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Abstract

This research employs rule mining methods to study the important roles

of miRNAs in human diseases. From past experience and from reviewing

the literature, rule mining is a widely used data mining technique for

the discovery of interesting relationships in large data sets. MicroRNAs

(miRNAs) are endogenous and highly conserved non-coding RNA molecules.

They can inhibit and/or promote the post-transcriptional expression of target

messenger RNAs (mRNAs). miRNAs thus play a pivotal role in a cell’s

differentiation, proliferation, growth, mobility, and apoptosis, as well as in

viral replication and proliferation. This has inspired many research works

aimed at detecting miRNAs’ functions in human disease. However, with the

current deluge of miRNA data, previous works have suffered from limitations

in terms of handling the relationship between various molecules. Firstly,

they usually identify single miRNAs as biomarkers, and always produce

low sensitivity and specificity. Secondly, intensive research largely depends

on the inverse expression relationships between miRNAs and mRNAs to

discover miRNA-mRNA regulatory modules. Finally, the miRNA-miRNA

co-regulations and miRNA self-regulations have not been well investigated.

As a result, rule mining is a powerful new technology with great potential

to help researchers focus on the most important miRNAs for understanding

human diseases. This thesis reports our past and current research outcomes

in this area. The contributions of the thesis are as follows:

• A novel rule mining method is proposed to detect the significant

miRNA biomarkers.
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Abstract

• A “change to change” method is proposed to mine both positive

and negative regulatory relationships from paired miRNA and mRNA

expression data sets.

• A progressive data refining approach is proposed to identify the lung

cancer miRNA-miRNA co-regulation network.

• A novel framework is proposed to detect the self-regulation miRNAs.

The research was conducted through four case studies. (1) The first case

study was on lung squamous cell carcinoma for accurate diagnosis of this

disease through the reliable miRNA biomarkers identified by a novel rule

discovery method. (2) The second case study was on paired miRNA and

mRNA expression data of HCV patients to detect both positive and negative

regulatory modules. (3) The third case study was on lung cancer data sets

for the computational methods to identify miRNA-miRNA co-regulation

networks and miRNA-miRNA co-regulatory relationships. (4) The fourth

case study was on multiple data types to infer self-regulation miRNAs in

humans through an integrative rule mining framework and approach. All

the results have been verified by the existing literature and databases.
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Chapter 1

Introduction

1.1 Background

In this thesis, we mainly focus on designing rule mining methods to study

microRNAs (miRNAs) and their functions for helping fight against human

diseases such as lung cancer, hepatitis C virus (HCV) and leukemia. In

biological systems, miRNAs always work with other molecules, mostly with

messenger RNAs (mRNAs) and Transcription Factors (TFs). Accordingly,

this section thus briefly introduces rule mining, the related studies of the

three types of molecules and their relationships, and the studied human

diseases.

1.1.1 Rule Mining

Rule mining is a well-known data mining technique which is widely used for

discovery of interesting relations in large data sets. Mining rules from a date

set is a challenging problem that has attracted considerable interest because

a rule provides a concise statement of potentially useful information that

is easily understood. The original motivation for seeking strong rules came

from the need to analyse supermarket transaction data to examine customer

behaviour in terms of the purchased products (Brin, Motwani, Ullman &

Tsur 1997).

1



Chapter 1. Introduction

With the current deluge of biological data, one of the central problems

in biological knowledge discovery is the development of good measures of

interestingness of discovered patterns. With such measures, a biological

expert needs to manually examine only the more interesting rules, instead

of each of a large number of mined rules. Therefore, rule mining methods

have become indispensable to biological investigations. Rule mining can be

developed for the analysis of a wide range of biological data including miRNA

expression data. It aims to discover frequent patterns in data sets using some

measures of interestingness. Patterns in the data can be represented in many

different forms, including units of knowledge called rules. Each rule has a

form:

If set of conditions then action.

The left side and also the right side of the rule may involve a single

attribute value or a conjunction of attributes values and their domains of

different attributes.

1.1.2 microRNAs, mRNAs and TFs, and their Relationships

microRNAs and their Roles

microRNAs (miRNAs) were first discovered in 1993 by Lee et al. (Lee,

Feinbaum & Ambros 1993) during a study of the gene lin-14 in C.

elegans development. miRNAs are a class of small (19-25 nucleotides) and

endogenous non-coding RNAs. Until the early 2000s, miRNAs were identified

as a distinct class of biological regulators in gene regulation with conserved

functions. A miRNA is complementary to a part of one or more mRNAs.

miRNAs can regulate gene expression at a post-transcriptional stage, and

can control fundamental cellular processes such as differentiation, cell growth,

proliferation and apoptosis (He & Hannon 2004). miRNAs have the potential

to regulate at least 20-30% of all human transcripts (Calin & Croce 2006).

They have also been shown to control the expression of oncogenes and
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tumour-suppressor genes (Zhang, Pan, Cobb & Anderson 2007a). The

human genome may encode over 1000 miRNAs, targetting about 60% of

mammalian genes and it is abundant in many human cell types.

Human miRNA biogenesis is a multiple-step process. miRNA origin

affects the nuclear pathway to classify intergenic miRNA and coding-intronic

miRNA. A intergenic miRNA gene is first transcribed to a primary miRNA

(pri-miRNA) by Polymerase (Pol) II enzyme (Lee, Kim, Han, Yeom, Lee,

Baek & Kim 2004).

miRNAs that are organised in clusters have the same transcriptional

regulation (Altuvia, Landgraf, Lithwick, Elefant, Pfeffer, Aravin, Brownstein,

Tuschl & Margalit 2005), because they form the same long precursor

transcript, and this is then cleaved to a stem loop intermediate termed

miRNA precursor (pre-miRNA) consisting of a single-stranded RNAmolecule

by Drosha RNase III endonuclease in animals (Lee, Jeon, Lee, Kim &

Kim 2002).

In contrast, miRNA located within an intron of a protein coding gene

is transcribed by pol II as part of the pre-mRNA. Finally, pre-miRNAs are

further exported to the cytoplasm by Exportin-5 and the loop is cleaved

by Dicer, another RNAse III enzyme that releases a double stranded RNA

miRNA:miRNA* (the opposed sequence of mature miRNA at the stem arm

of the secondary structure), and mature miRNAs are released for regulating

targeted gene expression (Bartel 2004a).

The characteristics of miRNAs make them play an key role in many

diseases including cancer, cardiovascular disease, and immune disorders.

miRNA expression profiles can be used to distinguish normal cells from

disease cells in patients. Biological markers (biomarkers) referring to a

measured characteristic are widely used as indicators of some biological

state or condition, because they are often measured and evaluated to

examine normal biological processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention (shown in Figure 1.1). The inherent

stability of miRNAs makes them an ideal candidate for biomarkers, which
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can classify human cancers (Lu, Getz, Miska, Alvarez-Saavedra, Lamb, Peck,

Sweet-Cordero, Ebert, Mak & Ferrando 2005).

Exploring miRNA functions is important for diagnostics and therapeutics.

Aberrant miRNA expressions have been linked to many diseases, and have

recently been intensively investigated to discover miRNA biomarkers for the

diagnosis of diseases including lung cancer (Raponi, Dossey, Jatkoe, Wu,

Chen, Fan & Beer 2009, Shen, Todd, Zhang, Yu, Lingxiao, Mei, Guarnera,

Liao, Chou & Lu 2010, Tan, Qin, Zhang, Hang, Li, Zhang, Wan, Zhou, Shao

& Sun 2011a). The inherent stability of miRNAs in serum and the reliability

and reproducibility of expression analysis (Alevizos, Alexander, Turner &

Illei 2011, Gilad, Meiri, Yogev, Benjamin, Lebanony, Yerushalmi, Benjamin,

Kushnir, Cholakh & Melamed 2008, Ludwig & Weinstein 2005, Mitchell,

Parkin, Kroh, Fritz, Wyman, Pogosova-Agadjanyan, Peterson, Noteboom,

O’Briant & Allen 2008, Mraz, Malinova, Mayer & Pospisilova 2009) make

them ideal candidates for biomarkers (Alevizos et al. 2011, Bartels &

Tsongalis 2009, Shen et al. 2010, Tan, Qin, Zhang, Hang, Li, Zhang,

Wan, Zhou, Shao & Sun 2011a, Yang, Li, Yang, Wang, Zhou, Jiang, Ma

& Wang 2010, Yu, Todd, Xing, Xie, Zhang, Liu, Fang, Zhang, Katz &

Jiang 2010).

The function of miRNAs is shown in gene regulation. miRNAs regulate

one or more mRNAs mainly via two main mechanisms: target mRNA

cleavage and ‘translational repression’ (Carrington & Ambros 2003). In

plants, miRNAs are usually complementary to coding regions of mRNAs

and the perfect or near perfect base pairing with the target RNAs promotes

cleavage of the RNAs. In animals, the 5’ miRNA region is usually

complementary to a site in the 3’ UTR of the target site with imperfect

base pairing. This 5’ miRNA region (nucleotides 2-7) is called the ‘seed

region’ which is short. So miRNAs are predicted to regulate large numbers

of genes. Moreover, animal miRNAs may initially block protein translation

of the target mRNA.

Cancer is a multistage process in which normal cells experience genetic
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changes that progress them through a series of pre-malignant states into

invasive cancer that can spread throughout the body. The dysregulation of

genes involved in cell proliferation, differentiation and apoptosis has a close

relationship with cancer initiation and progression.

Genes linked with cancer development are characterised as oncogenes and

tumour suppressors. miRNAs as oncogenes and tumour suppressors play a

vital role in the regulation of numerous metabolic and cellular pathways by

controlling cell proliferation, differentiation and survival (Zhang, Pan, Cobb

& Anderson 2007b).

Messenger RNAs and their Roles

Messenger RNAs (mRNAs) (Dreyfuss, Kim & Kataoka 2002) are a large

family of RNA molecules. mRNA is first transcribed from DNA by RNA

polymerase, and then translated into a polymer of amino acids and a

protein, with each sequence of three nitrogen-containing bases in the mRNA

specifying the incorporation of a particular amino acid within a protein. A

mRNA encodes a protein (or more than one protein in bacteria). mRNAs

promote the amino acid sequence of the protein products of gene expression.

They can transport genetic information from DNA in the nucleus to the sites

of protein synthesis in the ribosome. Finally, proteins are the leader actors

within the cell, carrying out the duties specified by the information encoded

in genes.

Transcription Factors and their Roles

In molecular biology and genetics, Transcription Factors (TFs) (Wang,

Lu, Qiu & Cui 2010) are proteins involved in the process of converting,

or transcribing, DNA into RNA. TFs include a wide number of proteins,

excluding RNA polymerase, that initiate and regulate the transcription of

genes. A distinct characteristic of TFs is that they can bind to specific

DNA sequences called enhancer or promoter sequences of DNA adjacent to

the genes that they regulate. In addition, TFs can carry out this function
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alone or with other proteins in a complex. Therefore, some TFs bind to a

DNA promoter sequence near the transcription start site and help form the

transcription initiation complex. Other TFs bind to regulatory sequences,

such as repressor sequences, and can block transcription of the related gene.

Relationships of miRNAs, mRNAs and TFs

miRNAs play important regulatory roles via the RNA-interference pathway

by targetting mRNAs for cleavage or translational repression. Accumulating

studies demonstrate that complex diseases may arise from cooperative effects

of multiple dysfunctional miRNAs or systematical function of miRNAs.

Thus, identifying abnormal functions which are cooperatively regulated

by multiple miRNAs is very useful for understanding the pathogenesis of

complex diseases. miRNAs affect the stability and translational efficiency

of target mRNAs by binding to their 3’ untranslated regions (UTRs) to

inhibit expression (Hobert 2008a). These direct effects are amplified by

modulation of gene transcription pathways. A miRNA can have many

target mRNAs, and a mRNA can be regulated by multiple miRNAs,

forming complicated many-to-many regulatory modules between miRNAs

and mRNAs (Filipowicz, Bhattacharyya & Sonenberg 2008).

Consequently, indirect mRNA modulatory effects of miRNAs to increase

or decrease mRNAs greatly outnumber direct target suppressions, because

among the miRNAs predicted to target mRNAs, many are transcription

factors. Therefore, the variation of a certain miRNA affects the expression of

the transcription factors that in turn regulate the transcription of correlated

miRNAs, forming miRNA-mediate-miRNA regulatory modules.

Moreover, miRNAs act in transcription to modulate protein expression

at the post-transcriptional level and can be considered in terms of post-

transcription factors. TFs act in transcription to modulate protein expression

at transcriptional level. Therefore, cell phenotype is the result of two distinct

but similar mechanisms that affect gene expression at two different levels.

Chen et al. compared the evolution of transcriptional regulation and post-
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transcriptional regulation that is mediated by microRNAs, in plants and

animals, paying attention to the evolution of the individual regulators and

their binding sites (Chen & Rajewsky 2007), forming TF-mRNA-miRNA

networks by analysing multiple genome profiles simultaneously.

1.1.3 Human Disease Studied by this Work

Altered expression profiles of miRNAs are linked to many diseases including

lung cancer. This study focus on two types of disease (lung cancer and HCV

infection) known to be associated with miRNA deregulation.

Lung Cancer

Lung cancer occurs when abnormal cells in one or both lungs grow in

an uncontrolled cell growth way. Lung cancer is the biggest cancer killer

in Australia. Lung cancer is often diagnosed at a late stage with poor

prognosis (Jemal, Siegel, Ward, Murray, Xu, Smigal & Thun 2006, Minna,

Roth & Gazdar 2002); and it is also the leading cause of cancer-related

deaths worldwide (Minna et al. 2002). According to the National Cancer

Institute, by the end of 2012 there were 226,160 new lung cancer diagnoses

and 160,340 lung-cancer related deaths in the USA. According to the World

Health Organisation (WHO); cancer is the cause of 13% of all global

deaths (Judice & Geetha 2013). Lung cancer can be broadly classified

into two main types based on the cancer’s appearance under a microscope:

non-small cell lung cancer and small cell lung cancer. Non-small cell lung

cancer (NSCLC) accounts for 80% of lung cancers, while small cell lung

cancer accounts for the remaining 20%. The ability to diagnose early-

stage lung cancer patients is vital for improving their survival rate of these

patients. The Chest X-ray has been applied for its early detection, but it

has low sensitivity (Fontana, Sanderson, Taylor, Woolner, Miller, Muhm &

Uhlenhopp 1984, Frost, Ball Jr, Levin, Tockman, Baker, Carter, Eggleston,

Erozan, Gupta & Khouri 1984, Liu, Li & Tsykin 2009b).
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Hepatitis C Virus

Hepatitis C virus (HCV) is a positive sense single-stranded RNA Hepacivirus

in the family of Flaviviridae (Jopling, Yi, Lancaster, Lemon & Sarnow 2005).

HCV is capable of infecting the human liver to develop a contagious and

potentially life-threatening liver disease, Hepatitis C. It is estimated that

HCV has infected an approximately 170 million people worldwide (He,

Tan, Tareen, Vijaysri, Langland, Jacobs & Katze 2001), thereby causing

a serious public health problem. Treatment for Hepatitis C patients is on

the cutting edge of medicine. However, the treatment effect is not good. In

fact, the most commonly used antiviral combination of pegylated interferon

(IFN) and ribavirin (Su, Pezacki, Wodicka, Brideau, Supekova, Thimme,

Wieland, Bukh, Purcell & Schultz 2002) achieves a sustained virological

response for only 55% of the patients (Murakami, Aly, Tajima, Inoue &

Shimotohno 2009). Another two agents Boceprevir and Telaprevir inhibiting

non-structural protein 3 (NS3) protease in HCV were newly approved in

2011 but with uncertain effect. No vaccine is available against HCV

infection (Wilby, Partovi, Ford, Greanya & Yoshida 2012).

1.2 Research Questions

miRNAs have many important features and functions:

• Target 3’ untranslated regions of mRNAs

• Regulate post-transcriptional genes for degradation

• Target 1-3% of all eukaryotic genes

• Regulate 30% of protein-coding genes

• Are involved in many physiological processes

Dysregulation of miRNA expression profiles has been demonstrated in

most tumours, implying that miRNAs may be involved in the development
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Figure 1.1: Gene regulation of miRNAs and TFs. miRNAs

regulate biological processes in proliferation, metabolism, differentiation,

development, apoptosis, cellular signaling and even cancer development and

progression. TFs are fundamental players of gene expression regulation at

the transcriptional level. miRNAs regulate target gene expression at the

post-transcriptional level.
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of cancer and other diseases. Classification is critical to successful treatment

and sufficient biomarkers are quite important. Early stage detection and

treatment can control disease progression. Therefore, accessible, reliable and

non-invasive biomarkers can be medically valuable and can provide some

relevant insights into disease biology. We have received evidence that recent

works usually identified the individual miRNAs as biomarkers.

miRNAs can bind to partially complementary sites in the 3’ untranslated

regions of target genes, and regulate protein production of the target

transcript. Different combinations of miRNAs are expressed in different cell

types and may coordinately regulate cell-specific target genes. However, the

miRNA-mRNA regulatory modules are often based on an inverse relationship

between miRNAs and mRNAs.

miRNAs and mRNAs constitute an important part of gene regulatory

networks, influencing diverse biological phenomena. miRNAs are widely

believed to regulate complementary mRNA targets. Co-regulation analysis

of multiple miRNAs is useful for understanding complex post-transcriptional

regulations in humans. Complex diseases are associated with several miRNAs

rather than a single miRNA. It is still a challenging work to discover co-

regulation miRNAs and self-regulation in cancers at a systematic level, which

are widely neglected.

Based on these facts, how do we identify the significant miRNA biomarkers

associated with prognosis, diagnosis and progression in cancers? In addition,

the systematical function of miRNA in human diseases, i.e. miRNA-

mRNA regulatory modules, is also important. The post-transcriptional

and transcriptional regulation in human diseases, co-regulation and self-

regulation miRNAs are still under intensive investigation.

Rule mining is a data mining technique that is used to find associations

between two or more random variables. It has been used extensively in

relational databases. Therefore, we can discover reliable miRNA biomarkers,

regulatory modules and networks.
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Figure 1.2: A graphical description framework of research plan. 1©:

to identify paired biomarkers instead of individual miRNA biomarkers. 2©:

to discover both positive and negative miRNA-mRNA regulatory modules,

and miRNA-miRNA co-regulation modules. 3©: to study the relationships

among miRNAs, mRNAs and TFs.

By taking all of the above aspects into account, from different levels

and heterogeneous data sources, a graphical description framework of data

mining on mRNA expression profiles for human disease understanding can

be specifically summarised in Figure 1.2. The thesis mainly focuses on

two research questions by applying a rule mining approach in this domain:

1. How do we identify the significant miRNA biomarkers associated with

prognosis, diagnosis and progression in cancers?

2. How do we identify the uncovered systematical functions of miRNAs in

human disease?

1.3 Research Contributions

The purpose of this thesis is to study miRNA expression profiles in

understanding human disease using rule mining methods. Considering the

characteristics of miRNAs in human disease, my research topic targets the
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following objectives:

• Contribution 1: Rule Discovery and Distance Separation to

Detect microRNA Biomarkers for SCC Diagnosis

Chapter 4 presents a rule mining method to detect 2- and 3-miRNA

groups, together with specific expression ranges of these miRNAs, to

form simple linear discriminant rules for biomarker identification and

biological interpretation. Our method is based on a novel committee

of decision trees to derive 2- and 3-miRNA 100%-frequency rules. This

method is applied to a data set of lung miRNA expression profiles of 61

squamous cell carcinoma (SCC) samples and 10 normal tissue samples.

A distance separation technique is used to select the most reliable

rules which are then evaluated on a large independent data set. The

results indicate that rule discovery followed by distance separation is a

powerful computational method to identify reliable miRNA biomarkers.

The visualization of the rules and the clear separation between the

normal and cancer samples by our rules will help biology experts for

their analysis and biological interpretation.

• Contribution 2: Rule Discovery for Detecting Both Inverse

and Positive miRNA-mRNA Regulations in HCV Patients

Chapter 5 presents a ‘change-to-change’ method to detect both inverse

and positive regulatory relationships from a paired miRNA and mRNA

expression data set of HCV patients. Our study uncovered many

novel miRNA-mRNA regulatory modules. We followed the biological

principle that inverse expression relationships and positively regulated

miRNA-mRNA pairs can both exist in many-to-many regulatory

modules. We detected 100%-frequency rules from the most differentially

expressed miRNAs and then mined 100%-frequency rules from the

relevant target mRNAs expression data for each miRNA rule. We

integrated the miRNA rules and their mRNA rules to construct

miRNA-mRNA regulatory modules. Many detected miRNAs and

mRNAs can be supported by recent work in the literature. We
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also detected novel positive and inverse regulatory relationships. The

detected miRNA-mRNA regulatory modules will provide new insights

into the regulation of host responses and the pathogenesis of HCV

infection. We conclude that our rule discovery method is useful for

integrating binding information and expression profile for identifying

HCV miRNA-mRNA regulatory modules and can be applied to the

study of the expression profiles of other complex human diseases.

• Contribution 3: Identification of lung cancer miRNA-miRNA

Co-regulation network through a refining approach

Chapter 6 presents a novel integrative approach to the discovery of

miRNA-miRNA co-regulating networks which can progressively refine

various data and computational analysis results. Applied to three

lung cancer miRNA expression data sets of different subtypes, our

method has identified a miRNA-miRNA co-regulating network and co-

regulating functional modules common to lung cancer. We find that the

co-regulating network is scale free and that lung cancer related miRNAs

have more synergism in the network. We also confirm that known

lung cancer related miRNAs have more synergism than lung cancer un-

related miRNAs. Kyoto encyclopedia of genes and genomes (KEGG)

pathway enrichment analysis and transcription factor analysis have

all demonstrated the biological relevance of the miRNA-miRNA co-

regulation network to lung cancer. According to our literature survey

and database validation, many of the results are biologically meaningful

for understanding the mechanism of the complex post-transcriptional

regulations in lung cancer.

• Contribution 4: A Novel Framework for Inferring Self-

regulation miRNAs for Understanding their Mechanisms

Chapter 7 presents a study of self-regulating miRNAs through combining

the relationships among miRNAs, TFs and target genes. We design a

novel framework (called SRmiR) to integrate multiple data types for
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exploring self-regulated miRNAs for understanding their mechanisms.

Particularly, SRmiR is aimed at discovering the self-regulation miRNAs

specific to humans, by using heterogeneous data, including miRNAs,

mRNAs and TFs. We define a self-regulated miRNA if the miRNA

regulates a TF and together with this thee is a TF-target interaction

with one of more target genes. Firstly, we collected human miRNAs

from miRBase and obtained the promoter regions of all the miRNA

primary transcripts. Secondly, we collected ChIP-seq datasets representing

unique regulatory transcription factors from ENCODE at UCSC.

Thirdly, we discovered the potential miRNA-TF relationships between

TFs and miRNAs by comparing the miRNAs’ promoter regions and

transcription factor binding sites (TFBS). After that, we also obtained

the miRNA-target relationships between miRNAs and genes, and TF-

gene relationships bewteen TFs and genes based on the miRNA-TF

relationships. We also discussed the FFL involving these genes as

Transcription Factors and targets.

1.4 Thesis Structure

The thesis is structured (Figure 1.3) as follows:

Chapter 1 introduces the background of the whole thesis starting with a

brief discussion on the background and research contributions regarding the

rule mining on miRNA expression profiles for human disease understanding.

Finally, It illustrates the structure of the thesis for ease of reading and

understanding. Chapter 2 provides the literature review of various miRNA

biomarker studies, including microarray-based and statistics-based methods.

In addition, we reviewed the methods for discovering the relationships

between miRNAs and mRNAs. Lastly, the miRNAs’ co-regulation and

miRNA-mRNA-TF regulations are reviewed. It outlines the research

questions and the limitations of the existing methods. Chapter 3 describes

our proposed rule mining methods that were specifically constructed to study
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Figure 1.3: Thesis Structure. Ch. 1 introduces the research background.

Ch. 2 provides the literature review. Ch. 3 describes research methodology.

Ch. 4 presents a novel method to miRNA biomarkers for SCC diagnosis. Ch.

5 presents a ‘change-to-change’ method to detect both inverse and positive

regulatory relationships from a paired miRNA and mRNA expression data set

of HCV patients. Ch. 6 presents a novel integrative approach to the discovery

of miRNA-miRNA co-regulating networks. Ch. 7 presents a study of self-

regulating miRNAs through combining the relationships among miRNAs,

TFs and target genes. Ch. 8 provides a final summary of this research and

also suggests some future directions.
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the miRNA expression profiles. It also explains the basic knowledge, the

computational methods, bioinformatics methods and accuracy measurement.

Chapter 4 Proposed a novel rule to discover reliable miRNA biomarkers

for cancers, and developed a novel approach to find the minimal number

of miRNAs that can be used to distinguish between healthy and cancer

tissue samples. Chapter 5 proposes a “change to change” method to

derive discriminatory rules for detecting both inverse and positive regulatory

relationships. Specifically, rules from paired miRNA and mRNA expression

data of human disease samples and controls are connected to identify

the many-to-many miRNA-mRNA regulatory modules involved in cancers.

Chapter 6 designs an integrative computational method to identify a

miRNA-miRNA co-regulation network common to three lung cancer miRNA

expression data sets of different subtypes. Chapter 7 proposes a robust

methodology for mining big regulatory modules especially the self-regulation

miRNAs in the pre-and post-transcriptional level from miRNAs, mRNAs and

TFs sequence data. Chapter 8 provides a final summary of this research

and also suggests some future directions.
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Related Work

This chapter introduces the related work. The miRNA biomarkers studies

are introduced in Section 1, and then current miRNA-mRNA regulation

relationship studies are introduced in Section 2. Section 3 reviews miRNA-

miRNA co-regulation study. Section 4 introduces the relationship between

miRNAs, TFs and target genes. Section 5 describes the limitation of existing

methods. A summary is shown in the last section.

2.1 miRNA Biomarkers

A biomarker can be a substance that is introduced into an organism as a

way to examine organ function or other aspects of health (Dimri, Lee, Basile,

Acosta, Scott, Roskelley, Medrano, Linskens, Rubelj & Pereira-Smith 1995).

The perfect candidate marker has to overcome the insufficient sensitivity,

specificity, robustness and low predictive power. Furthermore, its detection

can indicate a particular disease state especially cancers, for example, the

presence of an antibody may indicate an infection (Issaq, Waybright &

Veenstra 2011).

More specifically, a biomarker indicates a change in expression or state of

a protein that correlates with the risk or progression of a disease, or with the

susceptibility of the disease to a given treatment. Genomic and proteomic
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technologies have significantly increased the number of potential DNA,

RNA and miRNA biomarkers under study (Hennessey, Sanford, Choudhary,

Mydlarz, Brown, Adai, Ochs, Ahrendt, Mambo & Califano 2012, Tan, Qin,

Zhang, Hang, Li, Zhang, Wan, Zhou, Shao & Sun 2011a). In this study,

we made a comparison of DNA biomarkers, RNA biomarkers and miRNA

biomarkers for cancer research. Finally, we chose to pay more attention to

the miRNA biomarkers due to their characteristics: highly abundant, stable

and quantifiable 1.1.2.

DNA Biomarkers: Circulating DNA and tumour cells were among

the first markers evaluated for cancer staging. Increased serum DNA

concentrations are associated with cancer and with other conditions such

as sepsis and autoimmune disease (Calin & Croce 2006).

RNA Biomarkers: However, most DNAmarkers are evaluated individually.

Many high-throughput technologies have been developed to assess mRNA

expression comprehensively (Alevizos et al. 2011).

miRNA Biomarkers: As a single miRNA can regulate hundreds of

genes and may act as a master regulator of processes, selected subsets of

miRNAs can be used as biomarkers of physiologic and pathologic states.

A recent study showed that the expression of as few as two miRNAs could

accurately discriminate acute lymphoid from acute myeloid leukemia (Bartels

& Tsongalis 2009).

Another feature that makes miRNAs excellent candidates for biomarker

studies is their remarkable stability and resistance to degradation, especially

compared with mRNA.

Biological experts have been able to isolate miRNA from archived clinical

specimens, including urine, saliva and formalin-fixed paraffin embedded

tissues (Tan, Qin, Zhang, Hang, Li, Zhang, Wan, Zhou, Shao & Sun 2011a).

Since miRNAs are often highly conserved, they could be advantageous for

practical applications in further research.

18



Chapter 2. Related Work

2.1.1 Identification of miRNA Biomarkers by qRT-

PCR

As miRNAs are promising biomarker candidates, more and more studies

have focused on identifying the significantly and differentially expressed

miRNAs as biomarkers for cancers diagnosis and prognosis (Kosaka, Iguchi

& Ochiya 2010). Accordingly, we will introduce some studies on miRNA

biomarkers for cancer diagnosis and prognosis by qRT-PCR. For example,

in 2008, miRNAs are introduced as a new class of biomarkers for cancer

by Nakasa et al. (Nakasa, Miyaki, Okubo, Hashimoto, Nishida, Ochi &

Asahara 2008). In this work, serum miRNAs were purified from patient

serum and selected miRNAs were quantified by the Taqman-based real-time

polymerase chain reaction (PCR).

Furthermore, Chen et al. (Chen, Ba, Ma, Cai, Yin, Wang, Guo,

Zhang, Chen, Guo et al. 2008) identified specific expression patterns of

serum miRNAs for lung cancer, providing evidence that serum miRNAs

contain fingerprints for various diseases. They used Solexa (Bentley,

Balasubramanian, Swerdlow, Smith, Milton, Brown, Hall, Evers, Barnes,

Bignell et al. 2008) to validate two non-small cell lung cancer-specific serum

miRNAs in an independent trial of 75 healthy donors and 152 cancer patients.

miRNAs were demonstrated to be robust and therefore were viewed as

improved biomarker for several diseases. In addition to robustness, miRNAs

are also detectable in almost all body fluids and excretions, so they can serve

to provide a new set of diagnostic tools for a variety of diseases.

In order to diagnose NSCLC, particularly at an early stage, Xie et al. (Xie,

Todd, Liu, Zhan, Fang, Peng, Alattar, Deepak, Stass & Jiang 2010) firstly

identified 12 miRNAs (miRNAs) the aberrant expressions of which in primary

lung tumours are associated with early-stage NSCLC. After that, they

extended the previous research by investigating whether the miRNAs could

be used as potential plasma biomarkers for NSCLC. They used the real-time

quantitative reverse transcription PCR, and then evaluated the diagnostic

value of the plasma miRNAs in a cohort of 58 NSCLC patients and 29 healthy
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individuals. The altered miRNA expressions were reproducibly confirmed

in the tumour tissues and were stably present and reliably measurable in

plasma (Taylor & Gercel-Taylor 2008). Finally, of the 12 miRNAs, five

displayed significant concordance of the expression levels in plasma and the

corresponding tumour tissues. The study shows that altered expressions of

the miRNAs in plasma can serve to provide potential blood-based biomarkers

for NSCLC (Shen et al. 2010).

miRNAs are reported to be present in the blood of humans and have been

increasingly suggested as biomarkers for disease. Wang et al. (Wang, Zhu,

Zhang, Li, Li, He, Qin & Jing 2010) discovered that cardiac-specific miR-

208a in plasma might be a novel biomarker for early diagnosis of myocardial

injury in humans.

