ti} × I ⊆ R∗

and Rj = {tj} × I ⊆ T (I) × I, if Rj ≺ρ Ri, then Rj ⊆ R∗. For brevity, we

denote q(R; Z) as q(R) and ρ(R; Z) as ρ(R) in this proof because the covered

cell set Z does not change in our discussion.

We assume Rj � R∗ first. Let T′ = T∗ \ {ti} and R′ = T′ × I.

Then, we have

ρ(R∗) =
c(R∗)

q(R∗)
=

|T∗|+ |I|

q(R∗)
=

c(R′) + 1

q(R′) + q(Ri)
. (4.8)

Since R∗ ≺ρ R′, we have

Pr
[
ρ(R∗) < ρ(R′)

]
> Pr

[
ρ(R∗) > ρ(R′)

]
. (4.9)

83

4.6. Algorithm Analysis

With the result in Equation (4.8), Inequation (4.9) can be stated as fol-

lows:

Pr
[
q(R′) < c(R′)q(Ri)

]
> Pr

[
q(R′) > c(R′)q(Ri)

]
. (4.10)

On the other hand, Since Rj ≺ρ Ri, we have

Pr
[
ρ(Rj) < ρ(Ri)

]
> Pr

[
ρ(Rj) > ρ(Ri)

]
⇒ Pr

[
q(Ri) < q(Rj)

]
> Pr

[
q(Ri) > q(Rj)

]
. (4.11)

Combine Equations (4.10) and (4.11), we have

Pr
[
q(R′) < c(R′)q(Rj)

]
> Pr

[
q(R′) > c(R′)q(Rj)

]
⇒ Pr

[
q(R′) + q(Ri) < c(R′)q(Rj) + q(Rj)

]
> Pr

[
q(R′) + q(Ri) > c(R′)q(Rj) + q(Rj)

]
⇒ Pr

[
q(R∗) < (c(R′) + 1)q(Rj)

]
> Pr

[
q(R∗) > (c(R′) + 1)q(Rj)

]
⇒ Pr

[
c(R∗)q(R∗) + q(R∗) < c(R∗)q(R∗) + c(R∗)q(Rj)

]
> Pr

[
c(R∗)q(R∗) + q(R∗) > c(R∗)q(R∗) + c(R∗)q(Rj)

]
⇒ Pr

[
c(R∗) + 1

q(R∗) + q(Rj)
<

c(R∗)

q(R∗)

]
> Pr

[
c(R∗) + 1

q(R∗) + q(Rj)
>

c(R∗)

q(R∗)

]
(4.12)

Equation (4.12) indicates that R∗ ∪ Rj ≺ρ R∗, which means adding Rj to

R∗ reduces the probabilistic price of R∗. This contradicts with the assump-

tion that R∗ ≺ρ R′ for all R′ = T′ × I such that T′ ⊆ T (I). Hence, we have

Rj ⊆ R∗.

This claim also implies that R∗ can be generated by iteratively adding

transactions in the ascending probabilistic price order till the probabilistic

price of result set increasing, which is the same as the process of the function

get tile and completes the proof.

Based on Theorem 4.4, we prove that the approximation ratio of our

algorithm is also ln(n) + 1 as follows.

Theorem 4.5. For the problem of Minimum Probabilistic Tile Cover Mining, given

a candidate set C, the proposed approach has the same approximation ratio as the

84

4.6. Algorithm Analysis

greedy algorithm for weighted set cover problem, which is ln(n) + 1, where n is the

number of transactions in database.

Theorem 4.5 can be proved by showing that in each iteration, the tile

produced by MPTC mining R and weighted set cover R∗ satisfy that nei-

ther R ≺ρ R∗ nor R∗ ≺ρ R. Then, the approximation factor can be proved

following proof of the greedy weighted set cover algorithm [39].

Proof. We first prove that given the result tile produced by MPTC mining

and weighted set cover R = T × I and R∗ = T∗ × I∗, respectively, R ≈ρ R∗,

which means neither R ≺ρ R∗ nor R∗ ≺ρ R. Then, the approximation fac-

tor can be proved following the proof of greedy weighted set cover algo-

rithm [39].

Since R is a tile generated from the candidate set, and R∗ is produced by

the greedy algorithm, which always chooses the tile with lowest probabilis-

tic price order, we have that R ≺ρ R∗ is invalid.

On the other side, suppose R∗ ≺ρ R. Consider that there must exist a

tile R′ = T′ × I ′ such that I ′ = I∗ and T∗ ⊆ T′ ⊂ T (I ′). According to

Theorem 4.4, our algorithm should return a tile with the probabilistic price

order not higher than R∗. Therefore, we have neither R ≺ρ R∗ nor R∗ ≺ρ R,

which completes the proof.

Consider that the set cover problem has been proven cannot be approxi-

mated within factor (1− c) ln(n) in polynomial time for every c > 0 unless

P = NP [51], the approximation ratio of the algorithm cannot be improved

further.

4.6.2 Time Complexity

Let κ be the number of discovered probabilistic tiles. Then, there are κ iter-

ations in Algorithm 4.1. In each iteration, the algorithm checks each candi-

date in C to find the best tile and decides if it should be added to the result

set by calculating the probabilistic price order. Suppose the time complexi-

ties of the function get tile and the operation of determining ≺ρ are τ1 and

τ2, respectively. The overall complexity is O(κ · |C| · (τ1 + τ2)). The number

85

4.6. Algorithm Analysis

of tiles κ and candidates |C| depend on the characteristics of the database

and the parameter minsup, which is further analyzed in Section 4.7.2.

In the function get tile, we fetch and sort the supporting transactions of

each candidate, then iteratively insert them to the tile until adding a new

transaction violates the conditions R′ ≺ρ R∗ or Pr[d(R∪ {R′}) > κ] > ξ.

Since Pr[d(R∪ {R′}) > κ] > ξ can be approximated by normal distribu-

tion, assuming the cumulative distribution function of standard normal dis-

tribution can be calculated in constant time, the complexity is O(1). Hence,

the worst-case complexity of the function get tile is O(mn + n log n + nτ2),

where O(mn), O(n log n) and O(nτ2) are the complexities of fetching, sort-

ing and inserting processes, respectively.

The complexity of deciding the probabilistic price order ≺ρ, which com-

putes the probability Pr[ρ(R1; Z) < ρ(R2; Z)], is O(m3n3). We analyze it as

follows. Let c = c(R1)/c(R2). According to Equations (4.5) and (4.6), we

have

Pr[ρ(R1; Z) < ρ(R2; Z)]

=
q2

∑
k=0

q1

∑
l=�c(R1)·k/c(R2)�

Pr [q(R1; Z) = l, q(R2; Z) = k]

=
q2

∑
k=0

q1

∑
l=�c·k�

q0

∑
i=0

Pr [q(R1 ∩ R2; Z) = i] ·

Pr [q(R1 \ R2; Z) = k − i] · Pr [q(R2 \ R1; Z) = l − i] (4.13)

Equation (4.13) implies that q1 − �c · k� ≥ 0 ⇒ k ≤ q1/c, otherwise the

result of the second sum will be 0. Similar to calculating the density, the

time complexity of computing Pr [q(R; Z) = i] is O(1). According to Equa-

tion (4.13), we obtain the overall complexity by summing up the number of

operations as follows:

O

(
q2

∑
k=0

(q1 − �c · k�)q0

)
= O ((q1 + (q1 − c) + · · ·+ (q1 − �(q1/c) · c�))q0)

= O(q21 · q0). (4.14)

In the worst case, q0 and q1 may reach m · n, thus the complexity is O(m3n3).

86

4.7. Performance Study

The complexity of the whole algorithm is then O(κ · |C| · (mn + n log n +

n · m3n3 + m3n3)) = O(κ · |C| · m3n4). However, recall that q1 is the max-

imum value of q(R1; Z) = |(R \ Z) ∩ D|. It is normally much less than

m · n due to the sparsity of database. The value of q0, which is the max-

imum value of q(R1 ∩ R2; Z), is even smaller. In addition, if two proba-

bilistic tiles differ by one transaction, the worst-case complexity reduces to

O(m2 · n2 · (m + n)) according to Theorem 4.3. Therefore, normally the run-

time is much less than the worst-case. The efficiency of MPTC mining on

real world datasets and the effectiveness of optimization techniques are il-

lustrated in Section 4.7.2.

4.7 Performance Study

In this section, we conduct experiments and show the effectiveness and

efficiency of our approach. We first demonstrate the performance of the

proposed algorithm by comparing MPTC with state-of-the-art algorithms.

Then, we apply our method on two real world datasets and analyze the

results.

4.7.1 Experiments on Synthetic Datasets

Evaluating the discovered tiles may be difficult, because the “correct” tiles

in a given dataset are unknown. Thus we do not have the ground truth

to compare with. Inspired by [47], we devised a process to generate syn-

thetic dataset by embedding a set of probabilistic tiles into the dataset as

the ground truth, and then introducing noise to test the robustness. For

the evaluation measurements, we developed a probabilistic version of the

F-measure, which is widely used in classification and clustering evaluation.

4.7.1.1 Dataset Generation

We created the synthetic datasets as follows. We first generated a set of

probabilistic tiles R∗, which were used as the ground truth and embedded

into a dataset. Suppose we want to generate a synthetic dataset containing

m items I = {e1, . . . , em} and n transactions D = {t1, . . . , tn}. Given the

87

4.7. Performance Study

parameters of the minimum and maximum ratio of items and transactions,

Imin, Imax, Tmin and Tmax, we constructed a tile R = T × I by uniformly sam-

pling an itemset I from I and a transaction set T fromDwith the constraints

that Imin · m < |I| < Imax · m and Tmin · n < |T| < Tmax · n. In order to guar-

antee that the generated tiles did not repeatedly express the same portion of

data, we set a maximum overlapping ratio w and restrained that for any two

generated tiles R1 = T1× I1 and R2 = T2× I2, |T1 ∩ T2| < w ·min{|T1|, |T2|}

and |I1 ∩ I2| < w ·min{|I1|, |I2|}. For tile R, we also generated its existential

probability Pr(R) from a normal distributionN (μ, σ2), where μ and σ2 were

two parameters to control themean and variance. The synthetic dataset was

then produced by merging the cells of generated probabilistic tiles.

Next, we introduced two types of noise to the dataset: 1-to-0 noise and

0-to-1 noise. Given a transaction-item pair (t, e) contained in one of the gen-

erated tiles with existential probability Pr(t, e), we added 1-to-0 noise to it

with the probability ε1→0, which is a parameter controlling how likely the

1-to-0 noise is introduced, by probabilistically flipping it to 0. The prob-

abilistic flipping operation was implemented by subtracting a probability

p ∼ N (με, σ
2
ε) from Pr(t, e), where με and σε were the mean and variance

of a normal distribution and regulated the extent of the flipping operation.

Similarly, given the parameter controlling 0-to-1 noise, ε1→0, if transaction-

item pair (t, e) was not contained by any tiles, we probabilistically flipped

it to 1 with the probability ε1→0 by setting Pr(t, e) = p ∼ N (με, σε). Note

that the probability after flipping was always bounded in [0, 1] to ensure its

validity. If ε0→1 = ε1→0, we denote them as a uniform probability ε. The

meaning and values of parameters used in the experiments are summarized

in Table 4.3.

4.7.1.2 Evaluation Measurement

F-measures are widely used to evaluate the quality of result for various

problems, such as classification and clustering [52]. Several metrics based

on F-measure were proposed in [47] to assess the quality of tiles in terms

of item, transaction and pattern, respectively. Since they were designed

for deterministic data, we adapted them to uncertain data and defined the

probabilistic versions of precision and recall.

88

4.7. Performance Study

Parameter Description Value

m number of items 10, . . . , 50
n number of transactions 500, . . . , 2500

Imin minimum ratio of items 0.1
Imax maximum ratio of items 0.3
Tmin minimum ratio of transactions 0.1
Tmax maximum ratio of transactions 0.3

w overlapping ratio between tiles 0.5
μ mean of the probability of tiles 0.6
σ2 variance of the probability of tiles 0.1
ε probability of adding noise 0.05, . . . , 0.30

με mean of noise distribution 0.6
σ2

ε variance of noise distribution 0.1

Table 4.3: Parameters used in experiments.

Given a discovered probabilistic tile R′ = T′ × I ′ and a ground truth

probabilistic tile R∗ = T∗ × I∗, let Pr(R) be the existential probability of tile

R, we defined the item-based probabilistic precision and recall as follows.

PrecI(R′, R∗) =
|I ′ ∧ I∗|

|I ′|
·
[
1− | Pr(R′)− Pr(R∗)|

]
(4.15)

RecallI(R′, R∗) =
|I ′ ∧ I∗|

|I∗|
·
[
1− | Pr(R′)− Pr(R∗)|

]
(4.16)

In the design of the metrics, we aimed to measure the similarity of tiles

from the perspectives of both the itemset and the existential probability.

Hence, we employed the Manhattan similarity of the existential probabil-

ities (i.e., 1− | Pr(R′)− Pr(R∗)|) as a weight of the item-based precision and

recall of the discovered tile.

As discussed, each tile in the ground truth set has a probability. Since a

discovered tile implied an underlying concept in the dataset, we treated the

existence of a tile as a single probabilistic event and calculated the existential

probability of the tile as the mean of the existential probabilities of all the

included cells.

With the definitions of probabilistic precision and recall, the probabilistic

F1-score can be obtained as follows.

89

4.7. Performance Study

F1I(R′, R∗) =
2PrecI(R′, R∗) · RecallI(R′, R∗)

PrecI(R′, R∗) + RecallI(R′, R∗)
(4.17)

Based on the F1-score of two tiles, we discuss the F1-score of two proba-

bilistic tile sets next. Suppose the ground truth tile set isR∗, and the discov-

ered tile set is R′. Similar to [47], we defined the item-based probabilistic

F1-score as follows.

F1I(R′,R∗) =
∑R∗∈R∗ |I∗| ·maxR′∈R′ F1I(R′, R∗)

∑R∗∈R′∗ |I∗|
(4.18)

In the definition of F1I(R′,R∗), for each tile in the ground truth, we

considered the discovered tile with highest F1-score as the corresponding

result. Since it is more difficult to achieve higher F1-score when the size of

the itemset of the ground truth tile increases, the F1-score is weighted by

|I∗|. The denominator is to normalize the metric to [0, 1].

