Development of Tyrosinase Inhibitors

Sini Radhakrishnan

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Science

School of Mathematical and Physical Sciences

University of Technology Sydney

2016

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I, Sini Radhakrishnan, certify that the work in this thesis has not been

previously submitted for a degree nor has it been submitted as part of

requirements for a degree.

I also certify that the thesis has been written by myself. Any assistance that

I have received in my research work and the preparation of the thesis itself

has been acknowledged. Furthermore, I certify that all information sources

and literature used are indicated in the thesis.

Sini Radhakrishnan

ii

ACKNOWLEDGEMENTS

This research was supported/funded by UTS International Research Scholarship (IRS) and Dr. Abdul Kalam Doctoral Scholarship. My deepest gratitude stands for the entire faculty and staff of the Faculty of Science at the University of Technology Sydney for having provided me with all the facilities and support that has led eventually to the completion of this thesis.

I take this opportunity to express my sincere gratitude and special appreciation to my Principal supervisor, Prof. Anthony Baker. His guidance and motivation has helped me throughout the tenure of my research including the drafting of this thesis. He has shown immense patience and has never deterred from sharing his knowledge and support with me. A special mention here has to be made on his efforts in improvising my skills with proof reading and scientific writing. I could not have imagined having a better advisor and mentor for my PhD study.

I would also like to thank my PhD Co-supervisor, Dr. Ronald Shimmon. I am deeply grateful to him for his guidance and advice in troubleshooting all the practical problems in the laboratory. He has been instrumental in getting me trained and competent with modern analytical techniques including NMR spectroscopy. He stands before me as an epitome of humility with brains.

I take this opportunity to express my deepest gratitude to Dr. Costa Conn, who has supervised me with a keen eye throughout my research schedule. His extensive knowledge and guidance in the field of molecular modeling has indeed been fruitful.

I am thankful to Dr. Linda Xiao and to Dr. David Bishop for their generous assistance during my research studies.

Finally, a special thanks to my mother Nirmala, and my son Vishnu, who have stood by me in my good and bad and have continuously encouraged and supported me throughout my PhD schedule. This thesis is dedicated to them.

ABSTRACT

The primary objective of this project was the drug discovery, synthesis and biological evaluation of a series of tyrosinase inhibitors. Chalcone skeleton was the chosen pharmacophore and a library of potent inhibitors of tyrosinase (polyphenol oxidase) were synthesized and their structure-activity (SAR) relationships were explored. Chalcone derivatives were synthesized by simple base catalyzed Claisen-Schmidt condensation of an aldehyde and an appropriate ketone in a polar solvent like methanol. The structures of the compounds synthesized were confirmed by ¹H NMR, ¹³C NMR, FTIR and HRMS. Two compounds that are the reduction congeners of the pyridinyl azachalcones strongly inhibited the enzyme activity and were more potent than the positive control kojic acid. Two of the hydroxyazachalcones synthesized inhibited the diphenolase activity of tyrosinase and were identified as competitive reversible inhibitors and with their K_i values of 3.4 µM and 3.9 µM, respectively. This study showed that a more potent tyrosinase inhibitor can be obtained from methoxyazachalcones with a single step dealkylation reaction. A series of novel hydroxynaphthylchalcone compounds were synthesized and inhibited the diphenolase activity of tyrosinase in a dose dependent manner with much higher tyrosinase inhibitory activities than the positive control, kojic acid. The number and position of methoxy substituents on the aromatic rings appeared to be critical for cytotoxicity. Also placement of strongly electron-withdrawing groups such as NO₂ in ring B correlated with increase of cytotoxic activity. This study provides valuable information in utilizing methoxychalcone as a lead compound for the further design and development of potential tyrosinase inhibitors with antimelanogenic effects. Two pyridinyl methoxychalcone compounds exhibited higher tyrosinase inhibitory activities (IC₅₀ values of 10.6 μM and 12.5μM, respectively) than the control kojic acid (IC₅₀: 22.83µM). Kinetic studies revealed them to act as competitive tyrosinase inhibitors. Both the compounds inhibited melanin production and tyrosinase activity in B16 cells. Docking results confirm that the active inhibitors strongly interact with mushroom tyrosinase residues. The current study portrays methoxychalcones with electrophilic character to be potent agents with antimelanogenic effects. A series of hydroxy substituted chalcone oxime derivatives have been synthesized and evaluated for their inhibitory activities on tyrosinase and melanogenesis in murine B16F10 melanoma cell lines. A library of 2'-acetylpyridinyl chalconeoxime compounds was also synthesized.