Furthermore, many specific miRNAs are identified for various diseases. (Ai,

Zhang, Li, Pu, Lu, Jiao, Li, Yu, Li, Wang et al. 2010) elevated miRNA-1

as a potential novel biomarker for acute myocardial infarction. MiR423-5p

was has been viewed as a circulating biomarker for heart failure (Tijsen,

Creemers, Moerland, de Windt, van der Wal, Kok & Pinto 2010). miRNA

miR-155 has been viewed as a biomarker for early pancreatic neoplasia (Habbe,

Koorstra, Mendell, Offerhaus, Ryu, Feldmann, Mullendore, Goggins, Hong

& Maitra 2009). Table 2.1 shows the dysregulated miRNAs in some diseases.

Several improved methods for the identification of miRNA biomarkers

are urgently needed to decrease the morbidity and mortality caused by other

diseases. miRNAs are frequently dysregulated in cancer and have shown

promise as markers for prostate cancer diagnosis and prognosis. Mitchell et

al. (Mitchell, Parkin, Kroh, Fritz, Wyman, Pogosova-Agadjanyan, Peterson,

Noteboom, O’Briant, Allen et al. 2008) used biological analysis method qRT-

PCR for human plasma and serum samples from healthy donors or patients

with cancer, and discovered that miR-141 (a miRNA expressed in prostate

cancer) can distinguish patients with prostate cancer from healthy controls.

Their results established the measurement of tumour-derived miRNAs in

serum or plasma as a key approach for the blood-based detection of human
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cancers.

Recent evidence has indicated that miRNAs circulate in a stable, cell-

free form in the bloodstream and that an abundance of specific miRNAs in

plasma or serum can serve as biomarkers of cancer and other diseases (Iorio,

Ferracin, Liu, Veronese, Spizzo, Sabbioni, Magri, Pedriali, Fabbri, Campiglio

et al. 2005, Iorio, Visone, Di Leva, Donati, Petrocca, Casalini, Taccioli,

Volinia, Liu, Alder et al. 2007, Dahiya, Sherman-Baust, Wang, Davidson,

Shih, Zhang, Wood III, Becker & Morin 2008, Calin, Dumitru, Shimizu,

Bichi, Zupo, Noch, Aldler, Rattan, Keating, Rai et al. 2002, Lowery, Miller,

McNeill & Kerin 2008). Measurement of circulating miRNAs as biomarkers

is associated with some special challenges, including those related to pre-

analytic variation and data normalisation.

Heneghan et al. (Heneghan, Miller, Lowery, Sweeney & Kerin 2009)

presented a comprehensive and timely review of the role of miRNAs in

cancer: addressing miRNA function, their putative role as oncogenes or

tumour suppressors, with a particular emphasis on breast cancer. They

described the potential role of miRNAs in breast cancer management,

particularly in improving current prognostic tools and achieving the goal

of individualized cancer treatment. Mattie et al. (Mattie, Benz, Bowers,

Sensinger, Wong, Scott, Fedele, Ginzinger, Getts & Haqq 2006) demonstrated

that optimised high-throughput miRNA expression profiling offers novel

biomarker identification from typically small clinical samples such as breast

and prostate cancer biopsies, after the comparison of microarray and qRT-

PCR measured miRNA levels from two different prostate cancers to assess

novel miRNA biomarkers.

2.1.2 Microarray Analysis of miRNA Biomarkers

miRNA profiling of circulating tumour exosomes can potentially be used

as diagnostic markers for biopsy profiling (Taylor & Gercel-Taylor 2008).

miRNA microarray data analysis has revealed the existence of a novel

biomarker for successfully poorly differentiated tumours (Miska, Alvarez-
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Saavedra, Townsend, Yoshii, Šestan, Rakic, Constantine-Paton & Horvitz

2004). For example, Raponi et al. (Raponi et al. 2009) identified miRNA

expression profiles in lung cancer that would better predict prognosis from

61 SCC samples and 10 matched normal lung samples on MirVana miRNA

Bioarrays (version 2, Ambion). Fifteen differentially expressed miRNAs were

identified between the normal lung and the cancerous lung, after comparison

with a previously identified 50-gene prognostic signature. Their results

indicated that miRNAs might have greater clinical utility in predicting the

prognosis of patients with squamous cell lung carcinomas than mRNA-based

signatures.

Lu et al. (Lu et al. 2005) used a new, bead-based flow cytometric

miRNA expression profiling method and presented a systematic expression

analysis of 217 mammalian miRNAs from 334 samples, including multiple

human cancers. They found that the miRNA profiles were surprisingly

informative, reflecting the developmental lineage and differentiation state

of the tumours. They also observed a general down-regulation of miRNAs in

tumours compared with normal tissues.

Furthermore, they successfully classified poorly differentiated tumours

using miRNA expression profiles, whereas messenger RNA profiles were

highly inaccurate when applied to the same samples. These findings

highlighted the potential of miRNA profiling in cancer diagnosis. Meanwhile,

Yang et al. (Yang, Kaur, Volinia, Greshock, Lassus, Hasegawa, Liang,

Leminen, Deng, Smith et al. 2008) performed miRNA microarray to detect

the miRNAs associated with chemotherapy response in ovarian cancer and

found that let-7i expression was significantly reduced in chemotherapy-

resistant patients. In addition, they also validated this result by stem-loop

real-time reverse transcription-PCR.
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Table 2.1: miRNAs with altered expression in malignancy.
Tumour type Increased expression Decreased expression

Breast Cancer miR-21, miR-29b-2 miR-125b, miR-145, miR-10b,

(Iorio et al. 2005, Mattie et al. 2006) miR-155, miR-17-5p, miR-27b

Ovarian Cancer miR-141, miR-200(a-c), let-7f, miR-140, miR-145,

(Iorio et al. 2007, Dahiya et al. 2008) miR-221 miR199a, miR-424

CLL (Calin et al. 2002) miR-15, miR-16

Hepatocellular miR-18, miR-224 miR-199a, miR-195, miR-200a,

(Iorio et al. 2005, Lowery et al. 2008) miR-125a

Pancreatic miR-221, miR-376a, miR-375

(Lu et al. 2005, Lowery et al. 2008) miR-24, miR-100,

miR-103, miR-107,

miR-301,miR-21,

miR-125b

Prostate (Lu et al. 2005) let-7d, miR-195, miR-128a

miR-203

Gastric miR-223, miR-21, miR-218-2

(Lowery et al. 2008, Lu et al. 2005) miR-103

Lung miR-17-92 cluster, let-7 family

(Lu et al. 2005, Lowery et al. 2008) miR-17-5p
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2.2 miRNA-mRNA Regulatory Modules

As introduced in Section 1.2, miRNAs are widely believed to regulate

complementary mRNA targets and miRNA-mRNA regulatory modules are

important to understand human deseases.

2.2.1 Existing Databases Based on Sequence Data

After the significant miRNA-mRNA regulatory relationship discovery, elucidating

closely related miRNAs and mRNAs may be viewed as an essential first

step towards the discovery of their combinatorial effects on understanding

complex cellular systems. In the meantime, in order to predict miRNAs’

target mRNAs by their binding sequence information, at present, some

databases are publicly available and commonly used to predict miRNA

targets, such as such as TargetScan (Lewis, Shih, Jones-Rhoades, Bartel &

Burge 2003), TargetScanS (Lewis, Burge & Bartel 2005a), miRanda (John,

Enright, Aravin, Tuschl, Sander & Marks 2004),RNAhybrid (Rehmsmeier,

Steffen, Höchsmann & Giegerich 2004), PicTar (Krek, Grün, Poy, Wolf,

Rosenberg, Epstein, MacMenamin, da Piedade, Gunsalus, Stoffel et al. 2005),

and DIAN-AmicroT (Kiriakidou, Nelson, Kouranov, Fitziev, Bouyioukos,

Mourelatos & Hatzigeorgiou 2004), etc.

All the predicted and experimentally confirmed databases are shown

in appendix Table A.1 (Agarwal, Bell, Nam & Bartel 2015, Wong &

Wang 2014, Krek et al. 2005, Lewis, Burge & Bartel 2005b, Rehmsmeier et al.

2004, Betel, Wilson, Gabow, Marks & Sander 2008, Griffiths-Jones, Grocock,

Van Dongen, Bateman & Enright 2006, Maragkakis, Reczko, Simossis,

Alexiou, Papadopoulos, Dalamagas, Giannopoulos, Goumas, Koukis, Kourtis

et al. 2009, Kertesz, Iovino, Unnerstall, Gaul & Segal 2007, Huang, Babak,

Corson, Chua, Khan, Gallie, Hughes, Blencowe, Frey & Morris 2007,

Miranda, Huynh, Tay, Ang, Tam, Thomson, Lim & Rigoutsos 2006, Liu,

Yue, Chen, Gao & Huang 2010, Sturm, Hackenberg, Langenberger &

Frishman 2010, Yousef, Jung, Kossenkov, Showe & Showe 2007, Vejnar &
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Zdobnov 2012, Wang, Ning, Wang, Li, Ye, Zhao, Li, Huang & Li 2013)

. These methods can be divided into three main categories: (1) rule-based

algorithms which use expression level data and data-driven algorithms. Rule-

based algorithms are those that filter the result of their prediction according

to a set of rules which are driven from biological evidence. (2) Algorithms

which use expression level data of miRNAs and target mRNAs. (3)

Data-driven algorithms are computational methods which apply knowledge

discovery techniques in order to predict the potential mRNA target for a

miRNA.

Rule Based Algorithms

These algorithms consist of a set of defined rules which are tested for each

given target. Each rule is an evidence that can contribute to a target gene

transcript being labelled as a potential target. The most common rules used

in these algorithms are: the seed match condition, minimum free energy and

conservation ratio. These algorithms are usually proceeded by testing the

rules in a specific order. Since testing a rule is a filtering step, the order of

testing the rules affects the performance of the algorithms. These algorithms

also perform post filtering steps which might include:

• Number of total base pairs cut off: if the number of matched nucleotides

on predicted target mRNA is less than a cut off, the prediction will be

discarded.

• Gap permission: if the number of gaps on the predicted binding site is

more than a cut off, the prediction will be discarded.

• Bulge permission: if the bulge size is longer than a specific length, the

prediction will be discarded.

• Binding region filtering: if the predicted binding site is not located in

the 3’ region of the target transcript, the prediction will be discarded.
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• Conservation level cut off: if the predicted binding site is not highly

conserved, the prediction will be discarded.

The most famous rule based algorithms are reviewed for examples in the

following subsections.

TargetScan The TargetScan (http://www.targetscan.org/) predicts

biological targets of miRNAs by searching for the presence of conserved 8mer

and 7mer sites that match the seed region of each miRNA (Lewis et al. 2005b).

As an option, non-conserved sites are also predicted. Also identified are sites

with mismatches in the seed region that are compensated by conserved 3’

pairing (Friedman, Farh, Burge & Bartel 2009a). Conserved targetting has

also been detected within open reading frames (ORFs).

In the TargetScan algorithm, there are different types of target sites for a

given miRNA seed region including 6mer, 7mer-m8, 7mer-1A and 8mer with

the following definitions:

• 6mer: An exact match to position 2-7 of the mature miRNA

• 7mer-m8: An exact match to positions 2-8 of the mature miRNA (the

seed + position 8)

• 7mer-1A: An exact match to positions 2-7 of the mature miRNA (the

seed) followed by an ‘A’

• 8mer: An exact match to positions 1-8 of the mature miRNA

Each binding site has a different binding stability ranked as 8mer>7mer-

1A>7mer-m8>6mer. Each seed region match is given a score according to

the type of binding site which corresponds to a target site type. The next

step in the algorithm is to find the conservation ratio of the candidate sites.

TargetScan has three different conservation definitions for binding site

including poorly conserved, conserved and broadly conserved. If the

candidate site on the target mRNA sequence is conserved across most

vertebrates, it is labelled as highly conserved. If it is conserved across

26



Chapter 2. Related Work

most mammals but usually not beyond placental mammals, it is labelled

as conserved and if it is not in any of these categories, then it is considered

as poorly conserved.

The final step of the TargetScan algorithm is to look for the match

score of the 3’ region of miRNA and the candidate binding sites. Those

candidate sites which do not form a strong binding between the rest of the

miRNA and the candidate sites on the mRNA are discarded. This step

is mainly governed by RNAfold (Hofacker, Fontana, Stadler, Bonhoeffer,

Tacker & Schuster 1994). RNAfold calculates the thermodynamic stability

score resulting from interaction between two strands of RNA. The candidate

binding sites are then scored according to the thermodynamic cut-off value

of each site and finally a list of potential target mRNAs is generated and

sent to the output.

DIANA-microT miRNAs binding to the target mRNA is usually governed

by seed region which is located at the 5’ end of miRNA. In some cases, the

miRNA does not form a strong binding on its 5’ region, but it has a strong

base pairing on its 3’ region.

DIANA-microT is a human miRNA target prediction tool with the aim

of addressing the necessity for a strong binding at 3’ end of miRNA when 5’

seed pairing is not strong. This approach also considers target sites which

have only one binding site and it is an advantage compared to the previous

works, because it is independent of strong miRNA seed region base pairing.

It exploits the experimental deduction of rules governing miRNA-mRNA

binding site. This method considers both conserved and non-conserved

binding sites.

This algorithm is dependent on a set of five conditions which should be

satisfied in order to have a binding accepted as a potential target:

• if three consecutive Watson-Crick (WC) matches exist.

• if the free energy is lower than a user defined threshold. The normal

cut off value for free energy is 20.
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• if from z1 to z10 (position one to ten on the miRNA sequence), there

are more than seven WC matches or G-U matches.

• if from z8 to z15, there exists at least one loop or bulge and it should

be either two to five nucleotides long if on the miRNA side or six to

nine nucleotides long if on the mRNA side.

• if from z15 to z22, there are more than five WC or G-U matches

and there exists at most a single-nucleotide or dinucleotide bulge, and

provided that it is surrounded by two or three base-paring, respectively.

Algorithms Using Expression Level Data

Algorithms in this category are highly dependent on expression profiles of

miRNAs and mRNAs. Gene expression profiling refers to the process of

measuring the activity level of a selected group of genes in a cell or a tissue

(Black, Falzon & Aronson 2012).

In this category, GenMiR and GenMiR++ are worth mentioning (Huang

et al. 2007). GenMiR++ is a Bayesian belief network algorithm which uses

expression profile of mRNA and miRNA. In conjunction to a gene expression

profile, this method requires a candidate binding site predicted by a target

prediction algorithm using sequence analysis, such as TargetScan.

The method then filters the given prediction list and predicts those

miRNA::mRNA interactions which are closer to reality according to each

miRNA expression profile and the expression level of the predicted mRNA

by the given input, i.e. the TargetScan list of prediction.

This method considers the fact that mRNAs share a common background

expression level in a given tissue. Then it assumes that the regulation

level of mRNAs in that tissue is the linear combinatory effect of regulatory

miRNAs. GenMiR++ formulates these assumptions using a Gaussian

likelihood function which aims to score the given input predictions.

This method was applied to the expression profile data of 151 human

miRNAs and 16,063 mRNAs of 88 tissue samples. The input was a list of
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114 miRNAs and 890 mRNAs predicted by TargetScanS.

This method identified 1,597 target pairs for given miRNAs on a given

list of prediction by TargetScanS with high confidence. One of the miRNAs

in the list of 104 miRNAs was a well known miRNA, let-7b which is a well

known miRNA. TargetScanS predicts 34 mRNAs to be putative targets of

let-7b. GenMiR++ predicted 12 mRNA out of that 34 mRNAs to be let-7b

targets with high confidence.

Experimental validation of the 12 prediction showed that five mRNAs

are actually putative targets of let-7b and among the other 22 TargetScanS

predictions, only two of them were true targets of let-7b. This method

demonstrates an increase in prediction specificity, with a small decrease of

sensitivity. The main problem with this method is the fact that its prediction

list is limited to the input list which comes from other prediction methods.

Data Driven Algorithms

Most currently available miRNA target prediction tools are rule based.

Almost all of these methods are dependent on either the presence of the

seed region, high rate of conservation in the target site or the accessibility of

the binding site based on the predicted structure of target mRNA. Recently

however, it has been shown that this level of constraint can lead to a

substantial number of missed potential targets. In contrast, data driven tools

do not suffer from this rigid filtering of potential targets. In the following

pages, machine learning based methods for miRNA target prediction will be

reviewed.

PicTar Krek et al. (Krek et al. 2005) presented PicTar, a computational

method for identifying common targets of miRNAs. PicTar is based on

sequence conservation and seed region in the framework of a Hidden Markov

Model (HMM).

The PicTar algorithm starts by looking for the perfect seed region match

of the given miRNA in all conserved 3’ region sequences, using RNAHybrid,
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the algorithm calculates the minimal free energy (MFE) of the candidate

binding sites. If the cut-off value is less than a given value, that binding site

is removed from the list of candidate binding sites. If the number of binding

sites on each candidate 3’ UTR is less than a specific value, that 3’ UTR is

removed from the list of candidate 3’ UTRs.

The PicTar algorithm then proceeds by modelling the fact that the same

3’ UTR can be targetted by multiple miRNAs. This is done by building the

HMM. The log ratio of HMM probability in the process of this modeling is

finally used to score the 3’ UTRs. These 3’ sequences which have a score of

more than a given cut-off are introduced as a prediction list of PicTar for the

given miRNA.

For statistical tests using genome-wide alignments of eight vertebrate

genomes, PicTar is able to specifically recover published miRNA targets, and

experimental validation of seven predicted targets. PicTar has an excellent

success rate in predicting targets for single miRNAs and for combinations of

miRNAs.

miRDB miRDB (http://mirdb.org/miRDB/) is another popular online

database for miRNA target prediction and functional annotations. MirTarget2

is an SVM based miRNA target prediction which is based on microarray

data taken from two different cell lines. All the targets are predicted by a

bioinformatics tool MirTarget2, which was developed by analysing thousands

of genes impacted by miRNAs with an SVM learning machine (Wang 2008).

Common features associated with miRNA target binding have been

identified and used to predict miRNA targets. miRDB hosts predicted

miRNA targets in five species: human, mouse, rat, dog and chicken (Wang

& El Naqa 2008).

In generating the training set, a gene is defined as a positive target if the

expression fold change is reduced by at least 40% with a value of less than

0.001 in both cell lines, or it is a negative target if it has a fold change of 95

to 120% with a value bigger than 0.3 in both cell lines. The feature vector
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used in this method is built of 113 features for a miRNA and target site.

The conservation ratio of seed region of miRNA is also considered as one

of the features. Human mRNAs orthologs in dog, chicken, rat and mouse are

analysed to identify the seed match conservation ratio.

Seven features are derived from binding site accessibility and the location

of the binding site and finally, six seed match type features are defined as

a binding site type. For those mRNAs which have multiple binding sites, a

scoring system is defined to assign a score to transcripts with multiple binding

locations. The following formula calculates the score for each transcript:

s = 100∗(1−
n∏

i=1

Pi) where n represents the number of candidate binding sites,

and Pi is the statistical significant P-value for each candidate site estimated

by the support vector machine (SVM). Applying this method reveals that

more than half of the binding sites available in the literature are not conserved

in other species.

The main problem with this method is ignoring the possibility of the

expression of candidate targets in other cell types since the backbone of this

method disregards the expression profile of other types of cells. Given the

fact that not all genes are expressed in all cells, the identified targets of this

method might not be functional since they might not be available in other

cell lines.
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2.2.2 Disadvantages of miRNA Target Prediction

It has been shown that 70% of computationally predicted miRNA targets

are false positives. Current miRNA target predictions are also based on

seed match region, evolutionary conversation, thermodynamic features or a

combination of these components.

As reviewed, some of miRNA target prediction methods are based

on a combination of different miRNA target prediction methods. This

combinatory prediction is also limited to all limitations of those tools which

form the main method. Those prediction tools which take other prediction

algorithms as their input are also limited to the constraints of their input.

To summarise, the main disadvantages of the reviewed miRNA target

prediction tools are shown as follows:

• high numbers of false positive and false negative predictions.

• lack of prediction tools for target mRNAs which are expressed in

specific cells

• lack of prediction tools for miRNAs which are expressed in specific cells

• rigid filtering rules which result in discarding potential targets

• seed region condition dependency

• across-species conservation dependency

• lack of predictions for not well known miRNAs

• lack of considering for biological information.

2.2.3 Computational Methods for Discovering miRNA-

mRNA Regulation

At the initial stages of identifying miRNA targets, the near-perfect complementarity

was adopted to predict miRNA targets for plant model species in which
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the genome sequences had been encoded, such as in Arabidopsis (Rhoades,

Reinhart, Lim, Burge, Bartel & Bartel 2002).However, after more genome

sequences became available and a better understanding of the pairing

requirements between miRNAs and their targets was acquired, it was found

that some criteria in the prediction of miRNA targets can be relaxed without

sacrifice of specificity (Kong & Han 2005).

Later, numerous computational software programs were developed to

predict miRNA targets in other animal and plant species (Lewis et al. 2003,

Lewis et al. 2005a, John et al. 2004, Rehmsmeier et al. 2004, Kiriakidou

et al. 2004). All these approaches have been successfully used to identify

miRNA-mRNA regulatory modules in various human diseases.

Analogous to transcriptional regulation, most miRNAs fine tune the

expression of hundreds of genes in a combinatorial manner (Bartel 2004a).

This combinatorial regulation manifests in at least two layers below:

• Several miRNAs have been found to regulate a single mRNA target

through targetting the same mRNA transcript 3’ UTR or even in

combination with targetting in coding sequence (He & Hannon 2004).

• A cluster of miRNAs, which often co-expressed, could regulate functionally

related proteins (Dews, Homayouni, Yu, Murphy, Sevignani, Wentzel,

Furth, Lee, Enders, Mendell et al. 2006). Xu et al. (Xu & Wong 2008)

provided experimental evidence that one miRNA cluster, targets three

genes located in the insulin signaling pathway.

Causality Discovery-Based Methods

All of the above experimental and computational evidence demonstrated

that coordinate regulation by miRNAs is a flexible and efficient strategy to

regulate cellular processes in a conditional or tissue-specific manner (Bartel

2004b). Thus, it is important to develop novel computational methods that

explicitly capture miRNA-mRNA regulatory modules.

To investigate the influence of miRNAs on transcript levels, Lim et
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al. (Lim, Lau, Garrett-Engele, Grimson, Schelter, Castle, Bartel, Linsley &

Johnson 2005) transfected miRNAs into human cells and used microarrays to

examine changes in the mRNA profile. They found that conveying miR-124

caused the expression profile to shift towards that of the brain, the organ

in which miR-124 was preferentially expressed, whereas delivering miR-1

shifted the profile towards that of the muscle, where miR-1 was preferentially

expressed. In each case, about 100 messages were down-regulated after 12h.

The 3’ untranslated regions of these messages had a significant propensity to

pair to the 5’ region of the miRNA, as expected if many of these messages

were the direct targets of the miRNAs. Their results suggested that metazoan

miRNAs can reduce the levels of many of their target transcripts, not just

the amount of protein deriving from these transcripts. Moreover, miR-1 and

miR-124, and presumably other tissue-specific miRNAs, seemed to down-

regulate a far greater number of targets than previously appreciated, thereby

helping to define tissue-specific gene expression in humans.

An increasing number of researchers proposed some computational

methods on this issue. Joung et al. (Joung, Hwang, Nam, Kim & Zhang 2007)

developed a computational method based on probabilistic learning to detect

the miRNA-mRNA modules from paired miRNAs and mRNAs expression

profiles and binding information. Their results provided a primary source of

miRNA and target sets presumed to constitute closely related parts of gene

regulatory pathways.

Bayesian networks (Pearl 1988) have also been adopted by many research

groups (Liu, Liu, Tsykin, Goodall, Green, Zhu, Kim & Li 2010, Peng,

Li, Walters, Rosenzweig, Lederer, Aicher, Proll & Katze 2009) to detect

novel miRNA-mRNA modules. For instance, the Bayesian network learning

algorithm was used to search all possible networks and a scoring function

based on observational data was used to score each graph. In this work,

they assumed that there was a bipartite of interactions between the group of

miRNAs and the group of mRNAs. The novelty factor in terms of this study

is that the authors used target information to restrict the search space for
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the computational expensive Bayesian network learning algorithm.

Liu et al. (Liu, Liu, Tsykin, Goodall, Green, Zhu, Kim & Li 2010)

presented the correspondence latent dirichlet allocation graphic model to

discover functional miRNA regulatory modules at potential biological levels

by integrating heterogeneous data sets, including expression profiles of

miRNAs and mRNAs, with or without the prior target binding information.

They applied this model to a mouse mammary data set and captured

several biological process specific modules involving miRNAs and their target

mRNAs. Their results showed that expression profiles were crucial for both

target identification and discovery of regulatory modules.

Another causality discovery-based method was presented by Le et al. (Le,

Liu, Tsykin, Goodall, Liu, Sun & Li 2013) to uncover the causal regulatory

relationship between miRNAs and mRNAs without the previous target

binding information. This method firstly used do-calculus (Pearl 2003) to

estimate the causal effects of a variable on the other variables based on

observational data. The estimated causal effects simulated the effects of

randomised controlled experiments. The method tackled two drawbacks

of current miRNA regulatory relationships research. Firstly, the method

discovered causal relationships between miRNAs and mRNAs, not just the

statistical relationships. Secondly, the method assumed that miRNAs and

mRNAs interact with each other in a complex system; for instance, a miRNA

can causally regulate mRNAs as well as other miRNAs. This assumption is

more reasonable than the assumption from commonly used approaches that

considers only the bipartite of interactions between miRNAs and mRNAs.

Differential Analyses

To understand the causes of a disease, it often requires analysing the

differences between normal and disease samples. For example, differentially

co-expressed genes differ significantly between disease and control samples.

It is very important to identify the differences in the gene regulatory networks

between diseases and healthy conditions.
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For this purpose, researchers discovered miRNA activity changes in two

biological conditions. Highlights in this direction, are miReduce (Sood,

Krek, Zavolan, Macino & Rajewsky 2006), DIANA-mirExTra (Alexiou,

Maragkakis, Papadopoulos, Simmosis, Zhang & Hatzigeorgiou 2010), Sylamer (van

Dongen, Abreu-Goodger & Enright 2008) and MIR (Cheng, Li et al. 2008).

These methods firstly inferred the differences in gene expression levels in the

two biological conditions, then correlated those alterations with the miRNA

binding motifs that are predicted based on sequence data.

A method named mirAct (Liang, Zhou, He, Zheng & Wu 2011) was used

to explore the miRNA activity in a sample and then to analyse the overall

behaviour of miRNA activity in samples with different biological conditions.

Another method called DICER was proposed to detect differential co-

expression in disease and control samples (Amar, Safer & Shamir 2013). They

hypothesised that changes in co-expression may be the result of changes in

regulatory patterns, and thus the discovered differential co-expression may be

the target of specific miRNA families. To test the approach, they identified

miRNA families whose targets are enriched in the gene groups detected by

their method, and tested whether those miRNAs are associated with some

diseases.

Integrating Heterogeneous Data Sources

In order to know the modular organisation of the regulatory networks,

researchers try to search for a set of miRNAs and their co-regulated genes

by integrating heterogeneous data sources, such as sequence data, protein-

protein interaction and DNA-protein interaction networks.

Zhang et al. (Zhang, Li, Liu & Zhou 2011) proposed an effective

computational framework to identify the miRNA-gene regulatory modules

by integrating miRNA target predictions based on sequence data, miRNA

and gene expression profiles, protein-protein interaction and DNA-protein

interaction networks. In their work, sequence-based miRNA target predictions

were considered as a static prior network, and expression profiles were
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subsequently used to identify the active miRNA-gene interactions. These

active interactions were further refined by the gene-gene interaction networks

(protein-protein and DNA-protein networks). Applied to the human ovarian

cancer samples from The Cancer Genome Atlas (TCGA), the method

discovered several miRNA gene regulatory modules. The results were then

validated against the miRNA cluster from miRBase (http:// www.mirbase.org/),

and the mRNAs were validated using gene functional enrichment analysis.

Similarly, Le et al. (Le & Bar-Joseph 2013) developed the Protein

Interaction-based miRNAModules (PIMiM), a regression-based probabilistic

method to integrate sequence, expression and interaction data for detecting

modules of mRNAs controlled by small sets of miRNAs for a specific

condition. The authors firstly used a regression model to connect the

express data of miRNAs and mRNAs and assumed that the expression

level of an mRNA can be represented as a linear function of expression

profiles of all predicted miRNAs. The predicted miRNA regulators for an

mRNA were taken from sequence-based prediction databases. To interact

miRNAs and mRNAs into a module, they designed a new target function

to measure the strength of the predicted miRNAmRNA interactions based

on the information from miRNA target information and protein-protein

interactions. Specifically, the assigned function was based on the logistic-

sigmoid function with parameters to adjust the contributions of the two

types of interaction data. The higher the probabilities of interactions are,

the more chances the interacting entities are assigned into the same module.

The method was applied to a number of different types of cancer data sets

from TCGA to explore the regulators (miRNAs) that are common for all

cancer types and the specific active regulators for each cancer type. The

results were then validated against knowledge from literature and by gene

functional enrichment analysis.

Li et al. (Li, Zhang, Liu & Zhou 2012) developed a method called

sparse Multi-Block Partial Least Squares (MBPLS) regression method to

integrate multiple data sources, including copy number variation (CNV),
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DNA methylation (DM), gene expression (GE) and miRNA expression

(ME) for detecting multi-layer gene regulatory modules. This method

was employed to identify multi-dimensional regulatory modules from the

data. The assumption was that CNV, DM and ME all regulated the gene

expression. The method projected each data type into a summary vector,

and maximised the covariance between the summary vectors of source data

(CNV, DM,ME) and the response data (GE). Finally, it used the weighted

sum of the summary vectors of source data to represent the unique input

source data, and again maximised the covariance between the input data

and the response data. The method was tested on simulated data as well

as the ovarian cancer data sets from TCGA and was capable of identifying

the modules that have significant functional and transcriptional enrichments.

The results predicted from this method proved to be better than the results

from those methods that only use one type of data.

Peng et al. (Peng et al. 2009) simultaneously profiled the expression of

cellular miRNAs and mRNAs across 30 HCV positive or negative human liver

biopsy samples using microarray technology. They constructed a miRNA-

mRNA regulatory network, and using a graph theoretical approach, identified

38 miRNA-mRNA regulatory modules in the network that were associated

with HCV infection. They evaluated the direct miRNA regulation of the

mRNA levels of targets in regulatory modules using previously published

miRNA transfection data, and analysed the functional roles of individual

modules at the systems level by integrating a large-scale protein interaction

network. Finally, they found that various biological processes, including

some HCV infection related canonical pathways, were regulated at the

miRNA level during HCV infection. Their results provide new insights into

post-transcriptional gene regulation at the miRNA level in complex human

diseases.

38



Chapter 2. Related Work

2.3 Co-regulation miRNA Network

miRNAs are widely believed to regulate complementary mRNA targets. Co-

regulation analysis of multiple miRNAs is useful for understanding complex

post-transcriptional regulations in humans (Baumjohann & Ansel 2013, Guo,

Zhao, Yang, Zhang & Chen 2014). Complex diseases are associated with

several miRNAs rather than a single miRNA. It is still a challenging work to

discover co-regulation miRNAs at a system level.

In 2004, Lai et al. (Lai, Wiel & Rubin 2004) found that miRNAs

regulated non-mRNA targets, namely other miRNAs, by conducting a

systematic assessment of the nearly complete catalogs of animal miRNAs.

One of the earliest studies on miRNA pair co-regulation is conducted by

Enright et al. (Enright, John, Gaul, Tuschl, Sander, Marks et al. 2004) for

understanding the co-regulation between lin-4 and let-7 in Drosophila.