The transaction-based probabilistic F1-score (i.e., F1T) and cell-based

probabilistic F1-score (i.e., F1C) for tile set can be defined similarly. Note

that the cell-based probabilistic F1-score calculates with respect to the Carte-

sian product of the itemset and the transaction set.

4.7.1.3 Baseline Methods

We compared our method with following baseline methods: ASSO [53],

Panda+ [47] , Hyper+ [46] and STIJL [54]. These methods were developed

for deterministic database and tackled the tile covering problem from differ-

ent perspectives. ASSO aimed to minimize the difference between discov-

ered tiles and the dataset; Panda+ and STIJL solved the problem by mini-

mizing the Minimum Description Length encoding; while Hyper+ discov-

ered a tile set to minimize the total cost. Since none of the baseline meth-

ods can directly handle the uncertainty in the synthetic datasets, we rely on

the sampling technique, which is a promising tool for uncertain data min-

ing [55]. For each experiment, we uniformly sampled the data 10 times and

90

4.7. Performance Study

n 500 1000 1500 2000 2500

ASSO
F1I 0.240 0.241 0.238 0.241 0.256
F1T 0.333 0.345 0.335 0.328 0.332
F1C 0.367 0.375 0.371 0.354 0.375

Panda+
F1I 0.413 0.428 0.428 0.421 0.456
F1T 0.145 0.151 0.147 0.131 0.131
F1C 0.246 0.262 0.253 0.244 0.284

Hyper+
F1I 0.304 0.331 0.298 0.286 0.330
F1T 0.376 0.377 0.374 0.371 0.368
F1C 0.418 0.419 0.424 0.401 0.427

STIJL
F1I 0.231 0.254 0.257 0.258 0.258
F1T 0.210 0.221 0.217 0.207 0.207
F1C 0.134 0.254 0.261 0.317 0.284

MPTC
F1I 0.652 0.631 0.651 0.586 0.602
F1T 0.478 0.446 0.514 0.582 0.535
F1C 0.545 0.522 0.544 0.583 0.549

Table 4.4: Probabilistic F1-score w.r.t. the number of transactions n.

reported the average performance. The parameters for the four methods

were adjusted to achieve the best performance. In addition, the probabil-

ity of result tiles were set at 1 because the sampled dataset did not contain

uncertainty information.

Our method was implemented in C++. The software of the baseline

methods were obtained from the authors. The experiments were conducted

on a computer with 16 4-core CPUs and 32GB memory running Linux Red

hat 6.5.

4.7.1.4 Comparison Study

We compared MPTC with the baseline methods by varying the following

four parameters in synthetic data generation: the number of transactions n,

the number of items m, the number of ground truth tiles k and the probabil-

ity of noise ε. The default value of them were n = 1000, m = 20, k = 10 and

ε = 0.1. Since the process of dataset generation involved randomization,

we conducted each experiment for 10 times and reported the mean of the

91

4.7. Performance Study

m 10 20 30 40 50

ASSO
F1I 0.390 0.241 0.158 0.139 0.104
F1T 0.364 0.345 0.311 0.311 0.305
F1C 0.483 0.375 0.296 0.278 0.239

Panda+
F1I 0.506 0.428 0.374 0.367 0.345
F1T 0.113 0.151 0.164 0.169 0.180
F1C 0.388 0.262 0.234 0.228 0.227

Hyper+
F1I 0.408 0.331 0.234 0.209 0.185
F1T 0.358 0.377 0.388 0.395 0.396
F1C 0.489 0.419 0.402 0.395 0.405

STIJL
F1I 0.294 0.254 0.252 0.235 0.236
F1T 0.214 0.221 0.211 0.209 0.211
F1C 0.207 0.254 0.333 0.370 0.369

MPTC
F1I 0.764 0.631 0.555 0.515 0.455
F1T 0.520 0.446 0.461 0.507 0.502
F1C 0.737 0.522 0.420 0.402 0.366

Table 4.5: Probabilistic F1-score w.r.t. the number of items m.

F1-scores.

The result F1I , F1T and F1C of all approaches with respect to the vari-

ation of n, m, k and ε are shown in Tables 4.4, 4.5, 4.6 and 4.7, respectively.

Our approach beats all the baseline methods on all the settings.

Table 4.4 shows the F1-scores with respect to the variation of n. It is

interesting that the baseline methods behave differently. For ASSO and

Hyper+, the F1I is normally smaller than F1T, while Panda+ and STIJL

achieve better results of F1I than F1T. This trend can also be found in the

other experiments. In Table 4.5, we observe that the F1Is of all the meth-

ods decrease when m increases. This is because when the number of items

is larger, more possible tiles exist in the dataset, which expands the search

space and makes the dataset more challenging. In Table 4.6, the F1Cs of all

the methods except ASSO drop when k increases. This is because a larger

k means more tiles are required to be found, which makes the task more

difficult. For ASSO, since the number of result tiles k is an input parameter,

it performs relatively stable with respect to the variation of k. In Table 4.7,

92

4.7. Performance Study

k 5 10 15 20

ASSO
F1I 0.234 0.241 0.237 0.244
F1T 0.376 0.345 0.298 0.279
F1C 0.331 0.375 0.385 0.397

Panda+
F1I 0.451 0.428 0.391 0.372
F1T 0.115 0.151 0.165 0.178
F1C 0.290 0.262 0.227 0.222

Hyper+
F1I 0.315 0.331 0.295 0.283
F1T 0.394 0.377 0.345 0.313
F1C 0.398 0.419 0.429 0.411

STIJL
F1I 0.277 0.254 0.247 0.235
F1T 0.207 0.221 0.208 0.207
F1C 0.257 0.254 0.230 0.238

MPTC
F1I 0.527 0.631 0.695 0.700
F1T 0.642 0.446 0.365 0.300
F1C 0.605 0.522 0.503 0.496

Table 4.6: Probabilistic F1-score w.r.t. the number of ground truth tiles k.

the F1-scores of all the methods decrease, because a higher value of ε means

more noise are introduced to the dataset, which adds more difficulty to the

task.

In summary, our approach is better than the baseline methods with re-

spect to the variation of n, m, k and ε, which demonstrate the effectiveness

and applicability of MPTC mining.

4.7.2 Experiments on Real World Datasets

We first describe the real world datasets, then analyze the results of three

groups of experiments to evaluate the cost and the runtime of MPTC min-

ing, the effectiveness of optimization techniques, and the influence of can-

didate selection.

93

4.7. Performance Study

ε 0.05 0.10 0.15 0.20 0.25 0.30

ASSO
F1I 0.241 0.222 0.232 0.237 0.256 0.239
F1T 0.340 0.329 0.320 0.309 0.306 0.282
F1C 0.362 0.347 0.346 0.336 0.355 0.320

Panda+
F1I 0.424 0.395 0.395 0.395 0.411 0.389
F1T 0.139 0.151 0.139 0.139 0.134 0.137
F1C 0.262 0.232 0.213 0.216 0.211 0.196

Hyper+
F1I 0.306 0.275 0.287 0.281 0.293 0.285
F1T 0.382 0.372 0.351 0.341 0.333 0.304
F1C 0.411 0.409 0.391 0.392 0.403 0.382

STIJL
F1I 0.247 0.248 0.242 0.245 0.239 0.237
F1T 0.208 0.216 0.210 0.208 0.206 0.204
F1C 0.254 0.254 0.222 0.211 0.175 0.179

MPTC
F1I 0.598 0.620 0.608 0.615 0.613 0.612
F1T 0.406 0.422 0.490 0.495 0.469 0.420
F1C 0.410 0.449 0.467 0.462 0.461 0.388

Table 4.7: Probabilistic F1-score w.r.t. the probability of noise ε.

Dataset #Trans. #Items Density

Equip 4224 202 18.33%
IIP 35161 467 0.86%

Table 4.8: Characteristics of datasets.

4.7.2.1 Datasets and Experiment Setting

We ran experiments on two datasets with data characteristics listed in Ta-

ble 4.8.

The Equip dataset is provided by an equipment rental company, includ-

ing the equipment demand information with locations collected from Jan-

uary to December in 2013. Each row corresponding to an equipment type

consists of a set of branches, where each branch is associated with a prob-

ability indicating how likely the given equipment type is rented from the

branch. The probability was produced according to the distance between

the locations of equipment demand and the branch.

94

4.7. Performance Study

The other one is the IIP dataset, which records the iceberg sightings

from 1993 to 1997 on the North Atlantic from the International Ice Patrol

(IIP) Iceberg Sightings Database.1 Each transaction in the database contains

the information of an iceberg sighting record, including date, location, size,

shape, reporting source and a confidence level. There are six possible val-

ues of the confidence level indicating different reliabilities: R/V (Radar and

visual), R (Radar only), V (Visual), MEA (Measured), EST (Estimated) and

GBL (Garbled). We converted the confidence levels to probabilities 0.8, 0.7,

0.6, 0.5, 0.4 and 0.3, respectively. This dataset is an uncertain database with

tuple uncertainty.

We discuss the default values of the parameters. There are three param-

eters of MPTC mining: η, θ and ξ. As discussed in Section 4.2, users are

suggested to set the value of η by u and v, and θ by a relative value λ. We

set u = 10 and v = 0.1, λ = 0.5 and ξ = 0.5 as the default values. For the

parameters of P-RFP used for candidate generation, we set minsup = 5%

and 0.5% for Equip and IIP, respectively, and minprob = 0.5, ε = 0.1, δ = 0.1

for both datasets. Users may refer to [40] for the meaning and setting of the

P-RFP parameters.

4.7.2.2 Performance of MPTC Mining

We evaluated the performance of MPTC Mining on the two datasets un-

der different settings of density threshold, number of candidates and cover

probability by varying the parameters λ, minsup and u, respectively.

Figures 4.1 and 4.2 demonstrate the cost and the runtime with respect to

the variation of u on the Equip dataset. The results on IIP dataset are shown

in Figures 4.3 and 4.4. We compared the costs of summarized tiles with that

of the database represented by individual cells, which is denoted by DB.

We observe from Figures 4.1 (a)–4.4 (a) that MPTC mining can effectively

summarize the database with much lower cost. The figures also show that

both the cost and the runtime decrease when u increases. This is because a

larger u indicates more cells are allowed to be uncovered and, consequently,

fewer tiles are required to be constructed.

1http://nsidc.org/data/g00807.html

95

4.7. Performance Study

20 30 40 50 60
u

104

105

106

C
os
t

(a) Cost vs. u

20 30 40 50 60
u

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(s
)

×103

(b) Time vs. u

λ = 0.985 λ = 0.990 λ = 0.995 DB

Figure 4.1: Performance w.r.t. λ on Equip.

It can be observed from Figures 4.1 and 4.3 that when λ increases, the

algorithm finishes with a higher cost and longer runtime. The reason is that

when λ is larger, the generated tiles tend to be denser and cover more cells

at first, hence the cost is lower and the runtime is shorter. Then, more small

tiles are produced because the density constraint forbids to add larger tiles

with lower density into the result set, even if it covers more cells, which

leads to higher cost and longer runtime.

Figures 4.2 and 4.4 show that when minsup increases, the cost grows

while the runtime decreases. This is because the growth of minsup leads to

the decline of the number of candidates. Thus, more cells are covered by

the tiles constructed from individual items, which increases the total cost

but consumes less time.

Figure 4.5 (a) shows the number of tiles with respect to u by varying the

value of λ on IIP dataset. It can be observed that the number of discovered

tiles decreases when u increases. Figure 4.5 (b) demonstrates the number

of tiles with respect to u with the variation of minsup on Equip dataset. We

also observe that the number of tiles reduces with the increase of minsup.

This is because a lower value of minsup indicates that more candidates are

generated. In addition, we notice that when u is small, the number of tiles

is relatively large. This is because many small tiles are generated in order

to reach the constraint of cover probability. Then the number of tiles drops

significantly when the value of u grows.

96

4.7. Performance Study

20 30 40 50 60
u

0

1

2

3

4

5

6

7

C
os
t

×105

(a) Cost vs. u

20 30 40 50 60
u

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
(s
)

×103

(b) Time vs. u

minsup = 0.05 minsup = 0.07 minsup = 0.09 DB

Figure 4.2: Performance w.r.t. minsup on Equip.

10 20 30 40 50 60 70 80
u

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os
t

×105

(a) Cost vs. u

10 20 30 40 50 60 70 80
u

200

300

400

500

600

700

800

900

T
im

e
(s
)

(b) Time vs. u

λ = 0.97 λ = 0.98 λ = 0.99 DB

Figure 4.3: Performance w.r.t. λ on IIP.

4.7.2.3 Effectiveness of Optimization Techniques

We studied the effectiveness of the three optimization techniques introduced

in Section 4.5: Optimizing single transaction difference (denoted by OPT1),

Adaptively computing cover quantity (denoted by OPT2), and Pruning by

3σ property (denoted by OPT3). The methods without any and with all op-

timization techniques are denoted by Base and MPTC, respectively. Since

the Base method is slow, we randomly picked 100, 200, . . . , 500 transactions

from the Equip dataset to demonstrate the effectiveness.

We analyzed the effectiveness of the optimization techniques by evalu-

ating the runtime and the cost. Figure 4.6 (a) illustrates the runtime with

respect to the variation of the size of dataset. It shows that OPT1, OPT2 and

OPT3 accelerate the algorithm for approximately 100 times, 10 times and

twice. Figure 4.6 (b) shows the cost of discovered tiles. It can be observed

97

4.7. Performance Study

10 20 30 40 50 60 70 80
u

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os
t

×105

(a) Cost vs. u

10 20 30 40 50 60 70 80
u

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
im

e
(s
)

×103

(b) Time vs. u

minsup = 0.001 minsup = 0.005 minsup = 0.009 DB

Figure 4.4: Performance w.r.t. minsup on IIP.

20 30 40 50 60
u

0

10

20

30

40

50

60

70

80

90

N
u
m
b
er

of
T
ile
s

(a) Number of Tiles vs. u on IIP

λ = 0.97

λ = 0.98

λ = 0.99

20 30 40 50 60
u

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m
b
er

of
T
ile
s

×105

(b) Number of Tiles vs. u on Equip

minsup=0.05

minsup=0.07

minsup=0.09

Figure 4.5: Number of Tiles on Equip and IIP.

that the costs of tiles generated with and without optimization techniques

differ very slightly. Therefore, the optimization techniques effectively speed

up the algorithm with slightly increase of cost.