The study portrayed the significance of an oxime moiety on the chalcone framework that brought about better coordination with the copper metal centers at the active site of mushroom tyrosinase and also exhibited stronger hydrogen bonding interactions with the amino acid residues. From all the compounds synthesized, a novel 2'-acetylpyridinyl chalconeoxime compound exhibited the most potent tyrosinase inhibitory activity with an IC₅₀ value that was found to be several times potent than the reference standard, kojic acid. The inhibition mechanism was competitive and was in complete agreement with the docking results. Furthermore, a solid-state based mechanochemical process was used to synthesize novel azachalcones and their oximes as tyrosinase inhibitors. Both the novel oxime compounds displayed competitive inhibition with their K_i values of 5.1µM and 2.5µM, respectively. This method minimizes waste disposal problems and provides a simple, efficient and benign method for the synthesis of novel tyrosinase inhibitors for use as skin whitening agents or as anti-browning food additives. The effects of novel 2,3-dihydro-1*H*-inden-1-one chalcone-like compounds for tyrosinase inhibition were studied. Hydroxy substituted 1-indanone chalcone-like compounds were found to be significantly more potent than kojic acid.

Assays were performed with L-DOPA as the substrate, using kojic acid, a well-known strong tyrosinase inhibitor as the positive control. The kinetic parameters and inhibition mechanisms of active tyrosinase inhibitors were illustrated with the help of Lineweaver-Burk plots and Dixon plots. Furthermore, the experimental results were integrated with simulation studies using Accelrys Discovery Studio 4.5 suite. Few of the active tyrosinase inhibitors were further evaluated for the *in vitro* cytotoxic activity on B16 F10 melanoma cell lines. The results suggested substituted chalcone derivatives to serve as an interesting candidate for the treatment of tyrosinase related disorders and as the lead compounds for the development of new and potent tyrosinase inhibitors.

TABLE OF CONTENTS

Certificate of Authorship/ Originality	ii
Acknowledgements	iii
Abstract	iv
List of papers published	xiiiiii
List of Tables	xiv
List of Figures	XVV
List of Abbreviations	xviii
CHAPTER 1: Introduction	1
1.1. Melanin & melanogenesis	2
1.1.1.Physiological roles of melanin	5
1.2. Mushroom tyrosinase	6
1.2.1. Biochemical characteristics of tyrosinase	7
1.2.2. Domain structure	8
1.2.3. Reaction mechanism of tyrosinase	9
1.2.4. Tyrosinase substrates	13
1.3. Potential uses of tyrosinase inhibitors	15
1.4. Mechanisms of tyrosinase inhibition	18
1.5. Rational drug design of tyrosinase inhibitors	18
1.6. Classification of known tyrosinase inhibitors	19
1.6.1. Simple monocyclic inhibitors	19
1.6.2. Polyphenols	22
1.6.3. Stilbenes	25
1.6.4. Phenolic compounds as tyrosinase inhibitors	27
1.6.5. Coumarins as tyrosinase inhibitors	28

1.6.6. Benzaldehyde and benzoate derivatives as tyrosinase inhibitors	29
1.6.7. Other inhibitors	30
1.6.8. Chalcones as tyrosinase inhibitors	33
1.7. References	37
CHAPTER 2: Hydroxyazachalcones	64
2.1. Introduction	65
2.2. Experimental	65
2.2.1. Method for synthesis of compound 5b	65
2.3. Results and Discussion.	67
2.3.1. Chemistry	67
2.3.2. Enzyme kinetics	70
2.3.3. In silico docking studies	76
2.4. Conclusion	78
2.5. References	80
CHAPTER 3: Hydroxynaphthylchalcones	84
3.1. Introduction	85
3.2. Experimental	85
3.2.1. Method for synthesis of compound 10b	86
3.3. Results and Discussion.	90
3.3.1. Chemistry	90
3.3.2. Kinetics	922
3.3.3. Docking studies	96
3.4. Conclusion	99
3.5. References	100
CHAPTER 4: Allyl alcohols of Azachalcones	1033
4.1. Introduction	104
4.2. Experimental	1044

