
Semi-supervised and Unsupervised Extensions to

Maximum-Margin Structured Prediction

Shaukat Abidi

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the degree of

Doctor of Philosophy

2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a de-

gree nor has it been submitted as part of requirements for a degree except as fully

acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

Student’s Name : Shaukat Abidi

Signature of Student :

Date : 18/July/2016

i

ii

Abstract

Structured prediction is the backbone of various computer vision and machine learn-

ing applications. Inspired by the success of maximum-margin classifiers in the recent

years; in this thesis, we will present novel semi-supervised and unsupervised exten-

sions to structured prediction via maximum-margin classifiers.

For semi-supervised structured prediction, we have tackled the problem of recog-

nizing actions from single images. Action recognition from a single image is an

important task for applications such as image annotation, robotic navigation, video

surveillance and several others. We propose approaching action recognition by first

partitioning the entire image into “superpixels”, and then using their latent classes

as attributes of the action. The action class is predicted based on a graphical model

composed of measurements from each superpixel and a fully-connected graph of

superpixel classes. The model is learned using a latent structural SVM approach,

and an efficient, greedy algorithm is proposed to provide inference over the graph.

Differently from most existing methods, the proposed approach does not require

annotation of the actor (usually provided as a bounding box).

For the unsupervised extension of structured prediction, we considered the case of

labeling binary sequences. This case is important in a detection scenario, where

one is interested in detecting an action or an event. In particular, we address the

unsupervised SVM relaxation recently proposed in (Li et al. 2013) and extend it

for structured prediction by merging it with structural SVM. The main contribution

of the proposed extension (named Well-SSVM) is a re-organization of the feature

map and loss function of structural SVM that permits finding the violating label-

ings required by the relaxation. Experiments on synthetic and real datasets in a

iii

fully unsupervised setting reveal a competitive performance as opposed to other

unsupervised algorithms such as k-means and latent structural SVM.

Finally, we approached the problem of unsupervised structured prediction by M3

Networks. M3 Networks are an alternative formulation of maximum-margin struc-

tured prediction that can satisfy the complete set of constraints for decomposable

feature and loss functions; hence, the entire set of constraints is considered during

the search for the optimal margin as opposed to Structural SVM. In the thesis, we

present the interpretation of M3 Networks in Well-SSVM, thus allowing us to use in

a semi-supervised and unsupervised scenario.

Acknowledgements

I would like to take this opportunity to acknowledge enormous support from my

supervisors, very useful suggestions from my group and a friendly environment of

our lab especially during coffees, lunches and dinners.

First of all, I would like to thank my principal supervisor Professor Mary-Anne

Williams who provided me the opportunity to come to Australia for PhD. Without

her continuous support and supervision, I would have never gotten a chance to

explore beautiful practical applications of robotics and computer vision.

I would like to convey big thanks to my co-supervisor Professor Massimo Piccardi,

who nurtured my technical knowledge for doctoral degree. His stream of ideas

kept me occupied due to which I was able to explore amazing research path. His

continuous technical support especially regular meetings, sometimes at coffee shops,

has played a central role in the formulation of my technical abilities.

I am thankful to all of my friends, colleagues and group members of Magic Lab

and Surveillance Lab: Dr. Benjamin Johnston, Dr. Xun Wang, Dr. Saleha Raza,

Dr. Rony Novianto, Wei Wang, Pramod Parajulli, Jonathan Vitale, Mahya Mirzae,

Ali Raza, Sylvan Rudduck, Nima Ramezani, Robert Lange, Sari Awwad, Fairouz

Hussein, and Ava Bargi. I am thankful to Professor Ivor Tsang, who provided

valuable insights and critical reviews for my work. I am grateful to the visiting

professors of Magic lab who shared their research experience with me: Professor

Pavlos Peppas, Professor Peter Gärdenfors and Associate Professor Sajjad Haider.

I would like to thanks Benjamin Johnston and Xun Wang again, with whom I

developed demos for robots.

In the end, I would like to thanks my parents without whom I would never be a

person I am at the moment and will be in the future.

iv

Contents

Certificate of Original Authorship i

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Structured Prediction . 2

1.2 Semi-supervised Structured Prediction 3

1.3 Unsupervised Structured Prediction 5

1.4 Contributions . 6

1.5 Thesis Organization . 6

2 Literature Review 8

2.1 Maximum Margin Classifiers . 8

2.2 Support Vector Machines (Binary Case) 10

2.2.1 Intuitions for Margin . 10

2.2.2 Hard-Margin SVM . 12

2.2.3 Soft-Margin SVM . 14

2.3 Multiclass Support Vector Machines 17

2.4 Multiple Kernel Learning . 18

2.5 Structured Prediction . 21

2.6 Still Image Action Recognition . 29

2.6.1 Learning an Action Recognition Classifier 30

2.6.1.1 Action Representation 30

v

Contents vi

2.6.1.2 Global Features . 30

2.6.1.3 Local Features . 31

2.6.1.4 Learning a Classifier 31

2.6.2 Advantages of Still Image Action Recognition 32

3 Semi-Supervised Structured Prediction SVM and its Application
for Static Action Recognition 33

3.1 Introduction . 33

3.2 Action recognition by superpixel classification 36

3.2.1 The graphical model . 37

3.2.2 Object detectors . 38

3.3 Semi-supervised Latent structural SVM 40

3.3.1 Feature and score functions 41

3.3.2 Loss-augmented inference . 42

3.3.3 Latent variables’ initialization 43

3.3.4 Inference by efficient greedy algorithms 43

3.4 Experimental results . 46

3.5 Conclusion . 50

4 Unsupervised Structured Prediction SVM 53

4.1 Introduction . 53

4.1.1 Well-SVM . 55

4.1.2 Structural SVM . 57

4.2 Weakly Labeled Structural SVM . 58

4.2.1 Feature Maps . 60

4.2.2 Finding a Violating Labeling 62

4.2.3 Optimized Matrix-Vector Multiplication (H y) 65

4.2.4 Balanced Sequential Labeling 67

4.3 Experimental Results . 68

4.3.1 Dataset Description . 69

4.3.1.1 Synthetic Dataset 69

4.3.1.2 Gesture Phase Segmentation Dataset 70

4.3.2 Initialization . 71

4.3.3 Performance Comparison . 71

4.4 Conclusion . 72

5 Unsupervised Structured Prediction Maximum Margin Markov Net-
works 74

5.1 Introduction . 74

5.2 Notations . 75

5.3 Factorized Dual . 76

Contents vii

5.4 Decomposition of Feature Function over Edges 80

5.5 Solution of WellSSVM via M3N . 81

5.5.1 Learning as an Instance of MKL 81

5.5.2 Finding a Violating Labeling 83

5.5.3 Update μ . 84

5.6 Experiments . 84

5.6.1 Datasets Description . 85

5.6.1.1 Synthetic Dataset 85

5.6.1.2 Gesture Phase Segmentation Dataset 86

5.6.2 Initialisation . 86

5.6.3 Performance Comparison . 86

5.7 Conclusion . 87

6 Conclusion 88

A Lagrange Duality 90

B Well-SSVM: from primal (4.13) to dual (4.15) 93

C WellSSVM via M3N 95

C.1 Factorized Dual . 96

C.2 Implementation of H, τ and Δ . 97

C.3 Pictorial Representation of h and H 103

Bibliography 105

List of Figures

1.1 Examples of complex objects: a) graph with 7 nodes; b) tree with 7
nodes where A is the root node and {E,D,F,G} are leaf nodes; c) a
sequence with 4 nodes. 2

1.2 a) Action class: using a computer (Yao et al. (2011a)) b) Scene class:
street (Xiao et al. (2010)). 5

1.3 An example of unsupervised training for sequence prediction with 5
output (shaded) nodes. 5

2.1 An example of linear discriminant function separating distinct regions
of points in 2D-space . 9

2.2 a) Functional margin of points A, B and C; b) Geometric margin
define as a distance between point A and B. 10

2.3 Hard margin SVM: When data is separable by linear decision boundary. 13

2.4 Soft margin SVM: When data is non-separable by linear decision
boundary, the case of overlapping classes. 15

2.5 Hinge loss (blue) as a convex surrogate of zero-one loss (red). 16

2.6 Multiclass SVM: (+, - and o) represent separate class and the task is
to find decision boundaries that classify test point into 3-classes. . . . 18

2.7 Structural SVM: An example of sequential labeling. 22

2.8 Scores for all possible combinations of a given sequence. There are
few assumptions made for the sake of simplicity. 24

2.9 Graphical model with latent variables (Piccardi (2013)) 26

2.10 a) Action class: Playing a guitar (Yao et al. (2011a)) b) Action class:
Riding a bike (Yao et al. (2011a)). 29

3.1 a) The proposed action recognition approach: bottom layer: super-
pixel segmentation and feature extraction; intermediate layer: su-
perpixel classification; top variable: action class. b) The graphical
model: x: superpixel measurements; h: superpixel classes, or states;
y: action class. c) Factor graph representation: ϕ,φ and θ are the
feature functions in (3.5). 34

3.2 Example of superpixel segmentation: a) original image; b) superpixel
segmentation; c) superpixel boundaries highlighted. 39

viii

List of Figures ix

3.3 Examples of the top 20% superpixels contributing to the action score
for classes applauding, brushing teeth, gardening and waving hands
of Stanford 40 Actions. The figure shows triplets of {original image,
superpixel decomposition, top-20 pixels highlighted} as a continuous
sequence. This figure should be viewed in color. 48

3.4 (continued) . 49

3.5 Average precision achieved by the proposed method in each class of
Stanford 40 Actions. 51

4.1 Feature map h. The two binary variables for node t are noted jointly
as yt; the four binary variables for edge e are noted jointly with a
double index as ys,d=e. 73

5.1 An example of a sequence with 5 output (shaded) nodes. 76

List of Tables

3.1 Main notations (notations valid for this chapter only). 38

3.2 Time in seconds for the various greedy inference algorithms (loop at
lines 7-9 in Algorithm 1). 45

3.3 Comparison of mean average precision on Stanford-40. 47

4.1 Comparison of clustering accuracy over the synthetic and Gesture
Phase Segmentation datasets. Accuracy is reported as F1 score (±
standard deviation) over 10 runs of each technique. 70

5.1 Comparison of clustering accuracy over the Synthetic and Gesture
Phase Segmentation datasets. Accuracy is reported as F1 score (±
standard deviation). 85

C.1 Summary of notations. 95

x

Dedicated to my Parents

xi

Chapter 1

Introduction

Structured prediction aims to predict complex objects such as graphs, sequences and

trees. We are interested in the classification of such objects; elements of complex

objects will receive a label from a discrete set Y as opposed to regression where Y

is a set of real numbers.

The aforementioned complex objects have been studied thoroughly in the field of

Mathematics and have found several applications in Computer Science. We will

define graphs, trees and sequences in their simplest form: a graph is a collection of

nodes/vertices connected together by lines called edges (Figure 1.1(a)); a tree is an

object that originates from a root node and terminates at leaf nodes (Figure 1.1(b));

and a sequence is the simplest structured object in which each node is connected

to only one node by an edge forming a chain structure, therefore often referred to

as linear chain (please see Figure (1.1(c))). Throughout this thesis, we will focus

on undirected complex objects i.e. edges connecting nodes that do not have any

associated direction.

In the domain of computer vision and machine learning, several applications make

use of such complex objects to label unknown entities. For instance, action recogni-

tion in videos can make use of a sequence structure to label each frame. Similarly,

classification of a human body in images can make use of a tree structure where the

node representing the head will serve as the root node and feet will represent leaf

nodes.

1

Chapter 1. Introduction 2

A

B
D

E F

C

G

(a)

A

B

D E F

C

G

(b)

A B D C

(c)

Figure 1.1: Examples of complex objects: a) graph with 7 nodes; b) tree with 7
nodes where A is the root node and {E,D,F,G} are leaf nodes; c) a sequence with

4 nodes.

1.1 Structured Prediction

Structured prediction deals with the classification of structured objects such as

graphs and trees. In this type of prediction, the class label assigned to a node

depends on the class labels assigned to the other nodes. The edges encode the struc-

ture of dependencies. Consider a sequence as shown in Figure (1.1(c)). Rather than

classifying all nodes separately, structured prediction aims to assign label to each

node by considering its immediate neighbours.

One of the main challenges faced by structured prediction is how to handle its hu-

mongous output space. In most cases, its output space is too large to enumerate.

Let’s assume that the nodes (A,B,C and D) of the sequence shown in Figure (1.1(c))

can take binary values. With this assumption, 16 distinct labelings are possible; the

number of labelings grows exponentially in the size of the sequence. It is evident

Chapter 1. Introduction 3

that number of labelings would explode if the size of sequence increases. The situa-

tion will become worse in the case of graphs and trees with large number of nodes

and larger sets of labels. It is not uncommon to face such situation in practical ap-

plications. Despite such a challenge, structured prediction has found its use across

several disciplines and has reported state-of-the-art performance.

Structured prediction has numerous applications in the fields of computer vision,

natural language processing and bioinformatics to name some. In computer vision,

recognizing human actions from a single image can be formulated as the task of

classifying image portions and the human action jointly. Intuitively, we can model

dependencies among actions and objects in the image. For instance, in the clas-

sification of “eating” action, the presence of plates and cups in the image will aid

the process of action classification. Similarly, while classifying stream of characters

forming a word, let’s say ”CLAPPING”, we can take advantage of dependencies

among characters using structured prediction. It simply means we will have some

means to say that the chances of having character “L” after “C” are much higher

than characters such as “S” or “V”. Therefore, modeling structural dependencies

among data is of vital importance across several disciplines.

To perform structured prediction, we need to “train” a classifier from the available

training set. The problem of training “structural classifiers” is usually approached

in two ways: (i) Generative and (ii) Discriminative training. In generative training

of classifiers, we aim to model joint probability P (x, y) where variable x is the mea-

surement and y is the output variable. On the other hand, discriminative learning of

classifiers can be viewed as methods that model conditional probability P (y|x). In

this thesis, we have trained structured predictors (or structural classifiers) by utiliz-

ing the notion of maximum margin, which falls inside the branch of discriminative

training.

1.2 Semi-supervised Structured Prediction

Semi-supervised algorithms perform learning over a training set that consist of la-

beled and unlabeled samples. In the case of structured prediction, labelings for each

Chapter 1. Introduction 4

training instance form a graph or tree whose nodes are partially unobserved during

training.

Several applications in the field of computer vision are addressed via semi-supervised

learning. Consider the case of action and scene classification as depicted in Figure

1.2(a) and Figure 1.2(b), respectively. Both of these tasks can be solved via struc-

tured prediction. In Figure 1.2(a), the goal is to classify the action performed in

the image. This can be achieved by jointly labeling the objects inside the image.

For instance, the green and red rectangles highlight the presence of a monitor screen

and a human. During semi-supervised learning of actions, the action class would be

provided while the location and class of objects (for instance monitor and human)

would be latent or unobserved. Our learning algorithm will assign values to the un-

observed labels by minimizing some notion of error. During prediction, our classifier

will predict the action along with the detected objects. We refer to this case as

semi-supervised action recognition. We can apply the same learning paradigm for

the task of scene classification as well. In Figure 1.2(b), the red and green rectangles

highlight the presence of a car and a building in the image. Our learning algorithm

can treat the locations and classes of these objects as latent variables while the

scene class (“street”) would be observed. During prediction, scene recognition will

be aided by the detection of objects inside the image. We refer to this scenario as

semi-supervised scene classification.

Success in semi-supervised learning can bring huge benefits for labeling enormous

amount of data. Since the data size is growing at unprecedented rate, data an-

notation has become an expensive operation. A huge effort is required to annotate

millions of images (for action/scene recognition) and video frames (action recognition

from videos). While it is possible to assign a single label to images or videos, it is in-

feasible to annotate all objects constituting them. In such scenario, semi-supervised

learning frames the task of learning classifiers by assigning labels to the unlabeled

objects by itself. In this way, one can achieve the goal of annotating objects and at

the same time, missing labels are handled efficiently by the algorithm.

Chapter 1. Introduction 5

(a) (b)

Figure 1.2: a) Action class: using a computer (Yao et al. (2011a)) b) Scene
class: street (Xiao et al. (2010)).

?

1

?

2

?

3

?

4

?

5

Figure 1.3: An example of unsupervised training for sequence prediction with
5 output (shaded) nodes.

1.3 Unsupervised Structured Prediction

Unsupervised algorithms perform the task of learning a classifier over an unlabeled

training set. Unsupervised learning is also commonly referred to as “clustering”.

In the case of structured prediction, the labelings for each training instance form a

graph or a tree whose output nodes are unobserved during training.

In Figure 1.3, a synthetic case for sequential labeling with 5 output nodes is depicted

as an example of unsupervised learning. During training, only x is observed (x is the

input vector or observation) and the task is to find its corresponding labeling. This

approach is useful in several applications, for instance gesture segmentation. Given

a video of an actor performing “K” gestures (frames are represented by xi), we can

perform clustering over video frames that will assign a label (out of K labels) to each

Chapter 1. Introduction 6

frame. K-means is an immediate option to achieve such clustering; yet, it will ignore

completely the dependencies among output nodes (shaded nodes in Figure 1.3). We

will discuss a novel method of performing unsupervised structured prediction (or

clustering) for the above mentioned case in Chapter 4.

1.4 Contributions

In this thesis, we have proposed the following contributions to semi-supervised and

un-supervised structured prediction:

• Proposed efficient greedy algorithm for the task of predicting human actions

from still images (Chapter 3).

• A novel formulation of unsupervised structured prediction based on a minimax

relaxation (Chapter 4).

• Proposed alternative solution for the task of unsupervised structured predic-

tion via M3 Networks (Chapter 5).

1.5 Thesis Organization

The thesis is organized into six chapters that are summarized as follows:

Chapter 2. This chapter presents the background knowledge for the proposed

contributions. It discusses the learning of maximum-margin classifiers for “indepen-

dent and identically distributed (i.i.d)” and sequential datasets. How to move from

a simple i.i.d training to the structured prediction is the focus of entire discussion.

Finally, a brief introduction of Multiple Kernel Learning (MKL) is provided to lay

the foundation of Chapter 4.

Chapter 3. This chapter sets out to offer solution for the task of recognizing hu-

man actions in a semi-supervised manner. Particularly, we have proposed a graphical

Chapter 1. Introduction 7

model that can be used to classify human actions from still images. Later, we will

discover that training such a classifier is an expensive process. To mollify this issue,

we have proposed efficient greedy inference algorithms that make the learning task

tractable.

Chapter 4. In this chapter, we focus on how to perform unsupervised structured

prediction via maximum-margin training. We have extended a recently proposed

convex relaxation for labeling binary datasets to the case of structural datasets. To

this aim, we have proposed a feature map design that is the main element of our

new methodology.

Chapter 5. In Chapter 4, the quadratic program (QP) for Well-SSVM is solved

using cutting-plane approach. In this chapter, we have proposed an alternative way

for solving the same QP with full set of constraints. The proposed formulation is

the direct application of M3 Networks.

Chapter 6. We have concluded our discussion with a summary of the main findings

and suggestions for possible future extensions.

Chapter 2

Literature Review

In this chapter, we will review the formulation of support vector machines (SVMs)

for independent and identically distributed (I.I.D) data (such as binary/multiclass

SVM), an overview of Multiple Kernel Learning (MKL) – an essential approach

to tackle the case of multiple ground-truth labelings in Chapter 4 and Chapter 5,

followed by Structural and Latent Structural SVM for structured data. Although,

there is an entire field of graphical models that handles the probabilistics learning of

structured dataset (Koller and Friedman (2009)), we have focused on the discrim-

inative way of learning classfiers i.e. maximum-margin approach (Structural and

Latent Structural SVM). The literature review will be concluded by the application

of structured prediction in the field of computer vision for recognizing human actions

from still images.

2.1 Maximum Margin Classifiers

In the following sequel, we aim to learn a linear discriminant function using the

maximum margin framework. A function h(x) is called a linear discriminant function

if:

h(x) = w�x+ b =

⎧⎨
⎩h(x) > 0 when x ∈ A

h(x) < 0 when x ∈ B

8

Chapter 2. Literature Review 9

+ +
+ +

+
+
+

+

+
+

+

+

+

- - -
- -

-

- -
-

-

-

-

- -

x1

x2

xi

w

Figure 2.1: An example of linear discriminant function separating distinct re-
gions of points in 2D-space

Imagine we wish to separate points as shown in Figure 2.1. Here, h(x) = 0 corre-

sponds to the line (hyperplane in high dimensions) that cleanly separates the red

and blue points. All blue points will fall inside region “A” where h(x) > 0 while the

red ones, in region “B” where h(x) < 0. “w” is the vector normal to line h(x) = 0

and “b” is its offset from the origin.