With the huge amount of expression data publicly available, newer

methods have been proposed to investigate the problems of co-regulating

miRNAs (Migliore & Giordano 2009, Boross, Orosz & Farkas 2009, An, Choi,

Wells & Chen 2010). For example, Boross (Boross et al. 2009) proposed

to construct a miRNA co-regulation network by computing the correlations

between the gene silencing scores of individual miRNAs.

Since most of these studies take only the expression data of miRNAs

and mRNAs without biological function analysis (Guo, Ingolia, Weissman &

Bartel 2010), some true targets of these miRNAs may be ignored and some

false targets may be included. One possible reason is that those miRNAs

have been shown to reduce protein levels without the concomitant change in

mRNA levels (Lee, Samaco, Gatchel, Thaller, Orr & Zoghbi 2008), and the

mRNAs may be regulated at tissue specific levels (Guo, Maki, Ding, Yang,

Xiong et al. 2014).

Yoon et al. (Yoon & De Micheli 2005a) considered GO information and

proposed a biclique-based method to detect co-regulating groups of miRNAs

and mRNAs. However, the heuristic nature of that method can lead to

those miRNAs or genes being missed even when they have a high probability
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of co-regulation. Recently, it has been found that interacting proteins are

often regulated by similar miRNA types (Yuan, Liu, Yang, He, Liao, Kang

& Zhao 2009, Liang & Li 2007). This suggests that clustered miRNAs can

jointly regulate the proteins which are close to each other within a protein

interaction network (Hsu, Juan & Huang 2008).

The cumulative hypergeometric statistical test devised by Shalgi et

al. (Shalgi, Lieber, Oren & Pilpel 2007) was used to identify miRNA pairs

that showed a high rate of co-occurrence in 3’-UTRs of the same target genes.

Zhou et al. (Zhou, Ferguson, Chang & Kluger 2007) used statistical

association (interaction) measures to quantify the significance and size of the

overlap between the sets of predicted targets of miRNA pairs. They used the

p-values and q-values from Fisher’s Exact Test to evaluate the significance

of the overlap and found miRNA pairs were substantially abundant.

Signal-to-noise ratio was used by An et al. (An et al. 2010) to get high

accurate regulating miRNAs for all genes. A sequence of statistical tests was

then used to identify highly co-regulating miRNAs and the corresponding

co-regulated gene groups.

DIANA-mirPath was developed to identify molecular pathways potentially

altered by the expression of single or multiple miRNAs. This method

considers the combinatorial effect of co-expressed miRNAs in the modulation

of a given pathway (Papadopoulos, Alexiou, Maragkakis, Reczko & Hatzigeorgiou

2009).

Xiao et al. (Xiao, Ma, Zhu, Sun, Yin & Feng 2015) constructed the

miRNA-miRNA co-regulated network to identify miRNA or target genes

involved in cerebral injury caused by stroke, and to search out the associated

biological processes, especially inflammation.

All these studies have demonstrated the importance of the miRNA-

miRNA co-regulating network.
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2.4 miRNA-TF Co-regulatory Networks

At the transcription level, TFs are believed to be the main gene regulators.

TFs are fundamental players of gene expression regulation: they activate the

transcription of both coding and non-coding genes (Vaquerizas, Kummerfeld,

Teichmann & Luscombe 2009). Many experimental and computational

methods have been developed to discover the regulatory mechanisms of these

types of regulators.

On the other hand, miRNAs have been known to be the main gene

regulators at the post-transcriptional level. They degrade target mRNAs or

more often inhibit their translation, and function by binding to the RNA (He

& Hannon 2004).

miRNAs are quite short in length, and the gene regulatory region of

a miRNA is small in size, compared with a TF. Both TFs and miRNAs

can regulate multiple target genes simultaneously, and target genes can be

regulated by both multiple TFs and miRNAs cooperatively.

Because the predicted target of miRNAs contains many transcription

factors (Hobert 2008a), linking the TF target genes (including miRNAs, other

TFs, or other genes) with the miRNA target genes (including TFs and other

genes) can provide a global insight into the gene regulation network. In

addition, a unified picture of the regulatory relationships of the two main

regulators and target genes can provide useful insights into the causes of

diseases.

Analysis of the properties of these networks can elucidate the designing

principle and provide an understanding of regulatory networks (Milo, Shen-

Orr, Itzkovitz, Kashtan, Chklovskii & Alon 2002). The combined regulations

of miRNAs and TFs are important but difficult to explore, as miRNAs and

TFs can regulate each other in addition to regulating target genes.

Recently, some studies constructed the gene regulatory networks with

the presence of both miRNAs and TFs. They employed sequence data and

expression data for learning the complex regulatory network.
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2.4.1 Sequence-Based Methods

A common framework for exploring miRNA-TF co-regulatory relationships

is to integrate the putative target information of both TFs and miRNAs to

obtain an interaction network with the three components, miRNAs, TFs and

mRNAs. Researchers inferred gene regulation knowledge from the combined

network by using statistical tests, network inference algorithms or gene

functional enrichment analyses (Fazi, Rosa, Fatica, Gelmetti, De Marchis,

Nervi & Bozzoni 2005, Guo, Xie, Fei & Chua 2005, Le Béchec, Portales-

Casamar, Vetter, Moes, Zindy, Saumet, Arenillas, Theillet, Wasserman,

Lecellier et al. 2011, Yang, Li, Jiang, Zhou & Qu 2013).

Predicted Databases

Some predicted databases are provided for identifying miRNA and TF shared

targets, and network motifs involving miRNAs and TFs and known pathways.

Fazi et al. discovered that human granulocytic differentiation was controlled

by a regulatory circuitry involving miR-223 and two transcriptional factors,

NFI-A and C/EBP (Fazi et al. 2005). The target genes of Oncogenic

miR-27a were able to regulate specifical protein transcription factors and

the G2-M checkpoint in MDA-MB-231 breast cancer cells (Mertens-Talcott,

Chintharlapalli, Li & Safe 2007). The auxin induction of miR164 has

been proved to provide a homeostatic mechanism to clear NAC1 mRNA

to downregulate auxin signals (Guo et al. 2005).

ChIPBase Yang et al. (Yang, Li, Jiang, Zhou & Qu 2013) developed a web

tool called ChIPBase for miRNA-TF co-regulation analysis. The web tool is

available at http://deepbase.sysu.edu.cn/chipbase/tfmiRtargetNetworks.

php. They developed ChIPBase to facilitate the integrative and interactive

display, as well as the comprehensive annotation and discovery of TF-

miRNA interaction maps from ChIP-Seq data that were generated from

diverse tissues and cell lines from six organisms: human, mouse, dog,

chicken,Drosophila melanogaster and Caenorhabditis elegans. ChIPBase

42



Chapter 2. Related Work

contains tens of thousands of TF-miRNA regulatory relationships. Users

can select a miRNA target to see TF-miRNA, miRNA-target and TF-target

networks.

MIR@NT@N Le et al. (Le Béchec et al. 2011) constructed a regulatory

network by integrating available target prediction databases for both TFs

and miRNAs. They have provided a web resource called MIR@NT@N

for facilitating the retrieval of regulatory relationships and network motifs.

MIR@NT@N is a user-friendly web resource freely available at http://?

mironton.?uni.?lu. Users can explore the shared targets of miRNAs and

TFs, and query a list of Feed-Forward Loops (FFLs) and Feed-Back Loops

(FBLs) that involve miRNAs and TFs.

Depending on Shared Downstream Targets

Shalgi et al. (Shalgi et al. 2007) built the network by involving miRNAs, TFs

and mRNAs using sequence data. They used evolutionary conserved binding

sites of miRNA targets to construct the interactions between miRNAs

and genes (including TFs). Meanwhile, conserved binding sites of TFs in

promoters were used to uncover the interactions between TFs and mRNAs

and the interactions between TFs and miRNAs. The combined network was

then analysed to identify the shared targets of the regulators. It was found

that the hub of interactions is usually TFs and it was discovered that some

network motifs that involve miRNAs, TFs and mRNAs.

Zhou et al. (Zhou et al. 2007) used PicTar as the miRNA targets and

Transfac as TF targets to build the network of miRNAs, mRNAs and TFs.

They then used Fisher’s Exact Test to measure the significance of the shared

targets between the regulators, and to remove the insignificant co-regulating

interactions that occurred by chance. They found that the shared targets

of TF pairs and miRNA pairs were much more abundant than those of TF-

miRNA pairs, and that the shared targets in feed-forward loops with TF

playing as a master regulator were more statistically significant than other
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types and feed-forward loops.

Martinez et al. used a yeast one-hybrid system to identify TFs that were

bound to miRNA promoters in C. elegans (Martinez, Ow, Barrasa, Hammell,

Sequerra, Doucette-Stamm, Roth, Ambros & Walhout 2008). They found

a total of 347 high-confidence interactions between 63 miRNA promoters

and 116 proteins. They then combined this regulation relationship with the

computationally predicted miRNA→TF interactions. They found a total of

23 miRNA↔TF composite feedback loops in which a TF and a miRNA were

mutually regulated.

Yu et al. (Yu, Lin, Zack, Mendell & Qian 2008) found that one specific

regulated feedback loop (two TFs regulate each other and one miRNA

regulates both of the two TFs), feed-forward loop motifs (one miRNA targets

both a TF and the regulating gene of that TF), and significant pairs (one

TF and one miRNA target the same gene) were the top three significantly

over-represented network motifs.

A rule-based method was proposed by Tran et al. (Tran, Satou, Ho &

Pham 2010) to discover the gene regulatory modules that consist of miRNAs,

TFs and their target genes based on the available predicted target binding

information. The authors analysed the regulatory associations among the

sets of predicted miRNAs and sets of TFs on the sets of regulated genes

produced by them in the human genome, and validated these modules with

the GO and the literature. The results showed that their method allows

them to detect functionally-correlated gene regulatory modules involved in

specific biological processes.

Chen et al. (Chen, Chen, Fuh, Juan & Huang 2011) proposed a novel

framework utilising gene functional enrichment analysis to identify the

significant co-regulatory relationships. They also used target information

to construct the co-regulation network as the first step. The authors then

applied GO for gene functional enrichment analysis of the shared target genes

to find the functional profiles for these co-regulation pairs. To calculate the

significant levels of the shared targets, they compare their method with the
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randomly pick method and use the hypergeometric distribution to calculate

the P-values of the findings. It was found that some biological processes

emerged only in co-regulation and that the disruption of co-regulation might

be closely related to cancers, suggesting the importance of the co-regulation

of miRNAs and TFs in many biological processes.

The most prominent feature in terms of the above methods is their

employment of sequence-based putative target information. However, the

networks constructed from sequence-based methods involve a high rate of

false negative and false positive. Therefore these methods only begin to

explore the complex relationships between the three components, miRNAs,

TFs and mRNAs. It would be ideal if expression data or other data could

be incorporated to refine the discoveries.

2.4.2 Methods Using Expression Data and Other Data

Many modules are developed to identify and characterise TF-mRNA-miRNA

networks that incorporate GE into the studies (Chen & Rajewsky 2007, Sun,

Gong, Purow & Zhao 2012, Le, Liu, Liu, Tsykin, Goodall, Satou & Li 2013).

These methods firstly use sequence-based target prediction to initialise the

network. Then, the expression data are used to refine the findings.

Chen & Rajewsky (Chen & Rajewsky 2007) compared the evolution

of transcriptional regulation and post-transcriptional regulation that was

mediated by miRNAs, focusing on the evolution of the individual regulators

and their binding sites. As an initial step towards integrating these

mechanisms into a unified framework, they proposed a simple model that

describes the transcriptional regulation of new miRNA genes.

Gene regulatory factors that control the expression of genomic information

come in a variety of flavours, with transcription factors and miRNAs

representing the most numerous gene regulatory factors in multicellular

genomes.

Sun et al. (Sun et al. 2012) proposed a network-based approach to uncover

miRNA and TF regulatory networks in Glioblastoma (GBM). They firstly
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filtered the miRNAs, TFs and genes related to GBM based on the literature.

Then, they integrated the target prediction of miRNA and TF based on

sequence data; after that, the gene expression data was used to infer gene-

gene interactions by assuming that the interaction occurs when interacting

genes are co-expressed. The authors then inferred 3-node FFL and 4-

node motifs, which involved statistically significant miRNA-TF interactions.

These motifs were integrated into a GBM-specific miRNA-TF mediated

regulatory network. The authors then conducted signalling pathway and

gene functional enrichment analyses to validate the results.

Le et al. (Le, Liu, Liu, Tsykin, Goodall, Satou & Li 2013) designed

a framework of Bayesian network structure learning to construct gene

regulatory networks involving both TFs and miRNAs from multiple sources

of data, including gene expression profiles of miRNAs, TFs and mRNAs,

target information based on sequence data, and sample categories. They

then searched the discovered networks to identify the interplay and applied a

network motif finding algorithm to further infer the network. They produced

compact and meaningful gene regulatory networks that were highly relevant

to the biological conditions of the data sets. The results revealed the complex

gene regulatory relationships.

In another direction, researchers used target information to build the TF,

miRNA and mRNA regulatory networks as the first step. The expression

data was then used to identify active pathways that involved miRNAs and

TFs, or to identify active regulators in different biological conditions of the

data sets. For instances, Jiang et al. (Jiang, Zhang, Meng, Lian, Chen, Yu,

Dai, Wang, Liu, Li et al. 2013) proposed a method to identify active TF

and miRNA regulatory pathways in Alzheimer’s disease (AD) by analysing

AD-related mRNA and miRNA expression profiles as well as curated TF

and miRNA regulation databases, including TransmiR (Wang, Lu, Qiu &

Cui 2010), TRANSFAC (Matys, Fricke, Geffers, Gößling, Haubrock, Hehl,

Hornischer, Karas, Kel, Kel-Margoulis et al. 2003), miRecords (Xiao, Zuo,

Cai, Kang, Gao & Li 2009), TarBase (Li, Liu, Zhou, Qu & Yang 2014)
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and miRTarBase (Hsu, Tseng, Shrestha, Lin, Khaleel, Chou, Chu, Huang,

Lin, Ho et al. 2014). They firstly created the miRNA-gene-TF network

by these databases. Then they integrated miRNA and GE from different

sources and identified the differentially expressed genes (DEG) and miRNAs

between normal and disease samples. The results were validated by using

gene functional enrichment analysis.

2.5 Limitations of Existing Methods

Recent studies have often focused on the statistical and biological significance

of single miRNAs by identifying differentially expressed individual miRNAs

as biomarkers (Zhang et al. 2007a, Raponi et al. 2009). None of the single

miRNA have good sensitivity. This is probably because target mRNAs

are actually affected simultaneously by multiple miRNAs synergistically or

possibly several miRNA-regulated pathways are involved in the progression

of the diseases (Minna et al. 2002). In fact, the wet-lab experiments are

very expensive and time-consuming. The problem is that single-miRNA

rules are insufficient for accurate diagnosis. In addition, miRNAs can

regulate miRNAs (Transcriptional 2006). For example, cardiac-expressed

miRNAs can regulate expression of other cardiac miRNAs (Matkovich, Hu

& Dorn 2013). Most of the research concerning the understanding of disease

has neglected this function.

There are still unsolved problems in the detection of miRNA-mRNA

regulatory modules. The key idea taken by all of these studies is the

inverse expression relationship between miRNAs and their target mRNAs.

An inverse expression relationship means that when the expression level of

the miRNA is high (up-regulated), then the target mRNA should be down-

regulated based on the principle that miRNAs deregulate the expression of

targetted mRNAs (Peng et al. 2009). However, up-to-date evidence show

that the inverse relationship is not always true. In fact, a miRNA can induce

gene expression by binding to the gene’s promoter or enhancer sequence. For
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example, miR-373 can induce the expression of E-Cadherin or CSDC2 when

binding to the genes’ promoters (Place, Li, Pookot, Noonan & Dahiya 2008).

Recent investigation also shows that the interaction of miR-10a with RP

mRNAs (those mRNAs encoding ribosomal proteins) binding at the 5’ UTR

region can promote these mRNAs’ translational enhancement instead of

repression (ørom, Nielsen & Lund 2008). It can be seen that positively

regulated modules of miRNAs and mRNAs do exist, but they are widely

overlooked by prior computational approaches. Therefore, the identified

miRNA-mRNA interactions based purely on inverse correlation may be very

incomplete in certain biological contexts (Rijlaarsdam, Rijlaarsdam, Gillis,

Dorssers & Looijenga 2013).

Co-regulation analysis of multiple miRNAs is useful for understanding

complex post-transcriptional regulations (Baumjohann & Ansel 2013, Guo,

Zhao, Yang, Zhang & Chen 2014). One of the earliest studies on miRNA

pair co-regulation was conducted by Enright et al. (Enright et al. 2004) for

understanding the co-regulation between lin-4 and let-7 in Drosophila. Since

most of these studies take only expression data of miRNAs and messenger

RNAs (mRNAs) without biological function analysis (Guo et al. 2010), some

true targets of these miRNAs may be ignored and some false targets may be

included.

This suggests that biological functional analysis is a necessary assessment

for the detection of complete and reliable targets of miRNAs. Gene

Ontology (GO) contains comprehensive information of biological processes

and functions (Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis,

Dolinski, Dwight, Eppig et al. 2000). In particular, the coherence score of

the GO terms annotated to a gene group can be used to compute the p-value

of a co-regulated gene group which is actually a statistical measurement to

judge whether or not the co-regulated gene group are reliable targets of a

miRNA.

Also, it is still poorly understood how miRNAs themselves are regulated.

This is partly due to the difficulty of predicting promoters from short
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conserved sequence features without producing a high number of false

positive and partly due to the heterogeneity of the miRNA biogenesis

pathways. Many important biological processes are actually controlled by

miRNAs which play the role of master regulators. Little studies have been

conducted for the self-regulation miRNAs.

2.6 Summary

Since much evidence has suggested the importance role of miRNAs in the

development of several diseases, studying miRNA functions will provide

further insight into the causes of fatal diseases such as cancers. The

huge amount of data available in different types provides opportunities

and challenges for computational approaches to detect miRNA functions,

which will assist in the design of wet-lab experiments. In this review, we

have discussed different computational methods to infer miRNA functions,

including biomarkers, co-regulation and self-regulation. The approaches are

usually based on sequence data, gene expression data or integrating multiple

sources of data. They provide different views on how to elucidate the complex

regulatory mechanism of miRNAs.

With more and more data available, it is still challenging to design

computational methods to infer miRNA functions for the purposes of

assisting experimental design. It poses interesting implications for future

work as these methods can help elucidate the complex gene regulatory

relationships and the causes of disease.
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Research Methodology

The purpose of this work is to apply rule mining methods to study the miRNA

expression profiles for human disease understanding, including the discovery

of the miRNA biomarker, positive and negative miRNA-mRNA regulation

modules, miRNA co-regulation network and miRNA self-regulation network.

The four purposes of this chapter are to (1) describe the basic knowledge

used in this research, (2) explain the computational methods used to compare

our rule discovery method, (3) describe some bioinformatics methods

used to analyse the data, and (4) provide an explanation of performance

measurement used to evaluate the methods.

3.1 Definitions for Information Gain Ratio,

Euclidean Distance, 10-Fold Cross Validation

and Pearson’s Correlation Coefficient

3.1.1 Information Gain Ratio

In this study, we prioritise and rank all the miRNAs in the data set based on

their gain ratios (Han & Kamber 2006a) over the whole samples’ expression

profiles. Gain ratio measures the collective difference of every single miRNA’s

expressions between the two classes. A high gain ratio indicates that the
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miRNA is a high-potential biomarker differentially expressed over the two

classes. In terms of the second step, we project wet-lab confirmed and

intensively studied miRNAs onto this rank list. Using this step, we can

recommend those highly ranked miRNAs that have not been studied in wet-

labs in the past for rule discovery and potentially for fresh biological study.

Let Attr be the set of all attributes and Ex the set of all training examples,

value(x, a) defines the value of a specific example x for attribute a, where

x ∈ Ex ,and x ∈ Attr, and the entropy specifies H(x) = E[log(2, 1/p(xi))] =

−∑
p(xi) log(2, p(xi))(i = 1, 2, ...n).

The information gain for attribute x ∈ Attr is defined as follows:

IG(Ex, a) = H(Ex)−
∑

v∈values(a)

|{x ∈ Ex|value(x, a) = v}|
|Ex| .H({x ∈ Ex|value(x, a) = v})

(3.1)

The information gain is equal to the total entropy for an attribute if for

each of the attribute values a unique classification can be made for the result

attribute. In this case the relative entropies subtracted from the total entropy

are 0. The intrinsic value for a test is defined as follows:

IV (Ex, a) = −
∑

v∈value(a)

|{x ∈ Ex|value(x, a) = v}|
|Ex| ∗log2(

|{x ∈ Ex|value(x, a) = v}|
|Ex| )

(3.2)

The information gain ratio is just the ratio between the information gain and

the intrinsic value:

IGR(Ex, a) = IG/IV (3.3)

Information gain ratio biases the decision tree against considering attributes

with a large number of distinct values. So it solves the drawback of

information gain, namely that, information gain applied to attributes may

take on a large number of distinct values and might learn the training set

too well.
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3.1.2 Euclidean Distance

The Euclidean distance or Euclidean metric is the“ordinary” distance

between two points that one can measure with a ruler, and is given by the

Pythagorean formula. The Euclidean distance between point p and q is the

length of the line segment connecting them.

In Cartesian coordinates, if p = (p1, p2...pn) and q = (q1, q2...qn) are two

points in Euclidean n-space, then the distance from p to q, or from q to p is

given by:

d(p, q) = d(q, p) =

√
(q1 − p1)

2 + (q2 − p2)
2 + ...+ (qn − pn)

2 =

√√√√ n∑
i=1

(qi − pi)
2.

(3.4)

In this work, we just use two dimensions to calculate the distance, so p= (p1,

p2) and q= (q1, q2) then the distance is given by

d(p, q) =

√
(p1 − q1)

2 + (p2 − q2)
2. (3.5)

3.1.3 10-Fold Cross Validation

Ten-fold cross validation is often used to examine the performance of various

classification models. In 10-fold cross validation, the data set is equally and

randomly divided into ten portions. Each portion is used as testing data, and

the samples in the remaining nine portions comprise the training data set.

Each sample is tested once because each portion is tested once. Compared

with the Jackknife test, a 10-fold cross-validation test is more efficient and

provides similar results for a given data set. Thus, it has been adopted herein

to examine the classification model.

3.1.4 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient (PCC) is the covariance of the two variables

divided by the product of their standard deviations. We can obtain a formula

for r by substituting estimates of the covariances and variances.
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If we have one data set x1, ..., xn containing n values and another data

set y1, ..., yn containing n values then that formula for r is:

r =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
(3.6)

This formula suggests a convenient single-pass algorithm for calculating

sample correlation.

3.2 Data Mining Methods

3.2.1 A committee of decision trees

A decision tree is a flowchart-like structure in which each internal node

represents a “test” on an attribute, each branch represents the outcome of

the test, and each leaf node represents a class label. The paths from root to

leaf represents classification rules.

A decision tree can be linearised into decision rules, where the outcome

is the contents of the leaf node, and the conditions along the path form a

conjunction in the if clause. In general, the rules have the form:

if condition 1 and condition 2 and condition 3 then outcome.

The algorithm of constructing a committee of decision trees are implemented

in the R package and the source code is shown in the appendix B.1.

3.2.2 Naive Bayes Classifier

Native Bayes (NB) is a one of the most efficient and effective learning

algorithms in machine learning and data mining (Rish 2001). In this study,

we compared the performance between NB classifier and our discovered rules.

According to Bayes rule, the probability of an example E = (x1, x2, ..., Xn)

representing n features, it assigns to be each of K possible class Ck is

p(Ck|E) =
p(E|Ck)p(Ck)

P (E)
(3.7)
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E is classified as the class Ck=+ if and only if

f(E) =
p(Ck = +|E)

P (Ck = −|E)
≥ 1 (3.8)

where f(E) is called a Bayes classifier.

NB classifier assumes that each feature is conditionally independent of

every other feature; that is

p(E|Ck) = p(x1, x2, · · · , xn|Ck) =
n∏

i=1

p(xi|Ck) (3.9)

Thus, the NB classifier is:

f(E) =
p(Ck = +)

p(Ck = −)

n∏
i=1

p(xi|Ck = +)

p(xi|Ck = −)
(3.10)

3.2.3 K-nearest Neighbors Algorithm

The k-nearest neighbour approach is a powerful nonparametric technique for

classification (Liao & Vemuri 2002). If k=1 or the nearest neighbour rule,

then a case x is simply assigned to the class of its nearest neighbor. In order

to find the point closest to x, let it be y. Now the nearest neighbour rule

asks to assign the label of y to x. Distance functions include:

EuclideanDistance : EuD =

√√√√ k∑
i=1

(xi − yi)

2

(3.11)

ManhattanDistance : MaD =
k∑

i=1

|xi − yi| (3.12)

MinkowskiDistance : MiD = (
k∑

i=1

|xi − yi|q)1/q (3.13)

HammingDistance : HaD =
k∑

i=1

|xi − yi| (3.14)

It should also be noted that all the first three distance measures are

only valid for continuous variables. In the instance of categorical variables
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the Hamming distance must be used. It also brings up the issue of

standardisation of the numerical variables between 0 and 1 when there is

a mixture of numerical and categorical variables in the data set.

Choosing the optimal value for K is best done by first inspecting the data.

In general, a large K value is more precise as it reduces the overall noise but

there is no guarantee. Cross-validation is another way to retrospectively

determine a good K value by using an independent data set to validate the

K value. Historically, the optimal K for most data sets has been between

3-10. That produces much better results than 1NN.

3.3 Our Proposed Rule Mining Methods

3.3.1 Rule Discovery

A rule discovery method was used for this study. We discover simple rules

in the form:

a1 ≤ x1 ≤ b1 ∩ a2 ≤ x2 ≤ b2 (3.15)

where x1 and x2 represent two miRNAs, [a1, b1] is the expression range of x1,

and [a2, b2] is the expression range of x2 (a1 and a2 can be −∞; b1 and b2

can be +∞). If every cancer sample’s expression profile satisfies (falls into)

the two specific expression ranges, but none of the normal sample profiles

satisfies, then we say it is a 100%-frequency rule to differentiate the cancer

samples from the normal samples. The complete form of this rule is denoted

by

a1 ≤ x1 ≤ b1 ∩ a2 ≤ x2 ≤ b2 → cancer(100%) (3.16)

This work focuses on 2-miRNA or 3-miRNA 100%-frequency rules as

biomarkers for the diagnosis. We do not identify 100%-frequency rules with

4 or 4+ miRNAs. Our rule discovery method is based on decision trees

which usually generate rules combining 2 or 3 miRNAs with their specific

expression ranges. Decision tree is a classical idea to induce a set of exclusive

rules covering the training data only once, and thus the rules are sensitive
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to a slight change of training data. Due to this constraint, using a single

decision tree usually loses some prediction accuracy (Ho 1995).

It can be suggested that if the expression of x1 is between a1 and b1 for

a test normal sample, and the expression of x2 is between a2 and b2, then

this test sample is very likely to be a cancer cell. Similarly in this work, we

also define 100%-frequency rules to differentiate normal samples from cancer

samples. Such strong rules can be easily visualised in 2D spaces to facilitate

biological interpretation of the computational results.

This method has two innovative parts. One is a novel idea to generate

a committee of decision trees to discover 100%-frequency rules; the other is

a simple projection method (gain ratio) to narrow down important miRNAs

from the original miRNAs list for the induction of the decision tree ensemble.

Our feature ranking and projection method is good to select important

miRNAs to derive 100%-frequency rules. However, some bias may occur as

our list of “extensively studied miRNAs in the literature” may be far from

complete. To ensure there is less bias, we search the whole feature space to

find strong rules.

3.3.2 Strong Discriminatory Rules

Given a data set containing two classes of samples (positive and negative),

we discover strong rules in the form:

k⋂
i=1

ai ≤ xi ≤ bi, (3.17)

where xi represents a miRNA or a mRNA, [ai, bi] is the expression range

of xi. If every positive sample’s expression profile satisfies (falls into) the k

specific expression ranges, but none of the negative sample profiles satisfies,

then we say it is a 100%-frequency rule to differentiate the positive samples

from the negative samples. The complete form of this rule is denoted by⋂k
i=1 ai ≤ xi ≤ bi → positive(100%). The key ideas are proposed by my chief

supervisor Assoc. Prof. Jinyan Li.
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This suggests that if the expression of every xi is between ai and bi for

a HCV test sample, then this test sample is very likely to be a positive

sample. Similarly in this work, we also define the 100%-frequency rule to

differentiate negative samples from positive samples. This study identifies

simple 2-miRNA 100%-frequency rules (i.e., k = 2) to capture differentially

expressed miRNAs and the miRNA expression changes in cancer and normal

samples. We do not identify 3-miRNA 100%-frequency rules or the rules

involving more than 3 miRNAs (i.e., k > 3). The stringent 100%-frequency

may be unnecessary for other data sets as such a distinction may not exist.

Therefore, this frequency requirement can be relaxed for other studies.

Therefore, our method is restricted to combine all possible 2- and 3-

miRNAs and all possible valid expression ranges of these miRNAs to see

whether the combined ranges satisfy every cancer sample’s expression profile.

If this is true, we then examine whether the combined ranges do not satisfy

any of the normal samples. If this is true as well, then the combined

expression ranges, together with the miRNAs, form a 100%-frequency rule

to distinguish all of the cancer samples from all of the normal samples in

2D or 3D spaces. Similarly, we detect such rules to distinguish 100% of the

normal samples from the cancer samples. We also use the distance separation

technique to identify more reliable rules.

3.4 Bioinformatics Tools

3.4.1 GO Term Enrichment Analysis

Gene Ontology (GO) term enrichment is a technique for interpreting sets of

genes making use of the Gene Ontology system of classification. For example,

given a set of genes that are up-regulated (down-regulated) under certain

conditions, an enrichment analysis will find which Gene Ontology terms are

over-represented (or under-represented) using annotations for that gene set.

GO enrichment indicates the associations between genes and GO terms.

For each gene set g and each GO term GOj, a score is generated, which is
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typically referred to as the gene ontology enrichment score and defined as the

−log10 of the hypergeometric test p value for a gene set G consisting of g’s

direct neighbours in STRING and the GO term GOj, that can be calculated

as follows:

SGO(g,GOj) = −log10(
n∑
m

⎛
⎜⎜⎝
M

m

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N −M

n−m

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N

n

⎞
⎟⎟⎠

)

where N denotes the overall number of proteins in humans, M denotes

the number of proteins annotated in the gene ontology term GOj, n denotes

the number of proteins in G, and m denotes the number of proteins in G

that are annotated in the gene ontology term GOj. If the score is large for

one gene set and one GO term, the gene set is associated with the GO term.

For every miRNA pair, a GO enrichment analysis (Biological Process

subtype) is performed on their predicted targets to classify their functions.

Only those GO terms which contain more than three genes with a significance

level (p < 1.0e − 4) are captured. Specifically, for a given miRNA pair

(miRNA A and miRNA B), we use their intersecting target subsets which

they co-regulate (i.e., subsets of T (A) ∩ T (B)) to identify the biological

processes under the hypergeometric distribution. Here T (X) stands for the

set of predicted targets of miRNA X. The analysis is preformed by the R

software (GOstats and GO.db).

3.4.2 KEGG Pathway Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) stores a collection of

manually drawn pathway maps representing our knowledge on the molecular

interaction and reaction networks for metabolism, genetic information

processing, and environmental information.