4.2.1. Method for synthesis of compound 11b	1055
4.3. Results and Discussion.	106
4.3.1. Synthesis	1066
4.3.2. Chemistry	11010
4.3.3. Kinetics	1122
4.3.4. Docking results	1144
4.4. Conclusion	121
4.5. References	12222
CHAPTER 5: Methoxychalcone compounds	1233
5.1. Introduction	1244
5.2. Experimental	1255
5.2.1. Method for synthesis of compound 3c.	1255
5.3. Results and Discussion	13131
5.3.1. Chemistry & inhibition kinetics	131
5.3.2. Effect on melanogenesis	1344
5.3.3. Docking studies	137
5.4. Conclusion	1399
5.5. References	14040
CHAPTER 6: Chalconeoximes (Phenyl & naphthyl derivatives)	1455
6.1. Introduction	1466
6.2. Experimental	1466
6.2.1. Method for the synthesis of compound 17b.	1477
6.2.2. Spectral data	1488
6.3. Results and Discussion.	15151
6.3.1. Chemistry & inhibition kinetics	15151
6.3.2. Docking studies	1555
6.3.3. Effect on melanogenesis	1599

6.4. Conclusion	16161
6.5. References	16262
CHAPTER 7: Solid state synthesis of Chalconeoximes	1644
7.1. Introduction	1655
7.2. Experimental	1666
7.2.1. Method for synthesis of 23b.	167
7.2.2. Spectral data	168
7.3. Results and Discussion.	172
7.3.1. Effect of compounds on tyrosinase activity: inhibition kinetics.	17272
7.3.2. Inhibition mechanism of the selected compounds on mushroom	tyrosinase1733
7.3.3. Lineweaver–Burk analysis of tyrosinase inhibition by compoun	nds 22b and 23b
7.3.4. Docking studies	1788
7.4. Conclusion	18080
7.5. References	18181
CHAPTER 8: Aminochalcones	1855
8.1. Introduction	1866
8.2. Experimental	1866
8.2.1. Method for the synthesis of compound 30b.	1877
8.2.2. Spectral data	1888
8.3. Results and Discussion.	19393
8.3.1. Chemistry	19393
8.3.2. Kinetics	1944
8.3.3. Docking studies	1988
8.3.4. Effect on melanogenesis	201
8.4. Conclusion	204
8.5 References	204

CHAPTER 9: 2,3-Dihydro-1H-inden-1-one (1-indanone) Chalcone-like der	ivatives . 206
9.1. Introduction	2077
9.2. Experimental	2077
9.2.1. Method for the synthesis of compound 41b	2077
9.2.2. Spectral data	2087
9.3. Results and Discussion.	2118
9.3.1. Chemistry and inhibition kinetics	211
9.3.2. In silico docking studies	2177
9.4. Conclusion	22020
9.5. References.	220
CHAPTER 10: Chalconeoximes (2´-acetylpyridinyl derivatives)	223
10.1. Introduction	22424
10.2. Experimental	22424
10.2.1. Method for synthesis of compound 46b	22525
10.2.2. Spectral data	22626
10.3. Results and Discussion	2299
10.3.1. Chemistry	22929
10.3.2. Inhibition mechanism of the selected compounds on mushroom tyros	sinase 23232
10.3.3. Lineweaver–Burk analysis by inhibitor compounds 46b and 48b	23333
10.3.4. Docking studies	2355
10.4. Conclusion	2388
10.5. References	23939
CHAPTER 11: Conclusion	24141
11.1. Future prospects	2533
CHAPTER 12: General Experimental	255
12.1. Chemical reagents and instruments	256
12.2. General method for the synthesis of chalcone derivatives	256

12.3. Method for the synthesis of hydroxy derivatives of methoxychalcones256
12.4. Method for the synthesis of allylalcohols of chalcone compounds257
12.5. General method for the synthesis of hydroxy chalcone oxime compounds257
12.6. General method for the synthesis of amino chalcones
12.9. Tyrosinase inhibition assay
12.10. Determination of the inhibition type of respective active compounds
on mushroom tyrosinase
12.11. <i>In silico</i> docking between tyrosinase and target compounds259
12.12. <i>In vitro</i> cytotoxicity studies
12.12.1. Cell culture
12.12.2. Cell viability
12.12.3. Assay of murine tyrosinase activity
12.12.4. Determination of melanogenesis in B16 cells
12.13. References
CHAPTER 13: Appendix
13.1. Kinetics of mushroom tyrosinase
13.2. Enzyme inhibitors
13.2.1. Reversible enzyme inhibition
13.2.2. Competitive inhibition
13.2.3. Non-competitive inhibition
13.2.4. Mixed type inhibition
13.2.5. Uncompetitive inhibition
13.2.6. Irreversible inhibitors
13.2.7. Suicide inhibition
13.3. Docking and ligand-receptor interactions
13.3.1. Target Characterization
3.3.2. Hot spot identification

13.3.3. Current challenges or limitations facing molecular docking	277
13.4. Receptor-Ligand Interactions	278
13.5. Applications of Docking	279
13.6. References.	279