The parameters, w and b, of this function will be learnt from a training set by

utilizing the notion of maximizing the margin between the closest points of opposing

class. After parameter learning, any data point x can be classified using h(x).

In this chapter, we will introduce the notion of maximum-margin learning in a super-

vised and semi-supervised setting. The discussion will be concluded with detailed

explanation of different formulations of SVMs that will lay the foundation of our

proposed techniques for performing: (i) static action recognition (Chapter 3) and

(ii) unsupervised structured prediction (Chapter 4).

Chapter 2. Literature Review 10

+ +
+ +

+ +
+

+

+
+

+
+

- - - - -
-

- - -

-
-

-
- -

x1

x2

A
B

C

(a)

+ +
+ +

+ +
+

+

+
+

+
+

- - - - -
-

- - -

-
-

-
- -

x1

x2

A
B

C

(b)

Figure 2.2: a) Functional margin of points A, B and C; b) Geometric margin
define as a distance between point A and B.

2.2 Support Vector Machines (Binary Case)

Binary SVM learns a classifier that separates training data into two classes by uti-

lizing the notion of maximum margin. We will elucidate the notion of “margin”,

that will make the task of formulating hard and soft margin SVM easier.

In the following section, X is a collection of N points with D-dimensions i.e. X =

{x1, x2, . . . , xN} and xi ∈ RD. Each point has an associated label yi, therefore the

corresponding label set is denoted by Y = {y1, y2, . . . , yN} where each label yi picks

a value from the set {+1,−1}. The overall set for training sbinary SVM is denoted

by S = {(xi, yi)}i=1,...,N . We would like to mention that the following discussion on

binary SVMs is inspired by Andrew Ng’s lecture notes on SVMs (Ng (2003)).

2.2.1 Intuitions for Margin

Consider Figure 2.2 depicting a line that separates the data points of the positive

and negative classes. We will define this line by hw,b(x) = w�x + b = 0. “hw,b(x)”

can change its position and orientation by varying its parameters (w, b). As we can

Chapter 2. Literature Review 11

see, all points lying on the upper side of hw,b belong to the positive class and the

rest are members of the negative class. From now on, we will call this separating

line as “decision boundary” or “separating hyperplane” since it acts as a plane that

separates different classes. Now, we are in a position to define “functional” and

“geometric” margin from the decision boundary.

During classification, our goal it to classify points with high confidence. Let us

measure this confidence by means of functional margin, ζ̃. For instance, in Figure

2.2, hw,b(x = A) > hw,b(x = B) > hw,b(x = C). The reason for such inequality is

that the distance of “A” from hw,b(x) = 0 is larger than “B” and “C”. Therefore,

we can say that the functional margin of “A” is larger than the functional margin

of “B” and “C”. As a consequence, we are more confident in the prediction of “A”

rather than “B” or “C”. We can scale the functional margin as much as we like by

scaling “w” and “b”. To introduce the distance of a point from a line in Euclidean

space, we will now introduce the notion of geometric margin.

The geometric margin for xi is defined as the distance of xi from decision boundary

hw,b. In Figure 2.2, the geometric margin of arbitrary point xi is denoted by ζi. Such

geometric margin is the perpendicular distance of xi from the decision boundary.

Using simple formula for the perpendicular distance between any point and line in

Euclidean space, we can easily impute the geometric margin as follows:

ζi =
w�xi + b

||w||

The numerator of ζi is our previously defined functional margin. Therefore, the

above equation establishes the relation between functional and geometric margins

of binary support vector machines.

During the training phase, the geometric margin of hw,b w.r.t given training set S

of N examples is set to the smallest geometric margin i.e.

ζ = min
i=1,...,N

ζi

Chapter 2. Literature Review 12

In simpler words, given a Euclidean space and separating hyperplane, the distance

between any point x and the hyperplane is uniquely defined. Instead, the functional

margin (also known as “score”) is defined up to an arbitrary multiplicative constant,

||w||.

The goal of SVM learning is to find the parameters of separating hyperplane (w, b)

that maximize the geometric margin. Alternatively, we have to find the best hy-

perplane from a family of linear functions (defined by hw,b) that maximizes the

geometric margin on both sides of the hyperplane.

2.2.2 Hard-Margin SVM

Consider the hard-margin case as depicted in Figure 2.3. The name “hard-margin”

points to the fact that the data points are completely separable by a linear decision

boundary. The two dotted lines are at a functional margin of 1 from the decision

boundary. The geometric margin can easily be calculated as shown in figure, 2
||w|| .

In order to find a hyperplane that maximizes the distance between the closest points

of opposing class, it is sufficient to minimize the norm of w i.e. ||w||. Therefore, we
can pose our primal problem for hard-margin SVM as follows:

(w∗, b∗) = argmin
w,b

1

2
‖w‖2

s.t. yi
(
w�xi + b

) ≥ 1, ∀i = 1, 2, . . . , N

(2.1)

By treating (2.1) as a Lagrangian equation (see Appendix. A), the dual formulation

of hard-margin SVM turns out to be:

Chapter 2. Literature Review 13

+ +
+ +

+ +
+

+

+
+

+
+

- - - - -
-

- - -

-
-

-
- -

x1

x2

Figure 2.3: Hard margin SVM: When data is separable by linear decision bound-
ary.

max
α

N∑
i=1

αi − 1

2

N∑
i,j=1

yiyjαiαjx
�
i xj

s.t. αi ≥ 0, ∀i = 1, . . . , N

N∑
i=1

αiyi = 0,

(2.2)

Points (or examples) that lie on the dashed lines in Figure 2.3 are known as “support

vectors” and their corresponding αi > 0. All other points that do not lie on the

dashed line will have their corresponding αi = 0. Therefore, at optimality only few

points (or support vectors) will have non-zero alphas. One of the great advantages

of this dual formulation is its reliance on a kernel function. If we observe Equation

(2.2), we can see that it uses a dot product between pairs of input vectors denoted

by xi and xj. Therefore, we can replace x�i xj by our desired kernel function (for

instance, a Gaussian kernel). As a consequence, the dual formulation of SVM with

Chapter 2. Literature Review 14

kernels other than the dot product (“linear kernel”) leads to non-linear decision

boundaries in data space RD. This is called the kernel trick, using which we can work

effectively in very high-dimensional spaces, even infinite dimensions. The notion of

using kernels is more general than SVM, therefore it can be applied to any algorithm

that uses the dot product between pairs of inputs xi and xj.

Once we get αi’s from Objective (2.2), we can classify test example xt as follows:

yt = sign

(
N∑
i=1

αiyix
�
i xt

)
(2.3)

2.2.3 Soft-Margin SVM

In practical scenarios, it is very rare that the given dataset is neatly separable in data

space (Figure 2.3). Generally, it contains data points that are not separable by linear

decision boundaries. Moreover, the presence of outliers may bias the position of the

decision boundary immensely. This case is depicted in Figure 2.4, where the task is

to find a seperating hyperplane when some data points overlap in opposing classes.

To solve the case of non-separable data, a new set of variables (slack variables),

ξi, are introduced in the optimization objective. This provides a way to select a

trade-off between training error and margin size. With these modifications, our new

primal problem for this so called soft-margin SVM is posed as follows:

(w∗, b∗) = argmin
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi
(
w�xi + b

) ≥ 1− ξi, ∀i = 1, . . . , N

ξi ≥ 0, ∀i = 1, . . . , N

(2.4)

The new constraint allows us to have data points with functional margin less than 1

by incorporating the slack variables. These slack variables are quantified as penalties

for misclassification. For each misclassification (a case when functional margin is less

than 1), our objective function receives penalty of Cξi. The parameter C determines

Chapter 2. Literature Review 15

+ +
+

+ + +
+

+

+
+

+
+

- - - - -
-

- - -

-
-

-
- -

x1

x2

Figure 2.4: Soft margin SVM: When data is non-separable by linear decision
boundary, the case of overlapping classes.

the trade-off between margin and training error i.e. it is a weighting factor that

controls the margin (if ||w||2 is small, the margin will increase and vice versa) and

number of examples that have margin equal to 1 − ξi. “C” is defined by the user

and is normally chosen via cross-validation.

Actually, what we are interested in is to minimize the number of misclassified exam-

ples. Please note that if we were to count the number of misclassified examples and

use it as the objective, then Objective (2.4) will become non-differentiable and non-

convex as ξ would be an L0 norm. Therefore, instead of this loss, we use a piecewise

linear function known as the “hinge loss” (Figure 2.5). It is convex and serves as an

upper bound to the ordinary 0-1 loss. For binary classification problem where yi can

take values from the set {+1,−1}, hinge loss can be written as: max(0, 1− yiw
�xi).

In Figure 2.5, respective 0-1 and hinge loss are plotted for yi = 1.

The dual of Equation (2.4) can be obtained in the same fashion of hard-margin

SVM. After forming its Lagrangian, differentiating in w and b and plugging the

results back into the Lagrangian, we can pose the dual problem as follows:

Chapter 2. Literature Review 16

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.5: Hinge loss (blue) as a convex surrogate of zero-one loss (red).

max
α

N∑
i=1

αi − 1

2

N∑
i,j=1

yiyjαiαjx
�
i xj

s.t. 0 ≤ αi ≤ C, ∀i = 1, . . . , N

N∑
i=1

αiyi = 0,

(2.5)

The only difference between the Objective (2.2) and Objective (2.5) is the addition of

a “box constraint”, 0 ≤ α ≤ C. Similar to Objective (2.2), we can apply the kernel

trick to learn non-linear decision boundaries (in high, even infinite, dimensional

spaces). Objective (2.2) and Objective (2.5) are quadratic programs with linear

constraints. They are efficiently solved via off-the-shelf solvers, among which SMO

(Platt et al. (1999)) is widely used.

Chapter 2. Literature Review 17

2.3 Multiclass Support Vector Machines

We have seen how a binary SVM learns the decision boundary for a dataset hav-

ing two classes. What should be done if we have more than two classes? This

case is depicted in Figure 2.6 where the task is to separate three classes by linear

hyperplanes.

Multiclass classification can be approached in the following two intuitive ways: (i)

design a one-vs-all classifier for each class (Rifkin and Klautau (2004)) or (ii) design

a one-vs-one classifier for each pair of classes (Hastie et al. (1998)). If the number

of classes is denoted by K, then the former case requires the training of K binary

classifiers and the latter requires training K(K−1)
2

binary classifiers. We will discuss

the training of the first case since it leads to the multiclass training of SVM when

classes are considered altogether.

As mentioned earlier, let us discuss the case of training a one-vs-all classifier (Rifkin

and Klautau (2004)). For the sake of simplicity, let us assume we want to find an

unbiased decision boundary i.e. b = 0. Thus assigning a label to point x requires

the training of K binary classifiers —one for each class. For any class k, we will

have its respective weight vector wk. To achieve high classification accuracy, a

careful (manual) tuning of each classifier is needed. For prediction, the class with

the highest score (w�
k x) —among K classes —will be selected as the target class.

The most probable label y to x is assigned by evaluating the score of each class as

follows:

y = argmax
k∈K

w�
k x , ∀k ∈ K (2.6)

Crammer and Singer (2002) cast the objective of multiclass SVM as a single op-

timization problem for K classes. To obtain K models from a single training, the

following (primal) objective was proposed:

min
wk∈RD,ξ∈RN

K∑
k=1

1

2
||wk||2 + C

N∑
i=1

ξi

s.t. w�
yi
xi − w�

k xi ≥ 1− ξi, ∀i, ∀k ∈ K

(2.7)

Chapter 2. Literature Review 18

+ +
+

+
+ +

+

+

+
+

+
+

- - -
-

-
-

- - -

-
-

-
- -

x1

x2

o
o o

o
o o

o o
o

o o
o

o o

Figure 2.6: Multiclass SVM: (+, - and o) represent separate class and the task
is to find decision boundaries that classify test point into 3-classes.

The objective posed in 2.7 is the soft-margin formulation of multiclass SVM. For a

training datum xi, yi is its ground-truth label and ξi is its associated slack variable

introduced in the objective to permit constraint violation. Each example has a set

of K − 1 constraints and the posed objective tries to maintain the difference of at

least 1 − ξi between the scores assigned to xi by its true model (wyi) and all other

models (wk∈K\yi). In multiclass SVM, w�
k x changes its meaning of boundary (as we

have seen in binary SVM) and becomes a score relative to class k. The decision

boundary among class k and l is given by w�
k x− w�

l x = 0. If k = 2 (binary SVM),

then it can be proven that w1 = −w2.

2.4 Multiple Kernel Learning

The dual formulation of SVM (2.5) allows implementing kernels for learning non-

linear decision boundaries. If xi represents the input data point with label yi, it is

known that SVM aims to learn a linear discriminant function f(x) of the following

form:

Chapter 2. Literature Review 19

f(x) =
N∑
i=1

αiyi
(
x�i x

)
+ b (2.8)

To learn a non-linear decision function, the input features xi can be transformed

into a high-dimensional space by a mapping function, φ(xi). Fortunately, thanks to

the dual formulation of SVM (2.5), all xi’s appear in a product with another sample.

As a consequence, instead of applying an explicit mapping function to each input,

kernels are used to implicitly represent such products in some high-dimension space.

After introducing the kernel, the linear discriminant function shown in Equation

(2.8) will take the following form:

f(x) =
N∑
i=1

αiyiK(xi, x) + b (2.9)

where K(xi, x) = φ(xi)
�φ(x) is the kernel function over xi and x. Now, Objective

(2.5) can be re-written as follows:

max
α

N∑
i=1

αi − 1

2

N∑
i,j=1

yiyjαiαjK(xi, xj)

s.t. 0 ≤ αi ≤ C, ∀i = 1, . . . , N

N∑
i=1

αiyi = 0,

(2.10)

Up till here, we have utilized a single kernel K. Utilizing multiple kernels brings

several advantages for various applications and has been studied extensively by (Bach

et al. (2004); Rakotomamonjy et al. (2008); Gönen and Alpaydin (2008); Xu et al.

(2013)), to name some. Therefore, instead of using just a single kernel, one can

combine different kernels as follows:

Chapter 2. Literature Review 20

K(x, x′) =
L∑
l=1

μlKl(x, x
′)

such that μl ≥ 0,
L∑
l=1

μl = 1

(2.11)

In Equation (2.11), kernel K is the convex combination of L basis kernels weighted

by their corresponding μ’s. Other combinations are also possible such as conic

combination. Such basis kernels can be totally different kernels such as RBF and

Gaussian kernel, same kernel with different parameters such as Gaussian kernel

with different sigmas or they may take the full set or subset of input variables thus

allowing input from different sources.

Replacing the value of K(x, x′) from Equation (2.11) into Objective (2.10) will give

rise to two unknowns, αi and μl. Learning such unknowns (α and μ) in a sin-

gle optimization problem is known as the multiple kernel learning (MKL) problem

(Rakotomamonjy et al. (2008)).

Rakotomamonjy et al. (2008) proposed the following MKL primal problem whose

simplest solution is obtained via alternate optimization algorithm:

min
{wl},b,ξ,μ

1

2

L∑
l=1

1

μl

||wl||2 + C
N∑
i=1

ξi

s.t yi

(
L∑
l=1

w�
l xi + b

)
≥ 1− ξi, ∀i

ξi ≥ 0, ∀i
L∑
l=1

μl = 1, μl ≥ 0 ∀l

(2.12)

with

Chapter 2. Literature Review 21

wl =
N∑
i=1

μlαiyixi

Objective (2.12) is the MKL SVM problem, which is referred to as the primal MKL

problem by Rakotomamonjy et al. (2008). Please note the L1 norm constraint on

weighting coefficient μ due to which the final kernel matrix is the convex combination

of basis kernels (can be seen by deriving its dual). As mentioned before, the solution

of Objective (2.12) can be obtained into two steps:

• Optimize Objective (2.12) by keeping μ fixed. It will be an instance of SVM,

which can be solved by off-the-shelf solvers.

• Update the weight factor of basis kernel μl in a closed form to decrease the

objective value of (2.12) while keeping b,ξ and w fixed.

The above method to solve MKL primal problem might have some convergence

issues especially when few components of μ approach zero (Rakotomamonjy et al.

(2008)). However, two great advantages offered by the aforementioned technique

are its straightforward implementation and the cheap computation to estimate the

weighting parameters.

2.5 Structured Prediction

Structured prediction is the task of predicting structured objects like graphs, se-

quences or trees. Each structured object consist of T nodes with E edges. Figure

2.7 is an illustration of a simple structured object, a sequence of T nodes having E

(=T-1) edges. In our discussion of structured prediction, we will denote an input by

x ={x1, . . . , xT} while y ={y1, . . . , yT} will be its corresponding labeling. Through-

out our discussion on Structural SVM and Latent Structural SVM, elements of y

will be discrete valued.

Structured prediction can be seen as a multi-class prediction problem with huge

numbers of classes. The number of classes are exponential in the number of nodes

Chapter 2. Literature Review 22

Figure 2.7: Structural SVM: An example of sequential labeling.

of the structured object. For instance, a linear sequence (see Figure 2.7) of length

T where each output node have cardinality K, will have KT unique sequences or

classes. As an example, a sequence x of (T=)3 binary nodes (i.e. |y| ∈ {0, 1})
will have (2T) 8 unique labelings (See Figure 2.8). We can refer to such 8 distinct

labelings as separate classes (as mentioned in the start of this paragraph). For the

rest of our discussion, we will refer to such number of classes as “distinct labelings”.

The problem of structured prediction is solved under the framework of probabilistic

graphical models. These graphical models are categorized into two types: i) Directed

Graphs (Bayesian Network) ii) Undirected Graphs (Markov Random Fields). Once

we have chosen the type and form of the graphical model, we need to learn its param-

eters. These parameters can be learnt using generative or discriminative approaches.

In this thesis, we have taken into account the discriminative, maximum-margin way

of learning parameters. Therefore, we will review Structural SVM (Tsochantaridis

et al. (2005a)) for the task of learning such parameters. These learnt parameters

will help us achieve the aim of structured prediction.

Structural SVM

Structural SVM (SSVM) is the discriminative method of training maximum-margin

classifiers that predict structured objects like graphs, sequences and trees. Struc-

tured prediction is gaining popularity thanks to its promising performance across

several fiels. Action recognition in videos and images, sequence alignment in bioin-

formatics, tracking multiple targets in videos are some of its popular applications,

to name a few.

Chapter 2. Literature Review 23

Let x ∈ X denote an input vector with associated output variable y ∈ Y . The

training set would then be represented as input-output pairs:

{(x1, y1), . . . , (xi, yi), . . . , (xN , yN)} ∈ X×Y . Let Ti denote the length of xi, hence x
t
i

points to the tth element of ith example. Each xi will have its corresponding labeling

yi, whereas each element of yi can have a discrete value from the set of K labels i.e.

|Y | = {1, . . . , K}. In the following, reference to an arbitrary example is made by xi

whereas reference to its arbitrary element t is made by xt.

The overall goal of SSVM is to learn a discriminant function f : X×Y −→ R linear

in the parameter set, w, having the following form:

f(x;w) = argmax
y∈Y

F (x, y;w)

= w�Φ(x, y)
(2.13)

Φ(x, y) is called joint feature map. Intuitively, it encodes structural information of

input-output pair (xi, yi). Its design is application-dependent and varies with the

nature of problem to be solved. The important thing to note is the linearity of

f(x;w) in weight vector w.

