

Faculty of Engineering and Information Technology

An Investigation into the Roll Control of Vehicles with Hydraulically Interconnected Suspensions

A thesis submitted for the degree of

Doctor of Philosophy

Sangzhi Zhu

(2016)

Title of the thesis:

An Investigation into the Roll Control of Vehicles with Hydraulically Interconnected Suspensions

Ph.D. candidate:

Sangzhi Zhu

E-mail:

Supervisor:

Prof Nong Zhang

E-mail: Nong.Zhang@uts.edu.au

Co-Supervisor:

Dr. Holger Roser

E-mail: Holger.Roser@uts.edu.au

Address:

School of Electrical, Mechanical and Mechatronic Systems The University of Technology, Sydney, NSW 2007, Australia

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

_		

Sangzhi Zhu

Signed:

Acknowledgments

The following people have provided me with tremendous assistance, encouragement and support throughout my candidature and I would like to take the opportunity to express my gratitude towards them.

First and foremost, I am profoundly grateful to my supervisor, Professor Nong Zhang for his outstanding guidance, caring encouragement and patience throughout the duration of this project. His knowledge, hard-working and research attitude fostered my development in various aspects. I would also express my deep gratitude to Professor Haiping Du for his guidance and support on control theory over these years. I also would like to thank my co-supervisor, Dr Holger Roser, for his expertise and assistance regarding all the laboratory work, and for always being willing to bounce an idea around.

I would like to thank Dr Paul Walker and Dr Zhuojie Liang for all their help and insightful input. Dr Lifu Wang's assistance at the initial stage of this project and consistent support and guidance was a tremendous asset to the project, and I greatly appreciate his help. I deeply appreciate Guangzhong Xu and Anton Takachev for their assistance in setting up and conducting the experiments. The constructive arguments have been very useful. I also would like to thank Xinxin Shao for her help on the delay-dependent control algorithm. And I would like to thank all the capstone students that worked with me on this project: Matthias Wong, Quang Lam, Heip Pham, Tamas Bykerk. Without their hard work and help, I would not have been able to complete this project.

I also would like to thank my colleagues, Xingxing Zhou, Yu Wang, Jinglai Wu, Tianxiao

Zhang, Jiageng Ruan, Li Sun, Bo Zhu, Yuhong Fang for their support, especially Jinglai's

support on MATLAB.

I also wish to gratefully acknowledge the financial support of this work by the China

Scholarship Council (CSC) and the University of Technology, Sydney (UTS).

Many thanks to my family, words cannot express what I owe them for their support and

understanding over the years and whose consistent encouragement has quite literally sustained

me throughout my endeavours.

Sangzhi Zhu

Sydney, January 2016

iii

Publications and Conference Contributions

The following publications are part of the thesis

Peer reviewed international scientific journal publications

- [1] **Zhu, S.,** Wang, L., Zhang, N., & Du, H., H∞ Control of a Novel Low-Cost Roll-Plane Active Hydraulically Interconnected Suspension: An Experimental Investigation of Roll Control under Ground Excitation. *SAE International Journal of Passenger Cars- Mechanical Systems*, 6(2013-01-1238), 882-893, 2013.
- [2] **Zhu, S.,** Du, H., Zhang, N., & Wang, L., Development of A New Model for Roll-Plane Active Hydraulically Interconnected Suspension. **SAE International Journal of Passenger Cars-Mechanical Systems**, 7(2014-01-0053), 447-457, 2014.
- [3] **Zhu, S.,** Xu, G., Tkachev, A., Wang, L., & Zhang, N., Road Holding Ability Comparison of a Roll-Plane Hydraulically Interconnected Suspension and Anti-Roll Bars. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*, (Major revision, Manuscript ID JAUTO-15-0463).
- [4] Liang, J., Wu, J., Zhang, N., Luo, Z. & Zhu, S., Interval uncertain analysis of active hydraulically interconnected suspension system. *Advances in Mechanical Engineering*. 8(5), 2016: 1687814016646331.

