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Abstract

Cost overrun on infrastructure projects is widespread and represents significant financial risks to
stakeholders. The large number of possible causes makes the planning and management of projects
challenging. A survey of 160 project managers of infrastructure projects in Saudi Arabia was conducted
to elicit  the cost  overrun causes.  After  cluster  analysis,  the causes were reduced to four  dimensions:
scope changes, market and regulatory, inadequate planning and control, and unforeseen circumstances.
These four dimensions were then used to develop a risk-based cost contingency estimation model
(RBCCEM) to improve the accuracy of cost forecasting and then validated using a bootstrapping
approach. The accuracy of cost estimation measures was used to compare RBCCEM with fixed cost
contingency (10%), reference class forecasting (RCF P50 & P90), and hybrid (it is a combination of
RBCCEM & RCF P50). The comparison suggested that the RBCCEM could be more accurate as the
error decreased by 10%. Therefore, by considering the actual impact of cost risk of similar projects, the
results show that cost contingency was improved and the model delivered a better result compared to
RCF.
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1. Introduction

A significant proportion of large infrastructure projects have experienced substantial cost overrun which
has led to financial or fiscal distress to project stakeholders and resulted in the deferral or cancellation
of other projects (Flyvbjerg, 2014). Cost overruns in infrastructure projects are common around the
world, as identified by Flyvbjerg et al (2003). Controlling project cost within budget is important for
most if not all projects. The focus on cost performance is even stronger for infrastructure projects
because  of  their  high  costs.  Therefore,  it  is  critical  that  causes  of  cost  overrun  are  identified  and
effectively managed to minimize cost overrun.

Studies have identified a wide range of factors that lead to cost overruns, with two main schools of
thought on the causes of cost overrun: technical and strategic causes. Technical causes include mistakes
in design, overall price fluctuations, inaccurate estimations, government regulations, project size,
quality of the contractor management team, plan changes, priority on construction deadlines,
completeness and the project information timelines, the lack of experience of the estimators, certain
bidding conditions, project characteristics, and lack of past data on similar types of projects (Koehn et
l., 1978; Shash and Al-Khaldi, 1992; Lowe and Skitmore, 1994; Al-Harbi et al., 1994; Flyvbjerg et al.,
2002; Memon, et al., 2011). The strategic causes considered optimism bias, which encapsulates the
systematic propensity of decision makers to be over-optimistic about the outcomes of planned actions,
as the main culprit of cost overruns for infrastructure projects (Flyvbjerg et al., 2002). However, the
rhetoric seems to have shifted towards strategic misrepresentation as the main cause of cost overrun,
which refers the use of deceptive means in order to win the project or obtain project funding (Liu and
Zhu, 2007).

One of the techniques of reducing the impact of project cost overruns is the use of project cost
contingencies—usually as a fixed proportion of the project total estimated cost and most recently
estimated produced using sophisticated approaches such as reference class forecasting (RCF) or risk-
based estimating (RBE) (Liu et al., 2010), but each method has its limitations. By taking into
consideration the actual impact of cost risk of similar projects this paper develops and validates a cost
contingency estimation model. A cross-sectional survey was conducted in Saudi Arabia to identify the
causes of cost overrun of infrastructure projects in Saudi Arabia and the causes identified form the basis
of the new cost contingency estimation model.

The structure of the paper is as follows: literature on causes of cost overrun was reviewed and the
research  design  was  explained.  Cluster  analysis  is  used  to  classify  the  causes  of  cost  overrun  into
clusters. Subsequently, a cost contingency estimation model was developed by regressing project cost
overruns on the clusters of causes. The model was then validated using the split sample. Further
validation was conducted by comparing the accuracy of RBCCEM with those produced by the fixed
cost contingency (10%), RCF (P50 & P90) and hybrid method, respectively. Finally, implications were
discussed, future research directions were outlined and conclusions were drawn.
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2. Literature review

This section examines the concept of the classification of cost overrun causes. Then, cost contingency
estimation  in  infrastructure  projects  was  also  reviewed,  followed  by  a  discussion  on  using  a
classification approach in a cost contingency estimation model to improve cost contingency estimation
accuracy.