Similarly, for each gene g and each KEGG pathway Pj, the KEGG

enrichment score is defined as the −log10 of the hypergeometric test P value

for a gene set G that consists of g’s direct neighbours in STRING and the
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KEGG pathway Pj, which can be computed by:

SKEGG(g, Pj) = −log10(
n∑
m

(
M

m

)(
N −M

n−m

)
(
N

n

) ) (3.18)

where N denotes the overall number of proteins in humans, M denotes the

number of proteins annotated in the KEGG pathway Pj, n denotes the

number of proteins in G, and m denotes the number of proteins in G that

are annotated in the KEGG pathway Pj. Additionally, a higher KEGG

enrichment score between g and Pj indicates a stronger relationship.

3.4.3 PPI Network Construction

The PPI network of a gene subset T (A) ∩ T (B) is represented by a graph,

in which the proteins are represented by nodes and the interactions among

them are represented by undirected edges. Using this gene subset as seed

proteins, the construction of its PPI network is through the tool named

UniHI (http://193.136.227.168/UniHI/pages/unihiSearch.jsf), which

provides both experimentally determined and predicted interactions. The

number of edges inserted between two seed proteins determines the network

distance of the seed proteins. As found by the literature (Liang &

Li 2007, Yuan et al. 2009), proteins interacting with cancer-related proteins

are generally close to each other and interact more frequently compared to

non-interacting proteins in the PPI networks. Therefore, we consider only

those PPI networks with a primary distance no larger than 3. A primary

distance between any two proteins in a PPI network is measured by the

minimum number of edges required to connect them.

59



Chapter 3. Research Methodology

3.5 Performance Measurement

The prediction results for the biomarker problem can be represented by a

confusion matrix consisting of four entries: a true positive (TP), a true

negative (TN), a false positive (FP) and a false negative (FN). Accordingly,

the prediction accuracy (ACC), specificity (SP), sensitivity (SN) and F1 score

(F1) can be computed as follows:

• ACC = TP+TN
TP+TN+FP+FN

• SP = TN
TN+FP

• SN = TP
TP+FN

• F1 = 2TP
(2TP+FP+FN)

In addition, the area under the receiver operating characteristic (ROC)

cure (AUC) is used as a performance measure. Given a threshold parameter

T, the instance is classified as “positive” if X > T , and “negative” otherwise.

X follows a probability density f1(x) if the instance actually belongs to class

“positive”, and f0(x) if otherwise. Therefore, the true positive rate is given

by TPR(T ) =
∫∞
T

f1(x)dx and the false positive rate is given by FPR(T ) =∫∞
T

f0(x)dx. The ROC curve plots TPR(T) versus FPR(T) with T as the

varying parameter. It can be seen as follows:

A =

∫ −∞

∞
TPR(T )FPR

′
(T )dT

=

∫ ∞

−∞

∫ ∞

−∞
I(T

′
> T )f1(T

′
)f0(T )dT

′
dT = P (X1 > X0)

(3.19)

where X1 is the score for a positive instance and X0 is the score for a negative

instance.
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Rule Discovery and Distance

Separation to Detect Reliable

miRNA Biomarkers for the

Diagnosis of Lung Squamous

Cell Carcinoma

4.1 Introduction

As explained in the related work (Section 2.1), aberrant miRNA expressions

have been linked to many diseases, and have been intensively investigated

to discover miRNA biomarkers for the diagnosis of diseases including lung

cancer (Raponi et al. 2009, Shen et al. 2010, Edmonston, Kushnir, Aharonov,

Yanai, Benjamin, Bibbo, Thurm, Horowitz, Huang, Gilad et al. 2010). The

inherent stability of miRNAs in serum and the reliability and reproducibility

of expression analysis (Alevizos et al. 2011, Mraz et al. 2009, Li, Li,

Zhou, Wen, Geng, Yang & Cui 2013) make them ideal candidates for

biomarkers (Zeng, Cui, Wu & Lu 2014).

This work developed a novel method to find small numbers of miRNAs
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that are able to separate healthy samples from Squamous Cell Carcinoma

(SCC) samples with a clear and wide margin in 2D or 3D spaces. Our method

was tested on the SCC miRNA expression data set from (Raponi et al. 2009).

Many 2- and 3-miRNA groups (together with their specific expression ranges)

were discovered as clear linear discriminant rules for the diagnosis of SCC.

The basic idea of our method is the construction of an innovative committee

of decision trees by using the C4.5 algorithm (Quinlan 1993a) iteratively.

The preprocess of the data involves a prioritisation method to rank the whole

number of miRNAs and then to focus on potential candidates by projecting

wet-lab confirmed plasma and tissue miRNA biomarkers onto this ranked

list of miRNAs ordered by miRNAs’ gain ratio (Han & Kamber 2006a).

This feature selection method is capable of recommending those highly

ranked miRNAs not yet studied by wet-labs in the past for rule discovery,

and capable of suggesting a good mapping between lung tissue-specific

and plasma-specific miRNA biomarkers useful for a minimally invasive

diagnosis. For the discovery of the most reliable rules, a distance separation

technique is used to determine the Max-Min distance between the normal

and cancer classes separated by each rule, and the widest distance is then

taken to recommend the best rules. In addition, we also considered a

computationally heavy method to detect rules from the whole feature space.

We further demonstrated the reliability of these biomarkers by comparing

the performance of the most reliable 2-miRNA (3-miRNA) rules with those

of 1000 randomly selected 2 miRNAs (3 miRNAs) with C4.5 decision tree

classifier and 10-fold cross validation, and performing a resampling test by

disordering the class labels.

For all of the miRNAs involved in our 2-miRNA rules, we examined their

chromosomal locations and their common target genes. We also established

links between the diseases and chromosomal locus with the common target

genes to show that most of the chromosomal loci have a high frequency of

genomic alteration in lung cancer and that two sets of our biomarkers have

confirmed associations with lung cancer.
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This chapter, describing Contribution 1, is an extended description of

my publication (Song, Liu, Hutvagner, Nguyen, Ramamohanarao, Wong &

Li 2014).

4.2 Materials and Methods

4.2.1 Data Sets of miRNA Expressions in SCC Patients

Two data sets are used by this work. Data set 1 is a collection of miRNA

expressions in SCC tissues which have been studied by Raponi et al. (Raponi

et al. 2009) for comparative analysis of differentially expressed miRNAs

between normal and SCC tissues. Here, it is used for rule discovery. In

this data set, there are 61 SCC tissue samples and 10 matched adjacent

normal lung tissue samples for the miRNA expression profiling. These

samples were collected from patients in the University of Michigan Hospital

between October 1991 and July 2002 with patient consent and institutional

review board approval. Total RNAs of these 71 samples were preprocessed

and then profiled on MirVan miRNA Bioarray (version 2, Ambion) which

contains 328 human miRNA probes. Accordingly, this data set is a 71 x

328 relational table with each row associated with a class label “cancer”

or “normal”. The original miRNA expression data was normalised by

the quantile and log2 methods, and it was stored at the National Center

for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE16025.

Data set 2 (Tan, Qin, Zhang, Hang, Li, Zhang, Wan, Zhou, Shao &

Sun 2011b) is used as an independent data set to assess the importance

of our rules. Data set 2 comprises 187 cancer tissues and 174 adjacent

normal tissue from patients described by the expression levels of 549 miRNAs.

The expression levels in this data set were processed by subtracting the

background as average values of the replicate spots of each miRNA and

filtering out the expression signal of faint spots below 600. This data set

can be downloaded from the Gene Expression Omnibus under the accession
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number GSE15008. Since it is impossible to confirm the 34 paired cancerous

and adjacent normal samples described by Tan et al. (Tan, Qin, Zhang, Hang,

Li, Zhang, Wan, Zhou, Shao & Sun 2011b) from all the published studies,

we are unable to choose this large sample size as the training set.

4.2.2 Rule Discovery within Top-Ranked miRNAs

The rule discovery method is described in the Section 3.3.1. This work

focuses on 2-miRNA or 3-miRNA 100%-frequency rules as biomarkers for

the diagnosis of SCC. We do not identify 100%-frequency rules with 4 or 4+

miRNAs. Our rule discovery method is based on decision trees which usually

generate rules combining 2 or 3 miRNAs with their specific expression ranges.

Decision tree is a classical idea to induce a set of exclusive rules covering the

training data only once, and thus the rules are sensitive to a slight change

of training data. Due to this constraint, using a single decision tree usually

loses some prediction accuracy (Ho 1995).

Our method has two innovative parts. One is a novel idea to generate a

committee of decision trees to discover 100%-frequency rules; the other is a

simple projection method to narrow down important miRNAs from the 328

miRNAs for the induction of the decision tree ensemble.

As the first step of the projection method, we prioritise and rank the

328 miRNAs in the data set based on their gain ratios over the 71 samples’

expression profiles. Gain ratio (Han & Kamber 2006a) measures a collective

difference of every single miRNA’s expressions between the two classes. A

high gain ratio indicates that the miRNA is a high-potential biomarker

differentially expressed over the two classes. As the second step, we project

wet-lab confirmed and intensively studied miRNAs onto this rank list. Using

this step, we can recommend those highly ranked miRNAs that have not

been studied in wet-labs in the past for rule discovery and potentially for

fresh biological study.

In this work, we use 5 plasma biomarkers (miR-486, miR-126, miR-

182, miR-210 and miR-21) identified in 28 NSCLC patients including 14
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adenocarcinoma and 14 SCC patients (Shen et al. 2010) for the above rank

list projection. All of these miRNAs are confirmed as key biomarkers in

early lung cancer diagnosis. These miRNAs in plasma are also a subset of 12

previously identified tissue biomarkers validated by paired SCC tissues and

noncancerous tissues associated with early-stage lung cancer (Yu et al. 2010).

So these 5 miRNAs can serve as a guideline for the next step of tissue-specific

biomarkers identification.

The projection of the 5 plasma biomarkers against the list of prioritised

328 miRNAs is shown in Table 4.1. The 5 confirmed miRNAs are mapped to

positions 1, 3, 5, 13 and 19. However, none of these 19 individual miRNAs is

a good biomarker to separate the two classes of data as shown in Figure 4.1.

So, we concentrate on the entire expression data of these 19 miRNAs to

derive groups of miRNAs for 100%-frequency rules. The remaining data (i.e.,

excluding the 19 miRNAs) is used for comparison to examine the effectiveness

of our rule discovery method.

Table 4.1: Projection of 5 important miRNAs onto a prioritised list of 328

miRNAs, resulting in 19 miRNAs ranked as high as these 5 miRNAs.

miRNA Rank GE P-value miRNA Rank GE P-value

miR-486 1 Down 3.12e-05 miR-125a 11 Down 8.857e-02

miR-98 2 Down 4.631e-07 miR-93 12 Up 6.401e-06

miR-126 3 Down 1.14e-02 miR-210 13 Up 5.548e-12

miR-205 4 Up 3.678e-07 miR-224 14 Up 2.866e-14

miR-182 5 Up 2.2e-16 miR-17-5p 15 Up 3.646e-11

miR-106b 6 Up 1.224e-09 miR-373-AS 16 Down 3.647e-03

miR-133a 7 Down 4.208e-03 miR-483 17 Down 4.11e-02

miR-513 8 Down 2.263e-02 miR-139 18 Down 3.812e-03

miR-451 9 Down 2.713e-05 miR-21 19 Up 1.293e-04

miR-331 10 Up 4.124e-02

To construct a committee of decision trees for the discovery of multiple

100%-frequency rules, we induce the first decision tree from the 19-miRNA
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Figure 4.1: Heatmap representation of the expression levels of the

19 miRNAs. A single miRNA is unable to distinguish cancer samples from

normal samples, while the combination of 2 or 3 miRNAs can faultlessly

identify cancer (or normal) samples from normal (or cancer) samples.

data set. To induce the second tree, we remove the field (attribute values

from the data) of the root node miRNA of the first tree from the data set.

Iteratively, we construct a subsequent decision tree by removing the data

of the root node miRNA of the current tree. This process continues until

there are only two miRNAs left in the data set. We use the R software
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package (Team 2013) and its C4.5 implementation to construct each decision

tree (The source code of the algorithm constructing a committee of decision

trees is described in the Appendix: Algorithm of Prim Code).

Every 100%-frequency rule with two or three miRNAs can separate the

cancer samples clearly from the normal samples in 2D or 3D spaces. As a

wider separation suggests a more reliable biomarker rule (Figure 4.2), we

measure the separation extent by using the shortest pair-wise Euclidean

distance between the cancer and normal samples. When multiple 100%-

frequency rules are generated, further data analysis is on those with a wider

separation distance (i.e., the Max-Min distance).

Figure 4.2: Distance separation by 100%-frequency rules in 2D

space. The left panel shows a shorter distance separation between the cancer

and normal samples than the separation shown in the right panel.

The entire work flow of our rule discovery method with feature space

projection and distance separation is summarised in Figure 4.3.
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Figure 4.3: The procedure of rule discovery with 19 miRNAs. The

up panel is the dataset processing phase, and 19 miRNAs are obtained. The

down panel is the discovery phase to get biomarkers.

4.2.3 Rule Discovery across the Whole Feature Space

Our feature ranking and projection method is good to select important

miRNAs to derive 100%-frequency rules. However, some bias may occur

as our list of “extensively studied miRNAs in the literature” may be far

from complete. To ensure there is less bias, we search the whole feature

space, namely across all of the 328 miRNAs, to find strong rules. However,

the exploration of every possible combination of these 328 miRNAs leads to

exponentially computational cost.

Therefore, our method is restricted to combine all possible 2- and 3-

miRNAs and all possible valid expression ranges of these miRNAs to see

whether the combined ranges satisfy every cancer sample’s expression profile.

If this is true, we then examine whether the combined ranges do not satisfy

any of the normal samples. If this comes true as well, then the combined

expression ranges, together with the miRNAs, form a 100%-frequency rule
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to distinguish all of the cancer samples from all of the normal samples in

2D or 3D spaces. Similarly, we detect such rules to distinguish 100% of the

normal samples from the cancer samples. We also use the distance separation

technique to identify more reliable rules.

4.3 Results

Our results are presented in five parts. The first part reports 2-miRNA and

3-miRNA rules and classification performance. The second part is related to

distance separation of the rules in 2D or 3D spaces. The third part illustrates

the reliability of the identified best miRNA rules. The fourth part presents

the chromosomal locations of the miRNAs, and the last part is related to

association studies between miRNA biomarkers and disease genes.

4.3.1 Prediction Performance by Rules

Comparison with Literature Methods

To show the effectiveness of our feature projection method on prediction

accuracy, we compared the prediction performance of three commonly used

classifiers on four data sets. One is the data set prepared by Raponi et

al. (Raponi et al. 2009) which consists of 15 differentially expressed miRNAs

extracted from the initial 328 miRNAs. The second data set contains only

the 5 plasma miRNAs (Shen et al. 2010) which we used to project out our

top-ranked 19 miRNAs. The third data set is our data set consisting of the

19 top-ranked miRNAs (Table 4.1). The fourth data set contains all the

data after the removal of the third data set (the 19-miRNA data set) from

the 328-miRNA data set. Note that there is not much miRNA overlapping

between the first and third data set (only 6 miRNAs in common). We used

the k-nearest neighbour classifier (KNN, k=1), Naive Bayes (NB), and the

C4.5 decision tree (C4.5) classifier to conduct the prediction under a 10-fold

cross-validation scheme.
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Table 4.2 shows the prediction performance (specificity, sensitivity, F1

measure and receiver operating characteristic (ROC) area) of the three

classifiers on these four data sets. It can be seen that the three classifiers

all performed better on the 5-plasma miRNAs data set and on our 19-

miRNA data set than on the other two data sets. This indicates that the 5

plasma biomarkers are indeed good biomarkers, and the 19 prioritised and

projected miRNAs are indeed good potential candidates for rule discovery

and biomarker identification.

Table 4.2: Comparisons of three classifiers on four data sets

Data sets Algorithms Specificity Sensitivity F-Measure ROC Area

15 miRNAs KNN 0.9833 0.8182 0.975 0.934

(Raponi et NB 0.9833 0.8182 0.975 0.934

al. 2009) C4.5 0.9516 0.7778 0.959 0.827

5 miRNAs KNN 0.9839 1.0000 0.992 0.944

(Shen et NB 0.9839 1.0000 0.992 0.989

al. 2010) C4.5 0.9672 0.8000 0.967 0.84

19 miRNAs KNN 0.9839 1.0000 0.992 0.944

(top ranked) NB 0.9836 0.9000 0.984 0.946

C4.5 0.9524 0.8750 0.968 0.798

309 miRNAs KNN 0.9833 0.8182 0.975 0.926

(lower NB 0.8413 0.6250 0.935 0.779

ranked) C4.5 0.8413 0.3846 0.891 0.666

Multiple Rules Derived from the Top-Ranked 19 miRNAs

We applied C4.5 to our 19 top-ranked miRNAs data set to construct the

first decision tree (denoted by DT1). As described in the Method section, we

then removed the root node miRNA of DT1 from the data set to construct

the second tree (denoted by DT2). By iteration, we constructed a total of

18 decision trees. Interestingly, DT1 does not contain any 100%-frequency

rules. In fact, only 6 of the 18 decision trees (DT2, DT3, DT4, DT9, DT10,
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and DT15) contain rules consisting of 2 or 3 miRNAs. Table 4.3 shows the

details of the rules and expression ranges of these 2D and 3D biomarkers.

Table 4.3: Multiple 100%-frequency rules derived from the 19-miRNA data

set through our iterative decision tree method.

Tree ID miRNAs, their expression ranges and the rules

DT2 7.356 ≤miR-98≤ 8.123 ∩ 5.105 ≤miR-205 ≤ 9.601

→Normal(100%)

DT3 6.145 ≤miR-126≤ 8.825 ∩ 5.105 ≤miR-205 ≤ 9.601

∩5.551 ≤miR-182≤ 8.966 →Cancer(100%)

DT4 6.148 ≤miR-451≤ 8.054 ∩ 5.105 ≤miR-205 ≤ 9.601

→Normal(100%)

DT9 4.760 ≤miR-133a≤ 5.493 ∩ 5.745 ≤miR-210≤ 9.780

∩4.662 ≤miR-373-AS≤ 5.731 →Cancer(100%)

DT10 5.014 ≤miR-224≤ 9.417 ∩ 4.662 ≤ miR-373-AS≤ 5.731

∩4.760 ≤miR-133a≤ 5.493 →Cancer (100%)

DT15 4.2032 ≤miR-139≤ 5.858 ∩ (4.760 ≤miR-133a≤ 5.400

∩6.129 ≤ miR-513≤ 7.853 ∪ (5.400 ≤miR-133a≤ 5.4927

∩7.507 ≤miR-513≤ 7.853)) →Cancer (100%)

As an example, Figure 4.4 displays the tree structures of DT2 and DT4.

Both of them contain only two miRNAs. The 100%-frequency rules derived

from these two trees separate the cancer and normal samples in a way as

shown in Figure 4.5 where the x-y axis of the 2D planes represents the

expression ranges of these miRNAs. We obtained the left and right bounds

of the two rules from the rectangles in the planes.

Classification Performance under 5-fold Training-Test Experiments

The derived rules above can separate the two classes of samples clearly

without any mistake. However, they are derived from the top-ranked

miRNAs based on all of the 71 samples. To demonstrate the generalisation

ability of the rules induced by our method, we conducted C4.5’s 5-fold
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Figure 4.4: Decision trees. The left panel is a decision tree made of miR-

205 and miR-98. The right panel is a decision tree made of miR-205 and

miR-451.

training-test experiments. The initial 10 normal samples and 61 cancerous

samples are randomly divided into 5 parts. Four parts of the data set

were used as a training data set, and 5 training data sets were constructed

(TrS1, TrS2, TrS3, TrS4 with 57 samples, and TrS5 with 56 samples).

Correspondingly, the remaining part was reserved as a test data set, and

5 test data sets were constructed (TeS1, TeS2, TeS3, TeS4 with 14 samples,

and TeS5 with 15 samples, each containing two normal samples). By our

method, the gain ratio and the 5 plasma miRNAs projection method were

applied to select miRNAs from the 5 training sets. Actually we obtained

27, 21, 14, 32, and 20 top-ranked miRNAs respectively. Then the rules were

derived within these top-ranked miRNAs and the Max-min distance step was

applied to determine the most reliable rule. The TrS1, TrS2, TrS4, and TrS5

training data sets have the same best rule (made from miR-205 and miR-

451), while the TrS3 has the rule made from miR-205 and miR-21. Finally, we

applied these reliable rules to the corresponding test sets, and all achieved an
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Figure 4.5: Expression data on 2D planes. The left panel is the plane

co-ordinated by miR-205 and miR-98. The right panel is coordinated by

miR-205 and miR-451. The blue rectangles indicate the expression ranges of

all of the normal samples.

accuracy of 100%, except TeS4 with 92.86% (1 cancer sample misclassified).

The details are described in Attached file 1.

Assessing the Importance of MiRNA Biomarkers by Using an

Independent Data Set

Data set 2 (Tan, Qin, Zhang, Hang, Li, Zhang, Wan, Zhou, Shao &

Sun 2011b) contains miRNA expression data of 187 cancer tissues and 174

adjacent normal tissue from patients. The platform for generating data

set 2 (the National Engineering Research Center mammalian microRNA

microarray with 549 human miRNAs) is different from the platform of

data set 1 (MirVan miRNA Bioarray, version 2). The two data sets are

preprocessed by different methods as well. Because of these differences, it
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is not reasonable to directly test the miRNA expression ranges on data set

2 for a rule derived from data set 1. However, the miRNAs in a rule of

data set 1 can be still validated on the data set 2 by testing whether these

miRNAs are able to classify the samples in data set 2 with a high accuracy. A

high classification performance would suggest that these miRNAs are robust

across different data sets and thus they are worth further investigation. We

note that the miRNAs in a rule from data set 1 are detected independently

from data set 2.

To test whether the miRNA biomarkers discovered from data set 1 have

a good generalisation ability, we carried out 10-fold cross-validation on the

expression data of only these miRNAs of data set 2 (the independent data set)

to see the classification performance in C4.5. We compared the sensitivity,

specificity, accuracy, ROC area and F-measure for three data sets: data set

2 of 549 miRNAs, the data set of top-ranked 158 miRNAs, and the data

set of 3 miRNAs (miR-126, miR-205 and miR-182) which are from the best

rule from data set 1 (with the largest distance 0.7799). The classification

performance on these three data sets are shown in Table 4.4. We can see

that the classification using just the 3 miRNAs from the best rule of data

set 1 achieved an accuracy of 84.49%, sensitivity of 91.40% and specificity of

77.14%.

Table 4.4: The performance comparison of three datasets.

Data sets Sensitivity Specificity Accuracy ROC area F-measure

549 miRNAs 0.8441 0.8343 0.8393 0.817 0.844

158 miRNAs 0.8656 0.8111 0.8393 0.845 0.847

3 miRNAs 0.9140 0.7714 0.8449 0.853 0.859

This performance is better than the classification performance by using

all miRNAs in data set 2. Although the specificity decreases, the cost in

real-life diagnosis would be lower using the just 3 miRNAs, because the

cost of misclassifying ‘normal’ as ‘cancer’ is much smaller than misclassifying

‘cancer’ as ‘normal’.
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These results demonstrate that the miRNA biomarkers identified from

data set 1 are also biomarkers to separate the two classes of samples in the

independent data set 2 with a high accuracy. This implies that our miRNA

biomarkers have a good generalisation ability in classification.

Rules Derived by Using the Whole Feature Space

On the whole feature space, our rule mining method detected a total of 14 new

100%-frequency rules each of which combines only two or three miRNAs, in

addition to the 6 rules identified by the decision tree committee. Two of them

are displayed in Figure 4.6. The rules are: 7.970 ≤ let−7a ≤ 11.989∩5.105 ≤
miR− 205 ≤ 9.601 → Normal(100%); 7.755 ≤ miR− 103 ≤ 9.879∩ 6.145 ≤
miR − 126 ≤ 8.825 → Cancer(100%). Again, it can be seen that these two

sets of biomarkers are able to distinguish the 71 cancer and normal samples

with no mistake. Examples of 3-miRNA 100%-frequency rules are shown in

Figure 4.7. The rules are: 4.760 ≤ miR−133a ≤ 5.844∩7.381 ≤ miR−21 ≤
11.014 ∩ 4.324 ≤ miR − 520a − AS ≤ 5.229 → Cancer(100%); 5.165 ≤
miR − 100 ≤ 8.706 ∩ 5.518 ≤ miR − 199a ≤ 7.091 ∩ 5.814 ≤ miR − 200c ≤
9.890 → Normal(100%).

4.3.2 Distance Separation in 2D and 3D Spaces to

Identify Reliable Biomarkers

We calculated the Euclidean distance for the rules discovered from the whole

data set 1 (i.e., the 71 samples), and used the shortest pair-wise distance and

the Max-Min technique to identify the best miRNA biomarkers (Table 4.5).

For 2D spaces, we used the distance cut-off threshold 0.20 to focus our further

biological analysis, and cut-off the threshold 0.45 in 3D spaces.

From Table 4.5, it can be seen that miR-205 and miR-98 constitute our

best 2D rule that

7.356 ≤ miR− 98 ≤ 8.123 ∩ 5.105 ≤ miR− 205 ≤ 9.601 → Normal(100%)

(4.1)
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Figure 4.6: Examples of 2D rules. The left panel describes two miRNAs

whose class-label is related to normal. The right panel shows two miRNAs

whose class-label is related to cancer.

Figure 4.7: Examples of 3D rules. The left panel contains miR-100,

miR-199a and miR-200c. The right panel contains miR-133a, miR-21 and

miR-520a-AS.
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Table 4.5: Shortest pair-wise Euclidean distance between the cancer and

normal samples in 2D and 3D biomarker spaces.

Methods miRNAs in the Rules Shortest Distance Rank

Rule miR-205 and miR-98 0.5421 2D.1

discovery miR-205 and miR-451 0.4311 2D.2

within the miR-126, miR-205 and miR-182 0.7799 3D.1

19 top- miR-210, miR-373-AS and miR-133a 0.1068 3D.9

ranked miR-224, miR-373-AS and miR-133a 0.1786 3D.5

miRNAs miR-133a, miR-513 and miR-139 0.1238 3D.8

Let-7a and miR-205 0.2496 2D.4

miR-103 and miR-126 0.3591 2D.3

Let-7b and miR-486 0.0835 2D.11

Rule miR-106b and miR-29b 0.1498 2D.7

discovery miR-137 and miR-98 0.1660 2D.6

across the miR-149 and miR-182 0.0941 2D.9

whole miR-133a, miR-21 and miR-520a-AS 0.4515 3D.3

feature miR-210 and miR-98 0.1892 2D.5

space miR-133b, miR-139 and miR-210 0.2459 3D.4

(328 Let-7i, miR-130a and miR-224 0.1231 3D.7

miRNAs) miR-324-3p and miR-43 0.0879 2D.10

miR-17-5p and miR-451 0.1398 2D.8

miR-1, miR-106a and miR-203 0.1589 3D.6

miR-100, miR-199a and miR-200c 0.7275 3D.2

for the diagnosis of lung cancer. In fact, this rule separates the normal

and cancer classes by a distance of at least 0.5421 in 2D space. Their

chromosomal locations, common target genes, and associations with disease

genes are presented in a later part.

Classification performance on the data of only these two miRNAs was

also evaluated. The performance (F1 Measure: KNN-1.000, NB-0.984, C4.5-

0.976) is higher than that on the 19-miRNA data set, or on the 15-miRNA
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data set (Table 4.2).

The other three important 2D rules are formed by miR-205 and miR-451,

by miR-103 and miR-126, or by Let-7a and miR-205. The best 3D rule is

formed by miR-126, miR-205 and miR-182; the second best is by miR-100,

miR-199a and miR-200c; and the third best is by miR-133a, miR-21 and

miR-520a-AS.

4.3.3 The Reliability of Identified Best 2D and 3D

Biomarkers

We applied the 10-fold cross-validation test on the best 2D (miR-205

and miR-98) and 3D rules (miR-126, miR-205 and miR-182) to see the

classification performance by C4.5 (R package RWeka). We further performed

a randomisation test to see whether the best 2D (or 3D) miRNAs are

better predictors than randomly selected 2 miRNAs (or 3 miRNAs). The

random selection was repeated 1000 times. All the area under ROC curves

(AUCs) were calculated and compared. The best 2D rule had an average

AUC=1.0 in the 10-fold cross-validation, and the best 3D rule had an average

AUC=0.9975. For the randomly selected 2 miRNAs, only a probability of

0.007 could produce an AUC≥0.999 for the 1000 repeated tests. For the

randomly selected 3 miRNAs, only a probability of 0.012 could produce

an AUC≥0.9975. The probabilities in different AUC scales are shown in

Table 4.6. These results indicate that our miRNA biomarkers are significant

and reliable, instead of random. We further performed a resampling test by

disordering the class labels, and no rules were found using our method.

4.3.4 The Genomic Location of Biomarker miRNAs

Many known human miRNAs reside in particular genomic regions that are

prone to alteration in cancer cells. For example, the main chromosomal

alteration loci of miR-15 and miR-16 are identified at 13q14 with down-

regulation, which is the first association study between miRNA genes and
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Table 4.6: The probability of different AUC values in the 1000 randomization

tests.
2-miRNA AUCs Probability 3-miRNA AUCs Probability

≥ 0.9 0.177 ≥ 0.9 0.328

≥ 0.95 0.089 ≥ 0.95 0.19

≥ 0.98 0.035 ≥ 0.98 0.091

≥ 0.99 0.025 ≥ 0.99 0.062

≥ 0.998 0.009 ≥ 0.9975 0.02

≥ 0.999 0.007 ≥ 0.999 0.012

cancer (Breu, Gil, Kirkpatrick & Werman 1995, Dostie, Mourelatos, Yang,

Sharma & Dreyfuss 2003). We obtained the chromosomal locations of all

of the 13 miRNAs in the 100%-frequency rules of a wide separation in

2D and 3D spaces (the 7 top-ranked rules in Table 4.5). This location

information was obtained through a keyword search from the miRNAMap

database ( mirnamap.mbc.nctu.edu.tw) and miRBase database ( www.

mirbase.org) (Griffiths-Jones 2006, Hsu, Huang, Hsu, Lin, Tsou, Tseng,

Stadler, Washietl & Hofacker 2006). For the miRNAs let-7a, miR-133a and

miR-199a, we obtained three loci for each of them. Details are presented in

Table 4.7.

Table 4.7: The chromosomal location of the 13 miRNAs in our 2D and 3D

biomarker rules
miRNAs Chr location miRNAs Chr location

Let-7a-1,-2,-3 9q22.2,11q24.1, miR-199a-1,-2 19p13.2, 1q23.2

22q13.3 miR-133a-1,-2 18q11.1,20q13.3

miR-21 17q23.2 miR-200c 12p13.31

miR-98 Xp11.2 miR-205 1q32.2

miR-100 11q24.1 miR-451 17q11.2

miR-126 9q34 miR-520a-AS 19q13.42

It has been previously reported that there are many chromosomal arms
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having frequent loss of heterozygosity (Calin, Sevignani, Dumitru, Hyslop,

Noch, Yendamuri, Shimizu, Rattan, Bullrich & Negrini 2004), such as 1p,

3p, 4p, 4q, 5q, 8p, 9p (p16), 9q, 10p, 10q, 13q (Rb), 15q, 17p (p53), 18q, 19p,

Xp, and Xq, in frequency order for lung cancer (Alevizos et al. 2011, Girard,

Zchbauer-Mller, Virmani, Gazdar & Minna 2000, Griffiths-Jones 2006, Hsu

et al. 2006). In this study, we identified some new chromosomal arms such

as 11q, 22q, 17q, 20q, 1q and 12p. In particular, the best 2D rule biomarkers

miR-98 and miR-205 are located at Xp11.2 and the new arm 1q32.2. In fact,

these two arms have been studied before for various purposes. It was reported

by Prot et al. (Prot, Boccon-Gibod, Bouvier, Doz, Fournet, Frneaux,

Vieillefond & Couturier 2003) that there are 5 cases of renal cell carcinoma

with translocation involving Xp11.2 in children. It was found by Gregory et

al. (Gregory, Bert, Paterson, Barry, Tsykin, Farshid, Vadas, Khew-Goodall

& Goodall 2008) that chromosome 1q32.2, based on an alignment of the

mature miR-205, controlled epithelial-to-mesenchymal transition. It was

also claimed by Meyer et al. (Meyer, Clark, Flanigan & Picken 2007) that

renal cell carcinomas are associated with Xp11.2 translocation in five adult

patients. Sham et al. (Sham, Tang, Fang, Sun, Qin, Wu, Xie & Guan 2002)

identified several nonrandom chromosomal changes in 31 primary ovarian

carcinomas in Chinese women, including gains of 1q (10 cases, 32%), and

that the losses of 1q32.2 were observed as alterations in comparative genomic

hybridisation studies. These results showing the alterations of these two

locations in cancers support our suggestion that combining miR-98 and miR-

205 is a good approach to lung cancer study.