Peer reviewed international scientific conference publications

- [1] **Zhu, S.,** Du, H., & Zhang, N. (2014, July). Development and Implementation of Fuzzy, Fuzzy PID and LQR Controllers for a Roll-plane Active Hydraulically Interconnected Suspension. In *2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)*, (pp. 2017-2024). IEEE.
- [2] Zhang, N., **Zhu, S.** & Liang, J., (2015, November). Experimental Investigation of a Roll-plane Hydraulically Interconnected Suspension and Anti-roll Bars in Warp Mode. In *16th Asia Pacific Vibration Conference* (pp.566-570), Hanoi, Vietnam.

Abstract

This thesis presents the investigation into a roll-plane hydraulically interconnected suspension (HIS), which is safety-oriented and designed for the vehicle with a high centre of gravity (CG) and a low rollover threshold.

As a potential replacement of anti-roll bars, the HIS possesses the ability to resist the roll motion of the vehicle body during cornering or sharp turning by improving the vehicle roll stiffness. The previous research has concluded that the HIS is superior to the anti-roll bars in terms of the anti-roll performance, but its road holding performance has not been thoroughly studied. In this research, the modelling, modal analysis and simulations are conducted to compare the road holding ability of the HIS and anti-roll bars. A multi-function HIS test rig is developed and mounted on a typical Sports Utility Vehicle (SUV). The related experiments are implemented on a four-post test rig. Both the simulation and experiment results confirmed that the HIS is better than anti-roll bars from the perspective of the road holding performance.

To overcome the drawback of the HIS that it is unable to handle the large roll motion and the vehicle roll caused by uneven roads, the HIS is then developed to be actively controlled by a control unit. Only one servo valve is included in the control unit of the active HIS so that the system's cost and energy consumption are much lower in comparison with the conventional active suspensions with four independent motor-actuators. An output feedback $H\infty$ controller is developed based on an empirically estimated active HIS model at a half-car level. The active HIS controlled by the designed $H\infty$ controller is experimentally validated on the test rig with considerable roll angle reductions.

For further verifying the controllability of the active HIS and also comparing the effect of different categories of control methods on the active HIS, other three representative control algorithms are also applied to the active HIS equipped vehicle. They are the classic control methods: proportional-integral-derivative (PID) control, the optimal control algorithm: linear-quadratic regulator (LQR) control and the intelligent control algorithm: fuzzy logic control. The obtained fuzzy, fuzzy-PID and LQR controllers are implemented in simulations. The experiments of the fuzzy and fuzzy-PID controllers are also conducted. The fuzzy-PID controller presents the most promising and stable control performance among these three controllers.

After that, an attempt is made to improve the control performance of the model-based controllers to enhance the roll resistance ability of the active HIS further. A nine-degrees-of-freedom (nine-DOF) model that can capture the physical characteristics of the active HIS more accurately is developed. The new system model that addresses the relation between the flow change and pressure variation of the hydraulic system, and the viscous resistance of the fluid is also included. Then an $H\infty$ controller and an LQR controller are designed based on the new model and validated in simulations. The experiment of the $H\infty$ controller is also performed on the test rig and the $H\infty$ controller derived from the new model is compared with the $H\infty$ controller derived from the old model. The results show that the $H\infty$ controller based on the new model improves the control performance slightly.

Lastly, an effort is made to reduce the effects of the time delay caused by the fluid system by considering the system time delay when developing the controller. Delay-independent and delay-dependent $H\infty$ state feedback controllers are designed and applied to the half car

model. The simulation validations of the obtained controllers are carried out in MATLAB. It is found that the developed delay-dependent $H\infty$ controller can provide stable and acceptably good control performance even with system time delay.

Keywords: Interconnected suspension, active suspension, vehicle handling, warp mode, roll mode, $H\infty$ control.