As an example, consider a case of tagging a sequence with parts-of-speech. For the

sake of simplicity, let’s restrict the length of sequence (T) to 3 words (i.e. T= 3) while

each word can only be tagged as either “Noun (N)” or “Verb (V)” (i.e. cardinality

of output node yi is set to 2). As shown in Figure 2.8, the task is to tag input

x = {I, like, fruits} with the most likely sequence of tags. In Figure 2.8, the correct

assignment of tags is shown on top of output nodes yi. With the simplifications we

made on output, we can see that there are only 8 possible sequences of tags. They

are shown in Figure 2.8 on an axis labeled by Equation 2.13. The goal of SSVM

learning is to find a weight vector w that assigns the highest score to the correct

sequence. In SSVM learning, ideally all “wrong assignments” shown in the figure

would serve as constraints. The “correct assignment”, shown in figure, is the ground

truth labeling for our simple example. The joint feature map, Φ(x, y), for the case

Chapter 2. Literature Review 24

(N
,V,N

)

(N
,V,V)

(V,V,N
)

(V,N
,N

)

(V,N
,V)

(N
,N

,V)

(N
,N

,N
)

(V,V,V)

wTФ(x,y)

correct assignment wrong assignment

x1

X2

x3

y1

y2

y3

I like fruits

N V N

Фe(x1,y1)

Фt(y1,y2)

Figure 2.8: Scores for all possible combinations of a given sequence. There are
few assumptions made for the sake of simplicity.

depicted in Figure 2.8 can be decomposed into “emission” and “transition” factors

(Φe and Φt) as follows (Yu (2011)):

Φ(x, y) =
T∑
t=1

Φe(xt, yt) +
T∑
t=2

Φt(yt, yt−1) (2.14)

For linearly separable datasets, we can pose a convex quadratic program for Struc-

tural SVM (Tsochantaridis et al. (2005a)) with linear constraints as follows:

min
w∈RM

1

2
‖w‖2

s.t. ∀y ∈ Y \yi : w�Φ(xi, yi)− w�Φ(xi, y) ≥ 1, ∀i = 1, . . . , N

(2.15)

In structured prediction it is very rare to have linearly separable datasets, therefore

we should incorporate slack variables in the objective of structural SVM. These

Chapter 2. Literature Review 25

slack variables will permit margin violation while the objective function will receive

a penalty quantified by ξi:

min
w∈RM ,ξ∈RN

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. ∀y ∈ Y \yi : w�Φ(xi, yi)− w�Φ(xi, y) ≥ 1− ξi, ∀i = 1, . . . , N

ξi ≥ 0, ∀i = 1, . . . , N

(2.16)

Taskar et al. (2004) and Tsochantaridis et al. (2005a) introduced another way to

incorporate loss by rescaling the margin. With these changes, the constraints in

(2.16) take the following form:

min
w∈RM ,ξ∈RN

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. ∀y ∈ Y \yi : w�Φ(xi, yi)− w�Φ(xi, y) ≥ �(yi, y)− ξi, ∀i = 1, . . . , N

ξi ≥ 0, ∀i = 1, . . . , N

(2.17)

The above objective leads to the weight vector w that minimizes the sum of hinge

losses
∑N

i=1 ξi. The user defined parameter “C” will choose an appropriate balance

between the training error (ξ) and the regularizer(||w||2). The constraints in (2.17)

say that the difference between the scores of groundtruth (yi) and all other assign-

ment (y 	= yi) must be at least�(yi, y)−ξi. The number of constraints is exponential

in the length of sequence x (shown in Figure 2.8 for the simplest case of sequential

tagging). Therefore, it is not feasible to solve (2.17) with the full set of constraints

since it makes learning intractable. To mollify the issue of intractable learning,

Joachims et al. (2009a) proposed a cutting plane algorithm for solving (2.17) and

its variants. The idea is to find the most violated constraint for each example; these

constraints are added to a working set of constraints and the resulting quadratic

program (QP) is solved. This process is repeated until convergence. The detailed

algorithm is described in Joachims et al. (2009a).

Chapter 2. Literature Review 26

Figure 2.9: Graphical model with latent variables (Piccardi (2013))

Latent Structural SVM

Until now, we have dealt with fully supervised learning in which labels y are known

prior to learning. In the recent years, the typical size of datasets has grown im-

mensely which has made the task of annotating data more expensive than ever

before. Therefore, latent variable models provide promising solutions to the case

of unsupervised or semi-supervised learning where data labels are unknown or par-

tially known. Moreover, latent variables can extract useful information from data

that might be unobserved by the user.

In Latent SSVM (Latent-SSVM), some of the output variables are unknown during

learning (semi-supervised learning). Let h be a set of latent variables and y the su-

pervised labels, leading to a label set of supervised and unsupervised variables (y, h)

respectively. This is depicted in Figure 2.9, where the set of hidden variables are

shown in color. Yu and Joachims (2009) proposed the training of Structural SVM

with latent variables h by incorporating h inside the linear discriminant function,

w�Φ(x, y); thus, it becomes w�Φ(x, y, h). The authors posed the constraints for

Latent-SSVM as follows:

∀ŷ ∈ Y \yi : ξi ≥ max
ĥ∈H

[
w�Φ(xi, ŷ, ĥ) +�(yi, ŷ, ĥ)

]
−max

ĥ∈H
w�Φ(xi, ŷ, ĥ)

ξi ≥ 0

(2.18)

Chapter 2. Literature Review 27

Here, ĥ is the predicted latent states from the weight vector of previous iteration.

The inclusion of h inside our prediction function can either be marginalized or max-

imized. Yu and Joachims (2009) proposed to get rid of h by the operation of max-

imization instead of marginalization, because marginalizing h is a more expensive

operation. With these changes, a constraint for example i (or value of ξi) can be

written as follows:

ξi = max
(ŷ,ĥ)∈Y×H

[
w�Φ(xi, ŷ, ĥ) +�(yi, ŷ, ĥ)

]
−max

h∈H
w�Φ(xi, yi, h) (2.19)

As a consequence, ξ becomes the difference of two convex terms (each term is actually

a maximum of linear functions which is in turn convex). Therefore, the primal

problem for Latent-SSVM becomes:

min
w∈RM′ ,ξ∈RN

1

2
‖w‖2 + C

N∑
i=1

ξi

∀ŷ ∈ Y \yi : max
h∈H

w�Φ(xi, yi, h)−max
ĥ∈H

w�Φ(xi, ŷ, ĥ) ≥ �(yi, ŷ, ĥ)− ξi

ξi ≥ 0 ∀i = 1, . . . , N

(2.20)

Since the Equation (2.19) involves convex and concave terms, the Objective (2.20)

becomes non-convex. To alleviate this issue, Yu and Joachims (2009)) computes h∗i
in the following fashion:

h∗i = max
h∈H

w�Φ(xi, yi, h) (2.21)

This is named as “latent variable completion problem” and imputes an upper bound

on the concave part in Equation (2.19). After solving Equation (2.21), the objective

for Latent-SSVM becomes convex because the second term turns linear in w. The

Chapter 2. Literature Review 28

convexified version of Latent-SSVM is presented as follows:

min
w∈RM′ ,ξ∈RN

1

2
‖w‖2 + C

N∑
i=1

max
(ŷ,ĥ)∈Y×H

[
w�Φ(xi, ŷ, ĥ) +�(yi, ŷ, ĥ)

]

− C
N∑
i=1

w�Φ(xi, yi, h∗i)

(2.22)

The above objective is solved using Structural SVM since the concave part of Equa-

tion (2.19) is replaced by its linear upper bound. The process of iterating between

Equation (2.21) and Objective (2.20) is repeated until convergence which is guar-

anteed, and equivalent to the Convex-Concave Procedure (Yuille and Rangarajan

(2003)).

Chapter 2. Literature Review 29

2.6 Still Image Action Recognition

In the field of computer vision, “Action Recognition” is a well-known problem that

has received great interest from researchers. Extensive research for the solution of

this problem has given birth to several methods that can recognize human actions

from videos (Poppe (2010)) and images (Guo and Lai (2014)). In the following

discussion, we will restrict our focus to action recognition in images, that aims to

recognize human actions from a single image. This problem is also known as “Still

Action Recognition” or “Static Action Recognition”.

Research in still action recognition gained popularity due to the fact that some

actions can be recognized from a single image instead of videos. Figure 2.10(a)

depicts a person playing a musical instrument and Figure 2.10(b) portrays a human

riding a bike. It can be seen qualitatively that recognizing these two actions does

not need temporal information over videos since these two images contain enough

information for recognizing the respective actions. Which actions are suitable for

still action recognition is a separate discussion outside the scope of this thesis. We

will accept the fact that certain actions (Yao et al. (2011a); Gupta et al. (2009a);

Sener et al. (2012)) are simple enough to be identified from just a single image. Guo

and Lai (2014) present a survey of still action recognition that briefly highlights a

significant sample of the literature and datasets to date.

(a) (b)

Figure 2.10: a) Action class: Playing a guitar (Yao et al. (2011a)) b) Action
class: Riding a bike (Yao et al. (2011a)).

Chapter 2. Literature Review 30

The following subsections contain a brief overview of learning action classifiers from

a training set of images. We will conclude our discussion by highlighting some

advantages of still image action recognition.

2.6.1 Learning an Action Recognition Classifier

Still action recognition in images can generally be approached into two distinct

ways. Several other methods found in the literature can be seen as a combination

of these two approaches: (i) by fitting articulated pose models to humans that

estimate poses in images (this method is more suitable for pose estimation problem)

and (ii) by computing a bag-of-feature representation of the image in which various

features are calculated over the entire image (global features) or its local patches like

superpixels or grids of particular pixel size (local features for instance HoG, Dense

SIFT etc). The latter approach is more likely to capture the contextual information

of the action being performed in the image.

To learn an action classifier, we need to represent the image content in terms of

global or local features (action representation). Several learning algorithms can be

applied over such representation of actions to obtain the desired classifier.

2.6.1.1 Action Representation

To learn actions from images, we need to represent the image by an appropriate

set of features. Each image will be represented in terms of features which will be

handed over to the learning algorithm. Such sets of features are generally divided

into two categories: (i) Global and (ii) local features.

2.6.1.2 Global Features

Global features capture different aspects of actions from images; for instance, they

can take into account human pose, arrangement of body parts, background of image

and interaction of human with objects. They are computed over the regions of

Chapter 2. Literature Review 31

interest. For instance, Wang et al. (2006) imputed feature set over human body

for still action recognition. Again for the purpose of recognizing human actions,

pose information from human body was extracted by Thurau and Hlaváč (2008)

and Ikizler et al. (2008) since pose contains crucial information about undergoing

actions. There are several other global features that serve different purposes for

computer vision application.

2.6.1.3 Local Features

Local (or low-level) features are calculated over a fixed portions of the image. They

are imputed over grids of fixed sizes of image pixels. Examples include the scale

invariant feature transform (SIFT) (Lowe (2004)), histogram of gradients (HOG)

(Dalal and Triggs (2005)) and shape context (Belongie et al. (2000)) to name a few.

SIFT (Lowe (2004)) is the most frequently used low-level feature in several computer

vision applications. It has been widely used for object recognition, action recogni-

tion from videos and images, tracking objects, and many others. SIFT captures a

descriptor vector (128D) at a location called keypoint. In SIFT, these keypoints

are detected by the algorithm itself. In DSIFT (dense sampling of scale invariant

feature points), keypoints are selected by the dense sampling of image pixels. After

the selection of keypoint, a regular grid is placed around it to perform operations

that achieve robustness against rotation, small illumination changes and scaling of

the image.

2.6.1.4 Learning a Classifier

After representing the image and its content by the set of features, action classifiers

can be learnt within a generative or discriminative learning framework. Structured

prediction has become a popular approach for various applications in the field of

computer vision. In this thesis, we have applied latent structural SVM (Yu and

Joachims (2009)) for the task of learning human actions in still images.

Chapter 2. Literature Review 32

2.6.2 Advantages of Still Image Action Recognition

Success in static action recognition will bring major benefits across several useful

applications:

• Image annotation i.e. tagging images with corresponding actions has become

an expensive task due to the extensive growth in the number of images on social

media and internet. We can use reliable algorithms for still action recognition

to reduce the cost of manual image annotation.

• Robots are entering our society and they need to interact with their surround-

ings. Since processing human actions from a single image is much cheaper

than action recognition from videos, algorithms for still action recognition will

be in high demand among robotic communities.

• Given the massive numbers of images present on the internet, search engines

can greatly benefit from action labels.

• Still action recognition will aid solving other problems; for instance, “scene

recognition” and “object recognition”, to name a few.

These are quite a few useful applications that rely on the success in static action

recognition. New applications that can benefit from static action recognition may

emerge as the time moves on.

Chapter 3

Semi-Supervised Structured

Prediction SVM and its

Application for Static Action

Recognition

3.1 Introduction

Automated recognition of actions in still images can play an important role for

annotation of image catalogues, including the large collections of images which are

increasingly made available by social networks. Actions which can be plausibly

recognized from still imagery are those inferrable from the actors’ poses and the

presence of relevant objects: examples range from “waving hands” and “jumping”

to “throwing a javelin” and “playing guitar”. Moreover, recognition from single

frames can also provide a means to recognize actions in video. For instance, in

video surveillance it is not uncommon to clearly sight an actor for only a few frames

due to repeated occlusions. In such cases, it is not easy to recognize the action in

dynamical terms, i.e., as the temporal evolution of a measurement vector. Rather,

inference must be obtained as the cumulative evidence from a (possibly small) set

of individual frames. In robotics as well, the varying camera viewpoint may make

33

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 34

action class

fully-connected layer
of superpixel classes

measurements

(a)

h1 ht hu... hT...

x1 xt xu... xT...

...

...

y

(b)

ht hu

xt y

ϕ φ θ

(c)

Figure 3.1: a) The proposed action recognition approach: bottom layer: su-
perpixel segmentation and feature extraction; intermediate layer: superpixel clas-
sification; top variable: action class. b) The graphical model: x: superpixel
measurements; h: superpixel classes, or states; y: action class. c) Factor graph

representation: ϕ,φ and θ are the feature functions in (3.5).

it easier to recognize actions from isolated frames than from sequences. Estimation

from still images is therefore a foundational technology for all these cases.

The most straightforward solution to recognize actions from still images is to com-

pute a bag-of-feature representation of the image and use it for classifying it into

a relevant set of action classes Delaitre et al. (2010); Ikizler et al. (2008); Laptev

(2005). Useful features include local texture descriptors such as the histogram of

oriented gradients (HOG), dense SIFT, GIST and several others Dalal and Triggs

(2005); Lowe (2004); Oliva and Torralba (2001). Bag-of-features analysis usually

discards the spatial coordinates at which descriptors are collected since it focuses

on textural rather than spatial or structural information. These approaches have

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 35

reported very interesting results on challenging still image action datasets such as

those described in Ikizler-Cinbis et al. (2009); Gupta et al. (2009a); Yao and Fei-Fei

(2010). At the opposite end of the spectrum are approaches based on the explicit

recovery of body parts and the incorporation of structural information in the recog-

nition process Yang et al. (2010); Yao et al. (2011b). The baseline model is a latent

part-based model akin to Pictorial Structure which can be estimated as a joint, con-

ditional or large-margin model Fischler and Elschlager (1973); Felzenszwalb et al.

(2010). It is important to note that the bag-of-features and pose estimation ap-

proaches tackle two different overarching problems: a) a bag-of-features approach

recognizes the action by describing the image’s content, potentially including rele-

vant objects and the context of the action. It can also be used to recognize events

with no actors or where actors are too small to allow for pose estimation such as

in crowd analysis; b) on the other hand, approaches based on pose estimation are

likely to prove more accurate for actions strongly characterized by posture such as

“standing”, “stretching” or the like. Delaitre et al. have reported a comparison

between a bag-of-features and a structural approach, showing that hybridization of

the two can be a way to capture the benefits of both models Delaitre et al. (2010).

A recent survey from Guo and Lai offers a comprehensive outline of the research in

this area Guo and Lai (2014).

It appears that the existing approaches have not explicitly explored the underly-

ing relationship between the action class and the segments of the containing image.

Such a relationship promises to contain useful information about the joint presence

of the actor and revealing objects. For this reason, in this paper we propose to

approach action recognition in still images by leveraging the latent classes of the

image’s “superpixels” (homogenous regions obtained from over-segmentation of the

image Felzenszwalb and Huttenlocher (2004)). To this aim, we have designed a

graphical model with the action as its root node and a fully-connected layer of su-

perpixel classes to capture the relationship with the image segments (see Fig. 3.1(b)).

A rich measurement vector is extracted from each superpixel, and model training

is provided by a latent structural SVM approach. The layer of superpixels is fully

connected for two reasons: a) the superpixels have irregular shape and the model

cannot be a conventional lattice with fixed neighborhood; and b) any segment of the

image is thus allowed to directly influence the classification of any other segment,

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 36

enforcing stronger correlation between parts. However, inference becomes NP-hard

and therefore a main contribution of our paper is an efficient, greedy algorithm that

provides approximate inference over the graph.

The rest of this chapter is organized as follows: Section (3.2) describes the graphical

model for action recognition and the detectors for the superpixels’ classes. Section

(3.3) briefly reviews the latent structural SVM framework and describes the feature

functions, the initialization heuristic and the greedy inference algorithm. Section

(3.4) describes the experiments and discusses the results. Section 5 highlights con-

clusions and future work.

3.2 Action recognition by superpixel classification

The first step in our approach is the decomposition of an image into small and coher-

ent patches commonly referred to as superpixels. Our underlying assumption is that

certain actions can be recognized effectively by utilizing useful information about the

superpixels. The superpixel segmentation of the image can be obtained with graph-

based algorithms such as Ren and Malik (2003); Felzenszwalb and Huttenlocher

(2004); Mori (2005) and many others. Superpixels are becoming increasingly pop-

ular in computer vision as an intermediate representation in-between image pixels

and semantic-level segments.

Given their homogeneous nature, superpixels of natural images are likely to be

assignable with single class labels describing the object they belong to. Fig. 2

shows an example of superpixels with objects such as body parts, books, computers

and desks. The assignment of a superpixel to a class can be obtained by extracting

a feature vector from the superpixel’s region and applying any supervised classifier.

However, a recent paper from Pei et al. (2013) has shown that superpixel classifi-

cation proves more accurate if all the superpixels in the image are classified jointly.

This stems from the fact that the relationship between superpixels is intuitively

semantic rather than only spatial: a superpixel of class “sky” can be correlated to

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 37

a superpixel of class “road” even if they are not neighboring. To exploit this rela-

tionship, Pei et al. (2013) has proposed to approach superpixel segmentation by a

fully-connected graph structure.

In this work, we speculate that the action depicted in an image should also be

related to the superpixels’ classes. To this aim, we extend the graphical model of

Pei et al. (2013) with a variable representing the action class, and with edges between

the action and all the superpixel classes and measurements. As measurements, we

apply a set of pre-trained object detectors at each superpixel and we use their scores

as the feature vector. Using sets of diverse object detectors as feature vectors has

become a widespread approach in recent years and has led to remarkable accuracy

improvements in action and scene recognition (e.g., Han et al. (2009); Yao et al.

(2011a); Ullah et al. (2010)). In the rest of this section, we describe the graphical

model and the object detectors in greater detail.

3.2.1 The graphical model

The proposed graphical model comprises three sets of variables, namely measure-

ments (x), hidden nodes, or states, (h) and an output node (y). The measurements

are a vector of detector scores for each superpixel, the hidden nodes are the super-

pixels’ classes, and the output node is the action class. The nodes are connected

by three different types of edges: a) edges connecting measurements and states, b)

edges over state pairs, and c) edges between states and the action class. Noting as

Ti the number of superpixel in the i-th image in a training set, we thus have the

following variables: xi = [x1i , . . . , x
t
i, . . . , x

Ti
i], with xti a multi-dimensional vector of

detector scores; hi = [h1i , . . . , h
t
i, . . . , h

Ti
i], with hti ∈ {1, . . . , K} a superpixel class;

and yi ∈ {0, 1} a binary variable for a given action class. We build one such model

for each class. At training time, action classes are supervised while states are hidden.

Generally, it is observed in semi-supervised learning for I.I.D datasets, an addition of

unlabeled data result in the improvement of classification accuracy. In our case, we

have a fully connected graph of latent (unlabeled) variables (h). Since the nature of

latent variables across I.I.D dataset and our graphical model is inherently different,

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 38

Symbol Explanation

x measurement vector of a generic image
xi measurement vector of the i-th image

in the training set
xti measurement for the t-th superpixel of

the i-th image
Ti total number of superpixels in the i-th

image
y action class of a generic image
yi ground-truth class of the i-th image
h vector with the classes of all superpix-

els of a generic image
hi vector with the classes of all superpix-

els for the i-th image
hti class of the t-th superpixel in the i-th

image
K number of possible classes for each su-

perpixel
sti initial feature set for the t-th superpixel

of the i-th image
wk weight vector for superpixel class k in

the initial SVM multiclass classifier
w weight vector of latent structural SVM
wϕ section of w that scores the measure-

ment features
wθ section of w that scores the state fea-

tures
wφ section of w that scores the class fea-

tures

Table 3.1: Main notations (notations valid for this chapter only).

therefore we can not expect trade-offs in the classification accuracy by augmenting

unlabeled portion of data.

3.2.2 Object detectors

The first step of our processing pipeline is the decomposition of the image into

superpixels. For this task, we use the efficient graph-based algorithm proposed by

Felzenszwalb and Huttenlocher (2004) that was also used in Pei et al. (2013). This

step achieves good over-segmentation of the image into regions of predominantly

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 39

(a) (b) (c)

Figure 3.2: Example of superpixel segmentation: a) original image; b) superpixel
segmentation; c) superpixel boundaries highlighted.

homogeneous nature, and errors in this process can be tolerated by the ensuing

soft-assignment stage.