4.3.5 Target Genes of Biomarker miRNAs and Their

Associated Diseases

For each 100%-frequency rule containing 2 or 3 miRNAs, we detected target

mRNAs of these miRNAs. Then we identified their common targets. From

these common targets, we also linked to the OMIM disease database to

examine disease gene information.
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The target genes of the miRNAs in the 4 top-ranked 2D rules (Table 4.5)

were extracted from the TargetscanHuman database ( www.targetscan.

org) (Dweep, Sticht, Pandey & Gretz 2011). All of them have many target

genes. For example, miR-451, -126, -98, -205, -103 and let-7a have 20, 25, 46,

415, 531 and 84 target genes respectively. Then we looked at the common

target genes of the miRNAs involved in one rule. Interestingly, the common

targets are not many. For example, miR-98 and miR-205 have only two

common targets FZD3 and RPS6KA3. Details are shown in Table 4.8.

Table 4.8: The targets and associated disease of our biomarkers

Biomarkers Common OMIM gene/ Relate to lung

targets disorder cancer or carcinoma

miR-98 and FZD3 606143/- carcinoma

miR-205 RPS6KA3 300075/303600 squamous cell carcinoma

miR-451 and AEBP2 –/– irrelevant

miR-205

Let-7a and PARD6B 608975/– irrelevant

miR-205 NKD1 607851/– lung cancer

MAP3K2 609487/– irrelevant

RBMS2 602387/– irrelevant

EPB41 130500/61804 lung cancer

miR-103 and AKAP13 604686/– irrelevant

miR-126

The first and third top-ranked miRNA pairs (Table 4.8) have an opposite

change of expression in normal samples compared to the disease samples.

These pairs of miRNA may affect different complementary pathways. It is

possible that the down regulated miRNA inhibited a transcription factor

that regulates the other miRNA. On the other hand, the common targets

of the pairs of miRNAs are sensible only when (i) down-regulation of their

common targets cause cancers, and (ii) their common targets have normal or

high expression in normal tissues. For example, NKD1, FZD2 and EPB41
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fit the biological behaviour expected above. Especially, down regulation of

NKD1 (common target of let-7a and miR-205) increases the invasive potential

of NSCLC (Zhang, Wang, Dai & Wang 2011). FZD3 works the same way

(“The proliferation and invasion ability of SACC-M cells were enhanced when

the expressions of FZD2 and FZD3 genes were inhibited in SACC-M cells”

http://mt.china-papers.com/7/?p=6645). EPB41 (common target of let-7a

and miR-205) is another example that works this way. It is absent in most

NSCLC cancer. Its presence suppresses these lung cancer cells’ growth (www.

wikigenes.org/e/gene/e/2035.html) (Zheng, Qi, Gao, Wang, Qi, Shi &

An 2009).

From these target genes, we further conducted disease gene analysis.

First, we obtained the common target genes’ Online Mendelian Inheritance in

Man (OMIM) information and their associated diseases from Human Disease

Gene List (http://www.genecards.org/) with the target genes’ name. To this

end, we compared the associated diseases of these biomarkers. It was found

that: (i) the two miRNAs (miR-98 and miR-205) involved in our best rule

have both been confirmed as being associated with carcinoma; and (ii) let-7a

and miR-205 (in the second best rule) have been confirmed to be directly

associated with lung cancer. On the other hand, we did not find evidence in

the literature to show the pair miR-451 and miR-205, or the pair miR-103

and miR-126 linked to lung cancer in any way (Table 4.8).

4.4 Discussion

As described, this work applied a new rule discovery and distance separation

technique to discover 2D and 3D 100%-frequency rules for lung SCC

diagnosis. We constructed a data set consisting of 19 important miRNAs by

projecting 5 plasma miRNA biomarkers onto the whole list of 328 miRNAs

ordered by gain ratio. Classification performance on this data set is better

than on other data sets. This study also provides knowledge so that we can

develop potential non-invasive or minimally invasive diagnostic biomarkers
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for early lung cancer diagnosis. Of the 5 previously intensively studied plasma

miRNAs, three of them (miR-21, miR-126 and miR-182) have been employed

to form our diagnostic rules for lung tissue diagnosis. So, these 2D and 3D

rules and the corresponding miRNAs identified from the tumour tissues may

be good plasma miRNA biomarkers as well.

The present study suggests that a minimal 2-miRNA or 3-miRNA rule

can distinguish lung SCC tissues from normal tissues. These rules are entirely

new, because complex diseases are often affected by various miRNAs rather

than a single miRNA, and single-miRNA rules are insufficient for accurate

diagnosis.

The advantage of the method presented here can be extended to the study

of biomarkers identification in lung cancer prognosis. Also, we can validate

the prognostic utility of these identified diagnostic biomarkers in early lung

cancer. In addition, the discovered rules and distance separation technique

can potentially be applied to further investigate biomarkers in other cancer

diagnosis and prognosis, including breast cancer, pancreatic cancer, etc.

4.5 Conclusion

Rule discovery followed by distance separation is a powerful computational

method for reliable identification of miRNA biomarkers. The visualization

of the rules and the clear separation between the normal and cancer samples

by our rules will help biology experts for their analysis and biological

interpretation.

This chapter addresses Contribution 1 of this thesis as listed in Section

1.3 by proposing a rule mining method to detect 2- and 3-miRNA biomarkers

for the diagnosis of SCC. In the proposed method, this work has illustrated

the computational difficulties of multi-miRNA analysis of expression data,

and presented our effective approach to 2D or 3D biomarker discovery for

lung SCC diagnosis. We have proposed a novel method to construct a

committee of decision trees which may subsequently be used to derive 100%-
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frequency rules containing 2 or 3 miRNAs. To detect more reliable rules, we

have applied a Max-Min distance separation technique to look for the clear

boundaries between the normal and cancer sample groups. The chromosomal

loci of the miRNAs in these rules are identified, and the target genes of

these biomarker miRNAs are also obtained from databases to determine the

common mRNAs. These common target genes are then linked to diseases.
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Chapter 5

Connecting rules from paired

miRNA and mRNA expression

data sets of HCV patients to

detect both inverse and positive

regulatory relationships

5.1 Introduction

As is explained in the related work (Section 2.2), miRNAs affect the

stability and translational efficiency of target mRNAs by binding to their

3’ UTRs to inhibit expression (Lewis et al. 2005a). A miRNA can have

many target mRNAs and a mRNA can be regulated by multiple miRNAs,

forming complicated many-to-many regulatory modules between miRNAs

and mRNAs.

The identification of miRNA-mRNA regulatory modules has proven to be

important for understanding complex cellular systems (Lewis et al. 2005a).

It is also useful for understanding the infection process of various human

diseases (Yoon & De Micheli 2005b). A recent computational method
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based on probabilistic learning has been specially designed which uses the

paired expression profiles and binding information of miRNAs and mRNAs

on human cancer samples to discover miRNA-mRNA modules (Joung

et al. 2007). Bayesian networks have also been adopted by many research

groups (Friedman, Linial, Nachman & Pe’er 2000, Liu, Li & Tsykin 2009a)

to detect novel miRNA-mRNA modules.

The key idea in all of these studies is the inverse expression relationship

between miRNAs and their target mRNAs. An inverse expression relationship

means that when the expression level of the miRNA is high (up-regulated),

the target mRNA should be down-regulated based on the principle that

miRNAs deregulate the expression of targeted mRNAs (Lim et al. 2005).

However, up-to-date evidence shows that the inverse relationship does not

always hold. First, a miRNA can induce gene expression by binding to

the gene’s promoter or enhancer sequence. For example, miR-373 can

induce the expression of E-Cadherin or CSDC2 when binding to these

genes’ promoters (Place et al. 2008). Second, recent investigation also shows

that the interaction of miR-10a with RP mRNAs (those mRNAs encoding

ribosomal proteins) binding at their 5’ UTRs can promote the translational

enhancement of these mRNAs instead of repression (ørom et al. 2008).

Third, some positively regulated modules of miRNAs and mRNAs have been

studied by wet-labs. For example, Van et al. have used quantitative PCR

technology to evaluate the expression of miRNAs in the inflammatory breast

cancer (IBC) and 50 non-IBC samples. Their results showed 7012 negative

correlated miRNA-mRNA pairs and 10283 positive correlated miRNA-

mRNA pairs (Van der Auwera, Limame, Van Dam, Vermeulen, Dirix &

Van Laere 2010). Enerly et al. have reported strong positive correlations

between miRNA clusters and their target genes of distinct biological processes

in primary human breast tumours (Enerly, Steinfeld, Kleivi, Leivonen, Aure,

Russnes, Rønneberg, Johnsen, Navon, Rødland et al. 2011). Nazarov et al.

have identified several interactions in the form of negative or positive

correlations between miRNAs and mRNAs, and subsequently identified
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positively correlated miRNA-mRNA interaction networks in the frontal

cortex of mice by differential expression analysis and weighted gene co-

expression network analysis (Nazarov, Reinsbach, Muller, Nicot, Philippidou,

Vallar & Kreis 2013). Therefore, the identified miRNA-mRNA interactions

based purely on the inverse regulatory relationship are only an incomplete

part of the modules in a certain biological context. Nunez et al. have

firstly reported the positively correlated miRNA-mRNA networks in an

animal model, which they proposed as an adaptive mechanism to reinstate

cellular homeostasis (Nunez, Truitt, Gorini, Ponomareva, Blednov, Harris &

Mayfield 2013).

This work focuses on the detection of both inverse and positive regulatory

relationships in the paired miRNA and mRNA expression data of HCV-

affected tissue samples. Paired miRNA and mRNA expression profiling

provides an excellent platform for capturing those miRNA expression changes

between two classes of samples that lead, positively or negatively, to the

changes in mRNA expressions between the two classes of samples. We present

a novel two-step sequential method to capture such “changes-to-changes”.

Our method derives discriminatory rules from miRNA expression data as

the first step, and derives discriminatory rules from mRNA expression data

as the second step. These rules are then combined to discover miRNA-mRNA

regulatory modules.

The first step works on the miRNA data of the HCV negative and

positive tissue samples to derive differentially expressed miRNAs and

discriminatory rules (i.e., the miRNA expression changes between the two

classes of samples). For each of these rules, we search for the predicted

mRNA targets of every miRNA from the public miRNA target database

TargetScan (Friedman, Farh, Burge & Bartel 2009b). We then narrow the

search findings to a selected mRNA data set by removing the expression

data of those mRNAs which do not belong to the predicted target mRNAs

from the original mRNA data set. Discriminatory rules are derived from

this selected and relevant data set of mRNA expression to concentrate on
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Figure 5.1: Our approach in comparison to previous approaches. We

construct miRNA-mRNA regulatory modules using rule-based methods as

shown in the right panel where the mRNA data set is narrowed down by the

identified miRNA rules which are derived at the first step.

gene expression patterns that show significant differences between HCV

positive and negative tissue samples (i.e., the mRNA expression changes

led by those miRNA expression changes detected in the first step). Then,

all the miRNAs in a rule and the mRNAs involved in the mRNA rules are

combined to form a potential miRNA-mRNA regulatory module which is

subsequently analysed using Pearson’s correlation coefficients and biological

literature results. Our approach does not use expression similarity networks

or gene clusters to connect the two expression data fundamentally from the

traditional approaches (Yoon & De Micheli 2005b, Joung et al. 2007, Peng

et al. 2009, Jayaswal, Lutherborrow, Ma & Yang 2011) (see Figure 5.1 for

detailed description).

This chapter, describing Contribution 2, is an extended description of

my publication (Song, Liu, Liu & Li 2015).
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5.2 Methods

5.2.1 miRNA and mRNA Expression Data Sets

The HCV data set from Peng et al. (2009) is used in this study (downloaded

from the NCBI Gene Expression Omnibus database under the SuperSeries

accession number GSE15387). This data set contains 36 tissue samples (24

HCV positive/+ and 12 HCV negative/-) described by the expression levels of

470 human miRNAs and 22575 mRNAs. The miRNA and mRNA data sets

were both preprocessed using the Agilent Feature Extraction v9.5.3 under

the default miRNA or mRNA parameters. Each miRNA value is the total

gene signal, while each mRNA value is the log (REDsignal/GREENsignal)

per feature (processed signals used, base 10). Of the 36 samples, 30 (24

HCV+ and 6 HCV-) samples have paired miRNA and mRNA expression

profiles. Experiments were conducted on all samples using four technical

replicates with the exception of sample28, sample33 and sample35, for which

only three replicates were used. It is very costly for wet-lab experiments to

obtain such a paired miRNA and mRNA expression data set. To our best of

our knowledge, the paired data set used in this work is the largest microarray

paired data set in the existing literature.

5.2.2 Rule-based Identification of miRNA-mRNA Regulatory

Modules

We take the following steps to detect miRNA-mRNA regulatory modules.

The first step is to use rule discovery to identify differentially expressed

miRNA rules of 100%-frequency. Then for every miRNA in each rule, we

obtain its predicted mRNA targets by searching for a public database (Friedman

et al. 2009b). We then construct a selected mRNA data set for each

rule consisting of all the samples but only those predicted target mRNAs

presented in the original mRNA data set. We subsequently detect mRNA

rules of 100% frequency from this selected mRNA data set. The mRNA
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rules and their miRNA rule are then combined to form a miRNA-mRNA

regulatory module. Our method is summarised in Figure 5.2 and detailed in

the following subsections.

Rule Discovery from miRNA Expression Data

We rank all of the 470 miRNAs using the gain ratio criteria (Quinlan 1993b,

Han & Kamber 2006b) through the Weka 3.6 software package (website:

http://www.cs.waikato.ac.nz/ml/weka/). The top-ranked miRNAs (the

most significant miRNAs) are then extracted to construct a new data set.

We take a committee tree approach to detect 100%-frequency rules from this

new data set, and to generate a committee of decision trees. We use the

implementation of the C4.5 algorithm (Quinlan 1993b) in the R software

package(RWEKA) to construct the tree committee. The first tree is derived

based on the above miRNA data set. To derive the second tree, we change

the data set by removing the root node of the first decision tree. This process

is repeated until the data set has only two miRNAs left. If all of the training

samples can be correctly classified by a rule in one of these trees, then this

rule is a 100%-frequency rule. As mentioned, this work focuses on only

2-miRNA 100%-frequency rules as differentially expressed miRNAs for the

simple diagnosis of HCV infection.

All the 100%-frequency rules are evaluated by Euclidean distance (Breu

et al. 1995) and the average area under receiver operating characteristic

(ROC) curves (AUCs) in the 10-fold decision tree cross-validation to

determine their significance. Euclidean distance of a 100%-frequency rule

indicates the separation extent between the HCV+ and HCV- samples. The

separation extent is measured by the shortest pair-wise Euclidean distance

of the HCV+ and HCV- samples (i.e., the Max-Min distance). The wider

the separation is, the more reliable is the rule. 100%-frequency rules with a

wide separation distance are of our interest for further investigation.
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Figure 5.2: Computational steps for the identification of miRNA-

mRNA regulatory modules. 1) Collection of miRNA expression profile

data set. 2) Discovery of discriminatory rules from the miRNA expression

data set using our rule discovery algorithm. 3) Construction of a selected

and relevant mRNA expression data set. 4) Discovery of discriminatory rules

from the relevant mRNA data set. 5) Identification of candidate miRNA-

mRNA regulatory modules by combining the miRNAs and mRNAs in the

discovered rules.
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Rule Discovery from the mRNA Data Set

The systematic function of a miRNA is ultimately defined by its interaction

with its target mRNAs or genes. We thus investigate the co-expressed

miRNAs in each rule and their corresponding target mRNAs that are

corporately involved in HCV infections. For each rule, we obtain computationally

predicted target mRNAs through the Targetscan database (Friedman et al.

2009b). Using these predicted target mRNAs and their corresponding

expression profiles from the original mRNA data, we apply the data mining

techniques below to discover the rules of mRNA targets.

Given a dataset D with the class label set C (e.g., positive and negative),

we detect rules for each c ∈ C. There may be more than one rule for each

c ∈ C, we use several rounds of rule analysis to detect the rules. In each

round, we detect a rule for each c ∈ C. We enumerate every attribute xi to

get its expression range ai and bi, and calculate the compactness p = Nc/N

where N or Nc is the number of all samples or c’s samples in the expression

range. Then, ai ≤ xi ≤ bi with the highest compactness is added to the

rule. This process is repeated until (i) p = 100% (a rule for c is detected),

or (ii) p cannot be improved but is still below 100% (there is no rule for

c). In the selected mRNA expression dataset used in this work, in each

round of rule analysis, we detect two rules: one for HCV+ and the other for

HCV-. For the next round, all mRNAs in the discovered rules beforehand

are not considered, and the rule analysis is performed again to detect more

rules. The whole process is continued until none of the classes has a rule.

This computationally heavy method is used at this step, because it is hard to

identify the significant mRNAs with high gain ratio among tens of thousands

of mRNAs by the tree-based analysis, but this computational heavy method

can work out many 100%-frequency rules from the mRNA data sets.

Rule-Based miRNA-mRNA Regulatory Modules

We group all of its mRNA rules of 100%-frequency for each miRNA rule.

A miRNA-mRNA regulatory module is formed by using a bipartite graph
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representation (West et al. 2001), in which all the mRNAs in these rules

comprise the mRNA partite, while the miRNAs are placed at the miRNA

partite. To show the significant part of the modules and to assess the

modules in the validation, we focus on the top four mRNA rules: two rules

for classifying HCV+ samples and two rules for HCV-. We refer to these

miRNAs and those mRNAs in the top four rules as significant components

of the miRNA-mRNA regulatory module.

We also review the existing empirical literature to assess the biological

importance of the regulatory modules. Furthermore, Pearson’s correlation

coefficient is calculated to detect the relationships (positive or negative

correlation) between the miRNAs and mRNAs.

5.3 Results

5.3.1 2-miRNA Discriminatory Rules from the miRNA

Expression Data

On the original miRNA data set of the 36 samples and 470 miRNAs, the gain

ratio method selects 21 top-ranked miRNAs as the most significant miRNAs

for the distinction between the HCV+ and HCV- samples. Each of the 21

miRNAs has a gain ratio > 0.5. The other miRNAs have a gain ratio ≤ 0.5

and thus are not considered here. Statistical analysis is also carried out using

the two-sided student’s t-test and the statistical significance is set as P<0.05

(Table 5.1).

On the data set of the above 21 miRNAs and all of the 36 samples, a total

of nine 100%-frequency rules covering 10 miRNAs are derived through our

committee tree approach. Each of these rules can classify the 36 samples into

HCV+ or HCV- without any misclassification. An example of these miRNA

rules is related to miR-557 and miR-214. The rule is: every HCV+ sample’s

expression profile satisfies the two miRNAs’ specific expression ranges (8.94 ≤
miR − 557 ≤ 43.53 ∩ 95.54 ≤ miR − 214 ≤ 1057.51), but none of the
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Table 5.1: The top-ranked miRNAs with a gain ratio larger than 0.5

miRNA Rank p-value miRNA Rank p-value

miR-202 1 2.072e-08 miR-519e* 12 4.222e-04

miR-601 2 1.060e-05 miR-526b 13 8.246e-04

miR-498 3 6.196e-09 miR-345 14 9.802e-05

miR-557 4 1.148e-05 miR-17-3p 15 2.927e-05

miR-34a 5 1.767e-02 miR-520a 16 0.276

miR-493-3p 6 3.127e-06 miR-452 17 4.170e-05

miR-214 7 4.629e-03 miR-501 18 4.328e-07

miR-184 8 1.470e-06 miR-130a 19 7.261e-04

miR-129 9 3.752e-03 miR-34b 20 1.278e-02

miR-765 10 1.243e-08 miR-221 21 4.622e-02

miR-210 11 1.668e-08

HCV- samples satisfies these two expression ranges. The minimum Euclidean

distance separating the two classes of samples for each rule and the average

AUCs in the 10-fold decision tree cross-validation are also calculated. As

shown in Table 5.2, the rule consisting of miR-557 and miR-214 has the

maximum distance and maximum AUC.

5.3.2 Rules from the mRNA Expression Data

For each miRNA rule, the predicted mRNA targets from TargetScan are used

to narrow down the original mRNA data set to a relevant mRNA data set for

mRNA rule discovery. As shown in Table 5.3, some of the predicted targets

(mRNAs) of a miRNA are not in the list of the probes used in the original

mRNA expression data set (Table 5.2). Therefore, the mRNA expression

profiles of only those targets (mRNAs) of the miRNAs in the probe list are

used for the rule discovery (fourth column of Table 5.2). We note that the

miRNAs involved in each rule may have common targets. For example, miR-

557 and miR-214 have two common targets. On the 9 new mRNA data sets

each for one miRNA rule, many 100%-frequency rules were mined by our
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Table 5.2: The target mRNAs and their rules for each miRNA rule.

RuleEuclideanAverage #mRNA Class1 #rules2 #rules3 #mRNAs #mRNAs4

ID distance AUC in dataset in HCV+in HCV-in all rulesin top rules

R1 4.8946 0.9323 300 HCV+ 2 14 110 15

R2 3.2888 0.9323 517 HCV+ 2 21 159 12

R3 2.5160 0.9323 329 HCV+ 2 14 85 12

R4 2.3360 0.8889 247 HCV+ 2 11 75 12

R5 0.2256 0.8681 184 HCV+ 2 5 41 13

R6 1.6425 0.9115 650 HCV- 8 34 269 10

R7 1.2757 0.8750 398 HCV- 7 28 227 10

R8 2.6420 0.9028 186 HCV- 2 6 55 20

R9 0.9806 0.8958 289 HCV- 1 12 97 11

R1: miR-557 and miR-214; R2: miR-34a and miR-214; R3: miR-493-3p and miR-214;

R4: miR-214 and miR184; R5: miR-184 and miR-210; R6: miR-129 and miR-765; R7:

miR-765 and miR-210; R8: miR-210 and miR-452; R9: miR-452 and miR-17-3p. 1: the

miRNA rule defines a region covering all samples of a class.
2(3): the number of mRNA rules, each of which defines a region covering all samples of

HCV+(HCV-).
4: the number of mRNAs in the top four mRNA rules: the top two mRNA rules in

HCV+ (one rule is used if it is the only mRNA rule in HCV+) and another top two rules

in HCV-.
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Table 5.3: The number of predicted mRNA targets in the TargetScan

database and those targets common in our mRNA data set

miRNA mRNA targets

Predicted by TargetScan in our used data set

miR-557 97 78

miR-214 301 224

miR-34a 387 293

miR-493-3p 131 105

miR-184 28 23

miR-129 320 236

miR-765 1105 414

miR-452 32 25

miR-210 218 161

miR-17-3p 353 264

proposed rule mining method (Table 5.2). In detail, we identified 28 mRNA

rules for HCV+ and 145 mRNA rules for HCV- covering a total of 1118

mRNAs for all of the 9 miRNA rules (Table 5.2). Lastly, the top 4 rules, 2

from HCV+ (one rule is used if it is only one mRNA rule in HCV+) and 2

from HCV- are chosen as differentially expressed mRNAs for the subsequent

miRNA-mRNA regulatory module study.

5.3.3 A miRNA-mRNA Regulatory Interaction Network

The above detected miRNA rules and significant mRNA rules are merged

to form 9 miRNA-mRNA regulatory modules. These 9 miRNA-mRNA

regulatory modules are then integrated to form a bigger miRNA-mRNA

regulatory network (Figure 5.3). Many miRNAs and mRNAs in bold in

these modules are related to diseases especially Hepatocellular carcinoma as

supported by literature work (Table 5.4).

The numbers of mRNAs in these significant modules are shown in the

last column of Table 5.2. Figure 5.4 and Figure 5.5 show two examples of
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Table 5.4: All target mRNAs of miRNAs in HCV+ and HCV- modules.

miRNAs Targetted mRNAs modules

miR-557 ADRA1D, ACVR1C,DNAJA3,FAM120A HCV+

miR-214 ASB16, GALNTL4,CBX5,BNC2,PDLIM2,RAB43, HCV+

SPCS2,NKTR,ASXL1, ACLY,C6orf192,

ING4,GLG1,SHOC2

miR-34a CPLX2, FNDC5 HCV+

miR-493-3p WDR33 HCV+

miR-184 EPB41L5,ALDH4A1 HCV+

miR-129 CBLB, OCRL, COMT,DENND2C HCV-

miR-765 ABCC5, BRD3, ANKRD12, AUTS2, PCID2, NMD3, HCV-/+

NUP43

miR-210 FGD4, HDAC4, CACNA2D2, OAZ2, ADAMTS5, AK3, HCV-

CDKN1B, EPM2AIP1, PPP1R12B, PRPF4B, STAM2,

EZ6L, SAMD4A, PISD, KCTD9, FAM118A,

CHD2, KIT, TCF4

miR-452 ARMC1, ZNF462, EFNA3, SMG5, FAM73B HCV-

miR-17-3p BNC2, DICER1, GFRA1, KIAA1804, ENPP1, ZNF558, HCV-

ERO1L, SNX27, ZNF718
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Figure 5.3: A miRNA-mRNA regulatory interaction network. There

is an edge between two miRNAs if they are components of a miRNA rule. The

edge between a miRNA and a mRNA represents a regulation of the miRNA

for its target. Six miRNAs (miR-214, miR-34a, miR-129, miR-765 and

miR-210) and 9 mRNAs (ACVR1C, RAB43, FNDC5, WDR33, ALDH4A1,

ANKRD12, KCTD9, ARMC1 and DICER1) all in red are confirmed by

literature work.
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these significant modules, and all the miRNAs in bold and the mRNAs with

underlining and italics can be confirmed by the literature. The validation

results are presented below:

• In the module for miR-557 and miR-214, miR-557 has been reported as

a novel candidate biomarker for hepatocellular carcinoma (Katayama,

Maeda, Miyaguchi, Nemoto, Yasen, Tanaka, Mizushima, Fukuoka, Arii

& Tanaka 2012), and miR-214-5p has been shown to up-regulate in

human and mouse livers in a fibrosis progression-dependent manner.

The expression of miR-214-5p increased during the culture-dependent

activation of mouse primary stellate cells and was significantly higher in

stellate cells than in hepatocytes (Iizuka, Ogawa, Enomoto, Motoyama,

Yoshizato, Ikeda & Kawada 2012). As miR-214 and miR-557 expression

patterns in hepatocellular carcinoma are tissue specific, they can

both serve as novel biomarkers for chronic liver diseases. Meanwhile,

a target mRNA ACVR1C of miR-557 is also associated with a

reduction in HCV-infected cells (Zhang, Daucher, Armistead, Russell &

Kottilil 2013), while the target mRNA RAB43 of miR-214 is a key RAB

to maintain a functional Golgi complex in human cells (Fukuda 2011),

has been found to interact with HCV NS5A proteins (Sklan, Staschke,

Oakes, Elazar, Winters, Aroeti, Danieli & Glenn 2007) and can also

mediate the replication of HCV (Fukuda 2011).

• In the module of miR-34a and miR-214, besides the confirmed miR-214

and its mRNA RAB43, miR-34a has been reported to up-regulate in

both liver fibrosis and hepatocellular carcinoma, and the serum levels

of miR-34a are significantly higher in chronic hepatitis C infection

patients than in controls (Cermelli, Ruggieri, Marrero, Ioannou &

Beretta 2011). In addition, its target mRNA Fibronectin (FNDC5 )

was down-regulated and associated with hepatic fibrosis (Clark 2012).

• In the module of miR-493-3p and miR-214, the sole target mRNA

WDR33 of miR-493-3p has been found to result in increased viral
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infection with two or more siRNAs (Brass, Huang, Benita, John,

Krishnan, Feeley, Ryan, Weyer, van der Weyden & Fikrig 2009).

• In the module of miR-184 and miR-214, a mRNA ALDH4A1 of miR-

184 was believed to contribute to HBV- or HCV- induced liver (Xie,

Cheng, Xing, Wang, Su, Wei, Zhou & Zheng 2011).

• In the module of miR-129 and miR-765, miR-129 has been strongly

believed to be involved in the significant dysregulation in hepatocellular

carcinogenesis (Katayama et al. 2012, Lu, Lin, Tien, Wu, Uen &

Tseng 2013), and miR-765 is one of the promising candidate miRNA

biomarkers to detect hepatocellular carcinoma among hepatitis C virus

patients (Abdalla & Haj-Ahmad 2012). Meanwhile, mRNA ANKRD12

of miR-765 is involved in one of the important roles of th host miRNAs

in regulating the liver-specific HCV (Liu, Wang, Wakita & Yang 2010).

• In the module of miR-765 and miR-210, besides the validation of miR-

765 and its target mRNAs above, miR-210 was up-regulated in HBV-

producing HepG2.2.15 cells compared to parental HepG2 cells, and

identified to suppress the hepatitis B virus (Zhang, Li, Zheng, Liu, Li

& Tang 2010). In addition, a target mRNA (KCTD9 ) of miR-210 has

been found to contribute to liver injury (Chen, Zhu, Zhou, Pi, Liu,

Deng, Zhang, Wang, Wu & Han 2013).

Other mRNAs in these modules are also confirmed to be involved in

hepatocellular diseases. For example, a mRNA of miR-452, ARMC1 is up-

regulated and frequently amplified in human hepatocellular carcinoma (Lee,

Ho, Roy, Kosinski, Patil, Tward, Fridlyand & Chen 2008). Target mRNA

DICER1 of miR-17-3p, a component of the RNAi machinery, can markedly

reduce HCV production and intracellular HCV RNA levels (Lupberger, Brino

& Baumert 2008).

All these validation results suggest that the identified modules are closely

related to hepatocellular carcinoma and are important for understanding the
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Figure 5.4: The regulatory module inferred from the first miRNA

rule and its corresponding mRNAs. miR-557 and miR-214, the miRNAs

of the first HCV+ miRNA rule are placed in the up panel. Four mRNA rules

are identified and their mRNAs are placed in the middle and bottom panels.

The edges linking miR-214 and its mRNA targets are in solid lines, while

the edges linking miR-557 and its mRNA targets are in dashed lines. The

confirmed target mRNAs are also highlighted with an underline.

miRNA-mRNA regulation in the host responses and pathogenesis of HCV

infection.

5.3.4 Many-to-Many miRNA-mRNA Regulatory Modules

The big regulatory module (Figure 5.3) is a miRNA-mRNA interaction

network integrated from the 9 simple regulatory modules corresponding to

the 9 miRNA rules. A many-to-many miRNA-mRNA regulatory module

usually consists of a cohort of miRNAs and a set of their target mRNAs,

in which a target mRNA is regulated by multiple miRNAs, and a miRNA

has multiple mRNAs as its target. We especially examined those many-to-

many miRNA-mRNA regulatory modules in which mRNAs are targetted by

at least 3 miRNAs. Figure 5.6 shows such an example.