Contents

Certificate of Original Authorship	i
Acknowledgments	ii
Publications and Conference Contributions	iv
Abstract	v
List of Tables	xii
List of Figures	xiii
Nomenclature	xvii
1 Introduction	1
1.1 Overview of the research	1
1.2 Research objectives and contribution to knowledge	2
1.3 Scope of thesis	3
1.3.1 Areas that are addressed	3
1.3.2 Areas that are not addressed	4
1.4 Outline of thesis	4
2 Background and Literature Review	6
2.1 Introduction and rationale	6
2.2 Vehicle suspension systems	6
2.3 Interconnected Suspensions	8
2.3.1 Development of interconnected suspensions	9
2.3.2 Hydraulically interconnected suspension	11
2.4 Active suspension system	14
2.4.1 Conventional active suspension	14
2.4.2 Active interconnected suspensions	18
2.4.3 Active hydraulically interconnected suspension (active HIS)	19
2.5 Control theory.	22

3	The Investigation into the Road Holding Ability of the HIS	26
	3.1 Introduction and rationale	26
	3.2 Background	27
	3.3 Model description	28
	3.3.1 Seven degrees-of-freedom model of full vehicle	29
	3.3.2 Anti-roll bars model	31
	3.3.3 Vehicle fitted with HIS	32
	3.4 Modal analysis	37
	3.5 Simulations	39
	3.5.1 Simulation conditions	39
	3.5.2 Simulation results	40
	3.6 Experiments	50
	3.6.1 Test conditions and setup	50
	3.6.2 Test rig	50
	3.6.3 HIS mounting	52
	3.6.4 Sensors and data acquisition system	54
	3.6.5 Experimental results	55
	3.7 Summary	64
1	The Study of the Active HIS with H∞ Control	67
	4.1 Introduction and rationale	67
	4.2 Background	68
	4.3 Model description	69
	4.3.1 Model estimation of active HIS	69
	4.3.2 Model integration	72
	4.4 Output feedback H∞ controller design	75
	4.5 Experiments	79
	4.5.1 Experimental instrument and conditions	79
	4.5.2 Experimental results	81
	4 6 Discussions	86

4.7 Summary	87
5 Design and Implementation of Fuzzy, Fuzzy-PID and LQR Co	ontrollers for Active
HIS89	
5.1 Introduction and rationale	89
5.2 Controller design	90
5.2.1 Fuzzy controller design	90
5.2.2 LQR controller design	95
5.2.3 Fuzzy-PID controller design	97
5.5 Simulations	101
5.5.1 Fishhook road input	102
5.5.2 Slalom road input	104
5.5.3 Half sine road input	106
5.6 Experiments	108
5.6.1 Half sine road input	109
5.6.2 Single sine road input	112
5.6.3 Sinusoidal road input	114
5.7 Summary	115
6 A New Model for the Active HIS and its Control Implementat	tions 117
6.1 Introduction and rationale	117
6.2 Active HIS system model development	118
6.2.1 Active HIS modelling	118
6.2.2 Model integration	121
6.3 Active HIS model parameter tuning	123
6.4 Model verification and characteristics study	125
6.4.1 25 and 50 bar control signals input at the same time	126
6.4.2 25 and 50 bar control signals input with 1 second delay	131
6.4.3 Comparison with the old model	
6.5 Controller design and implementation	
6.5.1 Control method	136

	6.5.2 Simulations	139
	6.5.3 Experimental validation	143
	6.5.4 Discussion	145
	6.6 Summary	149
7	Delay-Dependent H∞ Control	151
	7.1 Introduction and rationale	151
	7.2 Background	151
	7.3 State feedback H∞ controller without time delay	152
	7.3.1 State feedback H∞ controller design with LMI method	152
	7.3.2 Simulations	157
	7.4 State feedback H∞ controller with time delay	159
	7.4.1 Delay-dependent State feedback H∞ controller design	159
	7.4.2 Simulations	161
	7.5 Summary	164
8	Conclusions and Future work	165
	8.1 Summary	165
	8.2 Contributions	167
	8.3 Suggestions for future work	171
A	Appendix A	173
	A.1 State variables and inputs	173
	A.2 Half-car 4-DOF model	174
	A.3. HIS system model	175
D	Dofowonaes	170

