Bacterial filamentation as a survival strategy: a goldmine for the discovery of new cell division regulators

Samuel J. Burns

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Research)

The i3 Institute

University of Technology, Sydney

January, 2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the written preparation of the thesis, and all experimental work associated with it has been carried out solely by me, unless otherwise indicated.

Finally, I certify that all information sources and literature used are acknowledged in the text.

Samuel J. Burns, August 2016

Acknowledgements

First and foremost I must acknowledge and sincerely thank my primary supervisor, Professor Liz Harry and my co-supervisor Dr. Catherine Burke. I would not be where I am without the amazing guidance you both have given me and for which I will be ever grateful. Your unwavering patience and the ability for you both to do so much and yet still be able to mentor and nurture your students is inspirational and a lesson I will not soon forget.

Being one of The Harry lab has made research at UTS an amazingly enjoyable experience. You are all kind and brilliant people who would quickly drop what you are doing at the drop of a hat if someone needed help or advice. I would like to thank all of the current members of the lab: Isa, Shirin, Ken, Amy, Nural, Daniel, Mel, Riti, Chemistry-Matt, Alison and Kevin. I also need to thank past members of the Lab, Dr. Mike Strauss, Dr. Andrew Liew, Dr. Leigh Monahan and Dr. Jaye Lu. Your help and advice over the years has greatly appreciated and will never be forgotten. I also need to acknowledge the collaborators on this project, namely Jamie Triccas and Torston Thomas. I would also like to thank all of my office buddies, in particular Dr. Rita Monahan, Dr. Erin Gloag and (soon to be Dr.) Alex Gale.

I would like to thank my Parents for all their support, guidance and patience. Even if you don't completely understand what I do, you always take the time to listen and help wherever you can. I would finally like to thank Amelia Hynen. You are quite simply my partner and I thank you for all of the love and support and patience you have given me over the years.

Table of Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP	I
ACKNOWLEDGEMENTS	II
ABBREVIATIONS	.XI
ABSTRACT	٢VI
I. GENERAL INTRODUCTION	2
1.1. THE DISEASE AND THE PROBLEM	4
1.2. Cell division as an antimicrobial target	6
1.3. MYCOBACTERIUM TUBERCULOSIS CELL BIOLOGY	8
1.4. Cell division in bacteria	10
1.5. Cell growth and division in Mycobacteria	14
1.5.1. Modes of growth	14
1.5.2. The Mycobacterial divisome	16
1.5.3. Regulators of cell division	18
1.5.4. Growth under stress	21
1.6. BACTERIAL FILAMENTATION AS A SURVIVAL STRATEGY	22
1.7. FLOW CYTOMETRY BASED CELL SORTING AS A SCREENING MECHANISM FOR BACTERIAL	
FILAMENTATION	23
1.8. Conclusion	24
2. MATERIALS AND METHODS	28
2.1. CHEMICALS, REAGENTS AND SOLUTIONS	28
2.2. ESCHERICHIA COLI STRAINS AND GROWTH CONDITIONS	28
2.2.1. Normal growth of Escherichia coli	29
2.2.2. Storage and revival of bacteria	30

2	2.3.	Growth of Escherichia coli Epi300 for induction of the environmental DNA	
ех	press	sion libraries contained within pCC1FOS	. 30
2	2.4.	Growth of Escherichia coli strains with cloned genes on the pBAD24 vector	. 30
2.3.	Мү	COBACTERIAL STRAINS AND GROWTH CONDITIONS	31
2	3.1.	Growth of Mycobacterium smegmatis	. 32
2.4.	Сог	NSTRUCTION OF A <i>MYCOBACTERIUM SMEGMATIS</i> GROWTH CURVE	32
2.5.	Мо	LECULAR BIOLOGY TECHNIQUES	33
2.	5.1.	Mycobacterium bovis BCG gDNA preparation	. 33
2.	5.2.	Plasmid DNA preperations	. 33
2.	5.3.	Restriction endonuclease digestion	. 34
2.	5.4.	Shearing and end-repair of DNA using a nebulizer	. 34
2.	5.5.	Ligation	. 34
2.	5.6.	Oligonucleotides	. 35
2.	5.7.	Standard Polymerase Chain Reaction (PCR)	.36
2.	5.8.	Colony PCR	. 37
2.	5.9.	Agarose gel electrophoresis and quantification of DNA concentration	. 37
2.	5.10.	DNA extraction from agarose gels	. 38
2.6.	Clo	DNING OF A RIBOSOME BINDING SITE (RBS) ON TO THE PSE100 VECTOR	39
2.7.	Pre	EPARATION AND TRANSFORMATION OF ELECTROCOMPETENT ESCHERICHIA COLI	39
2.8.	Pre	EPARATION AND TRANSFORMATION OF ELECTROCOMPETENT MYCOBACTERIUM SMEGMA	TIS
	40		
2.9.	Fix.	ATION OF BACTERIAL CELLS	41
2.10	. Fi	OW CYTOMETRY BASED CELL SORTING AND CONFIRMATORY MICROSCOPY SCREEN	41
2.11	. W	IDE-FIELD LIGHT MICROSCOPY	43
2.	11.1.	Slide preparation for fixed cell imaging	. 43
2.	11.2.	Slide preparation for live cell imaging	. 43
2.	11.3.	Fluorescence and phase-contrast microscopy	. 44