4.7.2.4 Analysis of Candidate Selection

We further analyzed the number of candidates and the influence of param-

eter u in the process of candidate selection on the Equip dataset.

Figures 4.7 (a) and (b) shows the number of candidates with respect to

the variation of minsup and minprob, respectively. We set ε = 0.1 and δ =

0.1 for both figures, and minprob = 0.5 for Figure 4.7 (a) and minsup = 5%

for Figure 4.7 (b). It clearly shows that the number of Probabilistic Rep-

resentative Frequent Pattern (P-RFP) is less than the number of Probabilis-

tic Frequent Pattern (PFP), especially when minsup is small, which corre-

98

4.8. Related Work

100 200 300 400 500
Size

100

101

102

103

104

105

T
im

e
(s
)

(a) Time vs. Size

100 200 300 400 500
Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
os
t

×104

(b) Cost vs. Size

DB Base Base+OPT1 Base+OPT2 Base+OPT3 MPTC

Figure 4.6: Performance of optimization techniques.

0.030 0.035 0.040 0.045 0.050
minsup

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m
b
er

of
C
an
d
id
at
es

(a) Number of Candidates vs. minsup

PFP

PRFP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
minprob

250

300

350

400

450

500

550

N
u
m
b
er

of
C
an
d
id
at
es

(b) Number of Candidates vs. minprob

PFP

PRFP

Figure 4.7: Number of candidates

sponds to our discussion in Section 4.3.3.

Figure 4.8 (a) shows that compared with Probabilistic Frequent Pattern

(PFP), using Probabilistic Representative Frequent Pattern (P-RFP) reduces

the runtime, especially when u is small. This is because when u is large, the

resulted tiles are prone to be produced by longer patterns, which very likely

exist in both PFP set and P-RFP set. Hence, using P-RFP set as candidate

improves the efficiency of MPTCMining when a higher cover probability is

desired. Figure 4.8 (b) shows that the cost difference between the results of

using the two types of candidates is neglectable.

4.8 Related Work

In this section, we review related works in two research areas: transaction

data summarization, and frequent pattern summarization.

99

4.8. Related Work

20 30 40 50 60
u

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s
)

×103

(a) Time vs. u

PFP

PRFP

20 30 40 50 60
u

2.5

3.0

3.5

4.0

4.5

5.0

5.5

C
os
t

×104

(b) Cost vs. u

PFP

PRFP

Figure 4.8: Cost and Time w.r.t. u

4.8.1 Transaction data summarization

Tiling database was previously proposed to extract knowledge from binary

transaction data by covering a database with tiles [45, 56]. It finds noise-

less tiles to cover the original database and does not handle the false posi-

tives presented in dataset. According to [54], tiles can also be hierarchical.

Miettinen et al. [53] proposed the ASSO algorithm to solve the Binary Ma-

trix Factorization problem, which factorizes an m × n binary matrix into an

m × k matrix and a k × n matrix. The result can also be interpreted as using

k tiles to cover the original database. Xiang et al. [46] defined the concept

of hyperrectangle, which is similar to a tile, and formulated the problem

of succinctly summarizing transaction databases. Hyperrectangle was also

adopted to reduce the amount of generated frequent patterns [57]. Lucch-

ese et al. [47] presented a unified framework for mining approximate bi-

nary patterns and propose a Minimum Description Length-based method.

However, as discussed, the data uncertainty leads to challenging issues for

database summarization. Therefore, none of these methods can be applied

to summarize uncertain databases. Recently, Bonchi et al. [58] proposed

a framework for summarizing uncertain databases with a set of patterns

based on the Minimum Description Length Principle. Since this aims at

generating itemsets instead of tiles, it works on a problem different from

our method.

100

4.9. Conclusions

4.8.2 Frequent pattern summarization

Motivated by the fact that frequent pattern mining may generate an expo-

nential number of patterns due to the anti-monotonicity of the support mea-

sure, much research effort has been dedicated to frequent pattern summa-

rization, which aims to obtain amuch smaller butmeaningful set of patterns

to represent the complete set of frequent patterns. A variety of definitions

have been proposed, such as maximal patterns [29], closed patterns [30],

condensed pattern bases [59, 60], pattern profiling-based approaches [35, 36,

37], support distance-based approaches [23, 38], probabilistic model-based

method [61] and information theoretic-based summarizations [62, 63]. For

summarizing frequent patterns in uncertain databases, We previously pro-

posed the concept of probabilistic representative frequent patterns and de-

veloped exact and approximate approaches [40, 50].

4.9 Conclusions

Transaction data is ubiquitous in real world applications. Meanwhile, un-

certainty is inherent in the data of various domains. Therefore, in this chap-

ter, we study the problem of summarizing transaction data in uncertain

databases and formulate the problem as Minimal Probabilistic Tile Cover

Mining. We propose the concept of Probabilistic Price Order and a two-step

framework as a solution, including candidates generation and tile construc-

tion. We discuss the selection of candidates and devise an algorithm to

determine the Probabilistic Price Order of two tiles. Several optimization

techniques are further designed to improve the performance. Experiments

on both synthetic and real world datasets demonstrate the effectiveness of

summarizing uncertain databases usingminimal probabilistic tile cover and

our proposed MPTC mining approach. In the future, we are interested in

applying the proposed algorithm to uncertain database visualization.

101

4.9. Conclusions

102

Chapter 5

RCP Mining: Towards the

Summarization of Spatial

Co-location Patterns

Co-location pattern mining is an important task in spatial data mining. It

finds patterns of spatial features whose instances tend to locate together

in geographic space. However, the traditional framework of co-location

pattern mining produces an exponential number of patterns because of the

downward closure property, which makes it hard for users to understand,

assess or apply the huge number of resulted patterns. To address this issue,

in this chapter, we study the problem of mining representative co-location pat-

terns (RCP). We first define a covering relationship between two co-location

patterns by finding a new measure to appropriately quantify the distance

between patterns in terms of their prevalence, based on which the prob-

lem of representative co-location pattern mining is formally formulated.

To solve the problem of RCP mining, we first propose an algorithm called

RCPFast, adopting the post-mining framework that is commonly used by

existing distance-based pattern summarization techniques. To address the

peculiar challenge in spatial data mining, we further propose another al-

gorithm, RCPMS, which employs the mine-and-summarize framework that

pushes pattern summarization into the co-location mining process. Opti-

mization strategies are also designed to further improve the performance

of RCPMS. Our experimental results on both synthetic and real-world data

103

5.1. Introduction

sets demonstrate that RCPmining effectively summarizes spatial co-location

patterns, and RCPMS is more efficient than RCPFast, especially on dense

data sets.

5.1 Introduction

As one of the most fundamental tasks in spatial data mining, co-location

mining aims to discover co-location patterns where each is a group of spa-

tial features whose instances are frequently located close to each other [13].

Spatial co-location patterns yield important insights for various applica-

tions. In epidemiology, for example, different incidents of diseases may

exhibit co-location patterns such that one type of disease tends to occur in

spatial proximity of another [14]. In ecology, scientists are interested in find-

ing frequent co-occurrences among spatial features, such as drought, sub-

stantial increase/drop in vegetation, and extremely high precipitation [15].

In e-commerce, companies may be interested in discovering types of ser-

vices (e.g., weather, timetabling and ticketing queries) that are requested by

geographically neighboring users, so that location-sensitive recommenda-

tions can be provided [16]. Due to its importance, the problem of finding

prevalent co-location patterns from spatial data has been explored exten-

sively [13, 17, 18, 14, 19, 20, 21].

A common framework of co-location pattern mining uses the frequen-

cies of a set of spatial features participating in a co-location to measure the

prevalence (known as participation index [13], or PI for short) and requires a

user-specified minimum threshold to find interesting patterns. Typically, if

the threshold is high, the framework may generate commonsense patterns.

However, with a low threshold, a great number of patterns will be found.

This is further exacerbated by the downward closure property that holds

for the PI measure. That is, if a set of features is prevalent with respect to

a threshold of PI, then all of its subsets will be discovered as prevalent co-

location patterns. A huge pattern number will jeopardize the usability of

resulted patterns, as it demands great efforts to understand or examine the

discovered knowledge.

The key idea of solving this problem is to find an effective way to sum-

104

5.1. Introduction

marize the co-location patterns, e.g., to find a high-quality representation

that describes the complete set of resulted patterns precisely and concisely.

Two types of compressed co-location patterns have been explored in the lit-

erature: maximal co-location patterns (MCP) [64] and closed co-location patterns

(CCP) [65]. A co-location pattern is a MCP if it is prevalent itself and none

of its super-patterns are prevalent. MCP mining may significantly reduce

the number of co-location patterns, but it fails to preserve the prevalence

information. It is therefore a lossy approximation. As for the second type,

a co-location pattern is a CCP if it is prevalent itself and none of its super-

patterns have the same PI as it does. CCP mining not only diminishes the

number of co-location patterns but also preserves the complete PI infor-

mation. However, by emphasizing too much on the PI information, the

compression power of CCP mining is limited.

For example, given a spatial data set shown in Figure 5.1, where in-

stances/events of four spatial features, A, B, C and D, are represented by

different symbols and edges connecting events denote spatial neighbor-

hood relationships, Table 5.1 lists a set of five prevalent co-location patterns

and their corresponding PI in the data set (the definition of PI is provided in

Section 5.2). If MCP mining is adopted, only F3 will be output as the others

are all sub-patterns of F3. However, F3 is significantly different from others

in terms of their PIs. In contrast, if CCP mining is used, then all patterns

will be returned since each of them is a closed pattern. That is, CCP mining

provides no compression on this set of patterns. Therefore, to address the

limitations of MCP and CCP mining, a method that not only provides opti-

mal compression rate but also preserves reasonable prevalence information

will be favored.

Similar idea has been explored in the studies of summarizing frequent

itemsets [23, 38, 35]. Xin et al. [23] proposed the notion of an ε-cover rela-

tionship between itemsets. An itemset X1 is ε-covered by another itemset

X2 if X1 is a subset of X2 and 1− |T(X1)∩T(X2)|
|T(X1)∪T(X2)|

≤ ε, where T(Xi) is the set

of supporting transactions of pattern Xi. The goal is then to find a mini-

mum set of representative itemsets that can ε-cover all frequent itemsets.

In this chapter, we follow their idea and propose to summarize co-location

patterns using a set of representative co-location patterns (RCPs), which strikes

105

5.1. Introduction

Figure 5.1: A motivating example of a spatial data set. Each symbol repre-
sents an event corresponding to a spatial feature, and each edge connecting
two events represents a neighborhood relationship.

a fine balance between improving compression rate and preserving preva-

lence information.

However, existing methods for representative itemsets mining cannot

be applied directly to representative co-location pattern mining, neither the

framework of problem definition nor the mining process. This is mainly

because there is no natural notion of transactions in co-location mining [13].

Consequently, the original definition of the ε-cover relationship cannot be

adopted straightforwardly because it is defined on a supporting transaction-

based distancemeasure. Moreover, the mining process will be more compli-

cated as it is more expensive to examine whether a set of feature instances

participate in a co-location than checking whether a set of items appear in

one transaction.

To formulate the problem of representative co-location pattern mining,

we first define a new measure to appropriately quantify the distance be-

tween two co-location patterns in terms of their prevalence, based on which

the ε-cover relationship can be stated on a pair of co-location patterns. To

solve the problem of RCP mining, we first propose an algorithm, RCPFast,

which follows existing distance-based pattern summarization techniques to

adopt the post-mining framework that finds RCPs from the set of discovered

co-location patterns. Observing a peculiar challenge in spatial data mining,

106

5.1. Introduction

ID Feature Sets Events PI

F1 {A, B}
A1B1, A1B2, A2B3 1
A4B4, A5B5, A3B6

F2 {A, B,C}
A1B1C2, A2B3C1 5/6

A3B6C3, A4B4C4, A5B5C5

F3 {A, B,C, D} A2B3C1D2, A4B4C4D1 1/3
F4 {B,C, D} B3C1D2, B4C4D1, B5C5D2 1/2
F5 {C, D} C1D2,C4D1,C5D2 3/5

Table 5.1: A set of prevalent co-location patterns.

we then develop another algorithm, called RCPMS, which employs a mine-

and-summarize framework to discover RCPs directly from the spatial data.

To our knowledge, RCPMS is the first work among existing distance-based

pattern summarization that pushes summarization into the pattern mining

process. Optimization strategies are also devised to further improve the ef-

ficiency of RCPMS. The main contributions of our research are summarized

as follows.

• We formally define the problem of representative co-location pattern

mining based on a newly exploited measure to quantify the preva-

lence proximity between two co-location patterns. To our knowledge,

this is the first work that summarizes spatial co-location patterns us-

ing distance-based representative patterns.

• We develop two algorithms to discover the set of RCPs, RCPFast and

RCPMS, which adopt fundamentally different mining paradigms and

exploit different optimization strategies to improve performance.

• We evaluate the performance of the developed algorithms on both

synthetic and real-world data sets. Our experimental results demon-

strate the effectiveness of RCP mining, and the efficiency of RCPMS

compared with RCPFast, especially on dense data sets.

The remainder of this chapter is organized as follows. In Section 5.2, we

define relevant concepts and formally formulate the problem. Section 5.3 in-

troduces the RCPFast algorithm. Section 5.4 describes the RCPMS algorithm

and optimization strategies. In Section 5.5, we evaluate the performance of

107

5.2. Preliminary

the developed algorithms. Existing works related to our research are re-

viewed in Section 5.6. Section 5.7 closes this chapter with some conclusive

remarks.

5.2 Preliminary

In this section we first review definitions related to traditional co-location

patterns. Then, we introduce a distance metric to measure the prevalence

difference between two patterns. Finally, we formally define the problem of

representative co-location pattern mining.

5.2.1 Co-location Patterns

Given a set of spatial features F = { f1, f2, . . . , fK}, a spatial data set is a

collection of instances/events E = {e1, e2, . . . , eN}, where each ei ∈ E is

represented by a vector 〈event id, spatial feature type, location〉. We review

the measures used to characterize the interestingness of a subset of features

F ⊆ F as follows. Please refer to [13] for the details.