This regulatory module contains 8 miRNAs and 6 target mRNAs. The
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Figure 5.5: The regulatory module inferred from the first HCV- rule

consisting of miR-129 and miR-765. In this module, miR-765 targets 6

mRNAs and miR-129 regulates 4 mRNAs. ANKRD12, a target of miR-765,

is validated to be associated with chronic liver disease by existing works.

Figure 5.6: The many-to-many relationship between some mRNAs

and miRNAs identified in our modules (i.e., one mRNA is targeted by

many miRNAs and one miRNA can regulate many mRNAs).
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literature shows that the miRNAs in this regulatory module are causally

connected to human hepatocellular carcinoma or related diseases. For

example, miR-129, miR-214 and miR-34a are found to associate with human

hepatocellular carcinoma (Katayama et al. 2012, Lu et al. 2013, Xia, Ooi

& Hui 2012, Cermelli et al. 2011). Mature miR-184 of over-expression can

act as an oncogene in the antiapoptotic and proliferative processes of tongue

Squamous Cell Carcinoma (Wong, Liu, Wong, Ng, Yuen & Wei 2008). miR-

129 can regulate multiple tumour cell lines and primary tumours including

medulloblastoma, undifferentiated gastric cancers, lung adenocarcinoma,

endometrial cancer and colorectal carcinoma through down-regulating CDK6

expression (Wu, Qian, Li, Kwok, Cheng, Liu, Perdomo, Kotton, Vaziri

& Anderlind 2010). miR-34a can act as a tumour suppressor gene in a

broad range of tumours including breast cancer, lung cancer, colon cancer,

kidney cancer, bladder cancer and pancreatic carcinoma cell lines (Lodygin,

Tarasov, Epanchintsev, Berking, Knyazeva, Korner, Knyazev, Diebold &

Hermeking 2008). The mRNAs targeted by the miRNAs in this regulatory

module are also engaged with cancer. Tumour suppressor QKI (the common

target of miR-493-3p, miR-129 and miR-765) is expressed at significantly low

levels in most of the gastric cancer tissues (Bian, Wang, Lu, Yang, Zhang,

Fu, Lu, Wei, Sun & Zhao 2012). MAP2 has been reported to be involved

with malignant oral cancer tissues by playing important roles in neuronal and

non-neuronal development (Liu, Chen, Tseng, Hung, Chiang, Chen, Shieh,

Chen, Jou & Chen 2008).

5.3.5 Negatively and Positively Regulated mRNAs by

Multiple miRNAs

The miRNA-mRNA expression relationships in the above many-to-many

regulatory module were further assessed by analysing the Pearson’s correlation

coefficients of the 19 paired miRNA and mRNA expression levels of the 30

patients (i.e., the 19 edges in Figure 5.6). These coefficients are shown

in Table 5.5. As expected, most of these relationships are negative. For

103



Chapter 5. Connecting Rules from Paired miRNA and mRNA Expression
Data Sets of HCV Patients to Detect both Inverse and Positive Regulations

Table 5.5: Pearson’s correlation coefficients between the miRNAs and

mRNAs in the many-to-many regulatory module.‘-’ indicates the mRNA (in

a column) is not the target of the miRNA (in a row).

GFRA2 QKI MAP2 FRMPD4 BNC2 CAMK2D

miR-493-3p - -0.68 - 0.12 - -

miR-184 - - - -0.05 - -

miR-129 - -0.71 - - - 0.01

miR-214 - - -0.15 - -0.01 0.03

miR-557 0.18 - -0.01 - - -

miR-765 0.21 -0.44 -0.02 -0.04 -0.10 -

miR-17-3p 0.26 - - - -0.13 -0.13

miR-34a - - -0.05 - - -

example, QKI, MAP2 and BNC2 have an inverse expression relationship

with all of their regulator miRNAs. FRMPD4 is also negatively correlated

with their regulators except miR-493-3p. CAMK2D has a random correlation

with miR-129 and miR-214, but it is negatively correlated with miR-17-3p.

One of our novel findings is a positive regulatory relationship between

a mRNA and multiple miRNAs. As can be seen from Table 5.5, GFRA2

has a clear positive relationship with the expression of all of miR-557, miR-

765 and miR-17-3p with Pearson’s correlation coefficients 0.18, 0.21, and

0.26 respectively. Figure 5.7 details the positively regulated expression levels

of GFRA2 in the 30 patients in comparison with the expression levels of

the three miRNAs. If |PCC| < 0.1, we define the relationship should be

a random or uncertain relationship. As indicated by the gain ratios shown

in Table 5.1, the expression levels of each of these three miRNAs are able

to separate these HCV+ and HCV- samples (also seen from the horizontal

lines in Figure 5.7). It is the expression change of these three miRNAs that

leads to a positive expression change of GFRA2 between the two classes of

patients.

The sequence matching between these miRNAs and GFRA2 was also
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Figure 5.7: The positive expression relationship between GFRA2

mRNA and miR-557, miR-765, and miR-17-3p. The expression levels

of the three miRNAs are preprocessed in the log scale, and the expression

levels of GFRA2 are expanded by 10 times. The three miRNAs all have a

high gain ratio, separating the HCV+ and HCV- samples very well.
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studied. ørom et al. reported that the binding of miR-10a at the 5’ UTRs of

ribosomal protein (RP) mRNAs can promote their translational enhancement

instead of repression (ørom et al. 2008). We attempted to verify whether the

5’ UTR of GFRA2 has a full or partial complementary sequence pairing with

the seed region of miR-557, miR-765 or miR-17-3p. The fact is that the seed

region of these three miRNAs is complementary to the 5’ UTR of GFRA2

with just one mismatched pair. In detail, the seed region of miR-557 matches

the positions from 132 to 138 of GFRA2 5’ UTRs, the seed region of miR-

17-3p matches from 225 to 231, and the seed region of miR-765 matches from

495 to 502 (Figure 5.8). Therefore, it is likely that these three miRNAs bind

at the 5’ UTR end of GFRA2 mRNA to enhance its translation for a positive

regulation.

The statistical significance of this sequence complementarity in the

defined manner (which also includes a mismatch) was also analysed using

a Markov Model (MM) (Chung 1967). Based on the first-order Markov

model (Maŕın & Vańıček 2011), the complementary significance was assessed

by computing a probability (P) for each miRNA-5’ UTR pair. It is an

approximate probability that a complementary to the miRNA seed is found

in the corresponding 5’ UTR. The lower the P is, the higher the chances

that the 5’ UTR is a functional target. The length of the 5’ UTR of GRFA2

mRNA is 675, being composed of 151 purine bases adenine (A), 182 guanine

(G), 161 the pyrimidine bases uracil (U), and 181 cytosine (C). The number

of nucleotide in the miRNA seed region is 7. The transition matrix is shown

as in Table 5.6. The complementary probability of the sequence matching

between the seed region of the three miRNAs (miR-557, miR-765 and miR-

17-3p) and 5’ UTRs of GFRA2 are 1.337e-05, 1.488e-04, and 1.133e-04

respectively which all imply a strong indication of a functional target.

To the best of our knowledge, the expression relationship between GFRA2

and any of the three miRNAs has not been studied before in spite of

intensive research into this field. GFRA2 is a member of the GDNF

receptor family encoding GDNF family receptor alpha-2 protein. GFRA2
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Table 5.6: Transition probability of two adjacent bases in the 5’ UTRs of

GFRA2.
A G U C Sum

A 33 (0.219) 50 (0.331) 32 (0.212) 36 (0.238) 151 (1.000)

G 60 (0.330) 60 (0.330) 20 (0.110) 42 (0.230) 182 (1.000)

U 22 (0.137) 33 (0.205) 62 (0.385) 44 (0.273) 161 (1.000)

C 36 (0.199) 38 (0.210) 47 (0.260) 60 (0.331) 181 (1.000)

Sum 151 (0.885) 181 (1.076) 161 (0.967) 182 (1.072) 675 (4.000)

Figure 5.8: The partial complementary sequence pairing between

the 5’ UTRs of GFRA2 and the seed sites of miR-557, miR-765

and miR-17-3p. The mismatched base pairs are shown in smaller font.
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is also a glycosylphosphatidylinositol (GPI)-linked cell surface receptor for

both the Glial cell line-derived neurotrophic factor (GDNF) and neurturin

(NTN) (Airaksinen & Saarma 2002), and it can affect the activation of the

RET tyrosine kinase receptor (Buj-Bello, Adu, Pinon, Horton, Thompson,

Rosenthal, Chinchetru, Buchman & Davies 1997). GFRA2 is a candidate

gene for RET-associated diseases. The brain-derived neurotrophic factor

in patients has been found to be related to chronic Hepatitis C (Fábregas,

de Miranda, Barbosa, Moura, Carmo & Teixeira 2012). Independent of the

research on GFRA2, miR-557 (Katayama et al. 2012), miR-765 (Abdalla &

Haj-Ahmad 2012) and miR-17-3p (Shan, Fang, Shatseva, Rutnam, Yang, Du,

Lu, Xuan, Deng & Yang 2013) have all been reported to be associated with

hepatocellular carcinoma. This suggests that the binding and interaction

of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or with their

combinations is a new research area, worth of comprehensive investigation

by wet-lab experiments.

We also closely examined a strong negative regulatory relationship, shown

in Figure 5.6. This regulatory relationship is between QKI mRNA and

multiple miRNAs being miR-493-3p, miR-129 and miR-765 (see Figure 5.9).

The seed matching sequence of miR-129 is located within the 3’ UTRs end

of QKI. But, the 5’ UTRs of QKI mRNA does not contain the miR-129

complementary seed site. It is believed that miR-129 binds at the 3’ UTRs

end of QKI mRNA to down-regulate its translation.

Pearson’s correlation coefficients were similarly examined for the literature-

confirmed miRNAs and their corresponding mRNAs in Figure 5.3. It was

found that miR-17-3p and DICER1 mRNA have a strong negative regulatory

relationship (Pearson’s correlation coefficient: -0.53). A protein possessing an

RNA helicase motif can be encoded by DICER1 gene. The encoded protein

functions as a ribonuclease and is required to produce the active small RNA

component that represses gene expression, which may affect the biogenesis

of miRNA (Liu, An, Liu, Wen, Zhai, Liu, Pan, Jiang, Wen, Liu et al. 2013).

As found by this work, the strongest positively regulated relationship is
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Figure 5.9: The negative expression relationship between the QKI

mRNA and miR-493-3p, miR-129, and miR-765. The expression

levels of the three miRNAs are preprocessed in the log scale. The three

miRNAs all have a good gain ratio, separating the HCV+ and HCV- samples

very well.
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between miR-184 and ALDH4A1 mRNA. Its Pearson’s correlation coefficient

is 0.43 (Figure 5.10). The ALDH4A1 mRNA is up-regulated in late HCV

cirrhosis (Mas, Maluf, Stravitz, Dumur, Clark, Rodgers, Ferreira-Gonzalez

& Fisher 2004) and HBV pathogenesis (Xie et al. 2011). In Drosophila, a

luciferase reporter assay has shown that miR-184 can target some of mRNAs

in the protein coding region (Easow, Teleman & Cohen 2007). We found

that the seed region of miR-184 is complementary to the coding region or to

the 5’ UTR of ALDH4A1 with just one mismatched pair. The seed region

of miR-184 matches the positions from 705 to 711 of ALDH4A1 ’s coding

region or with the positions from 257 to 263 at ALDH4A1 5’ UTR. Based on

this evidence, the miRNA-184 target sites in 5’ UTRs or the coding region

may make a significant contribution to miR-184 mediated regulation. The

functionality of miR-184 when binding at the 5’ UTR or the coding region

of ALDH4A1 deserves thorough investigation to expand the current research

on the 3’ UTR.

In addition, we also checked our discovery results in the starBase

database (http://starbase.sysu.edu.cn/) (Li et al. 2014), and an interaction

is confirmed between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI,

with the highest Pearson’s Correlation Coefficient.

5.4 Conclusion

The literature review of miRNA-mRNA relationships detection shows that

for most computational methods, the key idea in all of these studies is the

inverse expression relationship between miRNAs and their target mRNAs.

However, up-to-date evidence shows that the inverse relationship does not

always hold.

This chapter addresses Contribution 2 of this thesis as listed in Section

1.3 by connecting rule mining methods to detect both inverse and positive

miRNA-mRNA relationships in HCV patients. In this work, we have

proposed rule-based methods for the discovery of miRNA-mRNA regulatory
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Figure 5.10: The positive expression relationship between the

ALDH4A1 mRNA and miR-184. The expression levels of miR-184

are preprocessed by dividing 10 and this has a good gain ratio, classifying

the HCV+ and HCV- samples very well.
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modules in HCV infection. We followed the biological principle that inverse

expression relationships and positively regulated miRNA-mRNA pairs can

both exist in many-to-many regulatory modules. We detected 100%-

frequency rules from the most differentially expressed miRNAs and then

mined 100%-frequency rules from the relevant target mRNAs expression data

for each miRNA rule. We integrated the miRNA rules and their mRNA rules

to construct miRNA-mRNA regulatory modules. Many detected miRNAs

and mRNAs can be supported by recent work in the literature. We also

detected novel positive and inverse regulatory relationships. For example,

mRNA GFRA2 is positively regulated by multiple miRNAs miR-557, miR-

765 and miR-17-3p which all likely bind at the 5’ UTR end of GFRA2. The

detected miRNA-mRNA regulatory modules will provide new insights into

the regulation of host responses and the pathogenesis of HCV infection. We

conclude that our rule discovery method is useful for integrating binding

information and the expression profile for identifying HCV miRNA-mRNA

regulatory modules and can be applied to the study of the expression profiles

of other complex human diseases.
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Chapter 6

Identification of Lung Cancer

miRNA-miRNA Co-regulation

Networks Through a

Progressive Data Refining

Approach

6.1 Introduction

As is explained in the related work (Section 2.3), with these biological

observations, research interests have been focusing on the regulation relationships

between a miRNA and its target genes for many years (Hashimoto, Akiyama

& Yuasa 2013, Suzuki, Mihira, Watabe, Sugimoto & Miyazono 2013, Yang,

Sun, Hu, Zheng, Ji, Pecot, Zhao, Reynolds, Cheng, Rupaimoole et al. 2013).

However, the co-regulation relationship among the miRNAs themselves, for

example among a miRNA cluster, has not been intensively studied though

it was first reported in 2005 and 2006 (He, Thomson, Hemann, Hernando-

Monge, Mu, Goodson, Powers, Cordon-Cardo, Lowe, Hannon et al. 2005, Cui,

Yu, Purisima & Wang 2006).
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Co-regulation analysis of multiple miRNAs is useful for understanding

complex post-transcriptional regulations (Baumjohann & Ansel 2013, Guo,

Zhao, Yang, Zhang & Chen 2014). One of the earliest studies on miRNA

pair co-regulation is by Enright et al. (Enright et al. 2004) for understanding

the co-regulation between lin-4 and let-7 in Drosophila. With the huge

amount of expression data publicly available, newer methods have been

proposed to investigate the problems of co-regulating miRNAs (Migliore

& Giordano 2009, Boross et al. 2009, An et al. 2010). For example,

Boross (Boross et al. 2009) proposed to construct a miRNA co-regulation

network by computing the correlations between the gene silencing scores

of individual miRNAs. Since most of these studies take only expression

data of miRNAs and messenger RNAs (mRNAs) without biological function

analysis (Guo et al. 2010), some true targets of these miRNAs may be ignored

and some false targets may be included. One possible reason for this can

be explained by examples of those miRNAs being demonstrated to reduce

protein levels without the concomitant change in mRNA levels (Lee, Samaco,

Gatchel, Thaller, Orr & Zoghbi 2008), which may be regulated at tissue

specific levels (Guo, Maki, Ding, Yang, Xiong et al. 2014).

This suggests that biological functional analysis is a necessary assessment

for the detection of complete and reliable targets of miRNAs. Gene

Ontology (GO) contains comprehensive information of biological processes

and functions (Ashburner et al. 2000). In particular, the coherence score

of the GO terms annotated to a gene group can be used to compute

the p-value of a co-regulated gene group which actually is a statistical

measurement to judge whether or not the co-regulated gene group are reliable

targets of a miRNA. Yoon and De Micheli (Yoon & De Micheli 2005a) had

considered GO information and proposed a biclique-based method to detect

co-regulating groups of miRNAs and mRNAs. However, the heuristic nature

of that method can lead to those miRNAs or genes missing each other

even when they have a high probability of co-regulation. Recently, it has

been found that interacting proteins are often regulated by similar miRNA
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types (Yuan et al. 2009, Liang & Li 2007). This suggests that clustered

miRNAs can jointly regulate those proteins which are close to each other

within a protein interaction network (Hsu et al. 2008). In this work, we take

a novel approach to the discovery of miRNA-miRNA co-regulation networks

by sequentially and progressively integrating expression correlations, GO

function knowledge, and protein interaction information.

The co-regulation networks of miRNAs in lung cancer have not been well

investigated (Vincent 2013), despite that lung cancer is the leading cause

of cancer-related deaths worldwide. Our integrative computational method

is applied to identify a miRNA-miRNA co-regulation network common to

three lung cancer miRNA expression data sets of different subtypes. Our

method has three main steps. Firstly, all the common miRNAs to the three

data sets are selected to get relevant miRNA expression data. At this step,

Pearson’s correlation coefficient (PCC) and Targetscan database are used

to discover highly correlated miRNA pairs and the pairs’ common targets

for each of the three processed data sets. Secondly, some of these miRNA

pairs are filtered by performing a GO functional enrichment and a protein

interaction analysis on their common targets. If a subset of target genes

has a significant functional enrichment in the GO analysis and has a close

proximity in the protein interaction network, then this subset of target genes

is defined as a functional module. Thirdly, the analysis focuses on candidate

co-regulating miRNA pairs targetting the same functional modules. Those

miRNAs which are detected at least twice from the three data sets are finally

selected and then assembled to construct the common miRNA-miRNA co-

regulation network of lung cancer.

Important databases such as the KEGG pathway database, miR2Disease

and OMIM, and graph theories have been employed to interrogate the validity

of the miRNA co-regulation network. We found that this network is a

scale free network with a power law distribution, indicating it is far from

a random network. This network also contains some intensively-studied co-

regulating miRNAs (e.g., miR-221/222, miR-15b/16 and let-7a/b/c/d/f/g).
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On the other hand, some co-regulating miRNA pairs are novel. For example,

miR-18a/b from the same family is found to function together to co-

regulate their common targets. Furthermore, we discovered that lung cancer

related miRNAs have more synergism than lung cancer un-related miRNAs,

suggesting that they have more influence at the post-transcriptional stage

and on the fundamental cellular processes.

This chapter, describing Contribution 3, is an extended description of

my publication (Song, Catchpoole, Kennedy & Li 2015).

6.2 Materials

Three data sets of different lung cancer subtypes are used in this work.

Dataset1 contains small cell lung cancer, large cell neuroendocrine cancer,

squamous cell carcinoma and adenocarcinoma samples; Dataset2 contains

non-small cell lung cancer samples; and Dataset3 contains only squamous

cell carcinoma samples. These data sets are available at the Gene Expression

Omnibus (GEO) of the National Center for Biotechnology Information

(NCBI) database (under accession IDs GSE19945, GSE29250 and GSE15008).

Dataset1 (GSE19945) has a panel of 600 human miRNAs for 63 distinct

tissues (55 lung cancer samples and 8 normal samples). These miRNA

expression profiles were measured by the Agilent Human 0.6K miRNA

Microarray G4471A platform. The raw data was processed with the

GeneSpring GX10 software (Agilent) by the original author: Raw data of

intensities < 1.0 were transformed to 1.0, and then log2 transformed. The

signal intensities of each sample were then normalised to its 75 percentile

intensity by the GeneSpring normalisation option. Those features having raw

intensities < 5.0 in all samples were excluded. Our work uses the normalised

data only.

Dataset2 (GSE29250) consists of 859 human miRNAs for 12 distinct

samples (6 lung cancer samples and 6 normal samples) (Ma, Huang, Zhu,

Zhou, Zhou, Zeng, Liu, Zhang & Yu 2011). These miRNA expression profiles
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were extracted by the Illumina Human v2 MicroRNA expression beadchip

platform. Our work uses the normalised data set from GEO, which was

normalised via an Illumina Genomestudio software.

Dataset3 (GSE15008) contains 549 human miRNAs for 361 lung tissue

samples (Tan, Qin, Zhang, Hang, Li, Zhang, Wan, Zhou, Shao, Sun et al.

2011). The expression profiles were measured by the National Engineering

Research Center mammalian microRNA microarray platform. The miRNA

expression data in these tissues were derived after the average values of the

replicate spots of each miRNA were background subtracted and the faint

spots were filtered out when the expression signal was lower than 800 in all

samples. Our work uses all the 187 cancer tissue samples and the related 174

adjacent normal tissue samples.

The Targetscan database (Grimson, Farh, Johnston, Garrett-Engele, Lim

& Bartel 2007) provides predicted targets of miRNAs. The GO files on

Biological Process (BP) are from the GO consortium. Our protein interaction

data sets are from Unified Human Interactome, a big database containing

several large sets of protein-protein interactions. These data sets and their

work flow are depicted as a diagram in Figure 6.1. The details of the

computational steps are described in the subsequent sections.

6.3 Methods

6.3.1 Preprocessing of miRNA Expression Data

The three data sets are denoted by DS1, DS2, and DS3 in Figure 6.1. As

our goal is to detect a miRNA-miRNA co-regulation network common to

lung cancer, we concentrate on only those common miRNAs of these data

sets. In fact, there are 401 common miRNAs, obtained by mapping the

probe sets of these three data sets to the miRBase database (Griffiths-Jones,

Saini, van Dongen & Enright 2008). Each of these common miRNAs has a

unique ID number. We note that specially for DS3, the miRNA expression

values of these probe sets are actually averaged because these probe replicates
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Figure 6.1: The flowchart of constructing a miRNA-miRNA co-

regulation network starting from three lung cancer data sets ( 1©:

DS1, DS2 and DS3). Preprocessing: 2©: using DS1′, DS2′ and DS3′ to

represent the common miRNAs of DS1, DS2 and DS3; 3© : using data sets

PAIRS-1, PAIRS-2 and PAIRS-3 for storing miRNA pairs and their common

targets by selecting highly correlated miRNA pairs containing no fewer than

10 common targets. Identification: 4©: Identifying a miRNA pair co-

regulating the same function modules by performing GO function and protein

interaction analyses; 5©: repeating the procedure for every miRNA pair in

PAIRS-1, PAIRS-2 or PAIRS-3; 6©: identifying the functional modules and

constructing a common miRNA-miRNA co-regulation network by assembling

all the miRNA pairs with miRNAs which are detected at least twice from the

three data sets. Verification: 7©: using existing databases (KEGG pathway,

miR2Disease and OMIM) and graph theoretical methods to validate this co-

regulation network and functional modules.
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correspond to the same miRNA. Such processed DS1, DS2, and DS3 are

denoted by DS1′, DS2′, and DS3′ in Figure 6.1.

With the data from 401 miRNAs across our cohorts, we decided that the

data volume was sufficiently reduced to warrant the analysis of all miRNA

pairs and no further filtering based on differential expression, noise or other

quality measures would be addressed. Hence, for each miRNA pair in DS1′,

DS2′ and DS3′, we assess their expression relation via Pearson’s absolute

correlation coefficient (PCC). We also rank all of the miRNA pairs in each

data set with regard to their PCCs. In this work, we focus on the 1000-top

ranked miRNA pairs and their absolute PCC values.

When a pair of miRNAs have a high PCC, they should have a strong

potential to synergistically co-regulate their targets. PCC is not a sufficient

condition to establish a reliable causal relationship, since it may produce

indirect interactions and the elimination of indirect interactions is very

important (Barzel & Barabási 2013, Feizi, Marbach, Médard & Kellis 2013).

Thus, further refinement is needed.

Given a pair of miRNAs having a high absolute PCC, they are more likely

to be co-regulating if they are predicted to regulate a large number of common

targets. So, their common predicted targets are checked at the Targetscan

database (http://www.targetscan.org/). If one miRNA pair contains 10 or

more common targets, then this miRNA pair and their common targets are

stored at PAIRS-1, PAIRS-2, or PAIRS-3 (Figure 6.1) for our next analysis.

6.3.2 Network Construction for Co-regulating miRNAs

GO enrichment analysis For every miRNA pair from PAIRS-1, PAIRS-

2, and PAIRS-3, a GO enrichment analysis (Biological Process subtype) is

performed on their predicted targets to classify their functions. Only those

GO terms which contain more than three genes with a significance level

(p < 1.0e − 4) are captured. Specifically, for a given miRNA pair (miRNA

A and miRNA B), we use their intersecting target subsets which they co-

regulate (i.e., subsets of T (A) ∩ T (B)) to identify the biological processes
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under the hypergeometric distribution. Here T (X) stands for the set of

predicted targets of miRNA X. The analysis is preformed by the R software

(GOstats and GO.db).

PPI Network Construction The PPI network of a gene subset of T (A)∩
T (B) is represented by a graph, in which the proteins are represented by

nodes and the interactions among them are represented by undirected edges.

Using this gene subset as seed proteins, the construction of its PPI network

is through the tool named UniHI (http://193.136.227.168/UniHI/pages/

unihiSearch.jsf), which provides both experimentally determined and

predicted interactions. The number of edges inserted between two seed

proteins determines the network distance of the seed proteins. As found

by literature (Liang & Li 2007, Yuan et al. 2009), proteins interacting

with cancer-related proteins are generally close to each other and interact

more frequently compared to non-interacting proteins in the PPI networks.

Therefore, we consider only those PPI networks with a primary distance no

larger than 3. A primary distance between any two proteins in a PPI network

is measured by the minimum number of edges required to connect them.

Combining Co-regulating miRNA Pairs from the Three Data Sets

If the miRNA pair of A and B contains target subsets having significant GO

enrichment and having at least one network of close distance, then A and B

are defined to co-regulate the corresponding target genes. The procedure is

repeated for every miRNA pair from PAIRS-1, PAIRS-2, and PAIRS-3, and

store only those miRNA pairs which contain miRNAs presented at least twice

from the three data sets. Then, these stored miRNA pairs are integrated

to generate a miRNA-miRNA co-regulation network. A node stands for a

miRNA, and two nodes are connected if the corresponding miRNA pair shows

a co-regulation relationship. The corresponding regulated gene sets (the PPI

networks) are defined as functional modules.
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6.3.3 Validation of the Co-regulating miRNAs

KEGG pathway enrichment analysis The KEGG pathway database

is a collection of manually drawn pathway maps representing knowledge

of molecular interactions and reaction networks. To determine significant

changes of the target genes in signaling pathways, KEGG pathway analysis

is conducted through the R software (org.Hs.eg.db) to study pathway terms

that contain more than two genes with p < 1.0e− 4. We also look at KEGG

pathways of microRNAs related to cancer, especially lung cancer.

Literature-Based Verification miR2Disease, a manually curated database

(http://www.mir2disease.org/), provides a comprehensive resource of

miRNA deregulation information for various human diseases. The miRNAs

in our identified co-regulation network are matched with this database to

see whether they have been found to be associated with lung cancer. Also,

the Online Mendelian Inheritance in Man (OMIM: http://www.omim.org/)

database is used to understand whether genes involved in the functional

modules are related to lung cancer.

Topological Analysis on Hub Proteins Most proteins interact with

only a few other proteins, while a small number of proteins may have

many interaction partners in the PPI networks. Hubs are proteins with a

large number of interactions in a protein-protein interaction network. They

are the principal agents in the interaction network and affect its function

and stability. Therefore, we calculate the hub degree of the interaction

network formed by the gene groups and detect hub proteins to discover their

relationships with lung cancer, then we see whether the genes have potential

as targets for lung cancer treatment.

Characteristics of the miRNA-miRNA Co-regulation Network

Co-regulation miRNA networks and random networks are compared to

examine whether miRNA-miRNA co-regulation networks are scale-free or
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random. A scale-free network is a network whose degree distribution follows

a power law. That is, the fraction P (k) of nodes in the network having k

connections to other nodes goes for large values of k as P (k) ∼ k−γ, where

γ is a parameter whose value is typically in the range 2 < γ < 3.

Analysis on Transcription Factors Those transcription factors (TFs)

are compared which are located within the promoter regions of the miRNAs

of our miRNA-miRNA co-regulation network. TFs regulate the transcription

of miRNAs in a pol II dependent manner similar to that of protein-coding

genes; that is, by binding to the conventional transcription factor binding

site sequences located in or near the promoter regions upstream of the

miRNAs. The ChIPBase database (Yang, Li, Jiang, Zhou & Qu 2013) is used

to construct TF-miRNA and TF-miRNA-mRNA regulatory networks. The

cooperativity of miRNAs is evaluated by examining their shared transcription

factors.

6.4 Results

Our results are presented in six parts. The first part reports newly discovered

co-regulating miRNA pairs and their interacting network. The second part

presents the topological characteristics of the co-regulation network. The

third part describes how the lung cancer related miRNAs can regulate more

functional modules and have more functional synergism than un-related

miRNAs. The fourth part highlights the lung cancer related miRNAs and

genes in the discovered co-regulation network and functional modules. The

last two parts present KEGG pathway analysis results and TF-miRNA and

TF-miRNA-mRNA regulatory networks.

6.4.1 Co-regulating miRNA Pairs and Their Big Network

Pearson’s correlation coefficients were computed for all of the possible

miRNA pairs for each of the three data sets (DS1′, DS2′, and DS3′, having
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401 common miRNAs). Most of these pairs have a PCC>0. For DS1′, PCCs

range from -0.5714 to 0.9997; of the top 1000 miRNA pairs, the absolute

PCCs range from 0.7990 to 0.9997. For DS2′, PCCs range from -0.9309 to

0.9996; of the top 1000 miRNA pairs, the absolute PCCs range from 0.8254

to 0.9996. Similarly, PCCs from DS3′ range from -0.5714 to 0.9850; of the

top 1000 miRNA pairs, the absolute PCCs range from 0.8483 to 0.9850. Most

of these top-ranked miRNA pairs have a small number of common targets.

But, there still exist 182, 237 and 132 miRNA pairs in DS1′, DS2′, and DS3′

respectively which have common targets of at least 10.

The significance level was set at the threshold p<1.0e-4 for GO functional

analysis on the target subset of each of these miRNA pairs. There are 99, 47

and 28 miRNA pairs from DS1′, DS2′, and DS3′ respectively satisfying this

biological process enrichment requirement.

The target subsets enriched by the GO term were further filtered by their

PPI network distance properties. A total of 31 gene networks (functional

modules) were constructed to satisfy the topological distance condition of

PPI networks (the primary distance no larger than 3). Under this condition,

there are only 36, 15 and 3 miRNA pairs for the three data sets. As there are

some identical miRNA pairs, there are actually only 41 unique miRNA pairs

containing 43 unique miRNAs. If every miRNA is required to be present at

least twice at the three data sets, then only 30, 11 and 3 miRNA pairs are left

for these three data sets. In particular there exist three overlapping miRNA

pairs (let-7b and let7c, miR-18a and miR-18b, and miR-302c and miR-373).

Table 6.1 summarises the change of these numbers of the miRNA pairs when

our analysis and requirements were progressed and refined.