3.	USING	FLOW CYTOMETRY TO INVESTIGATE FILAMENTATION IN	
EN	VIRONM	IENTAL BACTERIA	46
	3.1. Int	RODUCTION	46
	3.1.1.	Filamentation in the environment	46
	3.1.2.	Creation of the initial environmental library and method development of fle)W
	cytome	etry based cell sorting for cells having a filamentous phenotype	48
	3.1.3.	Flow cytometry based screening of the original library	49
	3.2. Res	SULTS	52
	3.2.1.	The Original environmental library screen	52
	3.2.2.	Creating the sub-clone library	54
	3.2.3.	Flow cytometry screen of the sub-clone library	55
	3.2.4.	Confirmation of filamentous phenotype in sorted clones using light microsc	ору
		59	
	3.2.5.	Characterization of the filamentous phenotype of Clone 3	62
	3.3. Dis	SCUSSION	68
	3.3.1.	The environmental library – A proof of concept	68
	3.3.2.	Flow cytometry as a screening method for cell division inhibition	69
	3.3.3.	The leucine binding protein livK	70
	3.3.4.	Future work on this area	72
4.	SCREE	NING MYCOBACTERIUM BOVIS DNA FOR CELL DIVISION REGULATORS	75
	4.1. INT	RODUCTION	75
	4.2. Re:	SULTS	79
	4.2.1.	Constructing the Mycobacterium bovis BCG DNA library in the expression v	ector
	pBAD2	24 to be hosted in E. coli	79
	4.2.2.	Screening the Mycobacterium bovis BCG DNA library in E. coli using the	
	expres	sion vector pBAD24 and flow cytometry based cell sorting	83

	4	2.3.	Determining the appropriateness of M. smegmatis as a host species for the M.	
	bo	ovis D	NA library E	37
	4	2.4.	Modification and testing of the new mycobacterial expression vector utilizing	
	th	e TET	Γ-On/Off repressor system	<i>)</i> 1
	4	2.5.	Checking the expression of the pSAM1 vector with the TET-ON system in M.	
	sn	negm	atis9	92
	4	2.6.	Expression of the M. bovis BCG ftsZ from pSAM1 elicits filamentation in M.	
	sn	negm	atis9	94
	4	2.7.	Building a M. bovis BCG chrDNA library in M. smegmatis9	98
	4.3.	DIS	CUSSION)2
5.	GE	NER	AL DISCUSSION10)6
	5.1.	Int	RODUCTION10)6
	5.2.	Usi	NG FLOW CYTOMETRY BASED CELL SORTING AND MICROSCOPY AS A SCREENING METHOD	
	FOR I	ВАСТЕ	RIAL CELL DIVISION INHIBITION)8
	5.3.	Shc	TGUN DNA EXPRESSION LIBRARIES AS AN INVESTIGATIVE TOOL FOR DISCOVERING NOVE	L
	CELL	DIVIS	ION REGULATORS AND GENES	2
	5.4.	Fut	⁻ 'URE WORK	.4
6.	RE	FERI	ENCES11	.6
7.	AP	PEN	DIX12	24
	7.1.		CLEOTIDE SEQUENCE OF ORF1 FROM ENVIRONMENTAL LIBRARY SUB-CLONE ESC_3-5B	
	/.1.			
		124		
	7.2.	NUC	CLEOTIDE SEQUENCE OF ORF2 FROM ENVIRONMENTAL LIBRARY SUB-CLONE ESC_3-5B	
		125		