Definition 5.1. Given a subset of features F = { f1, . . . , fk} ⊆ F , E = {e1, . . . , ek} ⊆

E is a Row Instance (RI) of F, denoted as RI(F), if ∀i ∈ [1, k], ei is an instance

of fi and ∀i, j ∈ [1, k], ||ei − ej|| ≤ τ, where ||ei − ej|| refers to the spatial distance

between two events and τ is a user-specified spatial distance threshold.

Definition 5.2. Given a spatial data set E of a set of spatial features F , the Table

Instance (TI) of a subset of features F ⊆ F , denoted as TI(F), is the collection of

all its row instances in E . That is, TI(F) = {RI1(F), . . . , RIm(F)}.

For example, consider the spatial data set in Figure 5.1 and F5 = {C, D}

in Table 5.1. {C1D2} is a RI of F5. TI(F5) = {C1D2, C4D1,C5D2}.

Definition 5.3. Given a subset of features F = { f1, . . . , fk}, the Participation

Ratio of a feature fi ∈ F, denoted as PR(fi , F), is the fraction of events of feature

fi that participate in the table instance of F. That is,

PR(fi , F) =
|{ej|ej ∈ TI({ fi}), ej ∈ T̂ I(F)}|

|TI({ fi})|
, (5.1)

108

5.2. Preliminary

where T̂I(·) is the union of elements in TI set. Hence, the denominator refers to

the total number of events of feature fi and the numerator refers to the number of

distinct events of feature fi that appear in the table instance of F.

Definition 5.4. The Participation Index of a subset of features F = { f1, . . . , fk},

denoted as PI(F), is defined as

PI(F) = min
i∈[1,k]

PR(fi , F). (5.2)

For example, consider the spatial data set in Figure 5.1 and F2 = {A, B,C}

in Table 5.1. Since PR(A, F2) = 5/5, PR(B, F2) = 5/6, PR(C, F2) = 5/5, we

have PI(F2) = min(5/5, 5/6, 5/5) = 5/6.

Definition 5.5. Given a user-specified threshold minpi, a subset of features F ⊆ F

is a Prevalent Co-location Pattern (PCP) if PI(F) ≥ minpi.

5.2.2 Co-location Distance Measure

A distance measure between traditional frequent itemsets has been pro-

posed in [23]. It compares the supporting transactions of two itemsets and

deduces a numerical value as follows,

D(I1, I2) = 1−
|T(I1) ∩ T(I2)|

|T(I1) ∪ T(I2)|
(5.3)

where T(Ii) denotes the set of transactions supporting the itemset Ii. How-

ever, it is difficult to apply this measure to co-location patterns because there

is no natural notion of transactions in co-location mining [13]. One possible

solution is to transactionize the spatial data to let every maximal clique in-

stance [66] be one transaction. For example, we can derive transactions from

the data set in Figure 5.1 as: t1 = {A3B6C3}, t2 = {A1B2}, t3 = {A1B1C2},

t4 = {A2B3C1D2}, t5 = {A5B5C5}, t6 = {B5C5D2}, t7 = {A4B4C4D1}.

Then, the supporting transactions of a co-location pattern are the set of the

corresponding maximal clique instances. For instance, let F = {ABC} be

a co-location pattern. T(F) = {t1, t3, t4, t5, t7}. With this manipulation, ex-

isting supporting transaction-based distance measure can be applied to co-

location patterns directly.

109

5.2. Preliminary

However, one critical problem of this solution is that it needs to find

all maximal clique instances first. Maximal clique enumeration is a long-

standing problem in graph theory and it is known to be NP-hard. Although

many efficient algorithms have been proposed to tackle this problem, such

as [67, 68], the complexity is still high when the graph is large and dense.

We thus explore a new distance measure that appropriately quantifies

the prevalence difference between two co-location patterns which can be

computed efficiently without manipulating the spatial data set.

For simplicity, we denote the set in the numerator of Equation (5.1) as

EF(fi) (i.e., EF(fi) = {ej|ej ∈ TI({ fi}), ej ∈ T̂ I(F)}). It refers to the set of

events of feature fi that participate in the table instance of F.

Definition 5.6. Let F1 and F2 be two co-location patterns and f be a feature shared

by them, namely, f ∈ F1 ∩ F2, the Feature Distance between F1 and F2 w.r.t. f is

defined as

FD f (F1, F2) = 1−
|EF1(f) ∩ EF2(f)|

|EF1(f) ∪ EF2(f)|
(5.4)

Particularly, if F1 ⊆ F2, the formula can be rewritten as

FD f (F1, F2) = 1−
|EF2(f)|

|EF1(f)|
(5.5)

Definition 5.7. Given two co-location patterns F1 and F2, the Co-location Dis-

tance between them is defined as

D(F1, F2) =

⎧⎨
⎩

max
∀ f∈F1∩F2

FD f (F1, F2), if F1 ∩ F2 �= ∅

1, otherwise
(5.6)

Let us apply this new distance measure to co-location patterns in Ta-

ble 5.1 to see if it reasonably reflects the distance/proximity between pat-

terns in terms of their prevalence. Firstly, we consider F1 = {A, B} and

F2 = {A, B,C}. According to the above definitions, EF1(A) = EF2(A) =

{A1, A2, . . . , A5}, EF1(B) = {B1, B2, . . . , B6}, EF2(B) = {B1, B3, B4, B5, B6},

then FDA(F1, F2) = 1−
|EF2

(A)|

|EF1
(A)|

= 1− 5
5 = 0, FDB(F1, F2) = 1− 5

6 = 1
6 .

Hence, D(F1, F2) = max(0, 16) = 1
6 . This small distance value suggests

that F1 and F2 are quite similar in terms of prevalence. Similarly, let us

110

5.2. Preliminary

consider F2 = {A, B,C} and F3 = {A, B,C, D}. We can have D(F2, F3)

= max(1− 2
5 , 1−

2
5 , 1−

2
5) =

3
5 , which indicates that the two patterns (F2, F3)

are quite different. We observe that the new distance measure captures the

prevalence distance between co-location patterns appropriately.

5.2.3 Problem Statement

Based on the proposed distance measure, we define the ε-cover relationship

between two co-location patterns as follows.

Definition 5.8. Given two co-location patterns F1 and F2, and a real number ε ∈

[0, 1], we say F2 ε-covers F1 if (1) F1 ⊆ F2 and (2) D(F1, F2) ≤ ε.

Then, given a set of prevalent co-location patterns, we can group them

into ε-clusters, where each ε-cluster consists of a centroid pattern Fr that ε-

covers all patterns in the cluster. It seems that we may return centroid pat-

terns of ε-clusters as representative patterns. However, by doing so, we

restrict the representative patterns to be prevalent themselves (i.e. PI(Fr) ≥

minpi). The minimum number of representative co-location patterns that

can be achieved using this method is the number of MCPs.

In [23], it shows that an itemset only needs to satisfy a relaxed condition

(i.e., Supp(X) ≥ (1− ε) · minsup) to ε-cover a frequent itemset. We find that

this property holds as well for our newly defined distance measure and the

induced ε-cover relationship.

Let us consider two co-location patterns F1 and F2, where F1 ⊂ F2 and F1

is prevalent, PI(F1) ≥ minpi. According to the definition of PI, we have

PI(F1) = min
∀ f∈F1

|EF1(f)|

|TI({ f})|
≥ minpi (5.7)

If F2 is able to ε-cover F1, then D(F1, F2) ≤ ε. That is,

max
∀ f∈F1

(
1−

|EF2(f)|

|EF1(f)|

)
≤ ε (5.8)

111

5.3. The RCPFast Algorithm

From the above two equations, we have

∀ f ∈ F1, |EF2(f)| ≥ (1− ε) · |EF1(f)|

≥ (1− ε) · minpi · |TI({ f})| (5.9)

Hence,

∀ f ∈ F1,
|EF2(f)|

|TI({ f})|
≥ (1− ε) · minpi (5.10)

Recall that, the PI of F2 can be computed as follows,

PI(F2) = min
∀ f∈F1, f ′∈F2\F1

(
|EF2(f)|

|TI({ f})|
,
|EF2(f ′)|

|TI({ f ′})|

)
(5.11)

Thus, as long aswe require PI(F2) ≥ (1− ε) ·minpi, the condition in Eq. (5.10)

can be satisfied, no matter
|EF2

(f)|

|TI({ f })| is greater than
|EF2

(f ′)|

|TI({ f ′})| or the other way

around. That is, to ε-cover a prevalent co-location pattern F1, F2 only needs

to be prevalent with respect to a lower threshold minpi∗ = (1− ε) · minpi.

Our experimental results in Section 5.5 show that this relaxation contributes

to an improved compression rate.

Definition 5.9. (Problem Statement) Given a set of spatial features F , a spatial

data set E on F , a spatial distance threshold τ, a co-location distance threshold ε,

and a prevalence threshold minpi, the problem of representative co-location pattern

(RCP) mining is to discover a minimal set of co-location patterns R such that:

(1) For all Fr ∈ R, PI(Fr) ≥ (1− ε) · minpi; (2) For any prevalent co-location

patterns F, i.e., PI(F) ≥ minpi, there exits a Fr ∈ R s.t. Fr ε-covers F.

5.3 The RCPFast Algorithm

In this section, we first introduce an algorithm, RCPFast, which follows ex-

isting distance-based pattern summarization approaches to mine RCPs by

adopting a post-mining framework.

Similar to [23], themining framework of RCPFast consists of three stages.

Stage 1 discovers two sets of prevalent co-location patterns, PCP and PCP∗,

with respect to minpi and (1− ε) · minpi, respectively. The objective is then

112

5.3. The RCPFast Algorithm

to select minimal number of patterns from PCP∗ to cover all patterns in

PCP.

Stage 2 generates the complete coverage information by finding all preva-

lent co-location patterns F ∈ PCP that can be ε-covered by each pattern

Fr ∈ PCP∗. All prevalent co-location patterns ε-covered by Fr is stored in

set(Fr).

Stage 3 finds the set of desired RCPs based on the coverage information.

As discussed in [23], this is a set cover problem which is NP-hard. It can be

solved by a greedy strategy that always selects the representative pattern

that covers the most number of prevalent co-location patterns. According

to [69], the relation between the number of RCPs selected by the greedy

solution and the number of the optimal ones is bounded by Theorem 5.1.

Theorem 5.1. Given a set of prevalent co-location patterns PCP w.r.t. minpi, a

set of prevalent co-location patterns PCP∗ w.r.t. (1− ε) · minpi, let the number

of RCPs generated using the greedy set cover algorithm be Cg, and the number of

optimal RCPs be C∗, then |Cg| ≤ |C∗|× H(maxFr∈PCP∗ |set(Fr)|), where H(n) =

∑
n
k=1

1
k .

Since the time complexity of the greedy algorithm isO(∑Fr∈PCP∗ |set(Fr)|),

the computational cost of RCPFast mainly comes from the first two stages.

For the first stage, mining prevalent co-locations is a well-studied topic.

Many efficient algorithms have been proposed, e.g., the spatial-joinmethod [70]

and the join-less method [14]. Note that it is unnecessary to run the mining

process twice to discover the two sets of PCP and PCP∗. We can find preva-

lent patterns w.r.t. (1− ε) · minpi first, and then filter the results to obtain

those prevalent w.r.t. minpi.

For the second stage, the bottleneck lies in the computations of co-location

distance between two patterns to verify the ε-cover relationship. The com-

plexity of generating the complete coverage information isO(|PCP| · |PCP∗|),

which will become a performance issue when there are many prevalent pat-

terns. Therefore, we aim to exploit strategies to skip verifying the ε-cover

relationship for as many pairs of patterns as possible.

Theorem 5.2. Given three co-location patterns F1, F2, and F3 s.t. F1 ⊆ F2 ⊆ F3,

if F3 ε-covers F1, then F2 ε-covers F1.

113

5.3. The RCPFast Algorithm

Figure 5.2: An example illustrating RCPFast algorithm.

Proof. From D(F1, F3) ≤ ε, we have ∀ f ∈ F1, 1−
|EF3

(f)|

|EF1
(f)|

≤ ε. Because ∀ f ∈

F1, |EF2(f)| ≥ |EF3(f)|. Thus, we have 1 −
|EF2

(f)|

|EF1
(f)|

≤ 1−
|EF3

(f)|

|EF1
(f)|

≤ ε, or

D(F1, F2) ≤ ε, which proves the result.

According to Theorem 5.2, we are allowed to skip computing co-location

distance for certain pairs of co-location patterns. For example, as shown in

Figure 5.2 (a), if we have found that {A, B,C, D} ε-covers {A, B}, then we

conclude immediately that {A, B,C} ε-covers {A, B} and {A, B, D} ε-covers

{A, B} without computing their corresponding co-location distances. To

maximize the benefit introduced by Theorem 5.2, we order the co-location

patterns according to pattern lengths. Then, the procedure of RCPFast is

illustrated in Algorithm 5.1.

Algorithm 5.1 follows the three-stage framework. The first stage (lines

1–2) mines two sets of prevalent co-location patterns and the third stage

(lines 15–19) discovers the RCPs using a greedy strategy. The second stage

starts with sorting the patterns in PCP∗ in decreasing order of pattern length,

and sorting patterns in PCP in the reverse order (line 3). Then, a candi-

date list (CandList) is constructed for each representative pattern Fr in PCP∗,

which stores all prevalent patterns that may be ε-covered by Fr (lines 4–7).

Lines 8–14 find the complete coverage information for each pattern Fr in

114

5.3. The RCPFast Algorithm

Algorithm 5.1 RCPFast

Input: (1) A set of spatial events E , (2) a spatial distance threshold τ, (3) a
prevalence threshold minpi, (4) a co-location distance threshold ε.