LIST OF PAPERS PUBLISHED

- 1. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Azachalcones: A novel class of polyphenol oxidase inhibitors', *Bioorganic and Medicinal Chemistry Letters*, Vol 25, pp. 1753-1756.
- Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Development of hydroxylated naphthylchalcones as polyphenol oxidase inhibitors: Synthesis, biochemistry and molecular docking studies', *Bioorganic Chemistry*, Vol 63, pp. 116–122.
- 3. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors', *Bioorganic and Medicinal Chemistry Letters*, Vol 25, pp. 4085–4091.
- 4. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Evaluation of novel chalcone oximes as inhibitors of tyrosinase and melanin formation in B16 cells', *Archiv der Pharmazie*, Vol 348, pp. 1–10.
- 5. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Inhibitory kinetics of novel 2, 3-dihydro-1H-inden-1-one chalcone like-derivatives on mushroom tyrosinase', *Bioorganic and Medicinal Chemistry Letters*, Vol 25, pp. 5495–5499.
- 6. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2015, 'Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells', *Bioorganic Chemistry*, Vol 62, pp. 117-123.
- 7. Radhakrishnan, SK, Shimmon, R, Conn, C, Baker, AT 2016, 'Inhibitory kinetics of azachalcones and their oximes on mushroom tyrosinase: a facile green synthesis', *Chemistry and Biodiversity*, Vol 13, pp. 531–538.

LIST OF TABLES

Table 1 Properties of various tyrosinases
Table 2 Inhibition Effects and docking results of hydroxy azachalcones
Table 3. Effect on mushroom tyrosinase activity and kinetic analysis of compounds .733
Table 4 Inhibition and docking results of hydroxynaphthylchalcones91
Table 5 Effect on mushroom polyphenol oxidase activity and kinetic analysis of compounds
Table 6 Docking results and tyrosinase inhibition effects of allyl alcohols
Table 7 Effect on mushroom polyphenol oxidase activity and kinetic analysis of compounds
Table 8 Docking results, tyrosinase inhibition and cytotoxic effects of methoxychalcones
Table 9 Inhibitory effects of kojic acid, 17b and 19b on mushroom tyrosinase 15353
Table 10 Kinetic analysis of compounds 17b and 19b
Table 11 Inhibition effects and docking results of phenyl & naphthyl chalconeoximes1566
Table 12 Inhibition effects and docking results of chalconeoximes
Table 13 Effect on mushroom tyrosinase activity and kinetic analysis
Table 14 Docking results and tyrosinase inhibition effects of amino chalcones 19595
Table 15 Inhibitory effects of kojic acid, 29b and 30b on mushroom tyrosinase 1966
Table 16 Substitution Pattern and Inhibition Effects of 1-indanonechalcones21212
Table 17 Effect on tyrosinase activity and kinetic analysis of compounds21616
Table 18 Docking results of active indanone chalcone-like compounds2177
Table 19 Inhibition effects and docking results of acetylpyridinylchalconeoximes.23030
Table 20 Inhibitory effects of kojic acid, 46b and 48b on mushroom tyrosinase23232
Table 21 Inhibition effects and docking results of chalcone derivatives on mushroom tyrosinase

LIST OF FIGURES

Figure 1 Biosynthetic pathway of melanin	3
Figure 2 Reaction pathway involving tyrosinase	7
Figure 3 Geometry of the active site of tyrosinase with tropolone in sticks	9
Figure 4 The three states of the active site of tyrosinase.	13
Figure 5 Active site of mushroom tyrosinase	19
Figure 6 Monocyclic tyrosinase inhibitors	22
Figure 7 Polyphenols as tyrosinase inhibitors	23
Figure 8 Stilbenes as tyrosinase inhibitors	27
Figure 9 Phenolic compounds as tyrosinase inhibitors	28
Figure 10 Miscellaneous tyrosinase inhibitors	32
Figure 11 Structures of chalcone, garcinol and curcumin	33
Figure 12 Chalcones as tyrosinase inhibitors	35
Figure 13 The inhibitory mechanism of compounds 5b and 2b	744
Figure 14 Lineweaver Burk plot for inhibition of compounds 5b and 2b	755
Figure 15 Dixon plot for the inhibitory effect of compounds 5b and 2b	766
Figure 16 Docking and 2D results of compounds 1b–5b	80
Figure 17 Inhibition effects of compounds 10b and 7b.	922
Figure 18 The inhibitory mechanism of compounds 10b and 7b	933
Figure 19 Lineweaver Burk plot for inhibition of compounds 10b and 7b	944
Figure 20 Dixon plot for the inhibitory effect of compounds 10b and 7b	955
Figure 21 Docking and 2D results of compounds 10b, 7b	988
Figure 22 Lineweaver-Burk plots for inhibition of active compounds 11b and 1	3b1133
Figure 23 Dixon plot for the inhibitory effect of compounds 11b and 13b	1144
Figure 24 Docking and 2D results of compounds 11b –16b	1199
Figure 25 Lineweaver Burk plot for inhibition of compounds 3c and 1c	13333
Figure 26 Effect of compounds 3c and 1c on B16 cell viability	1355
Figure 27 Inhibitory effect of compounds 3c and 1c after treatment with 10 MSH	
Figure 28 Inhibitory effect of compounds 3c and 1c on B16 cells tyrosinase	1377
Figure 29 Docking and 2D results of compounds 3c and 1c	1399
Figure 30 Inhibitory effects of chalcone oximes on mushroom tyrosinase activi	ty. 15252

