
Semi-supervised and Unsupervised Extensions to Maximum-Margin Structured Prediction

Shaukat Abidi

Faculty of Engineering and Information Technology
University of Technology Sydney

A thesis submitted for the degree of

 $Doctor\ of\ Philosophy$

2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a de-

gree nor has it been submitted as part of requirements for a degree except as fully

acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

Student's Name

: Shaukat Abidi

Signature of Student:

Date

: 18/July/2016

i

Abstract

Structured prediction is the backbone of various computer vision and machine learning applications. Inspired by the success of maximum-margin classifiers in the recent years; in this thesis, we will present novel semi-supervised and unsupervised extensions to structured prediction via maximum-margin classifiers.

For semi-supervised structured prediction, we have tackled the problem of recognizing actions from single images. Action recognition from a single image is an important task for applications such as image annotation, robotic navigation, video surveillance and several others. We propose approaching action recognition by first partitioning the entire image into "superpixels", and then using their latent classes as attributes of the action. The action class is predicted based on a graphical model composed of measurements from each superpixel and a fully-connected graph of superpixel classes. The model is learned using a latent structural SVM approach, and an efficient, greedy algorithm is proposed to provide inference over the graph. Differently from most existing methods, the proposed approach does not require annotation of the actor (usually provided as a bounding box).

For the unsupervised extension of structured prediction, we considered the case of labeling binary sequences. This case is important in a detection scenario, where one is interested in detecting an action or an event. In particular, we address the unsupervised SVM relaxation recently proposed in (Li et al. 2013) and extend it for structured prediction by merging it with structural SVM. The main contribution of the proposed extension (named Well-SSVM) is a re-organization of the feature map and loss function of structural SVM that permits finding the violating labelings required by the relaxation. Experiments on synthetic and real datasets in a

fully unsupervised setting reveal a competitive performance as opposed to other unsupervised algorithms such as k-means and latent structural SVM.

Finally, we approached the problem of unsupervised structured prediction by M³ Networks. M³ Networks are an alternative formulation of maximum-margin structured prediction that can satisfy the complete set of constraints for decomposable feature and loss functions; hence, the entire set of constraints is considered during the search for the optimal margin as opposed to Structural SVM. In the thesis, we present the interpretation of M³ Networks in Well-SSVM, thus allowing us to use in a semi-supervised and unsupervised scenario.

Acknowledgements

I would like to take this opportunity to acknowledge enormous support from my supervisors, very useful suggestions from my group and a friendly environment of our lab especially during coffees, lunches and dinners.

First of all, I would like to thank my principal supervisor Professor Mary-Anne Williams who provided me the opportunity to come to Australia for PhD. Without her continuous support and supervision, I would have never gotten a chance to explore beautiful practical applications of robotics and computer vision.

I would like to convey big thanks to my co-supervisor Professor Massimo Piccardi, who nurtured my technical knowledge for doctoral degree. His stream of ideas kept me occupied due to which I was able to explore amazing research path. His continuous technical support especially regular meetings, sometimes at coffee shops, has played a central role in the formulation of my technical abilities.

I am thankful to all of my friends, colleagues and group members of Magic Lab and Surveillance Lab: Dr. Benjamin Johnston, Dr. Xun Wang, Dr. Saleha Raza, Dr. Rony Novianto, Wei Wang, Pramod Parajulli, Jonathan Vitale, Mahya Mirzae, Ali Raza, Sylvan Rudduck, Nima Ramezani, Robert Lange, Sari Awwad, Fairouz Hussein, and Ava Bargi. I am thankful to Professor Ivor Tsang, who provided valuable insights and critical reviews for my work. I am grateful to the visiting professors of Magic lab who shared their research experience with me: Professor Pavlos Peppas, Professor Peter Gärdenfors and Associate Professor Sajjad Haider. I would like to thanks Benjamin Johnston and Xun Wang again, with whom I developed demos for robots.

In the end, I would like to thanks my parents without whom I would never be a person I am at the moment and will be in the future.

Contents

Certificate of Original Authorship		cate of Original Authorship	i	
\mathbf{A}	bstra	ct	ii	
A	ckno	wledgements	iv	
Li	${ m st}$ of	Figures	viii	
Li	st of	Tables	X	
1	Intr	roduction	1	
	1.1	Structured Prediction	2	
	1.2	Semi-supervised Structured Prediction	3	
	1.3	Unsupervised Structured Prediction	5	
	1.4	Contributions	6	
	1.5	Thesis Organization	6	
2	$\operatorname{Lit}\epsilon$	erature Review	8	
	2.1	Maximum Margin Classifiers	8	
	2.2	Support Vector Machines (Binary Case)	10	
		2.2.1 Intuitions for Margin	10	
		2.2.2 Hard-Margin SVM	12	
		2.2.3 Soft-Margin SVM	14	
	2.3	Multiclass Support Vector Machines	17	
	2.4	Multiple Kernel Learning	18	
	2.5	Structured Prediction	21	
	2.6	Still Image Action Recognition	29	
		2.6.1 Learning an Action Recognition Classifier	30	
		2.6.1.1 Action Representation	30	