Output: The set of RCPs R
1: PCP = MinePCP(E , τ,minpi)
2: PCP∗ = MinePCP(E , τ, (1− ε) · minpi)
3: Sort PCP∗ in decreasing order of pattern length, and PCP in increasing

order of pattern length.
4: for all Fr ∈ PCP∗ do
5: for all F ∈ PCP do
6: if F ⊆ Fr then
7: Insert F into CandList(Fr)
8: for all Fr ∈ PCP∗ do
9: for all F ∈ CandList(Fr) do
10: if Fr ε-covers F then
11: Insert F into set(Fr)
12: Find a set of patterns Q ⊆ PCP∗ s.t. ∀Q ∈ Q, F ⊆ Q ⊆ Fr

13: for all Q ∈ Q do
14: Remove F from CandList(Q) to set(Q)
15: while PCP �= ∅ do
16: Find a Fr that maximizes |set(R)|
17: for all F ∈ set(Fr) do
18: Delete F from PCP
19: R = R∪ {Fr}
20: return R

PCP∗ by implementing the optimization enabled by Theorem 5.2. In partic-

ular, once it is confirmed that Fr ε-covers a prevalent pattern F (line 10), we

find a set of patterns Q ⊆ PCP∗ where each Q ∈ Q is a sub-pattern of the

current Fr and a super-pattern of F (line 12). According to Theorem 5.2, F

can be immediately added to set(Q) (line 14).

Note that, the purpose of sorting PCP and PCP∗ in the specified orders

is to allow early discovery of ε-cover relationship between a representa-

tive pattern and its short sub-patterns so that more pairs of patterns can be

skipped for co-location distance computation. For example, Figure 5.2 (b)

shows the candidate lists of three representative patterns, ABCD, ABC and

ABD. Due to the ordering of patterns, we examine first whether ABCD

ε-covers AB. If it happens, we can delete AB from CandList(ABC) and

115

5.4. The RCPMS Algorithm

CandList(ABD) because AB should be covered by these two patterns ac-

cording to Theorem 5.2. Therefore, the computations of D(ABC, AB) and

D(ABD, AB) are omitted.

5.4 The RCPMS Algorithm

Recall that, to verify the ε-cover relationship in the second stage of RCP-

Fast, we need to compute the co-location distance between two patterns,

which requires the table instance information of the corresponding patterns.

However, the output of prevalent co-location pattern mining in the first

stage contains only the prevalent patterns as well as their PI information. It

may not be an issue for frequent itemset summarization as the supporting

transactions of an itemset can be retrieved easily. However, for spatial data

mining, it is expensive to re-scan the data to obtain the table instance of a

co-location pattern whenever it is required. One possible solution is to out-

put the information of table instances as additional results. However, if the

information is stored in disk, extra I/O cost will be incurred. If the infor-

mation is stored in memory, it will become problematic when the number

patterns is huge. Therefore, we are motivated to push coverage validation

into the co-location mining process, thereby integrating the first and the

second stages in order to address the table instance acquisition problem.

Based on the idea, we devise the RCPMS algorithm that employs a novel

mine-and-summarize framework, while all existing distance-based pattern

summarization techniques adopt the post-mining paradigm. More specifi-

cally, whenever a representative pattern, prevalent w.r.t. (1− ε) · minpi, is

discovered, all prevalent patterns, w.r.t. minpi, which can be ε-covered by it

will be found. The feasibility of this idea is supported by the following two

facts.

1. Traditional prevalent co-location pattern mining algorithms usually

use an Apriori-based level-wise scheme to generate patterns [70, 14].

When a representative pattern is mined, all its prevalent sub-patterns

have already been found. Hence, it is sufficient to find the coverage

information for the current representative pattern.

116

5.4. The RCPMS Algorithm

Algorithm 5.2 RCPMS

Input: Same as RCPFast.
Output: Same as RCPFast.
1: P1 = F , k = 2
2: while Pk−1 �= ∅ do
3: Ck = gen candidate colo(Pk−1)
4: for all C ∈ Ck do
5: pi = calculate PI(C)
6: if pi ≥ (1− ε) · minpi then
7: D Table ← cal preval child dis(C)
8: set(C) = gen cover set(C, C, 0)
9: if pi ≥ minpi then
10: Insert C into Pk and set(C)
11: k = k + 1
12: Obtain RCPs using the greedy algorithm

2. When a representative pattern is output in the mining process, its in-

formation of table instance is available, which can be used to compute

its co-location distances with its sub-patterns. For its sub-patterns,

we store their table instance information in memory if they are child

or immediate sub-patterns of the current representative pattern (e.g.,

F ⊂ Fr and |Fr | − |F| = 1). Otherwise, we will retrieve the table in-

stance information of a sub-pattern F (e.g. F ⊂ Fr and |Fr | − |F| > 1)

only if the ε-cover relationship between Fr and F cannot be inferred

using our devised optimization and approximation strategies, which

will be discussed in Sections 5.4.1 and 5.4.2.

The general idea of RCPMS is summarized in Algorithm 5.2. In the be-

ginning, it assigns all unique spatial features to P1 (line 1). From line 2 to

line 11, an iterative process is used to generate patterns of length k from pat-

terns of length k− 1. In particular, line 3 calls the function gen candidate colo

to generate candidate co-location patterns (e.g., using an Apriori-like strat-

egy). For each candidate co-location pattern, we first calculate its PI (line 5).

If the candidate pattern is prevalent w.r.t. (1− ε) · minpi (line 6), we com-

pute its co-location distances with its child sub-patterns which are preva-

lent w.r.t. minpi and store it in a distance table (line 7). Note that, only the

co-location distances between the current pattern and its prevalent child

117

5.4. The RCPMS Algorithm

sub-patterns need to be computed at this stage. As discussed later, its co-

location distances with other descendent prevalent sub-patterns will be com-

puted only if they cannot be inferred using our proposed optimization and

approximation strategies. In line 8, we call the method gen cover set to find

all prevalent sub-patterns that can be covered by the current representative

pattern. Finally, if the current pattern is prevalent w.r.t. minpi, it should

be used to generate candidate patterns in the next round and should be in-

cluded into its own cover set (lines 9 and 10). Line 12 is the same as the

third stage of RCPFast which finds the minimal RCPs.

In the following, we describe the details of the function gen cover set

which finds all prevalent sub-patterns that can be ε-covered by the current

representative pattern. Before presenting the function, we first introduce an

optimization strategy and an approximation strategy that are used by the

function.

5.4.1 Optimization Strategy

Note that, the optimization strategy used by RCPFast (i.e., Theorem 5.2)

is not applicable here. This is because when we output a representative

pattern of length k in RCPMS, the coverage information of representative

patterns of length (k − 1) has already been found. Therefore, we exploit a

new optimization strategy based on the following theorem:

Theorem 5.3. Given three co-location patterns F1, F2 and F3 s.t. F1 ⊆ F2 ⊆ F3,

D(F1, F2) + D(F2, F3) ≥ D(F1, F3).

We introduce an auxiliary lemma before prove this theorem.

Lemma 5.1. Let Si = (nia, nib, nic), 1 ≤ i ≤ m be tuples such that each contains

three non-negative integers which satisfy nia ≥ nib ≥ nic, then the following

inequality holds:

max
1≤i≤m

(
1−

nib

nia

)
+ max

1≤i≤m

(
1−

nic

nib

)
≥ max

1≤i≤m

(
1−

nic

nia

)
(5.12)

Proof. For simplicity, let D1(i) =
(
1− nib

nia

)
, D2(i) =

(
1− nic

nib

)
, D3(i) =(

1− nic
nia

)
. The proof can be completed in two stages.

118

5.4. The RCPMS Algorithm

1. Prove ∀i, D1(i) + D2(i) ≥ D3(i). This can be done by verifying

D1(i) + D2(i)− D3(i) =
(nia − nib)(nib − nic)

nianib
≥ 0

2. Suppose ∃ l̃1, l̃2, l̃3 such that D1(l̃1) = max1≤i≤m D1(i), D2(l̃2) =

max1≤i≤m D2(i), D3(l̃3) = max1≤i≤m D3(i), because D1(l̃1) ≥ D1(l̃3)

and D2(l̃2) ≥ D2(l̃3), we have

D1(l̃1) + D2(l̃2)− D3(l̃3) ≥ D1(l̃3) + D2(l̃3)− D3(l̃3) ≥ 0.

Therefore, Lemma 5.1 is proved.

Next, we present the proof of Theorem 5.3.

Proof. First of all, because F1 ∩ F2 = F1, F1 ∩ F3 = F1, and F2 ∩ F3 = F2,

according to the definitions of co-location distance, we have

D(F1, F2) = max
∀ f∈F1

(
1−

|EF2(f)|

|EF1(f)|

)
(5.13)

D(F2, F3) = max
∀ f∈F1, f ′∈F2\F1

(
1−

|EF3(f)|

|EF2(f)|
, 1−

|EF3(f ′)|

|EF2(f ′)|

)
(5.14)

D(F1, F3) = max
∀ f∈F1

(
1−

|EF3(f)|

|EF1(f)|

)
(5.15)

Note that we divide D(F2, F3) into two parts, such that the former only in-

volves the features in F1, and the latter involves the remaining. The value of

D(F2, F3) depends on the relations between the two parts. It can be divided

into two situations.

1. D(F2, F3) is only related to the former part:

max
∀ f∈F1

(
1−

|EF3(f)|

|EF2(f)|

)
> max

∀ f ′∈F2\F1

(
1−

|EF3(f ′)|

|EF2(f ′)|

)
. (5.16)

In this case, we have

D(F2, F3) = max
∀ f∈F1

(
1−

|EF3(f)|

|EF2(f)|

)
. (5.17)

119

5.4. The RCPMS Algorithm

Because ∀ f ∈ F1, EF3(f) ⊆ EF2(f) ⊆ EF1(f) holds, we have |EF1(f)| ≥

|EF2(f)| ≥ |EF3(f)|. Let each f ∈ F1 binds to a tuple in Lemma 5.1 by

building the corresponding relations: nia = |EF1(f)|, nib = |EF2(f)|, nic =

|EF3(f)|. Therefore by Lemma 5.1, we have

max
∀ f∈F1

(
1−

|EF2(f)|

|EF1(f)|

)
+ max

∀ f∈F1

(
1−

|EF3(f)|

|EF2(f)|

)
≥ max

∀ f∈F1

(
1−

|EF3(f)|

|EF1(f)|

)
,

which means D(F1, F2) + D(F2, F3) ≥ D(F1, F3).

2. D(F2, F3) only depends on the latter part, that is:

D(F2, F3) = max
∀ f ′∈F2\F1

(
1−

|EF3(f ′)|

|EF2(f ′)|

)
(5.18)

and

max
∀ f ′∈F2\F1

(
1−

|EF3(f ′)|

|EF2(f ′)|

)
≥ max

∀ f∈F1

(
1−

|EF3(f)|

|EF2(f)|

)
. (5.19)

According to the first situation, we have

D(F1, F2) + D(F2, F3)− D(F1, F3)

= max
∀ f∈F1

(
1−

|EF2(f)|

|EF1(f)|

)
+ max

∀ f ′∈F2\F1

(
1−

|EF3(f ′)|

|EF2(f ′)|

)

− max
∀ f∈F1

(
1−

|EF3(f)|

|EF1(f)|

)

≥ max
∀ f∈F1

(
1−

|EF2(f)|

|EF1(f)|

)
+ max

∀ f∈F1

(
1−

|EF3(f)|

|EF2(f)|

)

− max
∀ f∈F1

(
1−

|EF3(f)|

|EF1(f)|

)

≥0,

which proves the result.

Figure 5.3 illustrates how to use Theorem 5.3 to skip computing co-

location distance between a representative pattern and its non-child preva-

lent sub-patterns. Suppose F6 is the current representative pattern and we

120

5.4. The RCPMS Algorithm

Figure 5.3: An illustration of the optimization strategy based on Theo-
rem 5.3. Each Fi is a co-location pattern of size i. Different types of lines
represent different ways of obtaining the co-location distance. Suppose
d1 + d2 + d3 ≤ ε and d1 + d2 + d3 + d4 > ε.

have computed its co-location distancewith its child sub-pattern F5, D(F6, F5) =

d1, stored in the D Table (e.g., line 7 in Algorithm 5.2). Next, we need to ex-

amine whether F6 ε-covers the child of F5, e.g., F4. Note that D(F5, F4) = d2

should have been computed and stored in the D Table when outputting F5

in the previous round. According to Theorem 5.3, we infer that D(F6, F4) <

D(F6, F5) + D(F5, F4) = d1 + d2. Therefore, if d1 + d2 ≤ ε, we can con-

clude that F6 ε-covers F4 without computing D(F6, F4). Similarly, when

examining whether F6 ε-covers F3, which is a child sub-pattern of F4, we

have D(F6, F3) < D(F6, F5) + D(F5, F4) + D(F4, F3) = d1 + d2 + d3. As in-

dicated in the figure, d1 + d2 + d3 ≤ ε, we conclude that F6 ε-covers F3

and skip computing the distance D(F6, F3). When it comes to F2, since

d1 + d2 + d3 + d4 > ε, we have to compute the exact value of D(F6, F2)

(we will have to re-gain the table instance of F2 in this case). Therefore,

in this particular example, Theorem 5.3 enables us to skip two of the three

co-location distance computations (i.e., D(F6, F4), D(F6, F3) and D(F6, F2)).

121

5.4. The RCPMS Algorithm

5.4.2 Approximation Strategy

Although Theorem 5.3 can reduce distance computation for a certain num-

ber of pairs of patterns, the effectiveness of this single strategy may not be

sufficient. Therefore, we further exploit an approximation strategy which

substantially improves the computation efficiency by slightly sacrificing the

compression rate.

Recall that, in Figure 5.3, only if the co-location distance between the cur-

rent representative pattern (e.g., F6) and its child prevalent sub-pattern (e.g.,

F5) is smaller than ε, we may use the optimization strategy to infer the dis-

tance between F6 and F4 (F3). Otherwise, we have to compute the distance

between F6 and F4 (F3), which is expensive since we have to re-gain the ta-

ble instance of F4 (F3). Therefore, we consider the following approximation

strategy.

If a representative pattern Fr cannot ε-cover its prevalent child sub-pattern F,

we skip considering whether Fr ε-covers any descendant sub-pattern of F.

For example, in Figure 5.3, if the co-location distance between F6 and F5

is greater than ε, all F4, F3 and F2 will not be included in set(F6).

Figure 5.4 provides two examples to illustrate the influence of the ap-

proximation strategy. In Figure 5.4 (a), let us assume the set of PCP that

need to be summarized are F′
5, F4 and F3, where F3 is a child sub-pattern of

F4, which is a child sub-pattern of F5. F′
5 is a sibling pattern of F5 (e.g., ABC

and ABD). The exact coverage information shows that F6 ε-covers F4. How-

ever, since F6 does not ε-cover F5, F4 is removed from set(F6) according to

the approximation strategy. If using the greedy algorithm to find RCPs, the

final number of RCPs found from the exact cover sets will be 2, which is the

same as the final number of RCPs found from the approximate cover sets.