As class set for the superpixels, we have decided to adopt the class set of the MSRC

21-Class dataset (MSRC-21), version 2, consisting of 23 diverse classes from typical

background and foreground objects (Criminisi (2004)). The main benefit of this

dataset is that all its images are accurately object-annotated at pixel level. As fea-

ture vector, we use the concatenation of an appearance-based and a bag-of-features

descriptors. The appearance-based descriptor contains 51 features, consisting of:

1) 40 color features measuring mean, standard deviation, skewness and kurtosis of

RGB, LAB, YCrCb color space channels and the gray-level image; and 2) 11 texture

features obtained from the application of an average filter and five different responses

from Gaussian and Laplacian-of-Gaussian filters. The bag-of-features descriptor is

obtained by first computing dense SIFT descriptors (Vedaldi and Fulkerson (2008))

in the superpixel region at three different scales and then encoding the descriptors

into a dictionary of 400 visual words learned by k-means clustering. We concate-

nate the appearance-based and the bag-of-features descriptors into an overall 451-D

vector, noted as sti for the t-th superpixel of the i-th image.

Once the feature vectors are extracted for all superpixels, they are used to compute

class scores from trained object detectors. Rather than training separate object de-

tectors, we have built a single, multi-class classifier by using multiclass SVM (Cram-

mer and Singer (2002)) over MSRC-21. An advantage of a joint detector is that its

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 40

scores are naturally normalized across classes. In addition, we convert the scores to

posterior probabilities and collect them as measurement xti:

[
xti = p(k|sti) ∝ expw�

k s
t
i

]
, k = 1 . . . K (3.1)

where xti are the posterior probabilities for the t-th superpixel of the i-th image

and wk denotes the k-th class’ parameter vector of the SVM multiclass classifier.

Using the output of this initial classifier as measurements exploits the semantic of

the object classes and reduces the measurement dimensionality from 451-D to 23-D.

In addition, in the graphical model the states are assumed to be in correspondence

with the latent object classes and their number, K, is correspondingly set to 23.

Please note that the dataset used for training the object classifier is an altogether

separate dataset from the action dataset and that the object detectors will not be

re-trained on the action dataset in any form.

3.3 Semi-supervised Latent structural SVM

For action inference, we use the following linear prediction function:

(ȳ, h̄) = fw(x) = argmax
y,h

[w�ψ(x, h, y)] (3.2)

where ψ(x, h, y) is a generalized feature function computing a combined map over

measurements x, states h and action class y, and w is a corresponding parameter

vector. The action class and the superpixels’ classes are predicted jointly and typi-

cally only the predicted class, ȳ, is retained. For parameter estimation, we adopt the

well-established latent structural SVM framework (Yu and Joachims (2009)). This

is a regularized minimum-risk framework guaranteed to provide a local optimum for

structural models with latent variables. Its learning objective:

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 41

w∗ = argmin
w,ξ1:N

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. w�ψ(xi, h∗i , yi)− w�ψ(xi, h, y) ≥ 1− ξi

∀{y, h} 	= {yi, h∗i }

(3.3)

h∗i = argmax
h

w∗�ψ(xi, h, yi) (3.4)

is an iterative objective that alternates between the constrained optimization in

(3.3), performed using the current values for latent variables h∗i , and a new assign-

ment for h∗i (3.4) from updated model w∗. Notations in (3.3) are as follows: w is the

desired weight vector needed for classification; N is the total number of images in the

training set; ξi is the slack variable associated with image i; yi is the ground-truth

class of image i; eventually, h∗i is the current assignment for the superpixels’ labels

of image i. Implementation of (3.3) requires a number of design choices including

the definition of a suitable feature function, ψ(x, h, y), the initialization of latent

variables h, and efficient algorithms for inference and augmented inference which

are described in the following sub-sections.

3.3.1 Feature and score functions

The features in feature function ψ(x, h, y) reflect the topology of the graphical model

that includes an edge between each superpixel’s measurement and its state variable,

a fully-connected graph amongst states, and an edge between each state and the

action class. In detail, ψ(x, h, y) breaks into:

• measurement features, ϕ(xt, ht = j, y = b): these features account for the

compatibility between the measurement vector of the t-th superpixel, xt (that

is a K-dimensional vector as shown by (3.1)), its state ht (possible values:

{1 . . . K}) and class y ∈ {0, 1}. The size of this feature vector is 2K2. Given

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 42

xt, ht = j and y = b, it consists of the values of xt starting at index K(j−1)+1

(if b = 1) or K2+K(j− 1)+1 (if b = 0); all other entries are filled with zeros;

• state features, θ(ht = j, hu = k, y = b): these features report the co-occurrence

of states ht = j and hu = k for class y = b. The size of this feature vector is

again 2K2, with a value 1 at index K(j−1)+k (if b = 1) or K2+K(j−1)+k

(if b = 0); all other entries are filled with zeros;

• class features, φ(ht = j, y = b): these features report the co-occurrence of

action class y = b and state ht = j. The size of this feature vector is 2K, with

a value 1 at index j (when b = 1) or K + j (when b = 0), and zeros elsewhere.

We refer the reader to Tsochantaridis et al. (2005b) for further details on feature

maps. Given such feature vectors, the score function in (3.2) is computed as:

w�ψ(x, h, y) =
T∑
t=1

w�
ϕ ϕ(x

t, ht, y)

+
T∑
t=1

T∑
u=1,
u�=t

w�
θ θ(h

t, hu, y) +
T∑
t=1

w�
φ φ(h

t, y)

(3.5)

where w� =
[
w�

ϕ w
�
θ w

�
φ

]
is the concatenation of the parameter vectors for the cor-

responding features.

3.3.2 Loss-augmented inference

Following the structured learning approach of Yu and Joachims (2009), a fundamen-

tal step in the learning procedure is the computation of a loss-augmented version of

the inference. As loss function, we simply use the 0-1 loss function:

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 43

�(ygt, y) =

⎧⎨
⎩1 if y 	= ygt

0 if y = ygt

where ygt represents the ground-truth label. With this choice, it can be easily seen

that the loss-augmented inference:

(ȳ, h̄) = argmax
y,h

[
w�ψ(x, h, y) +�(ygt, y)

]
(3.6)

is equivalent to the standard inference in (3.2) with the addition of a unit score over

the incorrect class.

3.3.3 Latent variables’ initialization

The learning procedure in (3.3-3.4) can be initialized by either an arbitrary vector w∗

in (3.4) or an arbitrary assignment for the h∗i in (3.3). Given that we have trained a

multiclass superpixel classifier to provide the measurements, the most natural choice

is to initialize the states with the prediction from this classifier:

h∗tiinit
= argmax

k
[p(k|sti)] (3.7)

The above is equivalent to initializing the states with individual predictions, reserv-

ing their joint inference to the following structural inference steps.

3.3.4 Inference by efficient greedy algorithms

The inference in (3.2) is over a fully-connected graph and cannot be computed ex-

actly (Cooper (1990)). Similarly to Pei et al. (2013), we resort to a greedy algorithm

that infers every state in turn from the marginal scores:

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 44

h̄t = argmax
ht

[w�ψ(x, ht, h\t, y)] (3.8)

The above inference is computed for each superpixel in the image for a number of

iterations (set to four in our experiments) to obtain an acceptable approximation

of the joint inference. The inference over y ∈ {0, 1} is instead simply computed

explicitly. The pseudocode of the greedy inference is shown in Algorithm 1.

Algorithm 1 Greedy inference

1: MaxIter=4
2: Input: Measurement variables x
3: Output: Inferred action class ȳ
4: for y = 0, 1 do
5: Initialize h̄ using (3.7)
6: repeat
7: for t = 1, . . . , T do
8: h̄t = argmaxht w�ψ(x, ht, h̄\t, y) (3.8)
9: end for

10: until MaxIter
11: hy ← h̄
12: end for
13: ȳ = argmaxy w

�ψ(x, hy, y)

At a first attempt, we tried to implement (3.8) directly, but learning times proved im-

mediately impractical (exceeding weeks on a high-performance workstation). Näıve

computation of (3.8) requires K(2T + T 2) addenda, with K = 23 and T typically

in the order of a few hundreds. This has to be repeated for every state, for every

iteration of the greedy inference and for every internal iteration of the SVM solver.

We thus introduced a first simplification by only computing the terms required by

the maximization:

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 45

h̄t = argmax
ht=1:K

[w�ψ(x, ht, h\t, y)]

= argmax
ht=1:K

[w�
ϕϕ(x

t, ht, y)

+
T∑

u=1,u �=t

w�
θ (θ(h

t, hu, y) + θ(hu, ht, y)) + w�
φ φ(h

t, y)]

(3.9)

This simplification requires only K(2+2T) addenda per state, abating the complex-

ity from quadratic to linear in the number of superpixels. A further major reduction

in computational cost is achieved by caching the state scores as follows:

Algorithm Time (s)

Näıve (O(T 2)) 0.542
First simplification (O(T)) 0.480
Proposed (caching) (O(1)) 0.002

Table 3.2: Time in seconds for the various greedy inference algorithms (loop at
lines 7-9 in Algorithm 1).

T∑
u=1,u �=t

w�
θ θ(h

t = k, hu, y)

=
T∑

u=1,u �=t−1

w�
θ θ(h

t−1 = k, hu, y)

︸ ︷︷ ︸
cached during the previous maximization

− w�
θ θ(h

t−1 = k, ht, y) + w�
θ θ(h

t = k, ht−1, y)

(3.10)

since the scores in (3.10) only depends on the values of the states, not on their ordinal

indices. Thanks to this second modification, the number of addenda required to

evaluate (3.9) becomes constant (i.e., O(1)) in the number of superpixels, permitting

a drastic decrease in computational time.

Table 2 provides a comparison of actual execution times for the inference algorithms

(loop at lines 7-9 in Algorithm 1) for an image with 178 superpixels and a PC with

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 46

a 3.4 GHz CPU and 32 GB of memory. The näıve algorithm (O(T 2) complexity)

takes 0.542 s, while the first simplification (O(T) complexity) mildly reduces the

execution time to 0.480 s. The proposed algorithm (O(1)) instead drastically abates

the execution time to only 0.002 s.

3.4 Experimental results

We have evaluated the proposed approach on the most challenging static action

recognition dataset released to date, Stanford 40 Actions (Stanford-40) (Yao et al.

(2011a)). This dataset contains images of humans performing 40 different classes of

actions, including visually-challenging cases such as “fixing a bike” versus “riding

a bike” or “phoning” versus “texting message”; the full class list is provided in the

annotation of Fig. 3.5. The number of samples per class varies between 180 and

300, for a total of 9, 532 images. A standard training/test split is made available by

the authors on their website, selecting 100 images from each class for training and

leaving the remaining for testing.

To recognize the actions of Stanford-40, we have trained a model (3.3, 3.4) for each

action class. However, training by using all the available training samples (that is, for

each model, 100 positive and 3, 900 negative samples, respectively) is still heavily

time-consuming. Therefore, we have decided to sub-sample the negative training

samples by choosing the first 15 training images from each of the 39 negative classes.

Parameter C in (3.3) was set to 1. As software, we have used Joachims’ latent

structural SVM solver 1 with convergence threshold ε = 0.1. For the multiclass

SVM classifier we have used a linear kernel, C = 10 and convergence threshold

ε = 0.1, scaling the 451-D feature vectors in the training set between −1 and 1.

Eventually, for the superpixel segmentation we have used smoothing factor σ = 0.5,

threshold K = 500 and a minimum superpixel size of 20 pixels. All our software has

been uploaded as Supplementary Material of this submission.

As term of comparison, we consider the most recent papers to have used this

dataset (Yao et al. (2011a); Sharma et al. (2013); Khan et al. (2013); Sener et al.

1Downloadable from: http://svmlight.joachims.org/svm struct.html

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 47

Method mAP

EPM (Sharma et al. (2013)) 42.2%
Sparse Bases (Yao et al. (2011a)) 45.7%
Color Action Recognition (Khan et al. (2013)) 51.9%
Multiple Instance Learning (Sener et al. (2012)) 55.6%
Ours 72.3%

Table 3.3: Comparison of mean average precision on Stanford-40.

(2012)). The authors of Yao et al. (2011a) represented actions in still images by

sparse bases of attributes, objects and poselets. Such bases are obtained through

pre-trained detectors for 81 objects, 45 attributes and 150 poselets. A part-based

approach was proposed by Sharma et al. (2013) that mined objects’ parts and their

locations in training images. Reference Khan et al. (2013) approached action recog-

nition by leveraging color information from the actor and nearby objects. Refer-

ence Sener et al. (2012) used multiple instance learning to learn objects relevant

to an action from a noisy set of candidate objects. As customary for this dataset,

Table 3 reports the accuracy for the compared approaches in terms of mean average

precision (mAP). The proposed approach reports an mAP of 72.3%, higher than

the second best (55.6%, Sener et al. (2012)) by over 16 percentage points. For a

break-down, Fig. 3.5 shows the average precision by class. The achieved accuracy

can be regarded as remarkable also considering that the 23 object detectors were

trained on a completely separate dataset and from classes mostly unrelated with the

objects portrayed in Stanford-40. The evaluation protocol of Stanford-40 does not

specify whether training can avail of cross-training or should instead be restricted

to the training set alone (unlike, for instance, the PASCAL Visual Object Classes

Challenge which separates the two cases). However, pre-training of detectors has

become a common practice in computer vision (see, for instance, Han et al. (2009);

Yao et al. (2011a); Ullah et al. (2010)). In addition, the annotation of Stanford 40

Actions also provides the actors’ bounding boxes which we did not need to use with

the proposed approach. In fact, our approach provides action recognition based on

the superpixels’ classes of the entire image, and therefore suits images with context.

Conversely, it does not suit primarily postural datasets where the actor is depicted

against a non-informative background such as HumanEva (Sigal et al. (2010)).

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 48

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.3: Examples of the top 20% superpixels contributing to the action score
for classes applauding, brushing teeth, gardening and waving hands of Stanford 40
Actions. The figure shows triplets of {original image, superpixel decomposition,
top-20 pixels highlighted} as a continuous sequence. This figure should be viewed

in color.

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.4: (continued)

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 50

To further illustrate these results, we visualize the correspondence between the action

and its “main” superpixels in Fig. 3. Given that the score for the action is provided

by a summation over all the superpixels (3.5), they can be sorted in ascending

order based on their individual contribution. Fig. 3 shows various examples of

the top 20% superpixels displayed onto their original image, showing a remarkable

correspondence with the most telling objects of the action.

As a validation experiment, we have tested our model with another static action

dataset from Gupta et al. (2009b). This dataset contains 300 images from 6 sport

action classes: batting (cricket), bowling (cricket), serve (tennis), forehand (tennis),

serve (volleyball), and shot (croquet). We have adopted its usual training/test

split with the first 30 images from each class for training and the remaining 20 for

testing. Without re-training the object detectors, we have obtained an interesting

mean average precision of 79.2% with a minimum average precision of 41.0% for class

bowling and a maximum of 96.7% for class forehand. This shows that the trained

object detectors are sufficiently generic to achieve good accuracy on other datasets.

In all cases, more universal or more specialized object detectors can prove a useful

alternative to further improve accuracy for given datasets.

3.5 Conclusion

We have proposed an approach to static action recognition that leverages the rela-

tionships between the classes of the image’s superpixels. The approach consists of

two stages: in the first stage, the image is segmented into a set of superpixels and

a set of trained object detectors is applied to each superpixel to extract a vector

of detector scores. In a second stage, the score vectors are used as measurements

in a graphical model that jointly predicts the superpixels’ classes together with the

action class. A main contribution of our approach is an efficient greedy algorithm

that provides approximate inference over the fully-connected graph of the superpix-

els’ classes, decreasing the computational complexity per superpixel from the O(T 2)

of a näıve implementation down to O(1). Experiments conducted over the highly

challenging Stanford 40 Actions dataset have achieved an mAP of 72.3%, the highest

by far to date. This result gives evidence to the existence of a useful relationship

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

applauding
blowing_bubbles
brushing_teeth

cleaning_the_floor
climbing
cooking

cutting_trees
cutting_vegetables

drinking
feeding_a_horse

fishing
fixing_a_bike
fixing_a_car
gardening

holding_an_umbrella
jumping

looking_through_a_microscope
looking_through_a_telescope

playing_guitar
playing_violin
pouring_liquid

pushing_a_cart
reading
phoning

riding_a_bike
riding_a_horse
rowing_a_boat

running
shooting_an_arrow

smoking
taking_photos

texting_message
throwing_frisby

using_a_computer
walking_the_dog
washing_dishes
watching_TV
waving_hands

writing_on_a_board
writing_on_a_book

mAP

Figure 3.5: Average precision achieved by the proposed method in each class of
Stanford 40 Actions.

Chapter 3. Semi-Supervised Structured Prediction SVM and its Application for
Static Action Recognition 52

between the classes of the superpixels and that of the main action. An obvious

way to further improve the performance of the proposed model would be to adopt

a larger set of object detectors or a set of detectors specifically tuned in the ob-

ject classes of Stanford-40. Another advantage of the proposed approach is that its

graphical model is very general and could therefore be used for other classification

tasks that rely on latent variables including, among others, scene recognition and

complex event detection.

Chapter 4

Unsupervised Structured

Prediction SVM

4.1 Introduction

Clustering algorithms group unlabeled data according to chosen measures of simi-

larity. For independent data, k-means is perhaps the most well-known and common

approach. However, in recent years, maximum-margin approaches to clustering have

attracted increasing attention. The central premise is to pursue the maximization of

a margin objective in an unsupervised manner (Vapnik (1998)). The challenge with

this task is that the number of possible labelings is exponential in the number of

samples and the problem is notoriously NP-hard. Therefore, solutions must rely on

either local optima or relaxations of the original problem. The basic local approach

consists of alternating optimizations where a step of SVM learning gives turns to a

step of inference on the latent variables (Vapnik (1998); Felzenszwalb et al. (2008)).

While local solutions are computationally efficient, they tend to show early con-

vergence and have been reported as highly sensitive to the initialization (Schwing

et al. (2012)). A different support vector approach was proposed in (Ben-Hur et al.

(2001)) in terms of minimum-enclosing hyperspheres. Determining the minimum-

enclosing hypersphere of a set of points requires solving a quadratic objective with

quadratic, positive-semidefinite constraints and it is therefore a convex problem.

53

Chapter 4. Unsupervised Structured Prediction SVM 54

However, assigning the points to clusters remains a combinatorial problem and the

overall solution is still only locally optimal.

Max-margin approaches have also attracted increasing attention for unsupervised

structured prediction. Latent structural SVM (Latent SSVM) (Yu and Joachims

(2009)) was proposed as an extension of structural SVM (Tsochantaridis et al.

(2005a)) for structured problems with latent variables. It has been extensively

adopted in computer vision for problems of object detection, pose estimation and

activity recognition, and also in natural language processing, bioinformatics and var-

ious other fields (Felzenszwalb et al. (2008); Zhu et al. (2010); Wang and Mori (2011);

Duan et al. (2012); Yu and Joachims (2009)). Paralleling other local methods, it is

based on alternating a step of inference with a step of training under the inferred

values. Therefore, the objective of Latent SSVM is also naturally non-convex.

Given that combinatorial approaches are inherently local, exploring convex relax-

ations offers an appealing alternative. Xu et al. (2005) have proposed a convex

relaxation of unsupervised SVM based on semidefinite programming (SDP), and

have later extended it to the multi-class and structured cases (Xu and Schuurmans

(2005); Xu et al. (2006)). However, the computational complexity of SDP is much

higher than that of quadratic programming and seems prohibitive even for datasets

of limited size. More recently, Li et al. (2009, 2013) have proposed an alternative

relaxation based on the minimax theorem. The relaxation, called Weakly Labeled

SVM or Well-SVM for short, has proven to be tighter than the SDP relaxation of Xu

et al. (2005). In addition, it can be implemented in terms of multi-kernel SVM and

is efficient and scalable. For this reason, we hereby design and evaluate its extension

for the purposes of structured prediction. Like the original relaxation, its structured

extension can effectively and efficiently avail of existing solvers. The rest of this

chapter is organized as follows: the remainder of this section summarizes Well-SVM

and structural SVM to set the ground for the proposed extension. The extension is

presented in Section 2, while experimental results are described in Section 3. The

Conclusion summarizes the main findings.

Chapter 4. Unsupervised Structured Prediction SVM 55

4.1.1 Well-SVM

Let us note the constrained objective of a conventional, soft-margin SVM as SVM(w, y),

with w the parameter vector and y the labeling for the sample set. The problem

entailed by unsupervised SVM is:

min
y

min
w
SVM(w, y) (4.1)

that is, finding the labeling returning the minimum of all SVM primal problems

minw SVM(w, y). This equates to finding the two clusters with the maximum soft-

margin between them. However, this formulation may degenerate in assigning all

the samples to only one cluster with a hypothetically infinite margin. It is then

necessary to limit the search over y to a set of feasible, “balanced” labelings which

we will note as β hereafter, i.e., y ∈ β. An equivalent solution to (4.1) can be

obtained by replacing the internal minimization with its dual:

min
y

max
α

G(α, y) (4.2)

where α is the vector of the dual variables. The idea behind the Well-SVM relax-

ation Li et al. (2009, 2013) is to exchange the order of maxα and miny to instead

solve:

max
α

min
y
G(α, y) (4.3)

Li et al. (2009) have proved that this relaxation is tighter than an earlier relaxation

based on semidefinite programming proposed by Xu et al. (2005). On this ground,

Well-SVM can be regarded as the tightest known relaxation of unsupervised SVM.