2.1. Classification of causes of cost overrun

Cost overrun occurs in infrastructure projects (Memon, et al., 2011), and the causes are various.
Classifying or grouping the large number of causes of overrun that may share similar patterns of impact
can help manage causes during planning and construction.

Based on a survey of project managers on high-rise construction projects in two Indonesian cities,
(Kaming et al., 1997) grouped seven causes of cost overruns into three groups using factor analysis:
inflationary increases in material cost, inaccurate material estimating and project complexity. In
Vietnam, Le-Hoai et al. (2008) categorized 21 causes of cost and time overrun for the construction
industry using factor analysis and identified seven groups of causes: slowness and lack of constraint,
incompetence, design, market and estimates, financial capability, government and worker factors. In
Malaysia, Abdul Rahman et al. (2013) modelled 35 causes of cost overrun in large construction projects
with a partial least squares-structural equation modelling approach and categorized the cost overrun
conceptually in seven groups: contractor’s site management related factors, design and documentation
related factors, financial management, information and communication, human resource, non-human
resources, project management and contract administration. These classification attempts have shown
that homogenous groups of causes of cost overrun exist which aggregate the effect of causes within the
same dimension.

Flyvbjerg has published various widely cited papers on causes of cost overrun for infrastructure
projects. Flyvbjerg (2006) proposed a conceptual categorisation of cost overrun based on four main
types of explanations that are claimed to account for cost overrun: technical, economical, psychological
and political. Flyvbjerg et al. (2003) and Flyvbjerg (2008) acknowledged the technical explanations for
cost overrun such as project size and location, but they concluded that the political-economic
explanation of strategic misrepresentation and the psychological explanation of optimism bias are the
main causes of cost overrun.

In brief, many causes significantly overlap, with relationships between multiple causes contributing to
the final cause of cost overruns. There is a need to understand how the diversity of causes share similar
patterns and how these causes impact on cost overrun, how causes can be mitigated, and the techniques
or tools to ameliorate or eliminate cost overrun.

2.2. Estimation of infrastructure project cost

Accurate cost estimation tools can help reduce or eliminate the uncertainties of cost overrun. Accurate
cost  forecasting  of  large  project  costs  is  based  on  the  availability  and  the  level  of  professional
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knowledge and the historical cost data quality (Liu and Zhu, 2007). Available information, however,
might be limited in the early stage of a large project. This may mean the quantity surveyor must make
assumptions about the design; a detail of a project that may not eventuate as the life cycle of the project
evolves (Liu et al., 2010).

The most critical feature of effective cost estimation is its potential for accuracy. Classic cost estimates
consist of a base estimate, accounting for all physical quantities of materials and labour, and an
additional risk contingency quantifying the underlying levels of uncertainty associated with the base
estimate (Liu et al., 2010). Accuracy in forecasting costs and risks is valuable for decision makers to
make rational decisions. Research has shown that cost forecasting errors are not unique to any specific
industry or to project type with estimate inaccuracy in transport (Flyvbjerg et al., 2002), roads (Odeck,
2004), general construction (Liu and Zhu, 2007) and industrial projects (Merrow and Yarossi, 1990).
Many studies have found, however, that there has not been noticeable improvement in estimation
accuracy despite continued research (Flyvbjerg et al., 2002; Liu and Zhu, 2007).

The dominant methods of cost contingency estimation used in infrastructure projects can be classified
into three categories: conventional contingency approach, risk-based estimation (RBE) and reference
class forecasting (RCF) (Liu et al., 2010). The conventional contingency approach is to add a
percentage, such as 10%, to the most likely estimate of the known works (Burger, 2003) based on the
estimator’s experience, which may be prone to optimism biases and could lead to cost overrun (Yeo,
1990; Newton, 1992; Mok et al., 1997). The cost contingency technique is acceptable under stable
conditions and simple projects, however, it is inappropriate for large and complex projects (Newton,
1992). As a result, it is a less evidence-based approach and a reason for many projects having cost
overrun (Hartman, 2000).