It indicates that the approximation strategy does not incur any difference to

the final number of RCPs under this situation.

In contrast, Figure 5.4 (b) shows an example where this approximation

strategy will result in difference in the final number of RCPs. In this exam-

ple, suppose the set of PCP are F4 and F′
4. The complete coverage informa-

tion shows that F6 ε-covers both F4 and F′
4. Since F6 does not ε-cover F5 or F′

5,

F4 and F′
4 are removed from set(F6) in the approximate cover sets. Conse-

quently, the final number of RCPs found from the exact cover sets is 1 while

122

5.4. The RCPMS Algorithm

Figure 5.4: Examples of the approximation strategy.

the final number found from the approximate cover sets is 2.

In general, we have the following lemma, implying that the final number

of RCPs generated from the incomplete cover sets, produced by the approx-

imation strategy, will be no smaller than the final number of RCPs generated

from the complete cover sets.

Lemma 5.2. Let P be a set of representative patterns with non-empty cover sets.

That is, P ⊆ PCP∗ and ∀P ∈ P , |set(P)| > 0. Let P′ be a set of representative

patterns with non-empty cover sets found using the approximation strategy. Then

we have (1) P′ ⊆ P and ∀P ∈ P′, |set(P)| ≥ |set′(P)|, where set′(P) represents

the cover set generated by the approximation strategy. (2) let R and R′ be the

minimum sets of RCPs generated from P and P′, respectively, i.e., R ⊆ P and

R′ ⊆ P′, we have |R| ≤ |R′|.

Proof. The first conclusion can be proved easily since the approximation

strategy removes prevalent patterns from the cover set of a representative

pattern. Therefore, for the same representative pattern P, |set(P)| ≥ |set′(P)|.

123

5.4. The RCPMS Algorithm

Algorithm 5.3 gen cover set(Fr , F, dis)

Input: Fr : the current representative pattern; F: a sub-pattern; dis: accumu-
lated distance

Output: S : all prevalent patterns ε-covered by Fr

1: for all P ⊂ F s.t. |F| − |P| = 1 & PI(P) ≥ minpi do
2: dis = dis + TableLookup(P, F)
3: if dis ≤ ε then
4: Insert P to S
5: gen cover set(Fr , P, dis)
6: else
7: dis = D(Fr , P)
8: if dis ≤ ε then
9: Insert P to S
10: gen cover set(Fr , P, dis)
11: return S

Consequently, if a representative pattern has non-empty approximate cover

set (e.g., |set′(P)| > 0), its real cover set must be non-empty (e.g., |set(P)| >

0). That is, ∀P ∈ P′, P ∈ P. However, the other way around may not be

true. Thus, we have P′ ⊆ P .

To prove the second conclusion, let us assume first |R′| < |R|. Since

R′ ⊆ P′ and P′ ⊆ P , we must be able to find the same result set R′ from

P . That is R′ ⊂ P . In this case R = R′, which contradicts with |R′| < |R|.

Hence the assumption is wrong.

We will investigate the efficiency improvement gained by this approxi-

mate strategy and the incurred loss of compression rate in Section 5.5.

5.4.3 The gen cover set() Function

Integrating the optimization strategy and the approximation strategy dis-

cussed above, we present the function gen cover set() in Algorithm 5.3.

Given the input representative pattern Fr, Algorithm 5.3 visits its sub-

patterns using a depth-first search. Line 1 finds all child prevalent co-location

patterns of the current pattern F. Lines 2–4 implement the optimization

strategy, when the co-location distance between Fr and a sub-pattern can be

inferred to be smaller than ε. Otherwise, we have to compute the co-location

124

5.5. Experimental Study

distance (line 7). If the co-location distance is smaller than ε, we check fur-

ther descendent sub-patterns (lines 9–10). If not, the depth-first search can

be stopped according to the approximation strategy.

5.5 Experimental Study

We have conducted comprehensive experiments to evaluate the proposed

algorithms from multiple perspectives on both synthetic and real data sets.

All algorithms are implemented in Python 2.7.5. All experiments are run on

a PC with Intel Core Xeon 2.9 GHz CPU and 8 GB memory.

5.5.1 Experiments on Synthetic Data

In this section, we first introduce the synthetic data generator used in our

experiments. Then we present the evaluation results on three different syn-

thetic data sets.

5.5.1.1 Synthetic Data Generator

Our synthetic data generationmethodology is similar to the one used in [70]

for co-location mining. Table 5.2 summarizes the parameters used in the

generator. The data generation process begins with the generation of a set

of Nseed seed co-locations. For each seed co-location, we randomly pick 2

features without replacement from a feature set. Next, we generate the in-

stances of seed co-locations. The number of instances of a seed co-location

is decided by a Poisson distribution with mean λ. To decide the positions of

a seed co-location instances, we randomly pick a location (xc, yc) from the

whole map D1 × D2 as the center and set the radius as r = uniform(0, τ
2),

where uniform(0, τ
2) selects a value from (0, τ

2] uniformly. Then we place

instances within the circle. The coordinate of an instance is

(xc + r · cos(uniform(0, 2π)), yc + r · sin(uniform(0, 2π))).

After generating seed co-location instances, we generate auxiliary co-locations

by growing each seed co-location with Naux additional features. Partic-

125

5.5. Experimental Study

ularly, for each seed co-location with Nc instances and its corresponding

circles, we randomly select αi · Nc circles to insert an instance of the ith ad-

ditional feature, where α ∈ (0, 1] is the density ratio. A larger α leads to

a denser data set. The final step is to generate noises, based on the two

parameters of rnoise, the ratio of noise features, and nnoise, the number of

noise instances per noise feature. Noise instances are placed randomly in

the whole map.

Three synthetic data sets are generated with specific parameter values

listed in Table 5.2. SynData 1 is a sparse data set while the other two are

relatively dense. In particular, SynData 1 contains 37 features and 29, 496

events; SynData 2 consists 52 features and 291, 520 events, with more in-

stances per co-location; and SynData 3 involves 525 features and 424, 400

events.

5.5.1.2 Compression Rate

Wefirst evaluate the compression rate achieved by representative co-location

pattern (RCP) mining, in comparison with closed co-location pattern (CCP)

mining and maximal co-location pattern (MCP) mining. Specifically, we de-

fine compression rate as (1− N∗

NPCP
)× 100%, where N∗ equals to the number of

compressed patterns and NPCP refers to the number of prevalent co-location

patterns (PCP).

Besides comparing with CCP and MCP, we also conduct experiments to

investigate the compression rate of RCPwithout relaxation (RCP-NoRelax).

As discussed in Section 5.2.3, we may either generate ε-clusters from the

spatial data and return the prevalent centroid patterns as representatives,

or relax the restriction to allow representative patterns to be prevalent w.r.t.

(1− ε) · minpi in order to achieve higher compression rate.

Figure 5.5 shows the compression rates of MCP, CCP, RCP, and RCP-

NoRelax on the three synthetic data sets by varying the parameters minpi

and ε respectively. Overall, it can be observed that CCP has the lowest

compression rate, while RCP achieves a higher compression rate than RCP-

NoRelax. Regarding the comparison between RCP and MCP, we observe

thatMCP has a higher compression rate when ε is fixed at 0.2 (Figures 5.5.a, 5.5.c

and 5.5.e). However, as ε is getting larger, the compression rate of RCP pre-

126

5.5. Experimental Study

vails (Figures 5.5.b, 5.5.d and 5.5.f). That is, by relaxing the condition on the

co-location distance threshold ε, RCP can achieve a compression rate which

is even higher than that of MCP. This is due to the definition of RCP, while

the best compression rate of RCP-NoRelax is bounded by that of MCP.

Moreover, it can be observed that RCP obtains a high compression rate

on a dense data set. For example, when ε = 0.2, the best compression rate

of RCP on SynData 1 is 71.9% (Figure 5.5.a) while it is 89.9% and 85.0% on

SynData 2 and SynData 3, respectively (Figure 5.5.c and Figure 5.5.e). This

is because a representative pattern tends to cover more patterns on a dense

data set. We also observe that when the prevalent threshold minpi gets

smaller, whichmeansmore co-location patterns are generated, the compres-

sion rate of RCP is higher. When the requirement on preserving the preva-

lence information is relaxed (i.e., when the co-location distance threshold ε

is increased), the compression rate of RCP also improves, which is consis-

tent with the definition of ε-cover relationship.

5.5.1.3 RCPFast vs. RCPMS

In this section we conduct experiments to compare the two proposed al-

gorithms from different perspectives. Note that, all experiments are run 5

times and the average performance results are reported.

Framwork Comparison. Firstly, we compare the post-mining framework

and the mine-and-summarize framework by implementing themwithout any

optimization. That is, we implement RCPFast without the optimization

based on Theorem 2 and RCPMS without the optimization strategy stated

in Section 5.4.1 and the approximation strategy in Section 5.4.2. Figure 5.6

shows the running time with respect to the variation of minpi and ε respec-

tively. It can be seen that, on sparse data (SynData 1), the performance

of the two frameworks is similar. This is because the post-mining frame-

work performs quite fast on the sparse data set already. There is not much

space for the mine-and-summarize framework to improve further. In con-

trast, when running on dense data sets (e.g., SynData 2 and SynData 3),

the post-mining framework is relatively slower than the mine-and-summarize

framework. The performance gap between the two frameworks enlarges

on SynData 3 because SynData 3 is bigger than SynData 2, involving more

127

5.5. Experimental Study

features and events. Consequently, as we will show in Figure 5.8, there

are more number of co-location distance computation required, which en-

tangles the post-mining framework to spend more time on retrieving table

instance information.

Computation Efficiency. We now compare the overall efficiency of the

RCPFast algorithm and the RCPMS algorithm, both implemented with re-

spective optimization strategies. In particular, we also implement a varia-

tion of RCPMS, called RCPMS-NA, which uses the optimization strategy in

Section 5.4.1 only. Hence, by comparing RCPMS and RCPMS-NA, we can

study the effectiveness of the approximation strategy in Section 5.4.2.

Figure 5.7 presents the running time on three synthetic data sets with

respect to the variation of minpi and ε respectively. It can be observed that

RCPMS outperforms RCPFast in all situations. Comparing the results on the

three datasets, we note that the performance advantage of RCPMS is not as

obvious on sparse data (SynData 1) as on dense data (SynData 2 and Syn-

Data 3). This is because when the data is sparse, the size of table instance

of a co-location is small, resulting in a short time for computing co-location

distance. Consequently, even ifRCPMS reducesmore number of co-location

distance computation, the effect of computation saving of RCPMS is not ob-

vious. The reasons for RCPMS being more efficient on the two dense data

sets are different. For SynData 2, the data is dense in terms of the number of

co-location instances, which leads to larger size of table instances and longer

time to compute co-location distances. Specifically, the time of co-location

distance computation is around 60ms on SynData 2 while it is 2.3ms and

3.5ms on SynData 1 and SynData 3, respectively.1 Therefore, by reducing

a few more number of co-location distance computation, RCPMS can show

efficiency improvement clearly. SynData 3 is dense in terms of the number

of co-locations. For this type of dense data, RCPMS demonstrates efficiency

advantage by directly reducing the number of co-location distance compu-

tation.

By comparing RCPMS and RCPMS-NA, it is obvious, especially on Syn-

Data 2 and SynData 3, that the approximation strategy contributes signifi-

1The results are obtained by a profile tool for Python, available at
https://github.com/rkern/line profiler.

128

5.5. Experimental Study

cantly to the efficiency of the RCPMS algorithm.

Reduction of Co-location Distance Computation. The optimization

strategies devised form both RCPFast and RCPMS aim to skip some co-

location distance computation. To investigate the effectiveness of these strate-

gies more thoroughly, we conduct experiments to record the number of co-

location distance computations for RCPFast, RCPMS and RCPMS-NA, com-

pared with the original number (baseline). Figure 5.8 presents the results by

varying minpi and ε respectively. It can be observed that all algorithms in-

volves fewer co-location distance computations than the baseline does and

the number of computations in RCPMS is the smallest.

In addition, by comparing RCPFast against the baseline, we notice that

Theorem 2 does reduce the number of co-location distance computations.

However, when the reduced number is not great enough (e.g., Figures 5.8.a, 5.8.c,

and 5.8.e), Theorem 5.2 cannot contribute much to the performance im-

provement. For example, the running times of RCPFast in Figures 5.7.a, 5.7.c,

and 5.7.e is similar to those of the post-mining framework in Figures 5.6.a, 5.6.c,

and 5.6.e. This is because it costs extra time for RCPFast to find all patterns

that can be skipped according to Theorem 5.2.

Compression Rate. Although both Figures 5.7 and 5.8 show that the

approximation strategy significantly improves the efficiency of RCPMS, as

indicated by Lemma 5.2, more RCPs will be discovered by RCPMS than

RCPFast. Hence, we further carry out experiments to evaluate how many

more RCPs will be produced by RCPMS. We present the results using com-

pression rate difference, which is calculated as NM−NF
NPCP

× 100%, where NM and

NF refer to the numbers of patterns output by RCPMS and RCPFast, respec-

tively. The results in Figure 5.9 show that the compression rate difference

is less than 5% on all three datasets, regardless of the variation of param-

eters. Hence, RCPMS effectively improves the computation efficiency by

sacrificing the compression rate very slightly.

5.5.2 Experiments on Real Data

Two real-world data sets are used in our experiments. The first one is

from the EPA databases (http://www.epa.gov/), which contain environ-

129

5.5. Experimental Study

mental activities that affect air, land and water in United States. Differ-

ent environmental interest types are used as spatial features and each fa-

cility represents a spatial event. In our experiment, we use the EPA data

of Allen Counties in Indiana State, which consists of 23 features and 647

events in total. The second data set is the points of interest (POI) in Cali-

fornia (http://www.usgs.gov/) which was used in [71]. There are 63 cate-

gory types (e.g., dam, school, and bridge) and 104, 770 data points. All the

geographic coordinates are transformed to 2-dimensional Cartesian coor-

dinates by Universal Transverse Mercator projection. The spatial distance

threshold is 2000 by default (meaning 2km in real world).