Chapter 4. Unsupervised Structured Prediction SVM 56

The inner combinatorial minimization in (4.3) can be posed in terms of a continuous,

constrained maximization:

max
θ

θ

s.t. θ ≤ G(α, yl) ∀yl ∈ β
(4.4)

with corresponding Lagrangian:

θ +
∑
l:yl∈β

μl
(
G(α, yl)− θ

)
(4.5)

where we have chosen to explicitly enumerate the labelings to be able to refer to

them and their corresponding multipliers by a common apex. Differentiating the

Lagrangian in θ, equating to zero and replacing the result in (4.3) lead to:

max
α

min
μ

∑
l:yl∈β

μlG(α, yl) (4.6)

subject to constraints
∑

l μ
l = 1, μl ≥ 0 ∀l, and with μ the vector of all μl’s. Since

(4.6) meets the KKT conditions, the max-min order can be swapped to obtain:

min
μ

max
α

∑
l:yl∈β

μlG(α, yl) (4.7)

Li et al. (2013) have shown that (4.7) can be solved as an instance of multi-kernel

learning (MKL) and by using conventional SVM solvers. The solution is obtained

by iterating the following three steps until convergence:

Chapter 4. Unsupervised Structured Prediction SVM 57

1. Find a labeling, yl, violating constraint (4.4) for the current α. Add yl to a

working set of labelings, Cw. The procedure for finding a violating labeling is

presented in Section 2. For the first iteration, an arbitrary labeling yl can be

chosen as the initial working set.

2. Using the current working set, solve for α. This solution can be framed as an

instance of multi-kernel learning SVM.

3. Solve for μl in closed form. Details are also provided in Section 2.

4.1.2 Structural SVM

Structural, or structured-output, SVM extends the conventional support vector ma-

chine to the classification of multiple, dependent classes. Given one or multiple

measurements in input, noted as x hereafter, a prediction or labeling consists of a

graph of class labels, y. Structural SVM uses a generalized feature function, ψ(x, y),

to capture the structure in the data, and imposes a given margin between the score

assigned to the ground-truth labeling and the score assigned to any other labeling.

Assuming a training set {xi, yi} , i = 1 . . . N , the primal problem is expressed as:

min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. wTψ(xi, yi)− wTψ(xi, y) ≥ Δ(yi, y)− ξi

∀i, ∀y ∈ Y

(4.8)

The use of an arbitrary loss function, Δ(yi, y), in the constraints - known as margin

re-scaling - allows structural SVM to potentially minimize any empirical loss. The

most common choices are the Hamming loss or other losses that decompose over the

single variables of the graph. Moreover, by assuming that Δ(yi, yi) = 0, the required

non-negativity constraint on ξi is included. However, the number of constraints per

sample, |Y|, is exponential in the number of classes and exact solution of (4.8)

is generally impossible. Therefore, structural SVM relaxes this problem by only

Chapter 4. Unsupervised Structured Prediction SVM 58

considering a sub-set of the constraints. At each iteration of the solver and for each

sample, a search is conducted for the labeling that sets the value of ξi (the most

violating labeling):

ξi = max
y

(−wTψ(xi, yi) + wTψ(xi, y) + Δ(yi, y)
)

(4.9)

→ y∗i = argmax
y

(
wTψ(xi, y) + Δ(yi, y)

) ∀i (4.10)

If the value of ξi is larger than its previous value by a chosen ε, labeling y∗i is

added to a working set of constraints for the sample, Wi. The inference in (4.9)

is commonly referred to as loss-augmented inference and is resolved efficiently by

leveraging the structure in the output. Tsochantaridis et al. (2005a) have proved that

the solution is ε-close to that of the original problem and that the size of the working

set is only polynomial. The relaxed dual problem can be obtained with a standard

derivation (Tsochantaridis et al. (2005a)). By posing δψi(u) ≡ ψ(xi, yi) − ψ(xi, u),

the dual problem can be expressed as:

max
α

G(α, y,W) = max
α

−1

2

∑
i,u∈Wi

∑
j,v∈Wj

αi,uαj,vδψi(u)
T δψj(v) +

∑
i,u∈Wi

αi,uΔ(yi, u)

s.t. 0 ≤
∑
u∈Wi

αi,u ≤ C, i = 1, . . . , N

(4.11)

4.2 Weakly Labeled Structural SVM

The merging of structural SVM with Well-SVM is obtained by replacing the dual

equation in (4.7) with the structural dual:

min
μ

max
α

∑
l:yl∈β

μlG(α, yl,W) (4.12)

Chapter 4. Unsupervised Structured Prediction SVM 59

This problem is an instance of multi-kernel learning (MKL) through the multiple

ground-truth labelings, yli, l = 1 . . . L, and can be solved by any MKL algorithm.

Li et al. (2013) have proposed using the multiple kernel learning by group lasso

(MKLGL) which alternates solving for w, ξ at fixed μ, with solving for μ at fixed

w, ξ. The above formulation also offers an intuitive view of Well-SVM compared

to methods such as k-means and latent SVM: in the latter, at every iteration the

newly inferred latent variables replace the previous. In Well-SVM, instead, all the

labelings inferred up to the current iteration, yl, l = 1 . . . L, are used jointly in the

optimization by way of an individual weight, μl.

By merging (4.8) into (4.12), we obtain:

min
μ,w,ξ

1

2

L∑
l=1

‖wl‖2
μl

+ C
N∑
i=1

ξi

s.t.
L∑
l=1

(
wlTψ(xi, y

l
i)− wlTψ(xi, y

∗
i)
)
≥

L∑
l=1

μlΔ(yli, y
∗
i)− ξi ∀i, ∀y∗i ∈ Wi

(4.13)

Every sample now has multiple ground-truth labelings and the score is obtained as

the sum over the labelings. It can also be easily proven that the margin is set by

the weighted sum of the loss of each labeling. The minimum in w, ξ in (4.13) can

be found by conventional structural SVM solvers through the following positions:

• w̃ = [w1√
μ1
, . . . , wL√

μL
]T : the concatenation of L, scaled parameter vectors;

• ψ̃(x, y1:L) = [
√
μ1ψ(x, y1), . . . ,

√
μLψ(x, yL)]T , with y1:L the concatenation of

L labelings;

• ψ̃(x, y(×L)) = [
√
μ1ψ(x, y), . . . ,

√
μLψ(x, y)]T , where y(×L) denotes the con-

catenation of L copies of labeling y;

• Δ̃(y1:L, y) =
∑L

l=1 μ
lΔ(yl, y): the loss of prediction y versus labelings y1:L.

With the above positions, the primal objective (4.13) can be re-written as follows:

Chapter 4. Unsupervised Structured Prediction SVM 60

min
w̃,ξ

1

2
‖w̃‖2 + C

N∑
i=1

ξi s.t.

w̃T ψ̃(xi, y
1:L
i)− w̃T ψ̃(xi, y

∗(×L)
i) ≥ Δ̃(y1:Li , y∗i)− ξi ∀i, ∀y∗i ∈ Wi

(4.14)

which is formally identical to a single structural SVM problem and can therefore be

solved with any structural SVM solver. Please note that if loss Δ(yl, y) is decom-

posable over the structure, so is loss Δ̃(y1:Li , y).

Using similar notations to (4.11), it can be shown that the dual of (4.14) is:

max
α

L∑
l=1

μlG(α, yl,W) =

max
α

− 1

2

∑
i,u∈Wi

∑
j,v∈Wj

αi,uαj,v δ̃ψi(u
(×L))T δ̃ψj(v

(×L)) +
∑

i,u∈Wi

αi,uΔ̃(y1:Li , u)

s.t. 0 ≤
∑
u∈Wi

αi,u ≤ C ∀i

(4.15)

where the scalar products δ̃ψ
T
δ̃ψ and loss Δ̃(y1:Li , u) contain the μ factor. The proof

is provided in Appendix (B).

Once the solution for (4.14) is obtained, the vector of multipliers, μ, can be computed

in closed form as follows:

μl =
‖wl‖∑L
l=1 ‖wl‖ =

√
μl‖w̃l‖∑L

l=1

√
μl‖w̃l‖ , l = 1 . . . L (4.16)

4.2.1 Feature Maps

The first challenge in approaching (4.15) is that the dependence of the kernel matrix

on the ground-truth labels must be made explicit. To this aim, we re-code labels y

Chapter 4. Unsupervised Structured Prediction SVM 61

in terms of 1-out-of-N encoding. For the binary variable of a node, we use encoding

[01] for the negative class and [10] for the positive class. For an edge, we use

encoding [0001] if the edge connects a negative node with another negative node;

encoding [0010] for an edge connecting a negative and a positive node; and so forth.

Such an encoding could also easily accommodate multi-class nodes at the cost of

a significant increase in size. However, the increase is mainly notational and an

optimized implementation can efficiently support a multi-class extension.

For a graph with T binary nodes and E pairwise edges, there will be 2T binary

variables to encode the nodes (unary variables) and 4E binary variables for the edges

(pairwise variables), for a total of 2T +4E binary variables that we concatenate into

y. Index t = 1 . . . T will be used to index the nodes and index e = 1 . . . E for

the edges. Without the limitation of generality, we also assume that there is one

measurement per node, xt, and that the feature function for a node-measurement

pair is of the type xtyt. Our first aim is to rewrite the feature function, ψ(x, y), as

follows:

ψ(x, y) = hTy (4.17)

Assuming measurement xt to be D-dimensional, we have that ψ(x, y) is overall a

(2D+4)-dimensional vector organized as two D-dimensional parameter vectors, one

per class, and four pairwise parameters, one per edge type. Hence, matrix h is

(2T + 4E)× (2D + 4). Fig. 4.1 visualizes ψ(x, y), h and y .

Given that the SSVM dual contains products of feature vectors, we need to express

such products based on (4.17). Let us have two graphs with labelings yi and yj, of

size (2Ti + 4Ei) and (2Tj + 4Ej), respectively. From (4.17), it follows that:

ψ(xi, yi)
Tψ(xj, yj) = yTi (hih

T
j)yj = yTi Hij yj (4.18)

Matrix Hij is thus (2Ti + 4Ei)× (2Tj + 4Ej) (it is not square since the two graphs

are generally not equal in size). Obviously, Hij = HT
ji.

Chapter 4. Unsupervised Structured Prediction SVM 62

The next requirement is to express the loss function, Δ(yi, u), as an explicit func-

tion of y. Hereafter we assume the loss to be the common Hamming loss which is

conveniently decomposable over the graph. It can be expressed as a function of y

as:

Δ(yi, u) = yTi (1− 2u) + uT1 (4.19)

where 1 is a vector of all 1’s.

4.2.2 Finding a Violating Labeling

By now posing y = [yT1 , y
T
2 . . . y

T
N]

T as the concatenation of the ground-truth labelings

of the entire training set, we are ready to express G(α, y,W) as a quadratic function

of the labelings:

G(α, y,W) =

∑
i

∑
j

yTi

⎛
⎝−1

2

∑
u∈Wi

∑
v∈Wj

αi,uαj,vHij

⎞
⎠ yj +

∑
i

yTi

⎛
⎝∑

u∈Wi

∑
j,v∈Wj

αi,uαj,vHijv

⎞
⎠

+
∑
i

yTi

(∑
u∈Wi

αi,u(1− 2u)

)
+ constants

(4.20)

Now, ignoring constant terms and making the following positions:

• αi =
∑

u∈Wi
αi,u;

• H = 1
2
[α1α1H11, α1α2H12 . . . α1αNH1N ;

. . . ;

Chapter 4. Unsupervised Structured Prediction SVM 63

αNα1HN1, αNα2HN2 . . . αNαNHNN]

(please note that matrix H is positive semidefinite by construction. Its row

dimension, M , is given by the sum of the labeling size over the entire training

set: M =
∑

i 2Ti + 4Ei)

• τ = −∑
j[α1H1j(

∑
v∈Wj

αj,vv)
T . . . αNHNj(

∑
v∈Wj

αj,vv)
T]T ;

• Δ = −[
∑

u∈W1
α1,u(1− 2u)T , . . . ,

∑
u∈WN

αN,u(1− 2u)T]T .

we can eventually show that:

−G(α, y, y∗) = yTHy + yT (τ +Δ) (4.21)

For the solution of (4.12), we follow Li et al. (2013): at the generic iteration, a

working set Cw of labelings satisfying the constraints in (4.4) has already been

determined. We now search if another labeling ỹ exists such that function (4.21)

takes a greater value than for every labeling in the working set. If such a labeling

exists, it violates (4.4) and a re-computation of the optimum in μ and α in (4.12) is

required.

First, we determine the argmax of the current working set, Cw:

ȳ = argmax
y∈Cw

yTHy + yT (τ +Δ) (4.22)

If Cw contains L ground-truth labelings, this step requires L evaluations of (4.21).

Then, we search if a labeling ỹ exists such that:

ỹTH ỹ + ỹT (τ +Δ) > ȳTH ȳ + ȳT (τ +Δ), (4.23)

Chapter 4. Unsupervised Structured Prediction SVM 64

Given the positive semidefiniteness of H , the above search can be performed as a

linear program. To this aim, we pose r = H ȳ + τ +Δ and determine:

ỹ = argmax
y∈β

yT r (4.24)

followed by a post-hoc verification of (4.23). If (4.23) holds, labeling ỹ is added to

objective (4.12) and a re-computation is triggered. Otherwise, training concludes.

It should be noted that we are able to determine ỹ so long as we can find the

maximum of (4.24) while maintaining the consistency of the unary and pairwise

variables and satisfying the balance constraint. At its turn, it is not obvious what a

balance constraint should be in the structured case, given that the number of classes,

|Y|, is exponential even if the nodes consist of only binary variables. Our choice is

simply to balance the number of positive and negative nodes in each sample.

Matrix H is of large size (M ×M) and product Hy appears challenging both in

terms of storage and the number of flops. However, this is only apparent since

an optimized implementation drastically reduces the computational complexity. By

calling xti and yti the measurement and label of sample i and node t, the generic

element eti of product Hy can be computed as:

eti = xt�i

⎛
⎝ ∑

j=1:N,u=1:Tj

xuj y
u
j

⎞
⎠ (4.25)

where the term in parentheses is common to all elements. Similar common terms

appear in the pairwise elements and abate the computational complexity from

quadratic to linear in M . Please refer to the following Subsection (4.2.3) for more

details.

Chapter 4. Unsupervised Structured Prediction SVM 65

To avoid adding labelings caused by numerical inaccuracies or over-fitting, we impose

a minimum threshold, γ, to validate a violating labeling. The violation criterion is

therefore given as:

ỹ�H ỹ + ỹ�(τ +Δ)− ȳ�r > γ (4.26)

4.2.3 Optimized Matrix-Vector Multiplication (Hy)

Any attempt to store matrix H ∈ RM×M , even with a small number of samples, will

lead to the scarcity of storage capacity. On the other hand, naive multiplication of

Hy makes learning an expensive operation. Therefore, we leverage sparsity and the

known structure of H to compute Hy. Instead of formulating the entire H matrix,

product Hy can easily be calculated by exploiting the known structure of matrix

H .

To ease the task of imputing product Hy, we have provided a list of variables used

in this section as follows: N = total number of sequences; Ti = number of nodes

constituting the ith sequence; xti = D-dimensional measurement vector for the tth

node of the ith sequence; y ∈ RM is the label vector of the whole dataset (please

refer to Section (4.2.1) for the encoding of the label vector); yi is the ith element

of y; O ∈ RN where Oi = is the offset parameter for sequence i. Please note that

M =
∑N

i=1 2Ti + 4(Ti − 1).

By setting O1 = 0, the other entries constituting O are calculated as follows:

Oi = 2Ti + 4(Ti − 1) +Oi−1 i = 2, . . . , N (4.27)

Let B = Hy. For the ith sequence, B contains 2Ti +4(Ti − 1) corresponding entries

(since binary sequences are modeled by a graph having unary and pairwise interac-

tion between variables: the first 2Ti entries correspond to unary interaction and the

last 4(Ti − 1) entries correspond to pairwise interactions). Given any sequence, we

Chapter 4. Unsupervised Structured Prediction SVM 66

can easily recover its corresponding entries from vector B using our offset vector O.

Algorithm (2) summarizes the efficient imputation of B = Hy.

Algorithm 2 Efficient imputation of unary and pairwise terms constituting B

1: Input: x = {x1, . . . , xN}, O ∈ RN and y ∈ RM

2: Initialize: B ∈ RM

3: for i=1:N do
4: for t=1:Ti do
5: t1 = Oi + 2t− 1
6: t2 = Oi + 2t

7: Bt1 = xti

(
N∑
j=1

Tj∑
u=1

xuj y2u+Oj−1

)
(Unary term)

8: Bt2 = xti

(
N∑
j=1

Tj∑
u=1

xuj y2u+Oj

)
(Unary term)

9: end for
10: for trans=1:Ti − 1 do
11: ind = Oi + 2Ti + 4(trans− 1) + 1
12: ta =ind
13: tb =ind + 1
14: tc =ind + 2
15: td =ind + 3

16: Bta =
N∑
j=1

Tj−1∑
u=1

y(Oj+2Tj+1)+4(u−1) (Pairwise term)

17: Btb =
N∑
j=1

Tj−1∑
u=1

y(Oj+2Tj+2)+4(u−1) (Pairwise term)

18: Btc =
N∑
j=1

Tj−1∑
u=1

y(Oj+2Tj+3)+4(u−1) (Pairwise term)

19: Btd =
N∑
j=1

Tj−1∑
u=1

y(Oj+2Tj+4)+4(u−1) (Pairwise term)

20: end for
21: end for
22: return B

As a consequence of Algorithm (2), we obtain a major reduction in the flop counts of

Hy. With a naive multiplication ofHy, the flop counts for Bt (t
th entry of vector B)

would be 2M−1. By leveraging sparsity, it is significantly reduced to 2MZ−1 where

Chapter 4. Unsupervised Structured Prediction SVM 67

MZ are the number of non-zeros inside H whose locations are known beforehand,

thanks to the design of the feature map. The multiplication of Hy is accelerated

even further by caching unary and pairwise terms for each sequence (Line 7−Line 8

and Line 16−Line 19 of Algorithm (2)). Computation of blocks of H i.e. hih
T
j is

avoided as well, which is another advantage of Algorithm (2).

4.2.4 Balanced Sequential Labeling

As a case study, we have implemented a task of sequential labeling with a hidden

Markov model (HMM). In an HMM, the output variables form a Markov chain of T

nodes with a number of edges, E, equal to T −1. Given a sequence of measurements

in input, inference of the sequence of states is provided by the classic Viterbi algo-

rithm. Equation (4.24) requires the evaluation of Viterbi for every training sample

using the coefficients specified by vector r as emission and transition weights. This

is equivalent to inference in an HMM with frame-varying parameters.

To extend the conventional Viterbi algorithm to incorporate a balance constraint

over the nodes, it is sufficient to augment the “state” at frame t with the count of

nodes assigned with positive labels up to that frame. A sub-sequence at frame t can

contain P positive labels only if:

1. the sequence at frame t− 1 contained P − 1 positive labels and yt = positive;

2. the sequence at frame t− 1 contained P positive labels and yt = negative.

The above state configuration allows Viterbi to return every best sequence with

a given number of positive labels. The number of such best sequences is T + 1

(from the case of no positive labels, to all positive), for an O(T 2) computational

complexity. A final step evaluates the best of such sequences that also meets the

balance constraint. This simple algorithm could be further optimized by dropping

the evaluation of sequences as soon as they breach the desired balance.

Chapter 4. Unsupervised Structured Prediction SVM 68

We have summarized the implementation of balanced viterbi in Algorithm (3): βmin

and βmax are the parameters that maintains the desired balance between the number

of positive and negative labels; P is the generic number of positive labels; Pt contains

the number of positive labels till the tth frame of a given sequence; [] is the string

concatenation operator i.e. it will form a string of labels as we move along the

sequence; Ψ(Pt, yt) represents a sequence of t frames with Pt positive labels ending

at yt (Please note that yt ∈ {0, 1}, Pt ∈ {0, t}); w0 and w1 are the respective

models for negative and positive emissions; score(sequence) will return the score of

the argument sequence using famous equations of Viterbi algorithm and an invalid

sequence can easily be found by the following four rules:

• A given sequence will be invalid if P < 0

• A given sequence will be invalid if P = 0 and yt = 1

• A given sequence will be invalid if P = t and yt = −1

• A given sequence will be invalid if P > t

With these notations and rules for finding valid sequences, we can easily implement

the balanced version of Viterbi using the following relations:

• score(Ψ(P, yt = 1)) = score(Ψ(P − 1, yt−1)) + w�
1 xt

• score(Ψ(P, yt = 0)) = score(Ψ(P, yt−1)) + w�
0 xt

• Ψ(invalid argument) = NULL and score(NULL) = −∞

Algorithm (3) presents the step by step implementation details for the loss aug-

mented inference using the Balanced Viterbi algorithm.