List of Tables

Table 3.1 Vehicle parameters	30
Table 3.2 Hydraulic parameters of the HIS	33
Table 3.3 Modal analysis of vehicle with spring-damper only	38
Table 3.4 Natural frequency comparisons of three configurations	39
Table 3.5 Four-post test rig specifications	52
Table 3.6 Specifications of the mounted sensors	55
Table 5.1 Rule base of the fuzzy controller	93
Table 5.2 Fuzzy-PID controller rule base	99
Table 5.3 The summary and comparison of the simulation results	102
Table 6.1 Tuned system's parameters compared to given ones	125

List of Figures

Figure 2.1 Schematic diagram of the roll-plane HIS system	12
Figure 2.2 Bose Suspension Front Module [59]	17
Figure 2.3 Diagram of the active HIS in roll configuration.	20
Figure 2.4 Designed pressure control unit of the active HIS suspension	21
Figure 3.1 Seven-DOFs vehicle model	29
Figure 3.2 Excitation signal example (50 mm amplitude and 0.2 Hz frequency)	40
Figure 3.3 Single wheel hop.	40
Figure 3.4 Tyre force at front right in simulation under 50 mm and 0.2 Hz road input	41
Figure 3.5 Tyre force at rear left in simulation under 50 mm and 0.2 Hz road input	42
Figure 3.6 Roll angular velocity at centre of gravity in simulation	43
Figure 3.7 Pitch angular velocity at centre of gravity in simulation	43
Figure 3.8 Tyre force at front right in simulation under 10 mm and 1 Hz road input	45
Figure 3.9 Tyre force at rear left in simulation under 10 mm and 1 Hz road input	46
Figure 3.10 Tyre force at front right in simulation under 3 mm and 10 Hz road input	47
Figure 3.11 Tyre force at rear left in simulation under 3 mm and 10 Hz road input	47
Figure 3.12 Bump response of the tyre force at the front left in the simulation	48
Figure 3.13 Bump response of the tyre force at the front right in the simulation	49
Figure 3.14 Four-post test rig and test vehicle	51
Figure 3.15 Motor-pump power unit of the test rig	51
Figure 3.16 HIS installation	53

Figure 3.17 Mounted load cells	54
Figure 3.18 Measured tyre force at front right under 50mm and 0.2Hz road input	56
Figure 3.19 Measured tyre force at rear left under 50mm and 0.2Hz road input	56
Figure 3.20 Measured roll angular velocity at centre of gravity	57
Figure 3.21 Measured pitch angular velocity at CG	58
Figure 3.22 Measured tyre force at front right under 10 mm and 1Hz road input	60
Figure 3.23 Measured tyre force at rear left under 10 mm and 1Hz road input	60
Figure 3.24 Measured tyre force at front right with 3mm and 10Hz road input	61
Figure 3.25 Measured tyre force at rear left with 3mm and 10Hz road input	62
Figure 3.26 Measured tyre force at the front left with a bump road input	63
Figure 3.27 Measured tyre force at the front right with a bump road input	64
Figure 4.1 Schematic drawing of the testing setup	70
Figure 4.2 Empirical model estimation in Bode graph	71
Figure 4.3 Half-car model integrated with active HIS	73
Figure 4.4 Block diagram of the designed H∞ control.	75
Figure 4.5 Weighting functions of the ground excitation Wd1 and Wd2	77
Figure 4.6 Weighting functions of measurement output Wy	78
Figure 4.7 Variation of weighting functions of the actuator control force Wact	79
Figure 4.8 Assembled and mounted pressure control unit of the active HIS	80
Figure 4.9 Simulink-based real-time implement board	80
Figure 4.10 Experimental result of the continuously sinusoidal input	82
Figure 4.11 Experimental result of the half sinusoidal road input	84