Contents vi

		2.6.1.2 Global Features	30
		2.6.1.3 Local Features	31
		2.6.1.4 Learning a Classifier	31
		2.6.2 Advantages of Still Image Action Recognition	32
3	Sen	ni-Supervised Structured Prediction SVM and its Application	
	for	Static Action Recognition	33
	3.1	Introduction	33
	3.2	0 1 1	36
			37
		o a constant of the constant o	38
	3.3	1	40
			41
		0	42
			43
		v o v o	43
	3.4	1	46
	3.5	Conclusion	50
4	Uns	supervised Structured Prediction SVM	53
	4.1	Introduction	53
		4.1.1 Well-SVM	55
		4.1.2 Structural SVM	57
	4.2	v	58
		4.2.1 Feature Maps	60
			62
		1 (0)	65
		1 0	67
	4.3	1	68
		1	69
		v	69
		9	70
			71
		1	71
	4.4	Conclusion	72
5	Uns	supervised Structured Prediction Maximum Margin Markov Net-	
	wor		7 4
	5.1	Introduction	74
	5.2	Notations	75
	5.3	Factorized Dual	76

	5.4	1	30
	5.5	Solution of WellSSVM via M ³ N	31
		5.5.1 Learning as an Instance of MKL	31
		5.5.2 Finding a Violating Labeling	33
		5.5.3 Update μ	34
	5.6	Experiments	34
		5.6.1 Datasets Description	35
		5.6.1.1 Synthetic Dataset	35
		5.6.1.2 Gesture Phase Segmentation Dataset 8	36
		5.6.2 Initialisation	36
		5.6.3 Performance Comparison	36
	5.7		37
6	Con	clusion 8	88
\mathbf{A}	Lag	ange Duality 9	0
В	Wel	-SSVM: from primal (4.13) to dual (4.15)	3
\mathbf{C}	Wol	${ m SSVM}$ via ${ m M^3N}$	5
C	C.1		96
	C.2)7
	C.2	Pictorial Representation of h and \mathcal{H}	
	C.5	Fictorial Representation of n and π	Ю
ъ.		•	_
Вi	bliog	raphy 10	5

List of Figures

1.1	Examples of complex objects: a) graph with 7 nodes; b) tree with 7 nodes where A is the root node and {E,D,F,G} are leaf nodes; c) a	9
1.2	sequence with 4 nodes	2 5
1.3	An example of unsupervised training for sequence prediction with 5 output (shaded) nodes	5
2.1	An example of linear discriminant function separating distinct regions	
2.2	a) Functional margin of points A, B and C; b) Geometric margin	10
0.9	define as a distance between point A and B	10
2.3	Hard margin SVM: When data is separable by linear decision boundary.	13
2.4	Soft margin SVM: When data is non-separable by linear decision boundary, the case of overlapping classes	15
2.5	Hinge loss (blue) as a convex surrogate of zero-one loss (red)	16
2.6	Multiclass SVM: (+, - and o) represent separate class and the task is	10
	to find decision boundaries that classify test point into 3-classes	18
2.7	Structural SVM: An example of sequential labeling	22
2.8	Scores for all possible combinations of a given sequence. There are	
	few assumptions made for the sake of simplicity	24
2.92.10	Graphical model with latent variables (Piccardi (2013))	26
2.10	Riding a bike (Yao et al. (2011a))	29
3.1	a) The proposed action recognition approach: bottom layer: superpixel segmentation and feature extraction; intermediate layer: superpixel classification; top variable: action class. b) The graphical model: x : superpixel measurements; h : superpixel classes, or states; y : action class. c) Factor graph representation: φ, ϕ and θ are the	
	feature functions in (3.5)	34
3.2	Example of superpixel segmentation: a) original image; b) superpixel	
	segmentation; c) superpixel boundaries highlighted	39

List of Figures ix

3.3	Examples of the top 20% superpixels contributing to the action score	
	for classes applauding, brushing teeth, gardening and waving hands	
	of Stanford 40 Actions. The figure shows triplets of {original image,	
	superpixel decomposition, top-20 pixels highlighted as a continuous	
	sequence. This figure should be viewed in color	48
3.4	(continued)	49
3.5	Average precision achieved by the proposed method in each class of	
	Stanford 40 Actions	51
4.1	Feature map h . The two binary variables for node t are noted jointly as y_t ; the four binary variables for edge e are noted jointly with a	
	double index as $y_{s,d=e}$	73
5.1	An example of a sequence with 5 output (shaded) nodes	76

List of Tables

3.1	Main notations (notations valid for this chapter only)	38
3.2	Time in seconds for the various greedy inference algorithms (loop at	
	lines 7-9 in Algorithm 1)	45
3.3	Comparison of mean average precision on Stanford-40	47
4.1	Comparison of clustering accuracy over the synthetic and Gesture Phase Segmentation datasets. Accuracy is reported as F_1 score (\pm standard deviation) over 10 runs of each technique	70
5.1	Comparison of clustering accuracy over the Synthetic and Gesture Phase Segmentation datasets. Accuracy is reported as F_1 score (\pm standard deviation)	85
C.1	Summary of notations	95

Dedicated to my Parents