4.3 Experimental Results

In this section, we report experiments comparing the proposed Well-SSVM with the

closest structural model, latent structural SVM (Latent SSVM) (Yu and Joachims

Chapter 4. Unsupervised Structured Prediction SVM 69

Algorithm 3 Balanced Loss Augmented Inference

1: Input: model w derived from Hy as usual, measurement x =
(
x1, . . . , xT

)
2: Output: predicted class ȳ, ȳ =

(
ȳ1, . . . , ȳT

)
3: Initialize: Ψ(P1 = 0, y1 = 0) = 0 and Ψ(P1 = 1, y1 = 1) = 1
4: Main loop:
5: for t=2:T do
6: for P=0:t do
7: Ψ(P, yt = 0) = argmax (score([Ψ(P, yt−1 = 0),0]) ,

score([Ψ(P, yt−1 = 1),0]))
8: Ψ(P, yt = 1) = argmax (score([Ψ(P − 1, yt−1 = 0),1]) ,

score([Ψ(P − 1, yt−1 = 1),1]))
9: end for

10: end for
11: Final loop:
12: best = − inf, ȳ =NULL
13: for βmin:βmax do
14: temp = max(score(Ψ(P, yT = 0)), score(Ψ(P, yT = 1)))
15: if temp>best then
16: ȳ = argmax(score(Ψ(P, yT = 0)), score(Ψ(P, yT = 1)))
17: best = temp
18: end if
19: end for
20: return ȳ

(2009)), and using k-means as the baseline. The comparison reports the F1 score

for predicting the withheld ground-truth labels of the training set.

4.3.1 Dataset Description

We have conducted experiments using two datasets: a synthetic dataset for con-

trolled experiments and the Gesture Phase Segmentation dataset from Kinect data(Madeo

et al. (2013)). We briefly describe both datasets below.

4.3.1.1 Synthetic Dataset

We have first created a small 1D synthetic dataset with 10 sequences, each 12 frames

in length. For the generative model, we have used an HMM with two states and

Chapter 4. Unsupervised Structured Prediction SVM 70

Table 4.1: Comparison of clustering accuracy over the synthetic and Gesture
Phase Segmentation datasets. Accuracy is reported as F1 score (± standard

deviation) over 10 runs of each technique.

Dataset k-means Latent SSVM Well-SSVM

Synthetic (1D) 0.74±0.00 0.76±0.00 0.83±0.00
Synthetic (2D) 0.87±0.00 0.94±0.00 0.94±0.00

Gesture-A1 (32D) 0.60±0.00 0.59±0.01 0.66±0.01
Gesture-A2 (32D) 0.58±0.00 0.59±0.01 0.66±0.01
Gesture-A3 (32D) 0.72±0.03 0.72±0.04 0.76±0.01
Gesture-B1 (32D) 0.88±0.01 0.88±0.01 0.79±0.03

Gesture-B3 (32D) 0.83±0.01 0.83±0.01 0.82±0.02

Gesture-C1 (32D) 0.74±0.02 0.72±0.06 0.79±0.07
Gesture-C3 (32D) 0.78±0.03 0.76±0.05 0.81±0.02

Gesture average 0.73±0.01 0.73±0.03 0.76±0.02

a probability to remain in the same state of 0.95. As emission densities, we have

used two Gaussian distributions with parameters μ1 = −1, μ2 = 1 and σ = 2. We

have also created a 2D dataset consisting of only one long sequence of 1200 frames

using the same generative model. The measurements have been sampled from two

Gaussian distributions with the following parameters: μ1 = [−1,−1], μ2 = [1, 1] and

Σ = [1, 0.2; 0.2, 1].

4.3.1.2 Gesture Phase Segmentation Dataset

The Gesture Phase Segmentation dataset consists of Kinect joint information for a

narrating actor. Temporal annotation is provided in terms of gesture phases such

as rest, preparation, stroke, hold and retraction. Given that we only assign binary

labels, for our experiment we have equated ‘rest’ to the negative class and all the

other phases to the positive. We have also scaled the measurements up by a factor

of 100 to work in an approximately unitary range. In this dataset, a name such as

‘Gesture-A1’ refers to the video of actor ‘A’ performing task ‘1’. The length of the

videos varies from a minimum of 1, 073 to a maximum of 1, 747 frames. The dataset

can be downloaded from the UCI Machine Learning repository (Lichman (2013)).

Chapter 4. Unsupervised Structured Prediction SVM 71

4.3.2 Initialization

Initialization plays an important role in the performance of all tested algorithms.

k-means is used both as the baseline approach and to initialize the two structural

algorithms. In turn, the initial centroids of k-means are assigned randomly from the

data.

4.3.3 Performance Comparison

Table 4.1 reports the accuracy in terms of average F1 score over 10 runs. On the syn-

thetic dataset, both Latent SSVM and Well-SSVM report notable improvement over

k-means. However, Latent SSVM achieves on average the same accuracy as k-means

on the Gesture Phase Segmentation dataset. Conversely, Well-SSVM achieves an

average improvement of 3 percentage points on this dataset and the highest accuracy

for 5 videos out of 7. This result is remarkable since the models of Latent SSVM

and Well-SSVM are directly comparable and share the same initialization procedure.

k-means only achieves the highest accuracy on two videos of the Gesture Phase Seg-

mentation dataset: by plotting their measurements on a principal component space,

we can observe that they are more neatly separated in feature space. However, when

sequentiality is more pronounced, Well-SSVM always reports the highest accuracy.

It is useful to compare the computational complexity of Latent SSVM and Well-

SSVM. Both rely on structural SVM, whose computational complexity was analysed

in Tsochantaridis et al. (2005a); Joachims et al. (2009b). In its most efficient imple-

mentation (i.e., 1-slack), the complexity is substantially independent of the number

of samples; we refer to it simply as O(SSVM). Latent SSVM iterates structural

SVM until the latent variables stabilize: noting the number of iterations as IL, its

complexity is then O(IL SSVM). In our experiments, the value of IL proved typically

to be between 2 and 3. Conversely, Well-SSVM iterates structural SVM over the

number of ground-truth labelings, L, which is typically in the order of 2 to 4. In

addition, at every iteration it solves a multi-kernel problem that is iterative at its

Chapter 4. Unsupervised Structured Prediction SVM 72

turn. Noting the number of MKL iterations as IMKL, the overall complexity is there-

fore O(L IMKL SSVM). De facto, the training time of Well-SSVM is approximately

5− 6× that of Latent SSVM in an average case.

4.4 Conclusion

We have presented a novel approach for performing unsupervised maximum-margin

learning of structured data. The proposed approach, called weakly labeled structural

SVM or Well-SSVM for short, extends the minimax relaxation of Li et al. (2013) to

the structured case. The main contribution of our work is the re-organization of the

structured feature vectors and the Hamming loss in a form that allows for finding

violating labelings for the relaxation. Experimental results on sequential labeling

with synthetic and real datasets show that the proposed approach outperforms the

popular latent structural SVM and a k-means baseline in the majority of cases.

While we have only addressed structures of binary labels, an extension to multi-

class labels is also possible through binary coding of the class variables.

Chapter 4. Unsupervised Structured Prediction SVM 73

(
)

=

=
T t

t
t

P
y

x
1

δ (
)

=

=
T t

t
t

N
y

x
1

δ

(
)

=
Ψ

y
x,

(
)

=
∈

∈
=

=
E e

e
d

e
s

P
y

P
y

1
,

δ

(
)

=
∈

∈
=

=
E e

e
d

e
s

N
y

P
y

1
,

δ

(
)

=
∈

∈
=

=
E e

e
d

e
s

P
y

N
y

1
,

δ

(
)

=
∈

∈
=

=
E e

e
d

e
s

N
y

N
y

1
,

δ

D D 4

=

1x

1x
0

0
Tx

Tx
0

0
0 0

0001

0010

0100

1000

0001

0010

0100

1000

0

T h
y

1y Ty

1
,

=
∈
e

d
sy

E
e

d
sy

=
∈

,

T2
E4

Figure 4.1: Feature map h. The two binary variables for node t are noted jointly
as yt; the four binary variables for edge e are noted jointly with a double index as

ys,d=e.

Chapter 5

Unsupervised Structured

Prediction Maximum Margin

Markov Networks

5.1 Introduction

The Maximum Margin Markov Networks (M3N or M3 Networks hereafter) (Taskar

et al. (2004)) provide an alternative way to train structured predictors (Section

(2.5)) in a discriminative fashion. For the sake of simplicity, we will consider the

case of a linear sequence (comprising of T nodes) throughout this chapter. In Sec-

tion (2.5), we have already seen how Structural SVM (Tsochantaridis et al. (2005a))

handles the training of structured predictors. The main difference between Struc-

tural SVM (Tsochantaridis et al. (2005a)) and M3 networks lies in the formulation of

the quadratic program (QP) that is eventually solved to obtain the desired param-

eters for the classifier. Since the number of constraints is exponential in the length

of sequence, Structural SVM (Tsochantaridis et al. (2005a)) attempts to solve the

resulting QP using the cutting-plane method. In this way, the constraint size be-

comes manageable for solution via decomposition method or SMO. Conversely, the

M3 networks propose to solve the resulting QP with the full set of constraints. The

74

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 75

main trick is to obtain a factored dual, that reformulates the original QP into a

factored QP whose number of parameters is linear in T.

In this chapter, we propose an alternative solution of Well-SSVM dual via the M3

networks. How to extend M3 networks to its multiple-kernel learning (MKL) equiva-

lent (Section (5.5.1)) and how to perform a step of violating labeling (Section (5.5.2))

is the focus of the entire chapter. With the suggested modifications, we can avail of

the current implementation of Well-SSVM to solve the factored QP with the full set

of constraints (Taskar et al. (2004)).

It is worth mentioning that the Structural SVM is applicable to a broader class of

QP, where feature functions and losses over graphs (for instance F1-loss) are non-

decomposable as well. Conversely, decomposability of feature function and loss (for

instance Hamming loss) over graph is the fundamental requirement of M3 networks.

In the upcoming sections, we will present the solution of Well-SSVM via M3 networks

formulation. Section (5.2) contains the summary of notations that is consistent with

Chapter 4. Section (5.3) takes the dual formulation of N-slack Multiclass SVM and

shows its conversion into the proposed M3 networks dual formulation (Taskar et al.

(2004)). Section (5.4) presents the decomposition of our previously proposed feature

function of Chapter 4; its decomposition is on par with the decomposed feature

function of M3N. Since we are dealing with the multiple ground-truth labelings,

Section (5.5) presents the extension of M3 networks QP to the case of the multiple

ground-truth labelings. In Section (5.6), experimental results are presented where

the proposed algorithm is compared against k-Means, Unsupervised-SSVM (Yu and

Joachims (2009)) and the EM algorithm (Dempster et al. (1977)). Finally, Section

(5.7) will conclude the discussion with the possible future work.

5.2 Notations

We will maintain the consistency of notations used throughout our thesis. For the

sake of simplicity, we have considered a case of linear sequence with T nodes. We

have made explicit notations to address nodes and pairs of a sequence as follows:

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 76

x1 x5 x2 x4 x3

y1 y5 y2 y4 y3

Figure 5.1: An example of a sequence with 5 output (shaded) nodes.

Accessing Output Nodes

To work at node levels, consider the case of sequence with (T =5) nodes shown

in Figure 5.2. Given any sequence, ya refers to its ath output node. For instance,

the value of the 5th node is symbolized by y5. In our discussion, yai will be used to

denote the ground-truth value of the ath output node from ith sequence. Similarly,

ua will represent its predicted value. Furthermore, (throughout this chapter) the

cardinality of each output node is set to 2 i.e. ya = {0, 1}. However, our work can

easily be extended to the case where cardinality of each output node is greater than

2 (multiclass case).

Accessing Pair of Output Nodes

Given any labeling y, we will refer to an edge between node ‘a’ and ‘b’ using yab. For

instance, in Figure 5.2; y45 represents an edge between y4 and y5. For binary nodes,

each edge can have four unique assignments i.e. yab = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Similar to the case of nodes, yabi and uab will represent the ground-truth and predicted

assignment of node pair (a, b).

5.3 Factorized Dual

We will start from the N-slack formulation of Multiclass SVM (margin rescaling

case). The dual of N-slack formulation is given as follows (an extra dual variable

αiyi is added for each example as we always include u = yi for the case of margin

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 77

rescaling):

argmax
α

∑
i,u

αiuΔ(yi, u)− 1

2
||
∑
i,u

αiuδψi(u)||2

s.t.
∑
u

αiu = C, ∀i; αiu ≥ 0, i = 1, . . . , N, ∀u.
(5.1)

where αiu are the Lagrange multipliers for the constraints of sample i; Δ(yi, u) is

the loss over prediction u; and δψi(u) = ψ(xi, yi) − ψ(xi, u) is the difference of

feature function. Please see Section (2.5) for the details of these parameters. Taskar

et al. (2004) observed that since the sum of all Lagrangian coefficients associated

with sample constraints is constant i.e.
∑

u αiu = C and all of them are positive

i.e. αiu ≥ 0 therefore, the dual QP can actually be seen as a density function over

u given sample i. Hence, the dual QP is the function of expectation of loss term

(Δ(yi, u)) and the difference of feature functions (δψi(u)). The two vital conditions

for the proposed factorization of dual are: (i) the loss is decomposable over a labeling

i.e Δ(yi, u) =
∑T

t=1 I(y
t
i 	= ut) =

∑T
t=1Δti(u

t) and (ii) the feature function for a

labeling y is decomposable over its edges i.e. δψi(y) =
∑

(a,b) δψi(y
a, yb). With such

conditions, Taskar et al. (2004) worked out the marginal dual variables over nodes

and edges as follows:

λi(u
a) =

∑
u∼[ua]

αiu ∀a, ∀ua, ∀i;

λi(u
a, ub) =

∑
u∼[ua,ub]

αiu ∀(a, b) ∈ E, ∀ua, ub ∀i;
(5.2)

where u ∼ [ua] is the labeling with the fixed assignment of its ath node i.e. [. . . , ua, . . .].

Similarly, u ∼ [ua, ub] is the labeling with the fixed assignment of its node pair (a,b)

i.e. [. . . , ua, ub, . . .]. From Equation (5.2), it follows that λi(u
a) =

∑
ub λi(u

a, ub).

For a sequence of (T = 5) binary nodes, we will have (2 × 5 = 10) unary marginal

dual variables (2 for each node) and (4×4 = 16) pairwise marginal dual variables (4

for each edge). Using Equation (5.2), we can easily impute the linear and quadratic

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 78

terms of the proposed dual QP (Taskar et al. (2004)). Consider the linear term of

QP in Objective (5.1):

∑
u

αiuΔ(yi, u) ∀i

=
∑
u

αiu

(
T∑
t=1

Δti(u
t)

)

=
∑
t,ut

Δti(u
t)

∑
u∼[ut]

αiu

=
∑
t,ut

Δti(u
t)λi(u

t)

(5.3)

It is the linear term of M3N dual formulation (Taskar et al. (2004)). Similarly,

consider the quadratic term of QP in Objective (5.1):

∑
u

αiuδψi(u) ∀i

=
∑
u

αiu

∑
(a,b)

δψi(u
a, ub)

=
∑
(a,b)

∑
u

αiuδψi(u
a, ub)

=
∑
(a,b)

∑
ua,ub

∑
u∼[ua,ub]

αiuδψi(u
a, ub)

=
∑
(a,b)

∑
ua,ub

δψi(u
a, ub)

∑
u∼[ua,ub]

αiu

=
∑
(a,b)

∑
ua,ub

δψi(u
a, ub)λi(u

a, ub)

(5.4)

It is the quadratic term of the M3N dual formulation of Taskar et al. (2004). Plug-

ging results from Equation (5.3) and Equation (5.4) into the N-slack formulation of

multiclass, we can write the factored QP (Taskar et al. (2004)) as follows:

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 79

maxG(λ) =

max
∑
i

∑
a,ua

λi(u
a)Δti(u

a)− 1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)δψi(u
a, ub)�δψj(v

c, vd)

s.t.
∑
ua

λi(u
a, ub) = λi(u

b);
∑
ua

λi(u
a) = C; λi(u

a, ub) ≥ 0.

(5.5)

To show how such factorization has reduced the number of parameters in the QP of

Objective (5.1), we will again go back to the case of only one sequence with 5 binary

nodes. We can write the linear term of the original and factored dual as follows

(please note that N = 1 for the following linear and quadratic terms):

1.
∑

u αiuΔ(yi, u) (Original dual): It will have (25 =)32 addenda.

2.
∑

a,ua λi(u
a)Δti(u

a) (Factored dual): It will have (2 ∗ 5 =)10 addenda.

Similarly, the quadratic term of the original and factored dual will have the following

number of addenda:

1. ||∑u αiuδψi(u)||2 (Original dual): It will have (25 × 25 =)1024 addenda.

2.
∑

(a,b)

ua,ub

∑
(c,d)

vc,vd
λi(u

a, ub)λj(v
c, vd)δψi(u

a, ub))�δψj(v
c, vd) (Factored dual): It will

have (4× 4× 4× 4 =)256 addenda.

It can be seen clearly that solving a dual QP with full set of constraints using

M3 networks formulation (Objective 5.5) entails a polynomial number of terms as

opposed to the unfactored dual which entails an exponential number (Objective 5.1).

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 80

5.4 Decomposition of Feature Function over Edges

The proposed M3N formulation (Taskar et al. (2004)) depends on the factorization

of feature function ψ(x, y). Feature functions can be decomposed as a sum of feature

functions over edges:

ψ(x, y) =
∑

(a,b)∈E
ψ(x, ya, yb) (5.6)

In Chapter 4, we proposed to represent ψ(x, y) as:

ψ(x, y) = h�y

where, xa ∈ RD and ψ(x, y) ∈ R2D+4. For a linear sequence x with T nodes, h was

a matrix of dimension (2T +4E)× (2D+4) where E = T − 1. h�y actually models

the emission and transition of all nodes. Now, we will decompose h according to

nodes and edges. From now on, hab would model the transition between nodes ‘a’

and ‘b’ whereas for emission, it will consider node ‘b’ only. Therefore, hab will be a

matrix of dimension (2 + 4)× (2D + 4).

Now we are set to decompose h. Our proposed representation of feature function

(in Chapter 4) will be factorized in the similar way of Equation (5.6) as follows:

ψ(x, y) =
∑

(a,b)∈E
hab

�
yab (5.7)

The difference of feature function for prediction u corresponding to sequence i will

be denoted by δψi(u), which can be evaluated as follows:

δψi(u) = ψi(xi, yi)− ψi(xi, u)

=
∑

(a,b)∈E

[
ψi(y

a
i , y

b
i)− ψi(u

a, ub)
]

=
∑

(a,b)∈E

[
hab

�
i yabi − hab

�
i uab

] (5.8)

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 81

5.5 Solution of WellSSVM via M3N

In the previous sections, we presented M3N notations, factorized dual and the de-

composition of feature function as a sum over the edges of sequence ψ(x, y) =∑
(a,b)∈E h

ab �yab. In this section, we will present the complete algorithm for unsuper-

vised structured prediction (Chapter 4) with the proposed formulation of factorized

dual (Taskar et al. (2004)).

Algorithm (4) presents the brief overview to perform unsupervised structured pre-

diction via M3N formulation. To avoid clashing with other indices, we note the

labeling index l as ly.

Algorithm 4 Well-SSVM via M3N

1: Initialization: 1y;μ1 = 1.0; γ = 0.1 (Equation (4.26)) and L = 1
2: Solve Objective (5.5) and store λ.
3: Find violating labeling (Section) (5.5.2)
4: repeat
5: L = L+ 1
6: Initialize μ1:L =

[
μ1, . . . , μL

]T
7: Concatenate ground-truth labelings from Step 3/Step 9: 1:Ly =

[
1y, . . . , Ly

]
8: repeat
9: Solve Objective (5.10) and store λ

10: update μ1:L (Section (5.5.3))
11: until μ1:L converges
12: Find violating labeling (Section (5.5.2))
13: until Equation (4.26)
14: Impute w (Section (5.5.3))

5.5.1 Learning as an Instance of MKL

We have seen in Section (4.2) that the objective of Well-SSVM with multiple ground-

truth (l = 1 : L) labelings is given by:

min
μ

max
λ

∑
l:yl∈β

μlG(λ, ly) (5.9)

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 82

Every sample has multiple ground-truth labelings (denoted by ly) and the score is

obtained as the sum over such labelings. Such labelings are constrained to belong

to set β, which is a set of balanced labelings. We will introduce another notation to

address labeling with multiple groudtruths: lyai is the lth ground-truth value of ath

from ith sequence.