These co-regulating miRNA pairs satisfying both the functional enrichment

and PPI network requirement are assembled to construct a miRNA-miRNA

co-regulation network (see Figure 6.2). Every node in this network represents

a miRNA; two nodes are connected if the corresponding miRNA pair has a

co-regulation relationship.
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Figure 6.2: A miRNA-miRNA co-regulation network. There are

41 connections and 43 nodes in this network. A node stands for a

miRNA, and an edge connecting two nodes represents a co-regulation. The

miRNAs with red circles (points) are confirmed to be associated with lung

cancer from the miR2Disease database. The verified co-regulating miRNA

pairs are highlighted in the blue dashed circles and let-7a/b/c/d/f/g are in

red.
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Table 6.1: Progress of the miRNA pairs numbers when our analysis and

requirements were getting refined.

Dataset #Stage 1 #Stage 2 #Stage 3 #Stage 4 #Stage 5

Dataset1 1000 182 99 36 30

Dataset2 1000 273 47 15 11

Dataset3 1000 132 28 3 3

#Stage 1 indicates the number of miRNA pairs by selecting the 1000 miRNA pairs with high Pearson’s

correlation coefficients. #Stage 2 is the number of miRNA pairs after detecting their common targets no

fewer than 10. #Stage 3 represents the number of miRNA pairs after performing the GO functional

analysis for their targets from stage 2 (P<1.0e-4). #Stage 4 shows the number of miRNA pairs after

constructing the PPI networks for the targets from stage 3 (the primary distance < 4). #Stage 5 stands

for the number of miRNA pairs in which the miRNAs exist at least twice from the three data sets (three

overlapping miRNA pairs in the three data sets).

6.4.2 Topological Characteristics of the Co-regulation

Network and the Functional Modules

From Figure 6.2, we can see that some miRNAs can correlate with a relatively

large number of miRNA partners, while the majority of miRNAs have just

one or two co-regulating partners. The degree distribution of this network

follows a power law (Figure 6.3, R2 = 0.9011), indicating that this network

is scale free instead of random. The five miRNAs having a degree of at least

4 are let-7a, d, f, g and miR-19a.

This work also found that miRNAs from the same family tend to have

similar functions—24 of the 41 edges are directly or indirectly shared by

the same family. For example, both miR-15b and miR-16 are located at

3q25.33 and play important roles for apoptosis by targetting BCL2 in human

diseases (e.g., chronic lymphocytic leukemia (Cimmino, Calin, Fabbri, Iorio,

Ferracin, Shimizu, Wojcik, Aqeilan, Zupo, Dono et al. 2005) and gastric

cancer (Xia, Zhang, Du, Pan, Zhao, Sun, Hong, Liu & Fan 2008)). The

connected miR-221/222 are involved in the same functional modules, and

they had been both found to act as oncogenes or tumour suppressors in

tumour development (Garofalo, Quintavalle, Romano, Croce & Condorelli
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Figure 6.3: Degree distribution of the miRNAs in the co-regulation

network. The X axis stands for the degrees of each miRNA and the Y axis

represents the proportion of each degree category in the miRNA-miRNA co-

regulation network. There are 19 nodes having a degree of 1, while there is

only one miRNA with a degree of 6.

2012). As another example, the co-regulation between miR-16/15b is also

re-discovered in this network.

Special interest was paid to the ‘hub’ proteins in the functional module

of every miRNA pair of this co-regulation network. A hub protein in a

functional module is a protein having a far bigger number of connections than

the other proteins. We calculated the hub degree of the 31 corresponding

interaction networks formed by the target gene products and found that

Tumour Protein p63 (TP63) has the highest hub degree, forming a module

with six other genes (e.g., PRKD2, FOXP1, TIPARP, TSHZ3, PKD2 and

MYLK). TP63 may be involved in oncogenesis in a broader range of tumours
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Table 6.2: GO functional analysis of a functional module with seven genes

in the TP63 interaction network (p-value <1.0e-04).

GOBPID P-value Count Size Term

GO:0048745 1.8997e-17 6 20 smooth muscle tissue development

GO:0060537 7.1130e-10 6 322 muscle tissue development

GO:0009888 3.7576e-08 7 1285 tissue development

GO:0009887 1.6968e-07 6 802 organ morphogenesis

GO:0072001 2.5428e-06 4 246 renal system development

GO:0048513 3.1266e-06 7 2414 organ development

GO:0001655 4.5669e-06 4 285 urogenital system development

GO:0035295 2.4799e-05 4 437 tube development

GO:0048731 3.4820e-05 7 3405 system development

GO:0044767 3.8408e-05 7 3453 single-organism developmental process

GO:0009653 4.6691e-05 6 2069 anatomical structure morphogenesis

GO:0048856 9.5426e-05 7 3932 anatomical structure development

including lung tumours (Au, Gown, Cheang, Huntsman, Yorida, Elliott,

Flint, English, Gilks & Grimes 2004). Miki (Miki, Kubo, Takahashi, Yoon,

Kim, Lee, Zo, Lee, Hosono, Morizono et al. 2010) reported that genetic

variation in TP63 may influence susceptibility to lung adenocarcinoma in

Japanese and Korean populations. TP63, also known as transformation-

related protein 63, is a member of the p53 family of transcription factors,

that are essential for the prevention of cancer formation.

The GO functional analysis on the genes in this module was performed.

Table 6.2 shows that smooth muscle tissue development-related genes are the

most significant. Smooth muscle plays a critical role in pulmonary function

by regulating air flow in the lungs, and smooth muscle function can often be

compromised as a result of lung disease (Low & White 1998).
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6.4.3 Lung Cancer Related miRNAs Have More Functional

Synergism

As shown above, the degree information of nodes in a network is one of the

most important topological measurements of the network as it can indicate

a local centrality of the nodes in the network (Wei, Deng, Zhang, Deng &

Mahadevan 2013). The greater the degree is, the more important is the node

for the stabilisation of the network. For the miRNA-miRNA co-regulation

network (Figure 6.2), we divided all its miRNAs into two categories to

understand the difference between the subnetwork of lung cancer-related

miRNAs and the subnetwork of the other miRNAs (classified according to

the miR2Disease database).

The total degree of the 33 lung cancer miRNAs is 69 and that of the lung

cancer un-related miRNAs is 14. The median and average degree of the lung

cancer-related miRNAs are 3 and 2.0909±1.2836 respectively, while those of

un-related miRNAs are 2 and 1.4±0.6992. This indicates a difference in the

functional complexity of these two subnetworks of miRNAs. The functional

complexity of miRNAs can be also understood by looking at the number of

their regulation modules. The 33 lung cancer-related miRNAs are observed

to regulate more functional modules and have more functional synergism

than the un-related miRNAs. Therefore, our results can suggest that the

dysregulation of those miRNAs co-regulating more biological processes is

more likely to cause lung cancer.

6.4.4 Lung Cancer Related miRNAs and Their Functional

Modules

From the miR2Disease database, we can understand that 33 of the 43

miRNAs are related to lung cancer (i.e., disease miRNAs). Indeed, the let-7

family members (let-7a, b, c, d, e, f, and g) can especially synergistically

regulate the same functional gene set (ACVR2B, ACVR1B, ACVR2A and

SMAD2). In our work, ACVR2B, ACVR1B, ACVR2A and SMAD2 all
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Figure 6.4: An example of co-regulation between miRNAs (let-7a, b,

c and f) and one of their functional modules (SMAD2, ACVR1B,

ACVR2A and ACVR2B). There is a co-regulation between let-7c/f, let-

7c/a, let-7c/b, let-7a/b, let-7a/f, and let-7a/b. SMAD2, ACVR1B, ACVR2B

and ACVR2A define a functional module, and they are directly connected

to each other in the protein-protein interaction network.

together define a functional module of interacting proteins enriched in the

“TGF-beta signaling pathway”. Some mutations of these proteins in the

functional module can affect the development of many cancers (Orton,

Sturm, Vyshemirsky, Calder, Gilbert & Kolch 2005). Furthermore, let-

7 is a very attractive potential therapeutic that can prevent tumour

genesis and angiogenesis for lung cancer patients. let-7 has several key

oncogenic mutations including P53, RAS and MYC, some of which may

directly correlate with the reduced expression of let-7 and be repressed by

introduction of let-7. Figure 6.4 shows an example of the co-regulating

miRNAs and their regulated functional modules, in which the five miRNA

pairs can regulate the four targets synergistically.

There are a total of 124 unique targets in these 31 different functional

modules. About 54.8% of these target genes are associated with lung
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cancer and 13.7% of them exist in at least 3 functional modules (Table 6.3).

According to the records in AceView (http://www.ncbi.nlm.nih.gov/, a

well maintained, comprehensive and non-redundant sequence representation

of all public mRNA sequences), about 95.2% of these target genes are

expressed at high level and their sequences are defined by many GeneBank

accessions from cDNA clones (some from lung).

6.4.5 KEGG Pathway Analysis Results

A KEGG pathway analysis was conducted on the genes of the functional

modules to determine significant changes in signalling pathways. Those

pathway terms containing more than two genes with p<1.0e-4 are shown

in Figure 6.5 (the pathways with number > 3). It can be seen that these

genes are more often be involved in the mTOR signaling pathway, chronic

myloid leukemia pathway and the pancreatic cancer pathway.

mTOR pathway is an intracellular signalling pathway important in

regulating the cell cycle. It is directly related to cellular quiescence,

proliferation, cancer and longevity. mTOR at the top of the list is consistent

with our current knowledge of this pathway in lung cancer. There are many

known studies showing that the dysregulation of mTOR signalling frequently

happens in a wide variety of cancers including lung cancer (Ekman, Wynes &

Hirsch 2012, Fumarola, Bonelli, Petronini & Alfieri 2014) and some miRNAs

can function as a tumour suppressor in NSCLC metastasis by inactivating

the mTOR signalling pathway (Yu, Li, Yan, Liu, Lin, Zhao, Sun, Zhang,

Cui, Zhang, He & Yao 2015).

The TFG-beta signalling pathway participates in various biological

processes and plays a critical role in lung cancer as the mTOR signaling

pathway. TFG-beta signalling can inhibit tumour growth in early-stage

tumours and contribute to lung cancer progression (Jeon & Jen 2010,

Jakubowska, Naumnik, Niklińska & Chyczewska 2015). All these existing

studies provide strong support for such a high rate of hits in mTOR and

TFG-beta signalling pathways in Figure 6.5.
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Table 6.3: Target genes in the functional modules

ID Name Lung cancer no.

EIF2C1 eukaryotic translation initiation factor 2C,1 relevant 6

SMAD2 SMAD family member 2 irrelevant 6

HIPK2 homeodomain interacting protein kinase 2 irrelevant 6

TNRC6B trinucleotide repeat containing 6B irrelevant 5

DICER1 dicer 1, ribonuclease type III relevant 5

ACVR2A activin A receptor, type IIA irrelevant 4

LRP6 low density lipoprotein receptor-related protein 6 irrelevant 4

PTEN phosphatase and tensin homolog relevant 4

ACVR1B activin A receptor, type IB irrelevant 3

TNRC6A trinucleotide repeat containing 6A irrelevant 3

VEGFA vascular endothelial growth factor A relevant 3

EIF2C4 eukaryotic translation initiation factor 2C, 4 irrelevant 3

FXR1 fragile X mental retardation, autosomal homolog 1 relevant 3

CDKN1C cyclin-dependent kinase inhibitor 1C relevant 3

RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 relevant 3

TSC1 tuberous sclerosis 1 relevant 3

ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 relevant 3

The column labelled “Lung cancer” means whether the gene is relevant to lung cancer in the OMIM

database. The column of “no.” indicates the existing times of the genes in all the functional modules.

This table only focuses on the “no.” of at least 3.
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Figure 6.5: KEGG pathway enrichment analysis for the target

subsets of each miRNA pair in the co-regulation miRNA network.

The X axis shows the existing numbers of the corresponding pathways and

the Y axis describes the pathways’ names (P-value < 1.0e-4) in the three

data sets.
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In addition, a co-regulating miRNA pair miR-221/222 (Garofalo et al.

2012, Dentelli, Traversa, Rosso, Togliatto, Olgasi, Marchiò, Provero, Lembo,

Bon, Annaratone et al. 2014) is also verified by the pathway of “MicroRNAs

in Cancer” in the KEGG pathway database, suggesting that miR-221/222

co-ordinate to up-regulate the common targets (PTEN, p27 and TMP3) and

are involved in the lung epithelial cell, tumorigenesis, survival, angiogenesis

and invasion/metastasis.

6.4.6 Transcription Factors Related to Lung Cancer

Genes and their mRNAs are controlled not by a single, but by a combination

of TFs or miRNAs. Cooperative regulation therefore can provide the

mechanistic basis for reading out combinatorial expression patterns for both

TFs and miRNAs. From the ChIPBase database (Yang, Li, Jiang, Zhou &

Qu 2013), we obtained the target genes’ transcription factors of 42 of the 43

miRNAs (nodes) in the co-regulation network (except for miR-103, details

shown in Supplementary file). We can see that miRNAs involved in an

co-regulatory module can be confirmed to share common TFs.

From the shared TFs, we found that a transcription factor named caudal

type homeobox 2 (CDX2 ) is shared by 31 miRNAs in the miRNA-miRNA

co-regulation network. Bai (Bai, Miyake, Iwai & Yuasa 2003) reported that

the CDX2 homeobox transcription factor can unregulate transcription of

the p21/WAF1/CIP1 gene, and that p21 plays key roles in differentiation

and tumour suppression. Many other studies also indicated that CDX2 is a

potential tumour suppressor gene in colon and gastric cancer (Bonhomme,

Duluc, Martin, Chawengsaksophak, Chenard, Kedinger, Beck, Freund &

Domon-Dell 2003, Gross, Duluc, Benameur, Calon, Martin, Brabletz,

Kedinger, Domon-Dell & Freund 2007, Do Youn Park, Kim, Mino-Kenudson,

Deshpande, Zukerberg, Am Song, Lauwers et al. 2009). Furthermore,

Liu (Liu, Zhang, Zhan, Brock, Herman & Guo 2012) have demonstrated

that CDX2 is frequently methylated in lung cancer, and that the expression

of CDX2 is regulated by a promoter region hypermethylation in lung cancer.
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Therefore, CDX2 may serve as a tumour suppressor in lung cancer and a

lung cancer detection marker, inhibiting lung cancer cell proliferation by

suppressing Wnt signalling. These evidences show that the CDX2 homeobox

transcription factor shared by most miRNAs in the miRNA-miRNA co-

regulation network may play critical roles in lung cancer.

6.5 Summary and Conclusion

As described, this work applied an integrative computational method to

discover a common miRNA-miRNA co-regulation network from three lung

cancer miRNA data sets, supporting Contribution 3 of the thesis as listed

in Section 1.3 . As the first step, the three data sets are processed to

find common miRNAs. Then, miRNA pairs are ranked using Pearson’s

correlation coefficient and their common targets provided by the Targetscan

database. We observed that co-regulating miRNAs always show a high

correlation in their expression profiles. A GO functional enrichment and

a protein interaction analysis on the common targets have been further used

to filter some of these miRNA pairs. GO functional enrichment is another

factor that matters when miRNAs regulate mRNAs without changing their

expression levels. Protein interaction analysis has advantages to avoid the

incompleteness of GO functional enrichment (Thomas, Wood, Mungall,

Lewis, Blake, Consortium et al. 2012), allowing us to analyse miRNAs’

functionality according to the feature of their protein products (Yuan

et al. 2009). Proteins usually fulfill certain functions by means of interaction.

The closer these proteins are in the PPI network, the more likely the

targetting miRNAs are located in the same cluster (Liang & Li 2007).

So, integrating different types of data from various sources is potentially

more successful than any single database, which can help to decrease

the false positive results and understand the results from many biological

perspectives (Le & Bar-Joseph 2013).

The present study suggests that the newly discovered miRNA-miRNA
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co-regulation network is scale free and its degree distribution follows a power

law. These lung cancer related miRNAs have more synergistic influence;

and miRNAs from the same family tend to have similar functions and

high correlation (Gong, Kakrana, Arikit, Meyers & Wendel 2013). Some

miRNA interactions have been identified by previous work, including miR-

15b/16 (Cimmino et al. 2005, Xia et al. 2008), miR-221/222 (Dentelli

et al. 2014) and let-7a/b/c/d/g/f (Johnson, Grosshans, Shingara, Byrom,

Jarvis, Cheng, Labourier, Reinert, Brown & Slack 2005).

We also confirm that known lung cancer related miRNAs have more

synergism than lung cancer un-related miRNAs. KEGG pathway enrichment

analysis and transcription factor analysis have all demonstrated the biological

relevance of the miRNA-miRNA co-regulation network to lung cancer.

This study discovered that potential co-regulating miRNAs and potential

signalling pathways may lend insight into lung cancer. Our analysis can help

scientists to look at these significant relationships. The proposed method can

also be applied to other diseases data sets for constructing their respective

miRNA-miRNA co-regulation networks.
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Chapter 7

A Novel Framework for

Inferring Self-regulation

miRNAs

7.1 Introduction

As is explained in the related work (Section 2.4), TFs and miRNAs are

known to positively or negatively regulate transcription. Gene expression is

an important mechanism to shape the cell-specific gene regulatory system.

miRNAs have their own characteristics, making it difficult or impossible

to apply the experimental and computational methods used for other gene

regulation (Hobert 2008b).

miRNAs are mainly located in intergenic regions or in the introns of

protein coding genes (Kim & Nam 2006). A promoter region is located

around the transcription start site of a transcript and is regulated by proteins

that bind to this region. Evidence suggests that binding sites for transcription

factors are similarly distributed within the promoters of both protein coding

genes and miRNA transcripts (Hobert 2008b).

A miRNA gene is controlled by several TFs whose binding sites (TFBS)

are located near the TSS of this gene. When transcribed, the miRNA gene
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produces a long pri-miRNA molecule. The pri-miRNA molecule is cleaved

by Drosha and yields part of the hairpin along with producing the miRNA-

miRNA* duplex (Krol, Sobczak, Wilczynska, Drath, Jasinska, Kaczynska &

Krzyzosiak 2004). One chain of the miRNA duplex is incorporated into the

RISC complex and can regulate miRNA translation by binding in a sequence

specific manner to the 3’ UTR of mRNAs (Bernstein, Caudy, Hammond &

Hannon 2001).

Most of the research over the past decade have concentrated on elucidating

the mechanisms of miRNA-mediated post-transcriptional regulation in cancer

and other diseases, and on the potential clinical applications of this

knowledge (Winter, Jung, Keller, Gregory & Diederichs 2009, Chekulaeva

& Filipowicz 2009).

Many important biological processes are actually controlled by miRNAs

which act as the role of master regulators. Liu et al. (Liu, Roth, Yu, Morris,

Bersani, Rivera, Lu, Shioda, Vasudevan, Ramaswamy et al. 2013) found that

miR-483-5p, which is located in an intron of IGF2, was up-regulated to the

transcription of IGF2 active. Ectopic expression of miR-483-5p in IGF2-

dependent sarcoma cells increased tumour size in mice, strengthening the

function of this microRNA and positive feedback regulation of its host gene

in tumorigenesis. This is the case for instance in the miRNA-mediated Feed

Forward Loop (FFL) or the miRNA mediated self-loop, in which the miRNA

plays the role of master regulator.

It is still poorly understood how miRNAs themselves are regulated. This

is partly due to the difficulty of predicting promoters from short conserved

sequence features without producing a high number of false positive and

partly due to the heterogeneity of the miRNA biogenesis pathways.

In this work, we design a novel framework (called SRmiR) to integrate

multiple data types for exploring self-regulated miRNAs for understanding

their mechanisms. Particularly, SRmiR is aimed at discovering the self-

regulated miRNAs specific to humans, by using heterogeneous data. We

define a self-regulated miRNA if the miRNA regulates a TF and together with
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it one or more target genes and if there is a TF-target interaction. Firstly,

we collected a total of 1881 human miRNAs from the miRBase and obtained

the promoter regions of all the miRNA primary transcripts. Secondly, we

collected 690 ChIP-seq datasets representing a total of 161 unique regulatory

transcription factors from the ENCODE project (Consortium et al. 2004).

Thirdly, we discovered the potential miRNA-TF relationships between TFs

and miRNAs by comparing the miRNAs’ promoter regions and transcription

factor binding sites (TFBS). After that, we obtained the miRNA-target

relationships between miRNAs and genes, and the TF-gene relationships

between TFs and genes. Finally, 13 genes (BACH1, BRCA1, CTBP2, EBF1,

HDAC2, HNF4G, IRF1, MEF2C, MTA3, NFIC, SMC3, TAL1 and TCF7L2)

are shown to have self-regulations, and we discussed the FFL involving these

genes as Transcription Factors and targets. This addresses Contribution 4

of the thesis.

7.2 Materials

7.2.1 Construction of TF-miRNA Relationships and

miRNA-target Relationships in the Post-transcriptional

Regulatory Network:

As miRNAs located within protein coding genes tend to be co-regulated with

their host genes, we focus on identifying TFs that regulate intergenic miRNAs

in this work. We downloaded the TFBS data set from the TFs database

ENCODE ( http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeAwgTfbsUniform/). The data set contains 690 ChIP-seq data

sets representing 161 unique regulatory factors, which span 91 human

cell types and some are in various treatment conditions. These data

sets were generated by the five ENCODE TFBS ChIP-seq production

groups: Broad, Stanford/Yale,UC-Davis/Harvard, HudsonAlpha Institute,

University of Texas-Austin, University of Washington, and University of
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Chicago. All ChIP-seq experiments were performed at least in duplicate,

and were scored against an appropriate control designated by the production

groups.

Transcription of protein coding genes as well as some small RNAs, such

as miRNAs, is carried out by Pol II. While Pol II binds to the DNA at

the transcription initiation point, it is not capable of directly recognising its

target. A complex of proteins in a region known as the core promoter binds

to the DNA whereupon they recruit Pol II to the transcription start site

(TSS). Other proteins, called TFs, then bind to the proximal prompter or

enhancer regions to either initiate or block the activation of Pol II. The core

promoter region typically consists of hundreds to thousands of base pairs

surrounding the TSS of a gene.

A total of 1881 human miRNA were obtained from the miRBase

( ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3). Since

the majority of primary transcripts of intergenic miRNAs are shorter than

protein-coding transcripts, with TSSs located within 2,000 bp upstream and

poly(A) signals located within 2,000 bp downstream of the pre-miRNAs and

the promoters of most miRNA genes are found within 500-bp upstream of

the TSS, potential promoter regions (from 2,000 bp upstream up to 500 bp

downstream to the expected TSSs) were obtained to predict the potential

TF binding sites.

We mapped TFBSs to the individual promoter regions of miRNA genes

using the BEDTools (Quinlan & Hall 2010) for the comparison of sequence

alignments between miRNA promoters and TFBSs. BEDTools are a new

software suite for the comparison, manipulation and annotation of genomic

features in Browser Extensible Data (BED), Sequence Alignment/Map

(SAM) and General Feature Format (GFF) format (Quinlan & Hall 2010).

We used intersectBed to extract overlapping features between BED-files

of TFBSs and miRNA promoters. If there were overlapping features with

predicted TFBSs in the promoters of miRNA genes, this suggests that these

TFs are involved in regulating pri-miRNAs transcription, at a level similar
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to protein coding genes.

As potential targets of miRNAs we selected only transcripts corresponding

to protein-coding genes completely annotated in Ensemble 83, for a total

of 102450 known transcripts. To define miRNA targets, we used the four

most commonly cited prediction algorithms: DIANA((Alexiou et al. 2010)),

Miranda ((John et al. 2004)), PicTar ((Krek et al. 2005)) and TargetScan

((Lewis et al. 2003)). Integrating the four databases, we annotated how

many databases confirm the target genes with these miRNAs involving the

miRNA-TF relationships. Then, out of these interactions we selected those

targets involving at least two databases.

7.2.2 Construction of TF-target Relationships in the

Transcriptional Regulatory network:

Transcription factors (TFs) regulating a miRNA often regulates its target

genes and TFs are the main regulators of gene transcription. 690 ChIP-

seq studies cover 161 transcription factors. We used a package named

tftargets of R software and chose the ENCODE data set to obtain the 161

putative human transcription factor targets based on ChIP-seq data from

ENCODE (source: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/

encodeDCC/wgEncodeRegTfbsClustered/).

7.2.3 Identification of Important Network Motifs: miRNA-

mediated Feed Forward Loops

We constructed the list of putative miRNA-TF, miRNA-Target and TF-

Target links obtained above. In the miRNA-mediated FFL circuit, a

transcription factor TF (X1) regulates a miRNA (X2), and they both regulate

a target mRNA (X3). Further, three models based on ordinary differential

equations are examined to describe the miRNA and target mRNA expression

kinetics. All models consider X1 as a forcing function and describe the rate

of change of X2 and X3 as the balance between their synthesis (Si) and

140



Chapter 7. A Novel Framework for Inferring Self-regulation miRNAs

degradation (Di) with the basal expression level (Xib) as the initial condition;

the topological model is shown in Figure 7.1. Thus, for i=2,3, the differential

equation describing the variables is

Xi(t) = Si(t)−Di(t)

Xi(0) = Xib

The synthesis is expressed as the sum of a basal term (Sib), plus a positive

(activation) or negative (repression) term (ΔSi) encoding the effect of the

specific TF on the transcription of miRNA and target mRNA.

The list of miRNA FFLs can be found from the links by using a tool

named FANMOD (Wernicke & Rasche 2006). In order to reduce the number

of false positives, we selected only the FFLs with both miRNA regulatory

links confirmed by all four databases. The specific parameters used in

FANMOD were as follows:

• Network Number of nodes: 6379 number of genes Number of edges:

44647 (44576 single, 71 bidirectional) number of interactions between

genes

• Algorithm Size of subgraphs: 3 nodes Algorithm: enumeration

• Random Networks Number of Random Networks: 1000 Edge exchange

parameters: 4 per edge, 4 tries per exchange

• Computation Run time: 30.26 hours System: PC running Windows 7

64-bit, Intel Core2 Duo CPU E8600 @ 3.33GHz, and 4GB RAM

FANMOD outputs all 3-node subgraphs (with gene IDs), grouped by

topological equivalency. For each of the 13 subgraphs (there are only 13

possible permutations for 13 the interactions in a 3-node subgraph), we

calculated all phase locking indices from 1:1 to 4:3 for each possible gene

pairing.
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Figure 7.1: The topological model of miRNA-mediate FFLs. A TF

regulates a miRNA, and they both regulate the target mRNA, and miRNA

regulation of the target gene is negative. S and D represents synthesis and

degradation respectively.

7.2.4 Identification of Experimentally Validated Regulatory

Interactions

The list of miRNA FFLs with experimentally validated regulatory interactions

was obtained combining information collected from several databases. For

the miRNA-Target and the miRNA-TF interactions we used the last versions

of miRTarBase V 3.5 (updated November, 2012), miRecords V.3 (updated
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on November, 2010) and miR2Disease (updated on Jun, 2010). We obtained

in this way a list of experimentally validated miRNA-T interactions. For

TF-Target interactions we used data from ENCODE and the last version

of Tfact(v.2). Tfact contains genes responsive to transcription factors

which focus on humans, according to experimental evidence reported in

the literature. It reports two data sets: (i) a sign sensitive catalogue that

indicates the type (up or down) of TF regulation exerted on its targets and

(ii) a signless catalogue that includes all regulatory interactions contained

in sign sensitive one plus further interactions without the specific type of

regulation.

7.3 Results

Our results are presented in five parts. The first part reports self-regulated

miRNAs and their interacting network. The second part presents self-

regulated transcription factors and their interacting network. The third part

illustrates discovery of miRNA-mediate feed-forward loops. The fourth part

describes the validation of miRNAs self-regulations.

7.3.1 Self-Regulated miRNAs in the Human Regulatory

Network

A detailed description of our procedure is reported in the Materials and

Methods section. Accordingly, we only report here the main steps. Briefly,

we constructed a list of putative miRNA FFLs combining miRNA-TF,

miRNA-Target and TF-Target regulatory interactions which were obtained

as follows: for the miRNA-TF side, we integrated information obtained from

the miRNAs sequence data and TFBSs ChIP-seq data provided by miRBase

and ENCODE respectively. We selected potential regulations if there were

overlaps between miRNA promoter regions and TFBSs. For the miRNA-

Target side we selected the miRNAs contained in the miRNA-TF regulations.

143



Chapter 7. A Novel Framework for Inferring Self-regulation miRNAs

Then, we used information obtained from four freely available databases of

miRNA-Target interactions: DIANA (Alexiou et al. 2010),Miranda (John

et al. 2004), PicTar (Krek et al. 2005) and TargetScan (Lewis et al. 2003). We

selected as potential targets only transcripts corresponding to protein-coding

genes completely annotated in Ensemble 83 and occurring in at least three

databases. For the TF-T side we selected the TFs contained in the miRNA-

TF regulations. Then we obtained the putative human transcription factor

targets based on ChIP-seq data from ENCODE. In fact with the ENCODE

list, based on ChIP-seq experiments, we expected to have a smaller rate

of false positives results with respect to a purely bioinformatic approach.

At the same time, using only the ENCODE list we were able to induce

a statistical bias in the results due to the fact that ChIP-seq experiments

were performed only for a small subset of TFs which were selected for their

particular biological relevance.

7.3.2 Identification of Self-regulated Transcription Factors

In total, we obtained a number of 436,644 relationships among 159 TFs,

688 miRNAs, and 14,464 genes. 13 genes (BACH1, BRCA1, CTBP2, EBF1,

HDAC2, HNF4G, IRF1, MEF2C, MTA3, NFIC, SMC3, TAL1 and TCF7L2)

are involved in the self regulations, which indicate that they can target some

miRNAs’ host genes and can also be regulated by these miRNAs. A total

of 402 miRNAs were associated with these self-regulated TFs, and eight

miRNAs targetted at least 8 self-regulated TFs (Figure 7.2 and Figure 7.3).

In addition, 16 miRNAs involved in seven self-edge TFs (MEF2C,

BACH1, HDAC2, TCF7L2 (Karginov & Hannon 2013), TAL1, SMC3

and EBF1 (Tavazoie, Alarcón, Oskarsson, Padua, Wang, Bos, Gerald &

Massagué 2008)) have the same relationships in both the miRNA-target and

miRNA-TF regulations. The relationships are shown in Figure 7.4.
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Figure 7.2: The relationships between miRNAs and the self-edge

TFs. The number of TFs is no less than 8.

Figure 7.3: The relationships between miRNAs and the self-edge

TFs. The number of TFs is no less than 8.

7.3.3 Identification of miRNA-mediate Feed-Forward

Loops

miRNAs are known to be involved in feed-forward loops where a TF regulates

a miRNA and they both regulate a target gene. FANMOD provides
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Figure 7.4: Self-regulated miRNAs involved in self-edge TFs. These

relationships exist in both the miNRA-target and miRNA-TF regulations.

several statistical values alongside significant network motifs (details in the

footnotes). The FANMOD tool was run with a subgraph size of 3, using the

full enumeration algorithm option and generating 100 random networks for

determining subgraph significance. The FANMOD reported a feed-forward

loop motif with an ID of 38, as well as a single-input module with and

ID of 6. The following table shows the results for full enumeration of the

network, enumerating subgraphs of size three. All of the graphs are ordered

by descending Z-Score, so that the most significant network motifs are listed

first.
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Table 7.1: All of the identified motifs using a FANMOD

trial with a subgraph size of 3.