List of figures

FIGURE 1.1 - MAP OF COUNTRIES THAT HAD REPORTED AT LEAST ONE CASE OF XDR-TB BY THE
end of 2011
FIGURE 1.2 - DIAGRAM OF THE BASIC COMPONENTS OF THE <i>MYCOBACTERIUM SPP.</i> CELL WALL [5]
FIGURE 3.1 - DIAGRAM ILLUSTRATING THE PROCESS OF FLOW CYTOMETRY
Figure 3.2 - Flow cytometry scatter plot indicating with microscope images were
EACH OF THE POPULATIONS OF CELLS ARE ON THE PLOT 50
Figure 3.3 - Representative images of each of the filamentous clones isolated from
THE SCREEN OF THE ENVIRONMENTAL LIBRARY
Figure 3.4 - histograms of cell length distributions of each of the OECs compared to
THE CONTROL
FIGURE 3.5 - DIAGRAM OF THE FLOW CYTOMETRY SCREENING PROCESS
Figure 3.6 - Representative flow cytometry scatter plots taken from the AriaII Cell
Sorter
Figure 3.7 - Representative images of each of the filamentous EsC 's compared to the
CONTROL
Figure 3.8 - Histogram of cell length distributions of i_EsC_3-5B against the vector
CONTROL
Figure 3.9 - Histogram of cell length distributions of i_EsC_4-1G against the vector
CONTROL
FIGURE 3.10 - Representative images of each ORF from EsC_3-5B against the vector
CONTROL

Figure 3.11 - Histogram of cell length distributions of 1_EsC_3-5B-ORF1 against the
CONTROL
FIGURE 3.12 - Representative images of each of the $livK$ strains with environmental
HOMOLOGUE
FIGURE 4.1 - UV TRANSILLUMINATION SHOWING THE TIME-POINT DIGESTS OF BCG GDNA 80
FIGURE 4.2 - GEL IMAGES INDICATING THE DIGESTION OF <i>E. COLI</i> GDNA THEN EXTRACTION USING
THE FREEZE-SQUEEZE METHOD ERROR! BOOKMARK NOT DEFINED.
FIGURE 4.3 - AGAROSE GEL SHOWING THE FATI DIGESTED E. COLI DNA AND THE EXTRACTED AND
PURIFIED <i>E. COLI</i> DNA AFTER USING THE GELASE PROTOCOL
FIGURE 4.4 - AGAROSE GEL WITH UNDIGESTED PBAD24, NCOI DIGESTED PBAD24 AND 2-5 KB
<i>M. bovis</i> BCG DNA Error! Bookmark not defined.
FIGURE 4.5 - REPRESENTATIVE IMAGES OF SCREENED AND COLLECTED CLONES FROM THE <i>M</i> .
FIGURE 4.5 - REPRESENTATIVE IMAGES OF SCREENED AND COLLECTED CLONES FROM THE M.
BOVIS BCG LIBRARY HOSTED IN <i>E. COLI</i>
<i>BOVIS</i> BCG LIBRARY HOSTED IN <i>E. COLI</i>
<i>BOVIS</i> BCG LIBRARY HOSTED IN <i>E. COLI</i>
<i>BOVIS</i> BCG LIBRARY HOSTED IN <i>E. COLI</i>
BOVIS BCG LIBRARY HOSTED IN E. COLI
BOVIS BCG LIBRARY HOSTED IN E. COLI
BOVIS BCG LIBRARY HOSTED IN E. COLI
BOVIS BCG LIBRARY HOSTED IN E. COLI
BOVIS BCG LIBRARY HOSTED IN E. COLI
BOVIS BCG LIBRARY HOSTED IN E. COLI

FIGURE 4.12 - FREQUENCY HISTOGRAM SHOWING THE DIFFERENCES IN CELL LENGTH
DISTRIBUTIONS BETWEEN <i>M. SMEGMATIS</i> MSTR1 CELLS EXPRESSING <i>M. BOVIS</i> BCG_FTSZ
with 50 Ng/mL induction with ATc and no induction
FIGURE 4.13 - UV TRANSILLUMINATION IMAGE OF DIFFERENT <i>M. BOVIS</i> BCG CHRDNA
PREPARATIONS RECEIVED
FIGURE 4.14 - UV TRANSILLUMINATION IMAGE OF THE PARTIAL DIGEST OF <i>M. BOVIS</i> BCG
CHRDNA