The maximum in λ (5.9) can be found by the factorized dual (Taskar et al. (2004))

after making the following position:

• ψ̃i(y
a, yb) = [

√
μ1ψi(y

a, yb), . . . ,
√
μLψi(y

a, yb)]T : L weighted concatenation of

ψi(y
a, yb);

• δψ̃i(y
a, yb) =

[√
μ1

(
ψi(

1yai ,
1ybi)− ψi(y

a, yb)
)
, . . . ,

√
μL

(
ψi(

Lyai ,
Lybi)− ψi(y

a, yb)
)]

• Δ̃ti(y
a) =

∑L
l=1 μ

lΔti(
lyai , y

a): the loss of node ya versus ath node of all ‘L’

ground-truth labelings. Please note that Δti(
lyai , y

a) = I(lyai 	= ya).

With the following position, we can pose the inner maximization of Objective (5.9) as

follows (it is actually an instance of M3N; more precisely, we have replaced Structural

SVM by M3N from here) :

max
λ

∑
l:yl∈β

μlG(λ, ly) =

max
∑
i

∑
a,ua

λi(u
a)Δ̃ti(u

a)− 1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)δψ̃i(u
a, ub)�δψ̃j(v

c, vd)

s.t.
∑
ua

λi(u
a, ub) = λi(u

b);
∑
ua

λi(u
a) = C; λi(u

a, ub) ≥ 0.

(5.10)

where the scalar products δ̃ψ
T
δ̃ψ and loss Δ̃ti(u

a) contain the μ factor.

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 83

5.5.2 Finding a Violating Labeling

The main trick for finding a violating labeling is to express G(λ, y) in the following

form:

−G(λ, y) = yTHy + yT (τ +Δ) (5.11)

where y will be a concatenation of L ground-truth labelings. In order to express

G(λ, y) as a quadratic function of y, we will present the necessary positions to obtain

the desired H,τ and Δ. For more details, please refer to Appendix C.

Let us assume the following positions:

• Implementation of hi: As we have discussed earlier, hi will be decomposed

into habi . Inside habi , entries that belong to nodes of a sequence will be pre-

multiplied by C whereas for transition, we only need to insert C in the respec-

tive positions. After making suggested changes, we can easily formulate H as

follows:

H = 1
2
[H11, H12 . . . H1N ;

. . . ;

HN1, HN2 . . . HNN]

(please note that matrix H is positive semidefinite by construction. Its row

dimension, M , is given by the sum of the labeling size over the entire training

set: M =
∑

i 2Ti + 4Ei)

• τ =

[
−h1

(∑
j

∑
(c,d)

hcdj
�
κcdj

)
,−h�2

(∑
j

∑
(c,d)

hcdj
�
κcdj

)
, . . . ,−h�N

(∑
j

∑
(c,d)

hcdj
�
κcdj

)]
where κcdj =

∑
vc,vd λj(v

c, vd)vcdj

• Δ� =

⎡
⎣{λi(ua = 0), λi(u

a = 1)︸ ︷︷ ︸
for ath frame

} 0 ∈ R4Ti−1︸ ︷︷ ︸
All zeros for transitions between frames

⎤
⎦

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 84

Once we implement the aforementioned positions, we can eventually transform dual

of Well-SSVM (Objective (5.10)) as a quadratic function of labeling y as shown in

Equation (5.11). For the detailed description ofH, τ and Δ, please refer to Appendix

(C.2).

From here, we can easily find the desired violating labeling as discussed in Sec-

tion (4.2.2) (starting from Equation (4.22)). Please see Section (4.2.4) for balanced

sequential labeling or balanced Viterbi implementation.

5.5.3 Update μ

The solution to factored dual (Objective (5.5)) can be used to impute w. Taskar

et al. (2004) evaluated w as follows:

w =
∑
i

∑
(a,b)

∑
ya,yb

λi(y
a, yb)δψi(y

a, yb) (5.12)

For the L ground-truth labelings, we can form the concatenated weight vector as

w1:L:

w1:L =

⎡
⎣∑

i

∑
(a,b)

∑
ya,yb

λi(y
a, yb)δψ1

i (y
a, yb), . . . ,

∑
i

∑
(a,b)

∑
ya,yb

λi(y
a, yb)δψL

i (y
a, yb)

⎤
⎦

where δψl
i(y

a, yb) =
√
μl
(
ψi(

lyai ,
lybi)− ψi(y

a, yb)
)

Now we can update μ in closed form (Li et al. (2013)) as follows:

μl =
‖wl‖∑L
l=1 ‖wl‖ , l = 1 . . . L (5.13)

5.6 Experiments

In this section, we report experiments comparing the proposed Well-M3N with pop-

ular unsupervised algorithms such as k-means, Expectation-Maximisation (EM) and

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 85

Table 5.1: Comparison of clustering accuracy over the Synthetic and Gesture
Phase Segmentation datasets. Accuracy is reported as F1 score (± standard

deviation).

Dataset k-means EM Unsupervised-SSVM Well-M
3
N

Synthetic (2D) 0.89±0.00 0.98±0.00 0.87±0.00 0.91±0.00

Synthetic (3D) 0.91±0.00 0.98±0.00 0.95±0.00 0.74±0.00

Synthetic (5D) 0.94±0.00 0.99±0.00 0.93±0.00 0.95±0.01

Gesture-A1 (32D) 0.60±0.00 0.73±0.00 0.59±0.01 0.66±0.00

Gesture-A2 (32D) 0.58±0.00 0.75±0.00 0.59±0.00 0.66±0.00

Gesture-A3 (32D) 0.72±0.03 0.68±0.00 0.72±0.04 0.76±0.01
Gesture-B1 (32D) 0.88±0.01 0.86±0.01 0.88±0.00 0.94±0.00
Gesture-B3 (32D) 0.88±0.01 0.75±0.02 0.81±0.00 0.91±0.00
Gesture-C1 (32D) 0.74±0.02 0.81±0.00 0.63±0.00 0.81±0.00
Gesture-C3 (32D) 0.78±0.03 0.70±0.02 0.78±0.00 0.85±0.00

Gesture average 0.74±0.00 0.75±0.00 0.71±0.00 0.80±0.00

Unsupervised-SSVM (Dempster et al. (1977); Yu and Joachims (2009)). k-means is a

baseline algorithm that treats the data as unstructured, EM is a generative approach

where latent variables are marginalised during training, and Unsupervised-SSVM is

an example of local SVM algorithm. The comparison reports the F1 score of classi-

fiers at predicting the withheld ground-truth labels of the training set.

5.6.1 Datasets Description

We have conducted experiments over the following datasets: three variations of syn-

thetic dataset, and the Gesture Phase Segmentation dataset (Madeo et al. (2013)).

The Gesture Phase Segmentation datasets are available from the UCI Machine

Learning repository (Lichman (2013)).

5.6.1.1 Synthetic Dataset

The synthetic dataset is a small dataset containing one-dimensional observations

sampled from an HMM with two states, Gaussian emissions and arbitrary parame-

ters. It consists of a single sequence having 1200 frames.

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 86

5.6.1.2 Gesture Phase Segmentation Dataset

Please refer to Section 4.3.1.2 for the details of this dataset.

5.6.2 Initialisation

Initialization plays an important role in the performance of all tested algorithms.

k-means is used both as the baseline approach and to initialize the three structural

algorithms: EM, Unsupervised-SSVM and Well-M3N. In turn, the initial centroids

of k-means are assigned randomly from the data.

5.6.3 Performance Comparison

Table 5.1 reports the accuracy in terms of the F1 score over the initial labelings

from k-means, showing best results in bold face. Well-M3N and EM achieve the best

results in most cases, with EM reporting a clearly better performance on Synthetic

datasets while Well-M3N delivers strong results over Gesture dataset.

EM appears to outperform all approaches in Synthetic datasets. Since the synthetic

datasets were generated by HMM with arbitrary parameters, models found by EM

are more likely to match the initialised model. The reason for similarities in mod-

els lies in the fact that both models are the result of identical generative process.

When it comes to the real world scenario (Gesture Segmentation dataset), Well-M3N

outperforms k-means and EM by at least 5 percentage points.

Eventually, k-means reports the worst results with a trend to polarise the predictions

over only one class (Gesture Segmentation) or divide the data into two clusters

of comparable size (Synthetic). This is evidence that structured approaches are

beneficial for this type of data and that dismissing sequentiality generally results in

poorer predictions.

Chapter 5. Unsupervised Structured Prediction Maximum Margin Markov
Networks 87

5.7 Conclusion

We have presented an alternative way to solve Well-SSVM dual using M3 networks.

The main ingredient of our proposed alternative solution lies in the representation

of Well-SSVM dual as a quadratic function of labelings that permits the search of

violating labeling through our balanced Viterbi. In order to implement Well-SSVM

via M3N, we utilize our previous implementation from Chapter 4 for finding the vi-

olating labeling (Section (5.5.2)). The main advantage of Well-M3N lies in the fact

that Structural SVM is solved fully and not via relaxation. Its competitive experi-

mental results suggest that it is more suitable for the integration with the minimax

relaxation of Li et al. (2009). Finally, the formulation M3N helps maintaining the

overall convexity of Well-M3N.

Chapter 6

Conclusion

Structured prediction aims to predict complex objects such as graphs and trees.

Classification of such complex objects serves as the main building block for various

applications in robotics, computer vision and machine learning. In this thesis, we

have proposed extensions for semi-supervised and unsupervised structured predic-

tion by utilizing the notion of maximum-margin classifiers.

In the first part, we have addressed the problem of recognizing actions from single

images via semi-supervised structured prediction. To this aim, we have constructed

a graphical model that takes all superpixels of the target image as an input and

outputs the corresponding action. In order to capture the relation between action

and all superpixels, the correlation between every pair of superpixels is also taken

into account while classifying actions. This particular feature of our proposed model

slows down the step of inference significantly. To speed up the inference, we have

proposed an efficient greedy algorithm that reduces the time complexity significantly

allowing practical computability of the proposed graphical model.

For the unsupervised extension of structured prediction, we considered the recently

proposed convex relaxation for unsupervised SVM (WellSVM) and extended it to

the case of structured datasets, hence naming the technique as Well-SSVM. Our

contribution has been the design of a joint feature map that permits finding violated

labelings using “balanced” Viterbi algorithm. The proposed technique produced

competitive experimental results over synthetic and real world datasets.

88

Chapter 6. Conclusion 89

Lastly, we have presented the solution of Well-SSVM via M3 Networks. In Well-

SSVM, the quadratic program (QP) for Structural SVM was solved by a cutting-

plane method. In this section, we have proposed to replace Structural SVM by M3

Networks. In this way, we solve the QP with the full set of constraints. This seems

more suitable for the proposed minimax relaxation that should ensure overall con-

vexity. The important thing to note with this approach is the underlying limitation

on the choice of loss functions. With M3 Networks, we can only work with loss func-

tions that are decomposable over graphs or trees; for instance, the Hamming loss.

This was not the case with Structural SVM that is entirely compatible with more

general, non-decomposable loss functions such as the popular F1-score. Therefore,

one technique (Well-SSVM via M3 Networks) is promising of greater accuracy versus

the greater flexibility of the other (Well-SSVM). The choice of either technique rests

on the requirement of specific application.

Appendix A

Lagrange Duality

We will present a very brief introduction to Langrange duality. For detailed discus-

sion, please refer to Boyd and Vandenberghe (2004).

Lets consider the following minimization problem with inequality constraints only:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(A.1)

with x ∈ Rn. Here f0(x) is the objective function that needs to be minimized

under “m” inequality constraint denoted by fi(x). Let p∗ be its solution, which

we will call the solution of primal problem. The lagrangian of A.1 will tranform

this problem from constrained to unconstrained optimization. Thus Lagrangian

L : Rn ×Rm −→ R is defined as follows:

L(x, α) = f0(x) +
m∑
i=1

αifi(x) (A.2)

While formulating lagrangian, each constraint in A.1 has an associated paramater α

also called ”dual variable” or ”lagrange multiplier”. We will define θp(x) as following:

90

Appendix A. Langrange Duality 91

θp(x) = max
α:αi≥0

L(x, α)

= max
α:αi≥0

f0(x) +
m∑
i=1

αifi(x)
(A.3)

Thus, we can obtain solution to (A.1) by minimizing (A.3):

min
x
θp(x) = min

x
max
α:αi≥0

L(x, α) (A.4)

Now, let us define θD(α) as follows:

θD(α) = min
x
L(x, α) (A.5)

The subscript ”D” stands for dual. Our dual optimization problem can be posed as

follows:

d∗ = max
α:αi≥0

θD(α) = max
α:αi≥0

min
x
L(x, α) (A.6)

If we compare (A.4) and (A.6), the only difference observed lies in the order of min

and max. Using minimax theorem, it is known that:

d∗ ≤ p∗

Under certain conditions(constraint qualification / Slaters condition), this inequality

holds strictly (”strong duality”). ”p∗−d∗” is called duality gap, which becomes zero

in the case of strong duality. In that case, we can solve dual instead of primal to get

the solution of our problem define in (A.1).

Lets assume that f0(x) is convex and fi(x) are affine. This implies there must exist

x∗ and α∗ that satisfy d∗ = p∗. Please note that x∗ is the solution to primal and α∗

is the solution to dual formulation. Under these assumptions, KKT conditions must

Appendix A. Langrange Duality 92

hold which are as follows:

∂

∂xi
L(x∗, α∗) = 0, i = 1, . . . , n (A.7)

α∗
i fi(x

∗) = 0, i = 1, . . . ,m (A.8)

α∗
i ≥ 0, i = 1, . . . ,m (A.9)

fi(x
∗) ≤ 0, i = 1, . . . ,m (A.10)

Appendix B

Well-SSVM: from primal (4.13) to

dual (4.15)

Given the Well-SSVM primal (Eq. 14), we can write its Lagrangian as:

L(w, ξ, α, β) =
1

2

L∑
l=1

‖wl‖2
μl

+ C
N∑
i=1

ξi+

−
N∑
i=1

∑
u∈Wi

αi,u

(
L∑
l=1

(
wlTψ(xi, y

l
i)− wlTψ(xi, u)− μlΔ(yli, u)

)
+ ξi

)

−
N∑
i=1

βiξi s.t. 0 ≤ αi,u, βi ∀i, ∀u ∈ Wi

(B.1)

To compact notations, we pose δψl
i(u) ≡ ψ(xi, y

l
i) − ψ(xi, u). Differentiating in wl

and equating to zero, we obtain:

∂L

∂wl
=
wl

μl
−

N∑
i=1

∑
u∈Wi

αi,uδψ
l
i(u) = 0 ⇒ wl = μl

N∑
i=1

∑
u∈Wi

αi,uδψ
l
i(u)

∂L

∂ξi
= C −

∑
u∈Wi

αi,u − βi = 0

(B.2)

93

Appendix B. Well-SSVM 94

Using these results to eliminate w and ξ (and, indirectly, β) from L(w, ξ, α, β), we

obtain the dual problem as:

max
α

L∑
l=1

μl

⎛
⎝−1

2

∑
i,u∈Wi

∑
j,v∈Wj

αi,uαj,vδψ
l
i(u)

T δψl
j(v) +

∑
i,u∈Wi

αi,uΔ(yli, u))

⎞
⎠ =

= max
α

−1

2

∑
i,u∈Wi

∑
j,v∈Wj

αi,uαj,v δ̃ψi(u
(×L))T δ̃ψj(v

(×L)) +
∑

i,u∈Wi

αi,uΔ̃(y1:Li , u)

s.t. 0 ≤ αi,u ≤ C ∀i, ∀u ∈ Wi

= max
α

L∑
l=1

μlG(α, yl,W) i.e., Well-SSVM (4.15)

(B.3)

where we have used position δ̃ψi(u
(×L))T δ̃ψj(v

(×L)) =
∑L

l=1 μlδψ
l
i(u)

T δψl
j(v) and the

positions for (14). �

Appendix C

WellSSVM via M3N

In Appendix (C), we provide a comprehensive table of notations that is helpful

while translating notations from Taskar et al. (2004) to our case. It is followed by a

simple example of factorized dual. Finally, we present the derivation of H, τ and Δ

previously mentioned in Section (5.5.2).

Our Notations M3N Notations
(Taskar et al.
(2004))

Explanation

i x iterating variable over sequence
ȳ y arbitrary (or predicted) labeling
T l number of nodes in a sequence
t i iterating variable over nodes
N m size of training set
xi x(i) ith sequence
yi t(x(i)) = y(i) groundtruth labeling for a sequence
yt yi value of particular node
yti (t(x))i groundtruth value of a particular node

Δ(yi, y)
∑l

i=1 Δtx(yi) loss over a sequence
ψ(x, y) fx(y) feature function for sequence x with labeling

y
δ(ψi(y)) =
ψ(x, yi)−ψ(x, y)

Δfx(y) difference of feature function (Δfx(y) =
f(x, t(x))− f(x, y) (Taskar et al. (2004)))

Table C.1: Summary of notations.

95

Appendix B. Well-SSVM 96

C.1 Factorized Dual

We will start from the N-slack formulation of Multiclass SVM with margin rescaling.

The dual of N-slack formulation in Taskar et al. (2004) is given as follows:

maximize
∑
x,y

αx(y)Δtx(y)− 1

2
||
∑
x,y

αx(y)Δfx(y)||2

s.t.
∑
y

αx(y) = C, ∀x; αx(y) ≥ 0, ∀x, y.

Please note that in the above formulation, an extra dual variable αx(t(x)) is added.

To maintain consistency in notations with the rest of this thesis, we express the

above QP as follows (an extra dual variable αiȳi is added for each example):

maximize
∑
i,ȳ

α(iȳ)Δ(yi, ȳ)− 1

2
||
∑
i,ȳ

α(iȳ)δ(ψi(ȳ))||2

s.t.
∑
ȳ

α(iȳ) = C, ∀i; α(iȳ) ≥ 0, ∀i, ȳ.
(C.1)

The only purpose of presenting such equivalence is to clarify notations used through-

out the thesis. For more details, please refer to Table (C.1).

Appendix B. Well-SSVM 97

C.2 Implementation of H, τ and Δ

In the following text, a detailed explanation is given for the definition of H, τ and

Δ previously mentioned in Section (5.5.2). The main goal is to represent the dual

of M3N (Objective (C.1)) as a quadratic function of ground-truth labeling vector y

i.e. y�(Hy + τ +Δ).

For the sake of simplicity, let us revisit the encoding of a labeling vector y. Consider

a sequence of three frames, xi = {x1i , x2i , x3i }, with labels {1, 1, 1}; then the encoded

label vector would be:

yi = { 10︸︷︷︸
emission for frame-1

10︸︷︷︸
emission for frame-2

10︸︷︷︸
emission for frame-3

1000︸︷︷︸
frame-1 → frame-2

1000︸︷︷︸
frame-2 → frame-3

}.

While deriving the parameterH, τ and Δ, we will assume the aforementioned encod-

ing of labeling vector although it is not a necessary condition. Such an assumption

will make the task of deriving the desired parameters simpler.

Let us start from the dual function of M3N (Objective (5.5)):

G(λ) =∑
i

∑
a,ua

λi(u
a)Δti(u

a)

︸ ︷︷ ︸
Linear in λ

− 1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)δψi(u
a, ub)�δψj(v

c, vd)

︸ ︷︷ ︸
Quadratic in λ

(C.2)

First of all, consider the linear part of G(λ):

∑
i

∑
a,ua

λi(u
a)Δti(u

a)

=
∑
i

∑
a

[λi(u
a = 0)Δti(u

a = 0) + λi(u
a = 1)Δti(u

a = 1)]

Terms consistent with the ground-truth labeling would contribute to G(λ), therefore:

= y�Δ

(C.3)

Appendix B. Well-SSVM 98

where, for every sequence i we will form Δ as follows:

Δ� =

⎡
⎣{λi(ua = 0), λi(u

a = 1)︸ ︷︷ ︸
for ath frame

} 0 ∈ R4Ti−1︸ ︷︷ ︸
All zeros for transitions between frames

⎤
⎦

For each sequence i, terms enclosed inside {} will be expanded using the operation

of concatenation while a vector of zeros, i.e. 0 ∈ R4Ti−1 will follow them. This

operation has to be repeated for all sequences i.e. i = 1, . . . , N .