ID Adj Frequencya Mean-Freq Standard-Dev Z-Scoreb P-Valuec

[Original] [Random] [Random]

6 000 96.014% 96.083% 2.9631e-005 -23.301 1

000

110

12 000 1.7567% 1.6883% 2.9426e-005 23.251 0

001

100

36 000 1.7402% 1.6698% 2.9095e-005 24.204 0

100

100

38 000 0.23967% 0.31121% 3.048e-005 -23.473 1

100

110

14 000 0.22325% 0.21996% 1.521e-005 2.1616 0.018

001

110

46 000 0.020082% 0.021881% 7.6272e-006 -2.3587 0.986

101

110

164 010 0.0046682% 0.0042945% 3.0896e-007 12.094 0

100

100

140 010 0.00044733% 0.00036873% 1.9796e-007 3.9706 0

001

100

102 001 0.00032164% 0.00035179% 1.4998e-007 -2.0103 0.977

100
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110

166 010 0.000298% 0.00045117% 1.4503e-007 -10.561 1

100

110

78 001 0.00026729% 0.00023289% 6.0374e-008 5.6983 0

001

110

174 010 7.82e-005% 0.00012363% 6.0488e-008 -7.5112 1

101

110

238 011 3.5345e-006% 3.1194e-008% 1.9159e-009 18.286 0

101

110
1

The adjacency matrix from FANMOD representing co-regulated genes.

Each row corresponds to the regulator and each column corresponds to the

gene that is regulated. For example, 3nd row has a 1 for column 1 and 2,

thus gene 3 regulated genes 1 and 2.

1a The frequency denotes the frequency with which a motif occurred in the original

network.
b The Z-score is one way of determining how significant a network motif is. The FANMOD

documentation and manual describes how the Z-score is calculated, “The Z-Score is the

original frequency minus the random frequency divided by the standard deviation.” Motifs

with the highest Z-scores are the most significant, so the following tables of motifs are

organized in order of decreasing Z-score.
c P-Values range from zero to one; smaller p-Values indicate more significant motifs

because a smaller p-value indicates that the motif occurs more often in the network than

would occur by random chance. The p-Value is calculated in the following way, ”The

p-Value of a motif is the number of random networks in which it occurred more often than

in the original network, divided by the total number of random networks.”
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Figure 7.5: Results of FANMOD trial with a subgraph size of 3.

only the ID of 38 and 6 are shown in this figure.

Figure 7.5 reported only the feed-forward loop motif with an ID of 38 or

6.

7.3.4 Validation of miRNAs Self-Regulations

We employed four manually curated databases (miRTarbase (Chou, Chang,

Shrestha, Hsu, Lin, Lee, Yang, Hong, Wei, Tu et al. 2015), Tarbase (Vlachos,

Paraskevopoulou, Karagkouni, Georgakilas, Vergoulis, Kanellos, Anastasopoulos,

Maniou, Karathanou, Kalfakakou et al. 2014), miRecords (Xiao et al. 2009)

and miRWalk (Dweep et al. 2011, Dweep & Gretz 2015)) to show the evidence

related to the regulatory effect of these self-regulated miRNAs over its TF

targets. miR-335 was verified to show an experimentally validated regulatory

relationship with Early B-cell Factor 1 (EBF1) (Tavazoie et al. 2008) by the

microarrays method. (Tavazoie et al. 2008) identified that the expression

of miR-335 is lost in the majority of primary breast tumours from patients
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who relapse, and the loss of expression of either microRNA is related to poor

distal metastasis-free survival. Thus, miR-335 is discovered as a metastasis

suppressor microRNA in human breast cancer. In addition, Let-7g has been

verified to have an experimentally validated regulatory relationship with

Transcription Factor 7-Like 2 (TCF7L2) (Karginov & Hannon 2013) by the

immunoprecipitation method.

In addition to the existing databases, we also looked into the literature

work and found that miR-9 is expressed specifically in neurogenic areas

of the brain and may be involved in neural stem cell self-renewal and

differentiation (Zhao, Sun, Li & Shi 2009).

7.4 Discussion

As described, this work applied an integrative computational method to

discover the common miRNA-miRNA co-regulating network in three lung

cancer data sets. The three data sets are used to find the common miRNAs

for improving miRNAs’ reliability and robustness. We identified the miRNA

pairs by using Pearson’s correlation coefficient and their common targets

provided by Targetscan database. We observed that co-regulating miRNAs

always show high correlation in their expression levels. The higher the

correlation is in the expression data, the more promising the miRNA pair

is co-regulated. A GO functional enrichment and a protein interaction

analysis on the common targets have been used to filter some of the miRNA

pairs. GO functional enrichment is another factor that matters when the

miRNAs regulate mRNAs without changing their expression levels. Protein

interaction analysis has advantages to avoid the incompleteness of GO

functional enrichment (Thomas et al. 2012), allowing us to analyze miRNAs’

functionality according to the feature of their protein products (Yuan

et al. 2009). Proteins usually fulfill certain functions by means of interaction.

The closer these proteins are in the PPI network, the more likely the targeting

miRNAs are located in the same cluster (Liang & Li 2007). So, integrating
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different types of data from various sources (e.g., PPI network) is potentially

more successful than any single database, which can help to decrease the

false positive results and understand many biological perspectives (Le & Bar-

Joseph 2013).

The present study suggests that a miRNA-miRNA co-regulating network

is scale free and its degree distribution follows a power law. These lung cancer

related miRNAs have more synergistic influence and miRNAs from the same

family tend to have similar functions and high correlation (Gong et al. 2013).

Some miRNA interactions have been identified in previous work, including

miR-15b/16 (Cimmino et al. 2005, Xia et al. 2008), miR-221/222 (Dentelli

et al. 2014) and let-7a/b/c/d/g/f (Johnson et al. 2005), and new co-regulating

miRNAs especially the miRNAs from a same family (e.g., miR-18a/b) will

allow expansion of our understanding of lung cancer. Further validation is

still required for the results since our analysis was based on some imbalanced

data sets.

As described, this work applied a novel framework to discover self-

regulation miRNAs in humans. We constructed the miRNA promoter

region information. Then, the miRNA-TF relationships, miRNA-target

relationships and TF-target relationships were constructed to discover the

feed-forward loops and to detect the self-regulation miRNAs. Experimentally

validated miRNA-gene databases were employed to verify the results. miR-

335, let-7 and miR-9 are shown to involved in the self regulation.

The present study suggests that a self-regulation miRNA can regulate the

transcription factor target. These rules are entirely new, because complex

diseases are often affected by various miRNAs rather than a single miRNA,

and single-miRNA rules are insufficient for accurate diagnosis.

The advantage of the method presented here s that we can study all

the human miRNAs and use the ChIP-Seq data to discover the important

self-regulation miRNAs. In addition, the discovered self-regulation miRNAs

can potentially be applied to further investigation of therapeutic targets in

various human disease.

151



Chapter 7. A Novel Framework for Inferring Self-regulation miRNAs

7.5 Conclusion

Our results provide strong evidence that coordinated transcriptional and

post-transcriptional regulation via miRNAs is a recurrent motif to enhance

the robustness of gene regulation in human genomes. As suggested

by our findings, self-regulation miRNAs tend to play important roles in

various human disease and the miRNA-mediate repression will provide a

comprehensive view on how gene expression is regulated at the systems level.

This chapter addresses Contribution 4 as listed in section 1.3 by

proposing a novel framework to integrate multiple data types for exploring

miRNA self-regulations. We defined a self-regulated miRNA if the miRNA

regulated a TF and one or more target genes and if there was a TF-target

interaction. We collected human miRNAs from miRBase and obtained the

promoter regions of all the miRNA primary transcripts. ChIP-seq datasets

representing unique regulatory transcription factors were collected from

ENCODE at UCSC. The potential miRNA-TF relationships were discovered

between TFs and miRNAs by comparing the miRNAs’ promoter regions and

transcription factor binding sites (TFBS). The miRNA-target relationships

were detected between miRNAs and genes, and TF-gene relationships are

detected between TFs and genes based on the miRNA-TF relationships.
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Summary and Conclusion

The study set out to design rule mining methods for analysing miRNA

expression profiles in human disease, and identified the miRNA biomarkers

in lung cancer, co-regulation miRNAs in lung cancer, miRNA-mRNA

regulations in HCV infection and miRNA self-regulations in humans. The

general literature on this subject is inconclusive in relation to several vital

questions. The study sought to answer two of these questions:

1. How do we identify the significant miRNA biomarkers associated with

prognosis, diagnosis and progression in cancers?

2. How do we identify the uncovered systematical functions of miRNAs in

human disease?

This chapter summarises the research findings on rule discovery to

detect reliable miRNA biomarkers and miRNA-mRNA relationships. It also

summarises the findings from miRNA-miRNA regulations and miRNA self-

regulations. At the end of this chapter, we propose future directions for this

research as well as further research opportunities.

8.1 Main Achievements

Rule mining is a method for discovering interesting relations between

variables in large data sets. The advancement in the knowledge of miRNA
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functions and the large amounts of miRNA expression profiles have created

a great need for the understanding of how these small non-coding RNAs are

regulated in various human diseases. This work is intended to identify strong

rules discovered in the data sets between miRNAs, mRNAs and TFs.

Previous studies have demonstrated the importance of miRNA biomarkers,

co-regulation miRNAs, miRNA-mRNA regulations and miRNA self-regulations

in human disease. This allows for rule mining methods to be applied in the

study of miRNA functions.

Based on the premise of this research, I have conducted a comprehensive

investigation to study the effect of miRNAs on human disease by rule mining

methods. The main findings are chapter specific and were summarised within

the respective chapters (Figure 8.1). This section will synthesise the findings

to answer the study’s two research questions.

1. How do we identify the significant miRNA biomarkers associated with

prognosis, diagnosis and progression in cancers?

• A novel rule method was proposed to discover reliable miRNA biomarkers

that can be used to distinguish between healthy and cancer tissue

samples. The method can be broadly useful for the study of diagnosis

and prognosis of different kinds of diseases including lung cancer, HCV

infection, and leukaemia. This study (Song et al. 2014) was presented

in the International Conference on Bioinformatics 2014 and published

in BMC Genomic (covered in Chapter 4).

2. How do we identify the uncovered systematical functions of miRNAs

in human disease?

• A “change to change” method was proposed to derive discriminatory

rules for detecting both inverse and positive regulatory relationships.

Specifically, rules from the paired miRNA and mRNA expression data

of human disease samples and controls are connected to identify the

many-to-many miRNA-mRNA regulatory modules involved in cancers.

The rule discovery method is useful to integrate binding information
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Figure 8.1: Main achievements of my PhD study

155



Chapter 8. Summary and Conclusion

and the expression profile for identifying miRNA-mRNA regulatory

modules and can be applied to the study of other complex human

disease expression profiles. This study (Song, Liu, Liu & Li 2015)

was presented in the Asia Pacific Bioinformatics Conference 2015 and

published in BMC Genomic (covered in Chapter 5).

• An integrative computational method was designed to identify a

miRNA-miRNA co-regulation network common to the three lung

cancer miRNA expression data sets of different subtypes. The newly

discovered miRNA-miRNA co-regulation network is scale free and its

degree distribution follows a power law. These lung cancer related

miRNAs have more synergistic influence; and miRNAs from the same

family tend to have similar functions and a high correlation. This

study (Song, Catchpoole, Kennedy & Li 2015) was published in the

Journal of Theoretical Biology (covered in Chapter 6).

• A robust methodology was designed to mine big regulatory modules

especially the self-regulation miRNAs in the pre-and post-transcriptional

level from paired miRNAs, mRNAs and TFs sequence data. The

advantage of the method presented here is that we can study all

the human miRNAs and use the ChIP-Seq data to discover the

important self-regulation miRNAs. In addition, the discovered self-

regulation miRNAs can potentially be applied to further investigation

of therapeutic targets in human diseases. This paper draft is under

revision (covered in Chapter 7).

Conclusions

This section concludes the results and findings that have been achieved in

this study. The studies described in this dissertation have helped advance the

rule mining on miRNA expression profiles for human disease understanding.

The study began in Chapter 2 in which we were able to demonstrate
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the advantages of miRNA biomarkers and the disadvantages of existing

methods. This led us to use a rule mining method to identify the 2D

or 3D biomarker for lung SCC diagnosis. It is the first study to date to

apply a rule mining method to identify 2-miRNA and 3-miRNA biomarkers.

Analysis of miRNA-mRNA regulatory relationships in Chapter 5 with a

rule mining method demonstrated that miRNAs share positive and negative

relationships with mRNAs. That analysis also suggested that the inverse

relationship is not the only regulatory relationship between miRNAs and

mRNAs, and some miRNAs can positively regulate some mRNAs. The

proposed “change to change” method is able to discover both the positive

and negative relationships at the same time.

In Chapter 6 we further investigated the co-regulations of miRNAs by

using a novel integrative approach. The method was able to discover a

miRNA-miRNA co-regulation network and co-regulating functional modules

common in lung cancer. An example of these functional modules consists

of genes SMAD2, ACVR1B, ACVR2A and ACVR2B. This module is

synergistically regulated by let-7a/b/c/f, enriched in the same GO category,

and has a close proximity in protein interaction network. The similarity in

promoters between miRNA and protein coding genes provided us with the

incentive in Chapter 7 to search for TFBS resulting in the identification of

self-regulation miRNAs.

8.2 Direction for Future Research

Following the above discussion, there is no doubt that rule mining is an ideal

research method for miRNA studies. Therefore, due to the success of this

study, I do encourage all potential researchers in the bioinformatics field to

consider, and hopefully adopt rule mining as their research method.

In addition, miRNAs play a key role in diverse biological processes

in eukaryotes, and aberrantly expressed miRNAs play key roles in the

development of human disease. It is still a necessary but challenging field of
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work in cancer research. I also encourage all potential researchers to study

miRNAs and their functions.

The study has offered a rule mining method to study miRNA expression

profiles in human diseases. As a direct consequence of the materials and

methods, the study encountered a number of limitations, which need to be

considered. The first is the small sample size. Further larger studies are

thereby required to confirm these results. The second one is the lack of wet-

lab experiments, and all the discovered results can only be evaluated by the

existing knowledge. The wet-lab experiments are quite useful for verifying

the preferred candidate results. Finally, the study mainly considered the

expression profiles. It would be a high throughput analysis if we took

advantage of the next-generation sequence data.

While the studies in this dissertation have provided a good first step

into understanding the regulation and regulatory networks of miRNAs by

rule mining methods applied on miRNA expression profiles, there is still

much left to be discovered. The advent of next generation sequencing (NGS)

technologies makes it possible to get a comprehensive miRNA landscape for

data analysis. The next important step in the identification of regulatory

networks and new pathways involving miRNAs is a high throughput analysis

method for analysing NGS data, which brings greater understanding of the

mechanisms of diseases, leading to rational drug design. Consequently,

further research is needed to achieve the objectives as described in the

following sections:

miRNAs’ Systematic Function Analysis Using High Throughput

Sequencing Data Further research may be conducted to investigate the

systematic function of miRNAs by using high throughput sequencing data,

including next-generation sequencing data (e.g., RNA-seq). This study

will offer several advantages. First, next-generation sequencing platforms

have produced huge amounts of sequence data, and sequencing data is

more accurate than array-based methods for determining miRNA expression
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levels. Second, potential novel miRNAs can be detected by using various

computational methods for characterising miRNAs. Third, sequencing data

can be used to identify the miRNAs’ systematic function with high accuracy.

miRNA Study Based on Multi-Layer Hierarchical MapReduce

Framework Further research could be conducted in order to process more

than one million miRNA sequences in acceptable time by using the multi-

layer hierarchical MapReduce framework, which can gather computational

resources from different clusters and run MapReduce jobs across them. In

detail, MapReduce is a programming model well suited to processing large

data sets using high-throughput parallelism running on a large number of

computational resources (Dean & Ghemawat 2008).

A MapReduce job divides a large data set into independent chunks and

organises them into key and value pairs for parallel processing. A key-value

pair is a set of two linked data items: a key, which is a unique identifier for

some items of data, and the value, which is either the data that is identified or

a pointer to the location of that data. The mapping and reducing functions

receive not just values, but (key, value) pairs. This parallel processing

improves the speed and reliability of the cluster, returning solutions more

quickly and with greater reliability. Every MapReduce job consists of at-

least three parts: The driver, Mapper and Reducer.

The key feature of the MapReduce framework is the parallelism of the

analysis process, so that the execution time for a single miRNA can be

accelerated as desired by allocating more resources.

Mapping Phase The first phase of a MapReduce program is called

mapping. A list of data elements are provided, one at a time, to a function

called the Mapper, which transforms each element individually to an output

data element. The Map function divides the input into ranges by the

InputFormat and creates a map task for each range in the input. The

JobTracker distributes those tasks to the worker nodes. The output of each

map task is partitioned into a group of key-value pairs for each reduction.
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Reducing Phase Reducing lets you aggregate values together. A reducer

function receives an iterator of input values from an input list. It then

combines these values together, returning a single output value. The reducer

function then collects the various results and combines them to answer the

larger problem that the master node needs to solve. Each reduce pulls the

relevant partition from the machines where the maps are executed, and then

writes its output back into HDFS. Thus, the reducer function is able to collect

the data from all of the maps for the keys and combine them to solve the

problem.

8.3 Closing Summary

The scope of this research was exclusively aimed and strongly focused on

rule mining on miRNA expression profiles for human disease understanding.

A large segment of this research concentrated on studying the miRNA

expression profiles for important roles in human disease. This research was

instigated to contribute more knowledge to computational biology in general

and to the miRNAs’ functions in particular. Since my first introduction to

rule mining and miRNAs, I have always had a deep interest in the discipline

of rule mining on miRNA study.
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Appendix: Long Table
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Table A.1: Categorisation of miRNA target prediction tools (Categorisation was taken from a survey of computational

algorithms for miRNA target prediction)

Database Regions scanned Method Species Implementation Reference

TargetScan 8&7mer sites, Rule-based Human, mouse, rat, PerlScript (Agarwal et al. 2015)

reading frames dog and chicken

miRDB 3’-UTR,CDS, Data-driven Human, mouse, rat, Web-driven (Wong & Wang 2014, Wang 2016)

5’-UTR dog and chicken

PicTar 3’ region Data-driven Vertebrate, mouse, Web-driven (Krek et al. 2005)

flies and nematode

TargetScanS 3’ region Rule-based Human, mouse, rat, Web-driven (Lewis et al. 2005b)

dog and chicken

miRanda 3’ region Rule-based Human, mouse, rat, Predictions (Betel et al. 2008)

fruit fly and nematode available

RNAHybrid 3’ region Rule-based Any Prediction (Rehmsmeier et al. 2004)

available

miRNAMap 3’ region Rule-based 12 species Web-driven (Griffiths-Jones et al. 2006)

DIANA-microT 3’ region Rule-based Human and mouse Web-driven (Maragkakis et al. 2009)

PITA 3’ region Rule-based Human, mouse, PerlScript (Kertesz et al. 2007)

and CDs worm and fly

GenMiR++ 3’ region GE data Any code (Huang et al. 2007)

RNA22 Unspecific Data-driven Human PerlScript (Miranda et al. 2006)

SVMicro 3’-UTR Data-driven Human PerlScript (Liu, Yue, Chen, Gao & Huang 2010)

TargetSpy 3’ region Data-driven Human, mouse, rat, Web-driven (Sturm et al. 2010)

chicken and flies

NBmiRTar 3’ region Data-driven Any Web-driven (Yousef et al. 2007)

application

MirMap 3’ region Combinatory 8 species Web-driven (Vejnar & Zdobnov 2012)

miRTarPRi 3’ region Data-driven Human Web-driven (Wang et al. 2013)
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Algorithm B.1 Algorithm of constructing a committee of decision trees
1: Input: data.txt, a 71x329 relational table.

2: Output: DTc, a committee of 2- or 3- miRNAs decision trees with 100% accuracy; nrule, the number

of selected decision trees; myoutput.txt, all the contents printed in the screen; mygraphs.pdf, pictures

of all the selected decision trees.

sink(“myoutput.txt”,append=TRUE, split=TRUE); � save the contents of the screen

pdf(“mygraphs.pdf”); � save the output pictures

rm(list=ls());

library(RWeka); �load RWeka

library(stringr); �load String

library(gplots); �load Plot

d<-read.table(“data.txt”,sep=“�’’); � load data from a file

g<-GainRatioAttributeEval(V329 .,data=d); � rank the miRNAs by gain ratio

t=19; � choose the top-ranked 19 miRNAs after mapping the 5 plasma biomarkers

i<-order(g,decreasing=T)[1:t];

i<-c(i,length(d)) � add the column of class label to the new dataset

n<-d[,i]; � obtain a new dataset

nrule<-0; � number of rules

q<-length(i)-1; � the times of construction decisions

for (c in 1:q) � the procedure continues until only two miRNAs are left

DTc<-J48(V329 .,data=n); � use C4.5 to construct a decision tree

bc<-summary(DTc)$details[“pctCorrect”][[1]]; � the accuracy of the decision tree

� JUSTIFY THE ACCURACY OF THE DECISION TREE

if(bc==100) � if the accuracy equals 100%, then print and draw the decision tree

� JUSTIFY THE NUMBER OF NODES IN THE DECISION TREE

str<-DTc$classifier$toString(); � the string structure of the decision tree

str1<-strsplit(str,“ <”); � split the string, str1 is a list

str2<-unlist(str1); � transfer a list to a character

l<-length(str2); � the length of the character

id<-seq(1,328,1); id=0;

for (i in 1:(l-1))

st<-str2[i];

ll<-nchar(st,type=“chars”,allowNA=FALSE); � the length of a character

nst<-substr(st,ll-3,ll); � choose the last four characters

nst1<-strsplit(nst,“V”); � separate the character in V

num<-nst1[[1]][2];

num<-as.numeric(num);

id[i]=num; � the ID of node in the decision tree

node<-length(unique(id)); � the number of nodes in the decision tree

if (node<4) plot(DTc);

nrule<-nrule+1;

dtcstr<-DTc$classifier$toString(); � select the root of a decision tree

s1<-strsplit(dtcstr,“J48 pruned tree”);

s2<-strsplit(s1[[1]][2],“ <”,);

s3<-s2[[1]][1];

if(is.na(s3)==“TRUE”) n[,-1];

else

n[,eval(s3)]<-NULL; � remove the column of the root

print(sprintf(‘The number of selected decision trees is %d’, nrule));

sink();

dev.off();
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The following list is neither exhaustive nor exclusive, but may be helpful.

miRNA microRNA

mRNA Messenger RNA

TF Transcription Factor

HCV Hepatitis C Virus

UTRs Untranslated Regions

WHO World Health Organization

NSCLC Non-Small Cell Lung Cancer

IFN Interferon

NS3 Non-structural Protein 3

ALL Acute Lymphoblastic Leukemia

AML Acute Myelogenous Leukemia

CLL Chronic Lymphocytic Leukemia

CML Chronic Myelogenous Leukemia
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SCC Squamous Cell Carcinoma

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

pri−miRNA Primary miRNA

Pol Polymerase

pre−miRNA Precursor miRNA

qRT − PCR Quantitative Reverse Transcription-Polymerase Chain

Reaction

PCR Polymerase Chain Reaction

ORFs Open Reading Frames

WC Watson-Crick

SVM Support Vector Machine

TCGA The Cancer Genome Atlas

PIMiM Protein Interaction-based miRNA Modules

MBPLS Multi-Block Partial Least Squares

CNV Copy Number Variation

D −M DNA Methylation

GE Gene Expression

ME miRNA Expression

MFE Minimal Free Energy

HMM Hidden Markov Model
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FFLs Feed-Forward Loops

FBLs Feed-Back Loops

GBM Glioblastoma

AD Alzheimer’s Disease

DEG Differentially Expressed Gene

GEO Gene Expression Omnibus

NCBI National Center for Biotechnology Information

KNN K-Nearest Neighbour

NB Naive Bayes

EuD Euclidean Distance

MaD Manhattan Distance

MiD Minkowski Distance

HaD Hamming Distance

C4.5 C4.5 decision tree

ROC Receiver Operating Characteristic

AUC Area Under ROC curves

DT Decision Tree

TrS Training Set

TeS Testing Set

OMIM Online Mendelian Inheritance in Man

FZD3 Frizzled Class Receptor 3
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RPS6KA3 Ribosomal Protein S6 Kinase, 90kDa, Polypeptide 3

AEBP2 AE Binding Protein 2

PARD6B Par-6 Family Cell Polarity Regulator Beta

NKD1 Naked Cuticle 1 Homolog

MAP3K2 Mitogen-Activated Protein Kinase Kinase Kinase 2

RBMS2 RNA Binding Motif, Single Stranded Interacting Protein

2

EPB41 Erythrocyte Membrane Protein Band 4.1

AKAP13 A-Kinase Anchoring Protein 13

CSDC2 Cold Shock Domain Containing C2, RNA Binding

ACV R1C Activin A Receptor type IC

RAB43 RAB43, member RAS oncogene family

FNDC5 Fibronectin type III Domain Containing 5

WDR33 WD Repeat Domain 33

ALDH4A1 Aldehyde Dehydrogenase 4 Family member A1

ANKRD12 Ankyrin Repeat Domain 12

KCTD9 Potassium Channel Tetramerization Domain Containing

9

ARMC1 Armadillo Repeat Containing 1

DICER1 Dicer 1 ribonuclease III

ASB16 Ankyrin Repeat and SOCS Box Containing 16

GALNTL4 polypeptide N-acetylgalactosaminyltransferase 18
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ADRA1D Adrenoceptor Alpha 1D

BNC2 Basonuclin 2

PDLIM2 PDZ and LIM domain 2

SPCS2 Signal Peptidase Complex Subunit 2

ACLY ATP Citrate Lyase

C6orf192 Chromosome 6 Open Reading Frame 192

ING4 Inhibitor of Growth Family member 4

DNAJA3 DnaJ heat shock protein family (Hsp40) member A3

FAM120A Family with Sequence Similarity 120A

GLG2 Glycogenin 2

SHOC2 SHOC2 leucine-rich repeat scaffold protein

CBLB Cbl proto-oncogene B, E3 ubiquitin protein ligase

NMD3 NMD3 ribosome export adaptor

OCRL Oculocerebrorenal syndrome of Lowe

COMT Catechol-O-methyltransferase

BRD3 Bromodomain containing 3

DENND2C DENN/MADD domain containing 2C

AUTS2 Autism Susceptibility candidate 2

PCID2 PCI Domain containing 2

GFRA2 GDNF Family Receptor Alpha 2

QKI QKI, KH domain containing, RNA binding
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MAP2 Microtubule Associated Protein 2

FRMPD4 FERM and PDZ Domain containing 4

CAMK2D Calcium/Calmodulin-dependent protein kinase II delta

CDK6 Cyclin-Dependent Kinase 6

GPI Glycosylphosphatidylinositol

GNDF Glial Cell Line-Derived Neurotrophic Factor

NTN neurturin

ZNF718 Zinc Finger protein 718

SNX27 Sorting Nexin family member 27

ERO1L ERO1-like

ZNF558 Zinc Finger protein 558

ENPP1 Ectonucleotide Pyrophosphatase/Phosphodiesterase 1

KIAA1804 Mixed Lineage Kinase 4

GFRA1 GDNF family receptor alpha 1

FAM73B Family with sequence similarity 73 member B

SMG5 SMG5 nonsense mediated mRNA decay factor

EFNA3 Ephrin-A3

ZNF462 Zinc Finger protein 462

TCF4 Transcription Factor 4

KIT KIT proto-oncogene receptor tyrosine kinase

CHD2 Chromodomain Helicase DNA binding protein 2
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FAM118A Family with sequence similarity 118 member A

KCTD9 Potassium Channel Tetramerization Domain containing

9

PISD Phosphatidylserine Decarboxylase

SAMD4A Sterile Alpha Motif Domain containing 4A

STAM2 Signal Transducing Adaptor Molecule 2

PRPF4B Pre-mRNA Processing Factor 4B

PPP1R12B Protein Phosphatase 1 Regulatory Subunit 12B

EPM2AIP1 EPM2A (laforin) Interacting Protein 1

CDKN1B Cyclin-Dependent Kinase Inhibitor 1B (p27, Kip1)

AK3 Adenylate Kinase 3

ADAMTS5 ADAM Metallopeptidase with Thrombospondin type 1

motif 5

OAZ2 Ornithine Decarboxylase Antizyme 2

CACNA2D2 Calcium Channel, voltage-dependent, alpha 2/delta subunit

2

HDAC4 Histone Deacetylase 4

FGD4 FYVE, RhoGEF and PH domain containing 4

NUP43 Nucleoporin 43kDa

NMD3 Ribosome-binding protein NMD3

PCID2 PCI domain containing 2

AUTS2 Autism susceptibility candidate 2
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ANKRD12 Ankyrin repeat domain 12

BRD3 Bromodomain containing 3

ABCC5 ATP binding cassette subfamily C member 5

DENND2C DENN/MADD domain containing 2C

OCRL Oculocerebrorenal syndrome of Lowe

EPB41L5 Erythrocyte membrane protein band 4.1 like 5

CPLX2 Complexin 2

GLG1 Golgi Glycoprotein 1

ING4 Inhibitor of growth family member 4

ASXL1 Additional sex combs like 1, transcriptional regulator

NKTR Natural Killer Cell Triggering Receptor

SPCS2 Signal Peptidase Complex Subunit 2

PDLIM2 PDZ and LIM domain 2 (mystique)

CBX5 Chromobox 5

PCC Pearson’s Correlation Coefficient

PPI Protein Protein Interaction

BCL2 B-cell CLL/lymphoma 2

TP63 Tumor Protein p63

PRKD2 Protein Kinase D2

FOXP1 Forkhead box P1

TIPARP TCDD-inducible poly(ADP-ribose) polymerase
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TSHZ3 Teashirt zinc finger homeobox 3

PKD2 Polycystic Kidney Disease-2

MY LK Myosin light chain kinase

SMAD2 SMAD family member 2

ACV R1B Activin A receptor type IB

ACV R2A Activin A receptor type IIA

ACV R2B Activin A receptor type IIB

MYC V-myc avian myelocytomatosis viral oncogene homolog

EIF2C1 Eukaryotic Initiation Factor 2C1

HIPK2 Homeodomain Interacting Protein Kinase 2

TNRC6B Trinucleotide Repeat Containing 6B

LRP6 LDL Receptor Related Protein 6

PTEN Phosphatase and tensin homolog

TNRC6A Trinucleotide repeat containing 6A

V EGFA Vascular endothelial growth factor A

EIF2C4 Eukaryotic Initiation Factor 2C4

FXR1 Fragile X mental retardation, autosomal homolog 1

CDKN1C Cyclin-Dependent Kinase inhibitor 1C (p57, Kip2)

TSC1 Tuberous Sclerosis 1

ERBB4 Erb-b2 Receptor tyrosine kinase 4

TMP3 Tropomyosin 3
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CDX2 Caudal type homeobox 2

TSS Transcription Start Site

BED Browser Extensible Data

GFF General Feature Format

SAM Sequence Alignment/Map

TFBS Transcription Factor Binding Site

IGF2 Insulin-like Growth Factor 2

FFL Feed Forward Loop

SRmiR Self-regulation miRNA

BACH1 BTB and CNC homology 1,basic leucine zipper transcription

factor 1

BRCA1 Breast Cancer 1

CTBP2 C-terminal Binding Protein 2

EBF1 Early B-cell Factor 1

HDAC2 Histone Deacetylase 2

HNF4G Hepatocyte Nuclear Factor 4 Gamma

IRF1 Interferon Regulatory Factor 1

MEF2C Myocyte Enhancer Factor 2C

MTA3 Metastasis Associated 1 family member 3

NFIC Nuclear Factor I/C (CCAAT-binding transcription factor)

SMC3 Structural Maintenance of Chromosomes 3
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TAL1 T-cell Acute Lymphocytic leukemia 1

TCF7L2 Transcription Factor 7 Like 2
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