Figure 4.12 Experimental result of the single sinusoidal road input	85
Figure 5.1 Membership functions of the inputs	92
Figure 5.2 Membership functions of the outputs and their 3D output surface	94
Figure 5.3 Schematic diagram of the LQR controller with the plant	95
Figure 5.4 Schematic diagram of the Fuzzy-PID controller with the plant	98
Figure 5.5 3-D output surface of the PID parameters	101
Figure 5.6 Simulation responses under fishhook ground excitations	104
Figure 5.7 Simulation responses under slalom ground excitations	106
Figure 5.8 Simulation responses under half sine ground excitations	108
Figure 5.9 Experimental results under half sine road inputs	111
Figure 5.10 Experimental results under single sine road inputs	113
Figure 5.11 Experimental results under sinusoidal road inputs	115
Figure 6.1 Transmission process of the control signals in the active HIS	118
Figure 6.2 Simulation response of the pressure P1 in the fluid chamber	124
Figure 6.3 Experimental results of the locked-actuator test	124
Figure 6.4 Pressure responses of top and bottom chambers in experiment	127
Figure 6.5 Pressure responses of top and bottom chambers in simulation	127
Figure 6.6 Roll angle responses in experiment	129
Figure 6.7 Roll angle responses in simulation	129
Figure 6.8 Suspension deflection responses in experiment	130
Figure 6.9 Suspension deflection responses in simulation	130
Figure 6.10 Pressure responses of top and bottom chambers in experiment	131

Figure 6.11 Pressure responses of top and bottom chambers in simulation	132
Figure 6.12 Roll angle responses in experiment	133
Figure 6.13 Roll angle responses in simulation	133
Figure 6.14 Suspension deflection responses in experiment	134
Figure 6.15 Suspension deflection responses in simulation	134
Figure 6.16 Roll angle response of the old model under the control signals input simultaneously	135
Figure 6.17 Schematic diagram of the plant with the H∞ output feedback controller	137
Figure 6.18 Schematic diagram of the plant controlled by a LQR controller	138
Figure 6.19 Simulation roll angle response under impulse lateral excitation	140
Figure 6.20 Simulation roll angle response under fishhook lateral excitation	141
Figure 6.21 Simulation roll angle response under slalom lateral excitations	142
Figure 6.22 Simulation roll angle response under sinusoidal lateral excitations	143
Figure 6.23 Experimental roll angle responses under single sine road excitations	144
Figure 6.24 Simulation pressure responses inside the chambers under the H∞ control	147
Figure 6.25 Simulation pressure responses inside the chambers under the LQR control	147
Figure 7.1 Plant with a state feedback controller	154
Figure 7.2 Simulation results of step road input	158
Figure 7.3 Simulation results of fishhook road input.	159
Figure 7.4 Simulation results of 0 ms time delay	162
Figure 7.5 Simulation results of 15 ms time delay	163

Nomenclature

Global abbreviations used in this thesis

ADAMS = Automatic Dynamic Analysis of Mechanical Systems

ARE = Algebraic Riccati equation

ASCA = Active suspension via control arm

Bar = Unit of pressure equal to 100 kPa

CAD = Computer-aided design

CG = Centre of gravity

DDAS = Demand Dependent Active Suspension

DOF = Degrees of freedom

DRC = Dynamic Ride Control

ESP = Electronic Stability Program

HBMC = Hydraulic Body Motion Control Suspension

HIS = Hydraulically Interconnected Suspension

 $H\infty$ = H infinity

LABView = Data logging and analysis software by National Instruments

LMI = Linear matrix inequality

LQR = Linear-quadratic regulator

LQG = Linear-quadratic-Gaussian

LVDT = Linear variable displacement transducer

MD = Medium

NI = National Instruments

NL = Negative large

NM = Negative medium

NS = Negative small

NVL = Negative very large

PID = Proportional-integral-derivative

PL = Positive large

PM = Positive medium

PS = Positive small

PVL = Positive very large

SUV = Sports utility vehicle

T-S = Takagi-Sugeno

UTS = University of Technology Sydney

ZS = Zero

3D = Three dimensional

4WDs = Four-wheel drive vehicles