We first investigate the compression rate of RCP mining. Figure 5.10

illustrates the compression rate of RCPFast and RCPMS on the two real

data sets by varying minpi and ε respectively. We set the default values as

minpi = 0.4 and ε = 0.2. Generally, the compression rates of the two algo-

rithms are close to each other, except on the EPA dataset when ε is large (e.g.,

Figure 5.10.b where ε = 0.5). However, in that situation, we note RCPMS

still can reach a compression rate as high as 75%, which is acceptable. Also

it can be observed that the compression rates increase when minpi is de-

creased or ε is increased, which is consistent with the results obtained from

the synthetic data sets.

Next, we study the efficiency of the proposed algorithms on real data

sets. Figure 5.11 illustrates the running time of the two algorithms with

respect to the variation of minpi and ε respectively. It shows that RCPMS

outperforms RCPFast on the two real datasets, especially when the data is

getting dense (e.g., when minpi is decreased) or the requirement of preserv-

ing prevalence information is relaxed (e.g., when ε is increased).

To examine whether the summarized representative co-location patterns

are meaningful, we also inspect the discovered patterns. We show the ex-

perimental results on the POI data set when minpi = 0.6 and ε = 0.2 as an

example. In this case, seven prevalent co-location patterns are discovered:

BUILDING-PARK, CHURCH-PARK,PARK-SCHOOL, BUILDING-PO (abbreviation

of post office), BUILDING-SCHOOL, BUILDING-CHURCH, and BUILDING-PARK-

SCHOOL. Each pattern refers to a set of points of interests that are frequently

located in proximity. By running the RCPMS algorithm on the data, we dis-

130

5.6. Related Work

cover four representative co-location patterns: BUILDING-PARK-SCHOOL,

BUILDING-PO, PARK-SCHOOL and BUILDING-CHURCH-PARK. It can be seen

that it makes sense to use the compressed patterns to represent the origi-

nal patterns. Moreover, among the four RCPs, only the pattern BUILDING-

CHURCH-PARK is not a prevalent co-location. However, the PI value of

BUILDING-CHURCH-PARK is 0.51, which is greater than (1 − 0.2) × 0.6 =

0.48.

5.6 Related Work

The problem of prevalent co-location pattern mining was first introduced

by Morimoto [72], where a support metric was defined as the number of

instances of a co-location and was used to measure the prevalence of a co-

location pattern. However, the metric does not possess the anti-monotonic

property. Shekhar and Huang [13] proposed to use participation ratio and

minimum participation index as the interestingness measures that are more

statistically meaningful. Various algorithms have been developed to mine

prevalent co-location patterns based on the twomeasures, such as the Apriori-

like algorithm [70], the fast algorithm combining the discovery of neighbors

with the mining process [16], the join-based algorithm [70], the partial-join

algorithm [73] and the join-less algorithm [14]. Other interestingness mea-

sures have also been explored, such as mining confident co-locations using

the maximum participation ratio [74] and mining co-locations based on statis-

tic hypothesis [20].

Frequent pattern summarization has been studied extensively in tradi-

tional frequent itemset mining. A variety of concepts have been proposed

to find a smaller set of patterns to represent the complete set of frequent pat-

terns, such as maximal patterns [29], closed patterns [30] and non-derivable

patterns [31]. One common generalization of closed patterns is the support

distance-based approaches [23, 38] which measure the distance between

two itemsets based on their supporting transactions and use a pattern to

represent/cover its sub-patterns if their distance is no greater than a speci-

fied threshold. Although the framework achieves satisfactory compression

rate, it cannot not be applied directly to summarize co-location patterns due

131

5.7. Conclusions

to the lack of transaction concepts in co-location mining.

Some initial research efforts have been exerted to summarize prevalent

co-location patterns. Mining maximal spatial co-location patterns from a

large data set was studied in [67]. This work transforms the data into max-

imal cliques and then considers maximal cliques as transactions for data

mining applications. However, the problem of extracting maximal cliques

from a graph is known as NP-hard. Wang et al. used an order-clique-based

approach to identify table instances and mine maximal co-locations [75].

Closed co-location pattern has been studied by Yoo et al. [14]. They pre-

sented a framework to mine top-k closed co-location patterns without us-

ing minimum prevalence threshold. To our knowledge, our work is the first

distance-based approach to summarize co-location patterns using represen-

tative patterns, which preserve more prevalence information than maxi-

mal co-location patterns and enjoy higher compression rate than closed co-

location patterns.

5.7 Conclusions

In this chapter, we study the problem of summarizing spatial co-locations

using representative patterns. Addressing the missing of transactions in

spatial data, a new measure is defined to appropriately quantify the preva-

lence distance between two co-location patterns, based on which the prob-

lem of representative co-location pattern mining is formulated. We propose

two efficient algorithms for RCPmining: RCPFast and RCPMS. RCPFast fol-

lows existing approaches to adopt a post-mining framework that finds rep-

resentative patterns from the set of discovered prevalent co-location pat-

terns. RCPMS employs a novel mine-and-summarize paradigm to discover

representative patterns directly from the spatial data set, thereby pushing

pattern summarization into the co-location mining process. Experimental

results show that RCP mining effectively summarizes prevalent co-location

patterns, and RCPMS significantly improves over RCPFast on dense data

sets by slightly sacrificing compression rate.

132

5.7. Conclusions

Parameters Description SynData 1 SynData 2 SynData 3

Nseed The number of seed co-
locations

5 5 50

λ The parameter of Poisson
distribution to define the
number of instances of
each seed co-location

1000 10000 1000

Naux The number of features
added to construct auxil-
iary co-locations

3 5 5

α The ratio that determines
the number of instances
of additional features
when constructing auxil-
iary co-locations

0.7 0.9 0.9

rnoise The ratio of the num-
ber of noise features over
the number of features in-
volved in seed and auxil-
iary co-locations

0.5 0.5 0.5

nnoise The number of noise in-
stances per noise feature

1000 1000 1000

D1 × D2 The size of global spatial
map

105 × 105 105 × 105 105 × 105

τ The spatial distance
threshold

10 10 10

ε The default value of co-
location distance thresh-
old

0.2 0.2 0.2

minpi The default value of
prevalence threshold

0.4 0.4 0.4

Table 5.2: Parameters used in synthetic data generation

133

5.7. Conclusions

0.10.20.30.40.50.60.70.80.9

minpi

20

30

40

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.a SynData 1 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

55

60

65

70

75

80

85

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.b SynData 1 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.c SynData 2 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.d SynData 2 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

20

30

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.e SynData 3 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

5.5.f SynData 3 (w.r.t. ε)

Figure 5.5: Compression rate tests on synthetic data sets.

134

5.7. Conclusions

0.10.20.30.40.50.60.70.80.9

minpi

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
u
n
n
in

g
 t

im
e
(s

)

pm

ms

5.6.a SynData 1 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
u
n
n
in

g
 t

im
e
(s

)

pm

ms

5.6.b SynData 1 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

20

40

60

80

100

120

140

160

180

200

R
u
n
n
in

g
 t

im
e
(s

)

pm

ms

5.6.c SynData 2 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

110

120

130

140

150

160

170

180

190

200

R
u
n
n
in

g
 t

im
e
(s

)

post

ms

5.6.d SynData 2 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

20

40

60

80

100

120

140

R
u
n
n
in

g
 t

im
e
(s

)

pm

ms

5.6.e SynData 3 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

60

70

80

90

100

110

120

130

R
u
n
n
in

g
 t

im
e
(s

)

pm

ms

5.6.f SynData 3 (w.r.t. ε)

Figure 5.6: Framework comparison on synthetic data sets.

135

5.7. Conclusions

0.10.20.30.40.50.60.70.80.9

minpi

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.a SynData 1 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.b SynData 1 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

20

40

60

80

100

120

140

160

180

200

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.c SynData 2 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

100

110

120

130

140

150

160

170

180

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.d SynData 2 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

0

20

40

60

80

100

120

140

160

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.e SynData 3 (vs. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

60

70

80

90

100

110

120

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

5.7.f SynData 3 (vs. ε)

Figure 5.7: Performance tests with minpi and ε on synthetic data sets.

136

5.7. Conclusions

0.10.20.30.40.50.60.70.80.9

minpi

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.a SynData 1 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

50

100

150

200

250

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.b SynData 1 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.c SynData 2 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.d SynData 2 (w.r.t. ε)

0.10.20.30.40.50.60.70.80.9

minpi

0

10000

20000

30000

40000

50000

60000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.e SynData 3 (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

5.8.f SynData 3 (w.r.t. ε)

Figure 5.8: Co-location distance computation analysis on synthetic data
sets.

137

5.7. Conclusions

0.10.20.30.40.50.60.70.80.9

minpi

−10

−5

0

5

10

15

20

25
C
o
m
p
re
s
s
io
n
 r

a
te

 d
if
f.
(%

) SynData_1

SynData_2

SynData_3

5.9.a w.r.t. minpi

0.10.20.30.40.50.60.70.80.9

ε

−10

−5

0

5

10

15

20

25

C
o
m
p
re
s
s
io
n
 r

a
te

 d
if
f.
(%

) SynData_1

SynData_2

SynData_3

5.9.b w.r.t. ε

Figure 5.9: Compression rate differences between RCPMS and RCPFast on
synthetic data sets.

0.10.20.30.40.50.60.7

minpi

20

30

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

5.10.a EPA (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6

ε

20

30

40

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

5.10.b EPA (w.r.t. ε)

0.10.20.30.40.50.6

minpi

0

10

20

30

40

50

60

70

80

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

5.10.c POI (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5

ε

35

40

45

50

55

60

65

70

75

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

5.10.d POI (w.r.t. ε)

Figure 5.10: Compression rate tests on EPA and POI data sets.

138

5.7. Conclusions

0.10.20.30.40.50.60.7

minpi

0

500

1000

1500

2000

2500

3000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

5.11.a EPA (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5

ε

0

10

20

30

40

50

60

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

5.11.b EPA (w.r.t. ε)

0.10.20.30.40.50.6

minpi

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

5.11.c POI (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5

ε

0

500

1000

1500

2000

2500

3000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

5.11.d POI (w.r.t. ε)

Figure 5.11: Performance on EPA and POI data sets.

139

5.7. Conclusions

140

Chapter 6

Conclusion

In this dissertation, we explored the problem of summarizing data with rep-

resentative patterns in several scenarios, including summarizing uncertain

databases with probabilistic representative frequent patterns, probabilistic

tiles, and summarizing spatial databases with representative co-location

patterns.

In Chapter 2, we propose the Probabilistic Representative Frequent Pat-

tern (P-RFP) mining problem, which aims to find a small set of patterns

to represent the complete set of probabilistic frequent patterns. To address

the data uncertainty issue, we define the concept of probabilistic distance

and an (ε, δ)-cover relationship between two patterns. P-RFPs are the min-

imal set of patterns that (ε, δ)-cover the complete set of probabilistic fre-

quent patterns. We develop a P-RFP mining algorithm that uses a dynamic

programming based scheme to efficiently check whether one pattern (ε, δ)-

covers another. We also exploit effective optimization strategies to further

improve the computation efficiency.

In Chapter 3, we propose the APM algorithm, which aims to efficiently

and effectively find a small set of patterns to represent the complete set of

probabilistic frequent patterns. To address the high computational com-

plexity in examining the joint support probability, we introduce an approx-

imation of the joint support probability with both theoretical and empirical

proofs.

In Chapter 4, we study the problem of summarizing transaction data

in uncertain databases and formulate the problem as Minimal Probabilistic

141

Tile Cover Mining. We propose the concept of Probabilistic Price Order

and a two-step framework as a solution, including candidates generation

and tile construction. We discuss the selection of candidates and devise an

algorithm to determine the Probabilistic Price Order of two tiles. Several

optimization techniques are further designed to improve the performance.

In Chapter 5, we study the problem of summarizing spatial co-locations

using representative patterns. Addressing the missing of transactions in

spatial data, a new measure is defined to appropriately quantify the preva-

lence distance between two co-location patterns, based on which the prob-

lem of representative co-location pattern mining is formulated. We propose

two efficient algorithms for RCPmining: RCPFast and RCPMS. RCPFast fol-

lows existing approaches to adopt a post-mining framework that finds repre-

sentative patterns from the set of discovered prevalent co-location patterns.

RCPMS employs a novel mine-and-summarize paradigm to discover repre-

sentative patterns directly from the spatial data set, thereby pushing pattern

summarization into the co-location mining process.

Although the results obtained in this dissertation are encouraging, this

is not the end of the road. The fast pace of technology advancement and

the increasing significance of data summarization offers plentiful possible

research directions in the future. Based on current works, we will study the

summarization of other types of database, such as numeric data, time series

data, and graph data. We will also explore the real-world applications of

the representative pattern-based summarization approaches in various do-

mains (for example, texts, images, and videos), which may yield influence

on industry and society.

142

References

[1] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and

Techniques (Third Edition). Morgan Kaufmann Publishers, San Fran-

cisco, CA, USA, 3 edition, 2011.

[2] Yongxin Tong, Lei Chen, Yurong Cheng, and Philip S. Yu. Mining fre-

quent itemsets over uncertain databases. Very Large Data Base Endow-

ment (VLDB), 5(11):1650–1661, 2012.

[3] Chun-Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets

from uncertain data. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD), pages 47–58, 2007.

[4] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Ver-

hein, and Andreas Zuefle. Probabilistic frequent itemset mining in un-

certain databases. In ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD), pages 119–128, 2009.

[5] Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng.

Mining uncertain data with probabilistic guarantees. In ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), pages 273–

282, 2010.

[6] Carson Kai-Sang Leung, Mark Anthony F. Mateo, and Dale A. Bra-

jczuk. A tree-based approach for frequent pattern mining from un-

certain data. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD), pages 653–661, 2008.

143

References

[7] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent

pattern mining with uncertain data. In ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), pages 29–38, 2009.

[8] Toon Calders, Calin Garboni, and Bart Goethals. Approximation of

frequentness probability of itemsets in uncertain data. In International

Conference on Data Engineering (ICDE), pages 749–754, 2010.

[9] Carson Kai-Sang Leung. Frequent Pattern Mining, chapter Uncertain

Frequent Pattern Mining, pages 339–367. Springer International Pub-

lishing, Cham, 2014.

[10] Erich A. Peterson and Peiyi Tang. Fast approximation of probabilistic

frequent closed itemsets. In ACM Annual Southeast Regional Conference

(ASRC), pages 214–219, 2012.