To clarify further, let us consider a case of a single sequence (N = 1) with the

ground-truth labeling y = {1, 2, 1}. After encoding, we can rewrite y as: y =

[10011001000010]�. If we formulate Δ as per our proposal above, we will even-

tually see that the quantity y�Δ does equate to
∑

a,ua λi(u
a)Δti(u

a). We will

emphasize again that this technique is only suitable for Hamming loss and more

specifically, our encoding of labeling vector is central to the correct computation of∑
i

∑
a,ua λi(u

a)Δti(u
a).

Appendix B. Well-SSVM 99

Now, consider the quadratic part of G(λ):

1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)δψi(u
a, ub)�δψj(v

c, vd)

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)
[
ψi(xi, y

a
i , y

b
i)− ψi(xi, u

a
i , u

b
i)
]� [

ψj(xj, y
c
j , y

d
j)− ψj(xj, v

c
j , v

b
d

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)
[
habi

�
yabi − habi

�
uabi

]� [
hcdj

�
ycdj − hcdj

�
vcdj

]

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)

[(
habi

�
yabi

)� (
hcdj

�
ycdj

)
−
(
habi

�
yabi

)� (
hcdj

�
vcdj

)
−

(
habi

�
uabi

)� (
hcdj

�
ycdj

)
+
(
habi

�
uabi

)� (
hcdj

�
vcdj

)]
Neglecting the last term as it is independent of y during the maximization of G(λ)

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)

[(
habi

�
yabi

)� (
hcdj

�
ycdj

)
−
(
habi

�
yabi

)� (
hcdj

�
vcdj

)
−

(
habi

�
uabi

)� (
hcdj

�
ycdj

)]

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)

[(
habi

�
yabi

)� (
hcdj

�
ycdj

)
− 2

(
habi

�
yabi

)� (
hcdj

�
vcdj

)]

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)

[(
habi

�
yabi

)� (
hcdj

�
ycdj

)]

︸ ︷︷ ︸
1stTerm

−
∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)
(
habi

�
yabi

)� (
hcdj

�
vcdj

)
︸ ︷︷ ︸

2ndTerm

(C.4)

For the definition of H, let us consider the 1st term of Equation (C.4):

Appendix B. Well-SSVM 100

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)

[(
habi

�
yabi

)� (
hcdj

�
ycdj

)]

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

[
λi(u

a, ub)
(
habi

�
yabi

)� (
hcdj

�
ycdj

)
λj(v

c, vd)

]

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

[
λi(u

a, ub)yabi
�
habi h

cd
j

�
ycdj λj(v

c, vd)
]

=
1

2

∑
i,j

⎡
⎢⎢⎣
⎛
⎜⎜⎝∑

(a,b)

ua,ub

λi(u
a, ub)yabi

�
habi

⎞
⎟⎟⎠
⎛
⎜⎜⎝∑

(c,d)

vc,vd

hcdj
�
ycdj λj(v

c, vd)

⎞
⎟⎟⎠
⎤
⎥⎥⎦

Given that
∑
ua,ub

λ(ua, ub) = C

=
1

2

∑
i,j

⎡
⎣
⎛
⎝∑

(a,b)

Cyabi
�
habi

⎞
⎠
⎛
⎝∑

(c,d)

Chcdj
�
ycdj

⎞
⎠
⎤
⎦

If we design habi as follows where habi ∈ R6×(2D+4) (Section (5.4)):

habi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cxbi 0D 0 0 0 0

0D Cxbi 0 0 0 0

0D 0D C 0 0 0

0D 0D 0 C 0 0

0D 0D 0 0 C 0

0D 0D 0 0 0 C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix B. Well-SSVM 101

then we can easily rewrite the first term of Equation (C.2) as:

=
1

2

∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

[
yabi

�
habi h

cd
j

�
ycdj

]
(C has been absorbed in habi)

=
1

2

∑
i,j

⎡
⎢⎣y�i hih�j︸︷︷︸

Hij

yj

⎤
⎥⎦

After the concatenation of label vector y = [y1, y2, . . . , yN] and

the formation of H as the matrix of blocks Hij; we can write the above summation as:

=
1

2
y�Hy

(
comment:

1

2
can easily be absorbed inside H

)
= y�Hy

Similarly, for the definition of τ , consider the 2nd term of Equation (C.4) which is

linear in y:

Appendix B. Well-SSVM 102

−
∑
i,j

∑
(a,b)

ua,ub

∑
(c,d)

vc,vd

λi(u
a, ub)λj(v

c, vd)
(
habi

�
yabi

)� (
hcdj

�
vcdj

)

= −
∑
i,j

⎛
⎜⎜⎝∑

(a,b)

ua,ub

λi(u
a, ub)habi

�
yabi

⎞
⎟⎟⎠

�⎛
⎜⎜⎝∑

(c,d)

vc,vd

λj(v
c, vd)hcdj

�
vcdj

⎞
⎟⎟⎠

After formulating habi as mentioned above:

= −
∑
i,j

⎛
⎝∑

(a,b)

habi
�
yabi

⎞
⎠�⎛

⎝∑
(c,d)

hcdj
� ∑

vc,vd

λj(v
c, vd)vcdj

⎞
⎠

Let κcdj =
∑
vc,vd

λj(v
c, vd)vcdj

= −
∑
i,j

⎛
⎝∑

(a,b)

habi
�
yabi

⎞
⎠�⎛

⎝∑
(c,d)

hcdj
�
κcdj

⎞
⎠

= −
⎛
⎝∑

i

∑
(a,b)

habi
�
yabi

⎞
⎠�⎛

⎝∑
j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠

= −
(∑

i

hi
�yi

)�⎛
⎝∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠

= −
(∑

i

yi
�hi

)⎛
⎝∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠

= −
∑
i

yi
�

⎛
⎝hi∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠

After the concatenation of label vector y = [y1, y2, . . . , yN] and the formation of τ as follows:

τ =

⎡
⎣−h1

⎛
⎝∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠ ,−h�2

⎛
⎝∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠ , . . . ,−h�N

⎛
⎝∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠
⎤
⎦

= −
∑
i

yi
�

⎛
⎝hi∑

j

∑
(c,d)

hcdj
�
κcdj

⎞
⎠ = y�τ

Appendix B. Well-SSVM 103

Hence, we have successfully transformed the quadratic part of Equation (C.2) into

y�(Hy+τ) while the linear part of Equation (C.2) has already been transformed into

y�Δ. Therefore, we can rewrite Equation (C.2) as quadratic function of groundtruth

labeling y as:

G(λ) = y�(Hy + τ +Δ)

C.3 Pictorial Representation of h and H

We know the fact that feature function ψi(xi, yi) is decomposable over the edges

of graph (or a sequence in our examples). Therefore, we can rewrite ψi(xi, yi) as

follows:

ψ(xi, yi) =
∑
(a,b)

habi
�
yabi

= h�i yi

Whenever habi has appeared in the dual equation (Equation (C.2)), it was always

found with its corresponding multiplier λi(u
b). Therefore, for a sequence of three

frames, xi = {xai , xbi , xci} where xti ∈ RD, the equivalent h-matrix ∈ R(2Ti+4(Ti−1))×(2D+4)

is given as follows:

Appendix B. Well-SSVM 104

hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cxai 0 ∈ R
D

0 0 0 0

0 ∈ R
D

Cxai 0 0 0 0

Cxbi 0 ∈ R
D

0 0 0 0

0 ∈ R
D

Cxbi 0 0 0 0

Cxci 0 ∈ R
D

0 0 0 0

0 ∈ R
D

Cxci 0 0 0 0

0 ∈ R
D

0 ∈ R
D

C 0 0 0

0 ∈ R
D

0 ∈ R
D

0 C 0 0

0 ∈ R
D

0 ∈ R
D

0 0 C 0

0 ∈ R
D

0 ∈ R
D

0 0 0 C

0 ∈ R
D

0 ∈ R
D

C 0 0 0

0 ∈ R
D

0 ∈ R
D

0 C 0 0

0 ∈ R
D

0 ∈ R
D

0 0 C 0

0 ∈ R
D

0 ∈ R
D

0 0 0 C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, for a case of three sequences i.e. N = 3; its corresponding H-matrix will

consist of blocks Hij = hih
�
j as follows:

H =

⎡
⎢⎢⎣
H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤
⎥⎥⎦

Bibliography

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas, and

Li Fei-Fei. Human action recognition by learning bases of action attributes and

parts. In 2011 IEEE International Conference on Computer Vision (ICCV), pages

1331–1338. IEEE, 2011a.

Jianxiong Xiao, James Hays, Krista Ehinger, Aude Oliva, Antonio Torralba, et al.

Sun database: Large-scale scene recognition from abbey to zoo. In Computer

vision and pattern recognition (CVPR), 2010 IEEE conference on, pages 3485–

3492. IEEE, 2010.

Massimo Piccardi. The support vector machine (svm)and the structural svm, 2013.

URL www-staff.it.uts.edu.au/~massimo/ShortCourseSPR/SPR_08_SVM_v3.

pdf.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

Andrew Y Ng. Support vector machines, 2003. URL http://cs229.stanford.

edu/notes/cs229-notes3.pdf.

John Platt et al. Fast training of support vector machines using sequential minimal

optimization. Advances in kernel methodssupport vector learning, 3, 1999.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The

Journal of Machine Learning Research, 5:101–141, 2004.

Trevor Hastie, Robert Tibshirani, et al. Classification by pairwise coupling. The

annals of statistics, 26(2):451–471, 1998.

105

Bibliography 106

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,

2002.

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning,

conic duality, and the smo algorithm. In Proceedings of the twenty-first interna-

tional conference on Machine learning, page 6. ACM, 2004.

Alain Rakotomamonjy, Universit De Rouen, Francis Bach, Stphane Canu, and Yves

Grandvalet. Simplemkl. Journal of Machine Learning Research, 9:2491–2521,

2008.

Mehmet Gönen and Ethem Alpaydin. Localized multiple kernel learning. In Pro-

ceedings of the 25th international conference on Machine learning, pages 352–359.

ACM, 2008.

Xinxing Xu, Ivor W Tsang, and Dong Xu. Soft margin multiple kernel learning.

Neural Networks and Learning Systems, IEEE Transactions on, 24(5):749–761,

2013.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.

Large margin methods for structured and interdependent output variables. In

Journal of Machine Learning Research, pages 1453–1484, 2005a.

Chun Nam Yu. Improved learning of structural support vector machines: training

with latent variables and nonlinear kernels. PhD thesis, Cornell University, 2011.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.

Advances in neural information processing systems, 16:25, 2004.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training

of structural svms. Mach. Learn., 77(1):27–59, 2009a.

Chun-Nam John Yu and Thorsten Joachims. Learning structural SVMs with latent

variables. In ICML, pages 1169–1176. ACM, 2009.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural com-

putation, 15(4):915–936, 2003.

Bibliography 107

R. Poppe. A survey on vision-based human action recognition. Image and Vision

Computing, 28(6):976–990, 2010.

Guodong Guo and Alice Lai. A survey on still image based human action recognition.

Pattern Recognition, in press(0):–, 2014.

A. Gupta, A. Kembhavi, and L.S. Davis. Observing human-object interactions:

Using spatial and functional compatibility for recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(10):1775–1789, 2009a.

Fadime Sener, Cagdas Bas, and Nazli Ikizler-Cinbis. On recognizing actions in still

images via multiple features. In Computer Vision ECCV 2012. Workshops and

Demonstrations, volume 7585 of Lecture Notes in Computer Science, pages 263–

272, 2012.

Yang Wang, Hao Jiang, Mark S Drew, Ze-Nian Li, and Greg Mori. Unsupervised

discovery of action classes. In Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, volume 2, pages 1654–1661. IEEE, 2006.

Christian Thurau and Václav Hlaváč. Pose primitive based human action recognition

in videos or still images. In Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

Nazli Ikizler, R. Gokberk Cinbis, Selen Pehlivan, and Pinar Duygulu. Recognizing

actions from still images. In 19th International Conference on Pattern Recognition,

ICPR 2008, pages 1–4, 2008.

D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91–110, 2004. ISSN 0920-5691.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-

tion. In International Conference on Computer Vision and Pattern Recognition,

volume 2, pages 886–893, June 2005.

Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape context: A new descriptor

for shape matching and object recognition. In NIPS, volume 2, page 3, 2000.

Bibliography 108

V. Delaitre, I. Laptev, and J. Sivic. Recognizing human actions in still images:

a study of bag-of-features and part-based representations. In Proceedings of the

British Machine Vision Conference, pages 1–11, 2010.

I. Laptev. On space-time interest points. International Journal of Computer Vision,

64(2):107–123, 2005. ISSN 0920-5691.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. Int. J. Comput. Vision, 42(3):145–175,

May 2001.

N. Ikizler-Cinbis, R.G. Cinbis, and S. Sclaroff. Learning actions from the web. In

2009 IEEE 12th International Conference on Computer Vision, pages 995–1002.

IEEE, 2009.

Bangpeng Yao and Li Fei-Fei. Grouplet: A structured image representation for

recognizing human and object interactions. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 9–16, 2010.

Weilong Yang, Yang Wang, and Greg Mori. Recognizing human actions from still

images with latent poses. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2030–2037, 2010.

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas J. Guibas,

and Li Fei-Fei. Action recognition by bases of action attributes and parts. In

International Conference on Computer Vision (ICCV), pages 1331–1338, 2011b.

M. Fischler and R. Elschlager. The representation and matching of pictorial struc-

tures. IEEE Transactions on Computers, 22(1):67–92, January 1973.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detec-

tion with discriminatively trained part-based models. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 32(9):1627–1645, September 2010. ISSN

0162-8828.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image seg-

mentation. Int. J. Comput. Vision, 59(2):167–181, 2004.

Bibliography 109

Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation.

In Ninth IEEE International Conference on Computer Vision, volume 2, 2003.

G. Mori. Guiding model search using segmentation. In Proceedings of the Tenth

IEEE International Conference on Computer Vision, volume 2, pages 1417–1423,

2005.

Deli Pei, Zhenguo Li, Rongrong Ji, and Fuchun Sun. Efficient semantic image

segmentation with multi-class ranking prior. Computer Vision and Image Under-

standing, 2013.

Dong Han, Liefeng Bo, and Cristian Sminchisescu. Selection and context for action

recognition. In Computer Vision, 2009 IEEE 12th International Conference on,

pages 1933–1940, 2009.

Muhammad Muneeb Ullah, Sobhan Naderi Parizi, and Ivan Laptev. Improving bag-

of-features action recognition with non-local cues. In BMVC, volume 10, pages

95–1. Citeseer, 2010.

A Criminisi. Microsoft research cambridge object recognition image

database,http://research.microsoft.com/en-us/projects/objectclassrecognition/,

2004.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer

vision algorithms. http://www.vlfeat.org/, 2008.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods

for structured and interdependent output variables. JMLR, 6:1453–1484, 2005b.

Gregory F. Cooper. The computational complexity of probabilistic inference using

bayesian belief networks. Artificial Intelligence, 42(23):393 – 405, 1990.

Gaurav Sharma, Frédéric Jurie, and Cordelia Schmid. Expanded parts model for

human attribute and action recognition in still images. In 2013 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 652–659. IEEE,

2013.

Bibliography 110

Fahad Shahbaz Khan, Rao Muhammad Anwer, Joost van de Weijer, Andrew D

Bagdanov, Antonio M Lopez, and Michael Felsberg. Coloring action recognition

in still images. International Journal of Computer Vision, 105(3):205–221, 2013.

Leonid Sigal, Alexandru O. Balan, and Michael J. Black. Humaneva: Synchro-

nized video and motion capture dataset and baseline algorithm for evaluation of

articulated human motion. Int. J. Comput. Vision, 87(1-2):4–27, March 2010.

Abhinav Gupta, Aniruddha Kembhavi, and Larry S. Davis. Observing human-

object interactions: Using spatial and functional compatibility for recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(10):1775–

1789, 2009b.

Vladimir N. Vapnik. Statistical learning theory. Wiley, 1998.

Pedro F. Felzenszwalb, David A. McAllester, and Deva Ramanan. A discriminatively

trained, multiscale, deformable part model. In CVPR, 2008.

Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, and Raquel Urtasun. Efficient

structured prediction with latent variables for general graphical models. In ICML,

2012.

Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support

vector clustering. Journal of Machine Learning Research, 2:125–137, 2001.

Long (Leo) Zhu, Yuanhao Chen, Alan Yuille, and William Freeman. Latent hi-

erarchical structural learning for object detection. In CVPR, pages 1062–1069,

2010.

Yang Wang and Greg Mori. Hidden part models for human action recognition: Prob-

abilistic vs. max-margin. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(7):1310–1323, 2011.

Huizhong Duan, Yanen Li, ChengXiang Zhai, and Dan Roth. A discriminative

model for query spelling correction with latent structural svm. In Proceedings of

the 2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages 1511–

1521, 2012.

Bibliography 111

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin

clustering. In NIPS, pages 1537–1544, 2005.

Linli Xu and Dale Schuurmans. Unsupervised and semi-supervised multi-class sup-

port vector machines. In AAAI, pages 904–910, 2005.

Linli Xu, DanaWilkinson, and Dale Schuurmans. Discriminative unsupervised learn-

ing of structured predictors. In ICML, pages 1057–1064, 2006.

Yu-Feng Li, Ivor W Tsang, James T Kwok, and Zhi-Hua Zhou. Tighter and convex

maximum margin clustering. In AISTATS 2009, pages 344–351, 2009.

Yu-Feng Li, Ivor W Tsang, James T Kwok, and Zhi-Hua Zhou. Convex and scalable

weakly labeled SVMs. Journal of Machine Learning Research, 14(1):2151–2188,

2013.

Renata CB Madeo, Clodoaldo AM Lima, and Sarajane M Peres. Gesture unit seg-

mentation using support vector machines: segmenting gestures from rest positions.

In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages

46–52. ACM, 2013.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.

uci.edu/ml.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training

of structural svms. Mach. Learn., 77(1):27–59, October 2009b.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39

(1):1–38, 1977.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Structured Prediction
	1.2 Semi-supervised Structured Prediction
	1.3 Unsupervised Structured Prediction
	1.4 Contributions
	1.5 Thesis Organization

	2 Literature Review
	2.1 Maximum Margin Classifiers
	2.2 Support Vector Machines (Binary Case)
	2.2.1 Intuitions for Margin
	2.2.2 Hard-Margin SVM
	2.2.3 Soft-Margin SVM

	2.3 Multiclass Support Vector Machines
	2.4 Multiple Kernel Learning
	2.5 Structured Prediction
	2.6 Still Image Action Recognition
	2.6.1 Learning an Action Recognition Classifier
	2.6.1.1 Action Representation
	2.6.1.2 Global Features
	2.6.1.3 Local Features
	2.6.1.4 Learning a Classifier

	2.6.2 Advantages of Still Image Action Recognition

	3 Semi-Supervised Structured Prediction SVM and its Application for Static Action Recognition
	3.1 Introduction
	3.2 Action recognition by superpixel classification
	3.2.1 The graphical model
	3.2.2 Object detectors

	3.3 Semi-supervised Latent structural SVM
	3.3.1 Feature and score functions
	3.3.2 Loss-augmented inference
	3.3.3 Latent variables’ initialization
	3.3.4 Inference by efficient greedy algorithms

	3.4 Experimental results
	3.5 Conclusion

	4 Unsupervised Structured Prediction SVM
	4.1 Introduction
	4.1.1 Well-SVM
	4.1.2 Structural SVM

	4.2 Weakly Labeled Structural SVM
	4.2.1 Feature Maps
	4.2.2 Finding a Violating Labeling
	4.2.3 Optimized Matrix-Vector Multiplication (Hy)
	4.2.4 Balanced Sequential Labeling

	4.3 Experimental Results
	4.3.1 Dataset Description
	4.3.1.1 Synthetic Dataset
	4.3.1.2 Gesture Phase Segmentation Dataset

	4.3.2 Initialization
	4.3.3 Performance Comparison

	4.4 Conclusion

	5 Unsupervised Structured Prediction Maximum Margin Markov Networks
	5.1 Introduction
	5.2 Notations
	5.3 Factorized Dual
	5.4 Decomposition of Feature Function over Edges
	5.5 Solution of WellSSVM via M³N
	5.5.1 Learning as an Instance of MKL
	5.5.2 Finding a Violating Labeling
	5.5.3 Update μ

	5.6 Experiments
	5.6.1 Datasets Description
	5.6.1.1 Synthetic Dataset
	5.6.1.2 Gesture Phase Segmentation Dataset

	5.6.2 Initialisation
	5.6.3 Performance Comparison

	5.7 Conclusion

	6 Conclusion
	Appendices
	A Lagrange Duality
	B Well-SSVM: from primal (4.13) to dual (4.15)
	C WellSSVM via M³N
	C.1 Factorized Dual
	C.2 Implementation of H, τ and Δ
	C.3 Pictorial Representation of h and H

	Bibliography