Figure 31 Lineweaver Burk plot for inhibition of compounds 17b and 19b	15454
Figure 32 Dixon plot for the inhibitory effect of compounds 17b and 19b	155
Figure 33 Docking and 2D results of compounds 17b and 19b	1588
Figure 34 Effect of compounds 17b and 19b on cell viability.	1599
Figure 35 Inhibitory effect of compounds 17b and 19b in B16 cells	16060
Figure 36 Inhibitory effect of compounds 17b and 19b on B16 cells tyrosinase.	16161
Figure 37 Principles of green chemistry	1666
Figure 38 The inhibitory mechanism of compounds 22b and 23b	1755
Figure 39 Lineweaver-Burk plots for inhibition of compounds 22b and 23b	1766
Figure 40 Dixon plot for the inhibitory effect of compounds 22b and 23b	1777
Figure 41 Docking and 2D results of compounds 22b and 23bet.	18080
Figure 42 Lineweaver Burk plot for inhibition of compounds 29b and 30b	1977
Figure 43 Dixon plot for the inhibitory effect of compounds 30b and 29b	1988
Figure 44 Docking and 2D results of compounds 29b and 30b	201
Figure 45 Effect of compounds 29b and 30b on cell viability.	202
Figure 46 Inhibitory effect of 29b and 30b after treatment with 100 nM a-MSH	203
Figure 47 Inhibitory effect of compounds 29b and 30b on B16 cells of tyrosinas	e203
Figure 48 Inhibition effects of compounds 41b and 42b.	21313
Figure 49 Inhibitory mechanism of compounds 41b and 42b.	21414
Figure 50 Lineweaver Burk plot for inhibition of compounds 41b and 42b	21515
Figure 51 Dixon plot for the inhibitory effect of compounds 41b and 42b	21616
Figure 52 Docking and 2D results of compounds 41b and 42b.	2199
Figure 53 The inhibitory mechanism of compounds 46b and 48b	23333
Figure 54 Lineweaver Burk plot for inhibition of compounds 46b and 48b	23434
Figure 55 Dixon plot for the inhibitory effect of compounds 46b and 48b	23535
Figure 56 Docking and 2D results of compounds 46b and 48b.	23838
Figure 58 Tyrosinase assay	26566
Figure 59 Lineweaver –Burk plot.	26667
Figure 60 A simplified model of competitive inhibition	26768
Figure 61 Kinetics of competitive inhibition	2688
Figure 62. A simplified model of noncompetitive inhibition	2699
Figure 63 Kinetics of noncompetitive inhibition	2699
Figure 64 Kinetics of mixed inhibition	27070

Figure 65 Kinetics of uncompetitive inhibition	27070
Figure 66 Molecule docked to a protein	27373

LIST OF ABBREVIATIONS

DHI 5, 6-dihydroxyindole

DMSO Dimethyl sulfoxide

DHICA 5, 6-dihydroxyindole-2-carboxylic acid

UV Ultraviolet

DOPA 3, 4-dihydroxyphenylalanine

TOPA 2, 4, 5-trihydroxyphenylalanine

DHICA 5, 6-dihydroxyindole-2-carboxylic acid

TRP-1 tyrosinase related protein-1

PPO polyphenol oxidase

HC hemocyanins

GHB glutaminyl-4-hydroxybenzene

NMR Nuclear magnetic resonance

HRMS High resolution mass spectroscopy

FTIR Fourier transform infra-red

PDB Protein data bank

SAR Structure activity relationship

RT Room temperature

TLC Thin layer chromatography

SE Standard error

Mp Melting point

DNA Deoxyribonucleic acid

ROS Reactive oxygen species

MeOH Methanol

MTT 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyltetrazolium bromide