List of tables

TABLE 1.1 - DIVISOME COMPONENTS IN B. SUBTILIS, E. COLI AND M. TUBERCULOSIS [5, 30] 12
TABLE 1.2 - NEGATIVE REGULATORS OF FTSZ POLYMERIZATION [5, 30]
TABLE 2.1 - COMMONLY USED SOLUTIONS AND BUFFERS 28
TABLE 2.2 - LIST OF ESCHERICHIA COLI STRAINS AND PLASMIDS USED IN THIS WORK 28
TABLE 2.3 - MEDIA USED IN THIS WORK FOR THE GROWTH OF <i>E. COLI</i> AND <i>M. SMEGMATIS</i>
TABLE 2.4 - LIST OF DIFFERENT ANTIBIOTICS USED IN THIS STUDY 29
TABLE 2.5 - LIST OF <i>M. SMEGMATIS</i> STRAINS AND PLASMIDS USED IN THIS WORK 31
TABLE 2.6 - LIST OF OLIGONUCLEOTIDES IN THIS WORK 35
TABLE 3.1 - Numbers of clones in sub-clone libraries for each of the original
ENVIRONMENTAL CLONES
TABLE $3.2 - N$ umber of events analysed in each of the samples and the percentage of
EVENTS FALLING WITHIN THE LONG GATE FOR EACH OF THE SUB-CLONE LIBRARIES AND THE
VECTOR CONTROL FOR EACH CONDITION57
TABLE 3.3 - NUMBER OF COLLECTED EVENTS THAT GREW POST SCREEN 59
TABLE 3.4 – DEGREE OF FILAMENTATION OF OVEREXPRESSION LIBRARY SUBCLONES. 62
TABLE 4.1 - Summary of values from the flow cytometry screen of the BCG DNA
LIBRARY HOSTED IN <i>E. COLI</i>
TABLE 4.2 - PERCENTAGE DATA OF THE PROPORTION OF "LONG" CELLS WITHIN A POPULATION OF
WT <i>M. smegmatis</i> and <i>M. smegmatis</i> overexpressing <i>ftsZ</i>
TABLE 4.3 - BASIC STATISTICS FOR PSAM1 (VECTOR CONTROL) AND BCG_FTSZ IN M. SMEGMATIS
MSTR1 when uninduced and induced with 50ng/mL ATc

Abbreviations

aa	amino acid
AG	arabinogalactan
AGRF	Australian Genome Research Facility
АТс	anhydrotetracycline
АТР	Adenosine 5' triphosphate
В.	Bacillus
BCG	Bacillus Calmette-Guérin
BLAST	basic local alignment search tool
bp	base pair(s)
BP	band pass
BSA	bovine serum albumin
°C	degrees Celsius
chrDNA	chromosomal DNA
cm	centimeters
CCD	charged coupled device
DAPI	4'6-diamidino-2-phenylindole
dATP	deoxyadenosine 5'-triphosphate
dCTP	deoxycytidine 5'-triphosphate
dGTP	deoxyguanosine 5'-triphosphate
DNA	deoxyribonucleic acid

dTTP	deoxythymidine 5'-triphosphate
Е.	Escherichia
EM	electron microscopy
EsC	environmental sub-clone
et al.	and others
FSC	forward scatter
fts	filamentation temperature sensitive
g	centrifugal force
g	gram(s)
gDNA	genomic DNA
GFP	green fluorescent protein
h	hour(s)
h kb	hour(s) kilo base pair(s) (1000 bp)
kb	kilo base pair(s) (1000 bp)
kb kD	kilo base pair(s) (1000 bp) kilo Dalton(s)
kb kD kg	kilo base pair(s) (1000 bp) kilo Dalton(s) kilogram
kb kD kg L	kilo base pair(s) (1000 bp) kilo Dalton(s) kilogram litre(s)
kb kD kg L	kilo base pair(s) (1000 bp) kilo Dalton(s) kilogram litre(s) Luria Bertani
kb kD kg L LB LIV	kilo base pair(s) (1000 bp) kilo Dalton(s) kilogram litre(s) Luria Bertani leucine, isoleucine and valine
kb kD kg L LB LIV	kilo base pair(s) (1000 bp) kilo Dalton(s) kilogram litre(s) Luria Bertani leucine, isoleucine and valine long pass