[11] Peiyi Tang and Erich A. Peterson. Mining probabilistic frequent closed

itemsets in uncertain databases. In ACM Annual Southeast Regional Con-

ference (ASRC), pages 86–91, 2011.

[12] Yongxin Tong, Lei Chen, and Bolin Ding. Discovering threshold-based

frequent closed itemsets over probabilistic data. In International Confer-

ence on Data Engineering (ICDE), pages 270–281, 2012.

[13] Shashi Shekhar and Yan Huang. Discovering spatial co-location pat-

terns: a summary of results. International Symposium on Spatial and

Temporal Databases (SSTD), pages 236–256, 2001.

[14] Jin Soung Yoo and Shashi Shekhar. A joinless approach for mining

spatial colocation patterns. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 18(10):1323–1337, 2006.

[15] Yan Huang, Jian Pei, and Hui Xiong. Mining co-location patterns with

rare events from spatial data sets. GeoInformatica, 10(3):239–260, 2006.

[16] Xin Zhang, Nikos Mamoulis, David W. Cheung, and Yutao Shou. Fast

mining of spatial collocations. In ACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining (KDD), pages 384–393, 2004.

144

References

[17] Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma, and

Jin Soung Yoo. A framework for discovering co-location patterns in

data sets with extended spatial objects. In SIAM International Conference

on Data Mining (SDM), pages 78–89, 2004.

[18] Jin Soung Yoo, Shashi Shekhar, and Mete Celik. A join-less approach

for co-location pattern mining: A summary of results. In IEEE Interna-

tional Conference on Data Mining (ICDM), pages 813–816, 2005.

[19] Mete Celik, James M. Kang, and Shashi Shekhar. Zonal co-location

pattern discovery with dynamic parameters. In IEEE International Con-

ference on Data Mining (ICDM), pages 433–438, 2007.

[20] Sajib Barua and Jörg Sander. Sscp: Mining statistically significant co-

location patterns. In International Symposium on Spatial and Temporal

Databases (SSTD), pages 2–20, 2011.

[21] Feng Qian, Qinming He, Kevin Chiew, and Jiangfeng He. Spatial co-

location pattern discovery without thresholds. Knowledge Information

System (KIS), 33(2):419–445, 2012.

[22] Charu C. Aggarwal and P.S. Yu. A survey of uncertain data algorithms

and applications. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 21(5):609–623, 2009.

[23] Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. Mining com-

pressed frequent-pattern sets. In International Conference on Very Large

Data Bases (VLDB), pages 709–720, 2005.

[24] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining associ-

ation rules between sets of items in large databases. In ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 207–

216, New York, NY, USA, 1993. ACM.

[25] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-

ing association rules in large databases. In International Conference on

Very Large Data Bases (VLDB), pages 487–499, San Francisco, CA, USA,

1994. Morgan Kaufmann Publishers Inc.

145

References

[26] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns with-

out candidate generation. In ACM SIGMOD International Conference on

Management of Data (SIGMOD), pages 1–12, 2000.

[27] Chun-Kit Chui and Ben Kao. A decremental approach for mining fre-

quent itemsets from uncertain data. In Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining (PAKDD), pages 64–75, 2008.

[28] Liang Wang, Reynold Cheng, Sau Dan Lee, and David Cheung. Ac-

celerating probabilistic frequent itemset mining: a model-based ap-

proach. In ACM International Conference on Information and Knowledge

Management (CIKM), pages 429–438, 2010.

[29] Roberto J. Bayardo Jr. Efficiently mining long patterns from databases.

In ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 85–93, 1998.

[30] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Dis-

covering frequent closed itemsets for association rules. In International

Conference on Database Theory (ICDT), pages 398–416, 1999.

[31] Toon Calders and Bart Goethals. Mining all non-derivable frequent

itemsets. In European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML/PKDD), pages 74–

85, 2002.

[32] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining top-

k frequent closed patterns without minimum support. In IEEE Interna-

tional Conference on Data Mining (ICDM), pages 211–218, 2002.

[33] Jianyong Wang, Jiawei Han, Ying Lu, and Petre Tzvetkov. Tfp: an effi-

cient algorithm for mining top-k frequent closed itemsets. IEEE Trans-

actions on Knowledge and Data Engineering (ICDE), 17(5):652–663, May

2005.

[34] Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. Extracting

redundancy-aware top-k patterns. In ACM SIGKDD International Con-

146

References

ference on Knowledge Discovery and Data Mining (KDD), pages 444–453,

New York, NY, USA, 2006. ACM.

[35] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing

itemset patterns: a profile-based approach. In ACM SIGKDD Confer-

ence on Knowledge Discovery and Data Mining (KDD), pages 314–323,

2005.

[36] Ruoming Jin, Muad Abu-Ata, Yang Xiang, and Ning Ruan. Effec-

tive and efficient itemset pattern summarization: regression-based ap-

proaches. In ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), pages 399–407, 2008.

[37] Ardian Kristanto Poernomo and Vivekanand Gopalkrishnan. Cp-

summary: a concise representation for browsing frequent itemsets.

In ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD), pages 687–696, 2009.

[38] Guimei Liu, Haojun Zhang, and Limsoon Wong. Finding minimum

representative pattern sets. In ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), pages 51–59, 2012.

[39] V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-

ics of operations research, 4(3):233–235, 1979.

[40] Chunyang Liu, Ling Chen, and Chengqi Zhang. Mining probabilistic

representative frequent patterns from uncertain data. In SIAM Interna-

tional Conference on Data Mining (SDM), pages 73–81, 2013.

[41] Jun Shao. Mathematical Statistics. Springer, Berlin, 2009.

[42] H. Cramér and H. Wold. Some theorems on distribution functions. The

Journal of the London Mathematical Society, 11:290–295, 1936.

[43] D.R. Cox. The continuity correction. Biometrika, 57(1):217–219, 1970.

[44] Yang Xiang, Ruoming Jin, David Fuhry, and Feodor F. Dragan. Suc-

cinct summarization of transactional databases: An overlapped hyper-

rectangle scheme. In ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD), pages 758–766, 2008.

147

References

[45] Floris Geerts, Bart Goethals, and Taneli Mielikainen. Tiling databases.

In Discovery Science, volume 3245, pages 278–289, 2004.

[46] Yang Xiang, Ruoming Jin, David Fuhry, and Feodor F. Dragan. Sum-

marizing transactional databases with overlapped hyperrectangles.

Data Mining and Knowledge Discovery (DMKD), 23(2):215–251, 2011.

[47] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. A unify-

ing framework for mining approximate top-k binary patterns. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 26(12):2900–

2913, Dec 2014.

[48] Petteri Sevon, Lauri Eronen, Petteri Hintsanen, Kimmo Kulovesi, and

Hannu Toivonen. Link discovery in graphs derived from biological

databases. In Data Integration in the Life Sciences (DILS), pages 35–49,

2006.

[49] Steven Finch. Mathematical Constants. Cambridge University Press,

2003.

[50] Chunyang Liu, Ling Chen, and Chengqi Zhang. Summarizing proba-

bilistic frequent patterns: A fast approach. In ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD), pages

527–535, 2013.

[51] Irit Dinur and David Steurer. Analytical approach to parallel repeti-

tion. In ACM Symposium on Theory of Computing (STOC), pages 624–

633, 2014.

[52] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to

Data Mining (First Edition). Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2005.

[53] Pauli Miettinen, Taneli Mielikainen, Aristides Gionis, Gautam Das,

and Heikki Mannila. The discrete basis problem. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 20(10):1348–1362, 2008.

148

References

[54] Nikolaj Tatti and Jilles Vreeken. Discovering descriptive tile trees. In

European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases (ECML/PKDD), pages 9–24, 2012.

[55] Toon Calders, Calin Garboni, and Bart Goethals. Efficient pattern min-

ing of uncertain data with sampling. In PAKDD, pages 480–487, 2010.

[56] Aristides Gionis, Heikki Mannila, and Jouni K. Seppanen. Geometric

and combinatorial tiles in 0-1 data. In European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML/PKDD), volume 3202, pages 173–184. 2004.

[57] Ruoming Jin, Yang Xiang, and Lin Liu. Cartesian contour: A concise

representation for a collection of frequent sets. In ACM SIGKDD Con-

ference on Knowledge Discovery and Data Mining (KDD), pages 417–426,

2009.

[58] Francesco Bonchi, Matthijs van Leeuwen, and Antti Ukkonen. Charac-

terizing uncertain data using compression. In SIAM International Con-

ference on Data Mining (SDM), pages 534–545, 2011.

[59] Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. Mining con-

densed frequent-pattern bases. Knowledge and Information Systems

(KIS), 6(5):570–594, 2004.

[60] Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. On computing con-

densed frequent pattern bases. In IEEE International Conference on Data

Mining (ICDM), pages 378–385, 2002.

[61] Chao Wang and Srinivasan Parthasarathy. Summarizing itemset pat-

terns using probabilistic models. InACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining (KDD), pages 730–735, 2006.

[62] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Krimp: Mining

itemsets that compress. Data Mining and Knowledge Discovery (DMKD),

23(1):169–214, 2011.

149

References

[63] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Characterising

the difference. In ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD), pages 765–774, 2007.

[64] Lizhen Wang, Lihua Zhou, Joan Lu, and Jim Yip. An order-clique-

based approach for mining maximal co-locations. Information Science,

179(19):3370–3382, September 2009.

[65] Jin Soung Yoo and Mark Bow. Mining top-k closed co-location pat-

terns. In IEEE International Conference on Spatial Data Mining and Geo-

graphical Knowledge Services (ICSDM), pages 100–105, 2011.

[66] Ghazi Al-Naymat. Enumeration of maximal clique for mining spatial

co-location patterns. In ACS International Conference on Computer Sys-

tems and Applications (AICCSA), pages 126–133, 2008.

[67] Natwar Modani and Kuntal Dey. Large maximal cliques enumeration

in sparse graphs. In ACM International Conference on Information and

Knowledge Management (CIKM), pages 1377–1378, 2008.

[68] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. Fast algo-

rithms for maximal clique enumeration with limited memory. In ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),

pages 1240–1248, 2012.

[69] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms (Second Edition). MIT Press, 2001.

[70] Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering colocation

patterns from spatial data sets: A general approach. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 16(12):1472–1485, 2004.

[71] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and

Shang-Hua Teng. On trip planning queries in spatial databases. In

International Symposium on Spatial and Temporal Databases (SSTD), pages

273–290, 2005.

150

References

[72] Yasuhiko Morimoto. Mining frequent neighboring class sets in spatial

databases. In ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), pages 353–358, 2001.

[73] Jin Soung Yoo and Shashi Shekhar. A partial join approach for min-

ing co-location patterns. In International Conference on Advances in Geo-

graphic Information Systems (GIS), pages 241–249, 2004.

[74] Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei. Mining confident

colocation rules without a support threshold. In ACM Symposium on

Applied Computing (SAC), pages 497–501, 2003.

[75] Song Wang, Yan Huang, and Xiaoyang Sean Wang. Regional co-

locations of arbitrary shapes. In International Symposium on Spatial and

Temporal Databases (SSTD), pages 19–37, 2013.

151

References

152

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Uncertain Data
	1.2 Spatial Data
	1.3 Main Contributions and Roadmap
	1.4 Publications

	2 Mining Probabilistic Representative Frequent Patterns From Uncertain Data
	2.1 Introduction
	2.2 RelatedWork
	2.2.1 Frequent pattern mining over uncertain data
	2.2.2 Frequent pattern summarization

	2.3 Problem Definition
	2.4 P-RFP Mining
	2.4.1 Framework of P-RFPMining
	2.4.2 Cover Set Generation
	2.4.3 Optimization Strategies
	2.4.4 P-RFP Mining Algorithm

	2.5 Performance Study
	2.5.1 Data sets
	2.5.2 Result analysis

	2.6 Conclusions

	3 Summarizing Probabilistic Frequent Patterns: A Fast Approach
	3.1 Introduction
	3.2 RelatedWork
	3.2.1 Frequent pattern mining over uncertain data
	3.2.2 Frequent pattern summarization

	3.3 Background and Preliminary
	3.4 Approximate P-RFP Mining
	3.4.1 Framework of APM
	3.4.2 Cover Set Generation
	3.4.3 APM Algorithm

	3.5 Approximation of Joint Support Probability
	3.5.1 Preparation
	3.5.2 Proof of Approximation

	3.6 Performance Study
	3.6.1 Empirical study of approximation
	3.6.2 Result analysis

	3.7 Conclusions

	4 Summarizing Uncertain Transaction Databases by Probabilistic Tiles
	4.1 Introduction
	4.2 Problem Definition
	4.2.1 Quality of Summarization
	4.2.2 Parameter Setting
	4.2.3 NP-Hardness

	4.3 Algorithm
	4.3.1 Preliminaries
	4.3.2 MPTC Mining Framework
	4.3.3 Generating Candidates
	4.3.4 Constructing Tiles

	4.4 Probabilistic Price Order
	4.5 Optimization Techniques
	4.5.1 Optimizing Single Transaction Difference
	4.5.2 Adaptively Computing Cover Quantity
	4.5.3 Pruning by 3σ Property

	4.6 Algorithm Analysis
	4.6.1 Appropriateness of the Greedy Strategy
	4.6.2 Time Complexity

	4.7 Performance Study
	4.7.1 Experiments on Synthetic Datasets
	4.7.2 Experiments on RealWorld Datasets

	4.8 RelatedWork
	4.8.1 Transaction data summarization
	4.8.2 Frequent pattern summarization

	4.9 Conclusions

	5 RCP Mining: Towards the Summarization of Spatial Co-location Patterns
	5.1 Introduction
	5.2 Preliminary
	5.2.1 Co-location Patterns
	5.2.2 Co-location Distance Measure
	5.2.3 Problem Statement

	5.3 The RCPFast Algorithm
	5.4 The RCPMS Algorithm
	5.4.1 Optimization Strategy
	5.4.2 Approximation Strategy
	5.4.3 The gen_cover_set() Function

	5.5 Experimental Study
	5.5.1 Experiments on Synthetic Data
	5.5.2 Experiments on Real Data

	5.6 RelatedWork
	5.7 Conclusions

	6 Conclusion
	References