MA	mycolic acid
MCS	multi-cloning site
MDR	multi-drug resistant
min	minute(s)
MQW	Milli-Q purified water
Mtb	Mycobacterium tuberculosis
n	nano- (10 ⁻⁹)
NA	numerical aperture
N/A	not applicable
NaOAc	sodium acetate
NCBI	National Center for Biotechnology Information
NOC	nucleoid occlusion
OD	optical density
OEC	original environmental clone
ORF	open reading frame
Р	probability
PBP	penicillin binding protein
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PG	peptidoglycan
рН	power of Hydrogen
psi	pounds per square inch

RNA	ribonucleic acid
ROS	reactive oxygen species
ROW	reverse osmosis purified water
rpm	revolutions per minute
S	second(s)
SD	standard deviation
SDS	sodium dodecyl sulfate
SEM	standard error of the mean
sp.	species
SSC	side scatter – height (H), width (W)
TAE	tris acetate EDTA
ТВ	tuberculosis
TBE	tris borate EDTA
TBE TDR	tris borate EDTA totally-drug resistant
TDR	totally-drug resistant
TDR TE	totally-drug resistant tris-EDTA buffer
TDR TE tet	totally-drug resistant tris-EDTA buffer tetracycline
TDR TE tet Tris	totally-drug resistant tris-EDTA buffer tetracycline tris(hydroxymethyl)methylamine
TDR TE tet Tris U	totally-drug resistant tris-EDTA buffer tetracycline tris(hydroxymethyl)methylamine units (of enzyme)
TDR TE tet Tris U	totally-drug resistant tris-EDTA buffer tetracycline tris(hydroxymethyl)methylamine units (of enzyme) ultraviolet

WE	window extension
WHO	World Health Organisation
WT	wild-type
w/v	weight per volume
XDR	Extremely-drug resistant
μ	micro- (10 ⁻⁶)
μF	micro Farad

Abstract

Mycobacterium tuberculosis the causative organism of tuberculosis has been plaguing humanity for centuries. The number of effective antibiotics is dwindling due to the rise of multi-drug resistance within the species and new drugs need to be developed that target essential components of the bacterial life cycle. Bacterial cell division is an essential and highly conserved process across bacteria and new drugs that target this process could have broad-spectrum implications.

Bacilli can survive changes in their environment by forming filamentous cells, where cell division is inhibited while growth and DNA replication continue, giving rise to very long cells (up to 40 µm). Filamentation has been observed in both non-pathogenic and pathogenic bacteria, including *Escherichia coli* and *Mycobacterium tuberculosis* where it has been proposed to be required for replication and persistence within the human host. The process by which filamentation occurs in bacteria is not well understood. However, understanding filamentation can aid in identifying opportunities for new therapeutics and in addition, explore cell division in Mycobacteria as they are missing many of the key cell division genes present in model organisms like *Escherichia coli* and *Bacillus subtilis*.

The overall aim of this work was to use flow cytometry-based cell sorting to identify and characterize novel proteins that regulate cell division in Mycobacteria and allow persistence in mycobacterial disease. This was done by screening expression libraries of *Mycobacterium bovis* BCG genomic DNA (gDNA) hosted in *E. coli* and later *Mycobacterium smegmatis,* to identify clones expressing cell division proteins and regulatory genes via a filamentous phenotype.

xvi

The method for flow cytometry screening had to first be verified through the completion of a screen of a library of environmental DNA collected from the marine algae *Ulva australis*. Large environmental DNA inserts were sub-cloned and re-screened using flow cytometry-based cell sorting to identify genes causing filamentation when expressed. One reproducibly filamentous clone contained the Periplasmic Binding Protein Type-1 Superfamily conserved domain and we found that the overexpression of this gene caused a filamentous phenotype, which in turn showed that a single gene causing a filamentous phenotype could be identified with the flow cytometry based cell sorting method.

A library of *M. bovis* BCG gDNA was constructed and hosted in *E. coli*. This library was screened using flow cytometry-based cell sorting but no filamentous clones were found. The host species was then changed to *M. smegmatis* for better expression of heterologous genes and a modified expression vector utilizing the TET-ON/OFF inducible expression system was shown to work for the expression of cloned genes. Unfortunately after repeated attempts, a library of *M. bovis* BCG gDNA was unable to be constructed and screened for mycobacterial cell division genes and regulators.

Bacterial filamentation and cell division are important areas of investigation for clinically relevant bacteria. The information that can be gleaned from these investigations may lead to the next generation of antimicrobials.

xvii