The other two methods, RCF and RBE, have been shown to increase the accuracy of cost contingency
estimation (Liu et al., 2010). The RBE model is the cost of individual components with base estimates
and stochastic or random risk contingencies. Summing the stochastic cost components determines the
distribution or probability of the overall project cost (Shaheen et al, 2007). The RBE method identifies
inherent risks that directly relate to the internal behaviour of a project; as well as contingent risks derived
from external events that may or may not occur (Aspinall and Trueman, 2006). It requires large amounts
of expert time and expense (Liu et al., 2010) especially for large and complex projects.

RCF developed by Flyvbjerg, which only takes into account a project’s class (the outcome of cost
overrun), even when other project factors might impact upon estimate accuracy. RCF utilises a database
of  previous project  performance,  from which a  subsample of  similar  projects  is  selected,  and adds a
contingency to the total project cost (Liu et al., 2010). As RCF’s aim is to mitigate either optimism bias
or strategic misrepresentation, it does not specifically address other causes of cost overrun such as
technical causes and does not forecast events which may influence the project.

Since cost contingency accounts for the unforeseen cost risks, it is likely the estimating model based on
the actual impact of cost risk of similar projects could produce more accurate cost contingency
estimates.  As  a  result,  in  the  paper  a  risk  based  estimation  method  was  adopted,  by  including  ‘cost
overrun causes classification scheme’, the accuracy of cost estimation could be improved. Supporting
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this proposal, (Liu et al., 2010) showed how RBE had excellent predictive validity as 90% projects
having an actual cost within the range of the risk-based estimate in which they estimated the risk
contingency of every single components of the project but they did include the cost overrun causes of
similar projects. Therefore, this study designs and validates RBCCEM for infrastructure projects.

3. Research design

To develop the RBCCEM model, the survey data and the risk factors identified by the authors in a
separate paper (Allahaim and Liu, 2015) is used to demonstrate development and validation process.
First, the data collection and the identified causes of cost overrun for infrastructure projects in Saudi
Arabia were summed up. Then, the use of cluster analysis to reduce the dimensionality of the risk factors
was explained in preparation for the subsequent multiple regression analysis. The regression analysis
derives the RBCCEM which was validated using bootstrapping analysis. Finally, the estimates
produced by RBCCEM was compared those by alternative approaches such as the fixed cost
contingency (10%), RCF (P50 & P90) and hybrid (RBCCEM & RCF P50) approaches.

4. Data collection

A survey of infrastructure project managers in Saudi Arabia was conducted to collect data from key
infrastructure project professionals in three groups: owners exposed to project cost overrun, consultants
supervising the projects, and contractors delivering the projects. The survey asked about the frequency
of the 41 causes of cost overrun most frequently identified from 25 selected studies, as shown in Table
1. Respondents used five Likert-scale response anchors to assess the frequency of each cause in Saudi
Arabia, based on their own professional experience. For more information about the data collection
please refer  to  the survey data  that  conducted by the authors  in  a  separate  paper  (Allahaim and Liu,
2015).

5. Data analysis and results

Based on the clusters identified, the scores for each cluster in each case was derived by
aggregating the scores of each cause within each cluster. Subsequently, the cost overruns of
projects were regressed on the four clusters identified to develop a risk-based cost contingency
estimation model. R project software (version 3.0.2) and IBM SPSS 19 were used for statistical
computing and graphics in the cluster analysis, model building and validation of the model.

5.1. Cluster analysis

Cluster analysis was used for dimension reduction (Everitt et al, 2011). The steps in cluster analysis of
the data include preparing the data, determining the number of clusters, testing the cluster solution and
finally validating clusters.

In Figure 1, there is an extreme “elbow” in the plot suggesting that solutions over four clusters do not
have a substantial impact on the total SSE, which indicates that four clusters are appropriate. The next
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step tested hierarchical cluster analysis with the selected number of four clusters (Everitt et al, 2011).
The Euclidean distance method was used to measure the dissimilarity distance based on the information
values  and  the  nature  of  the  variables  describing  the  objects  to  be  clustered.  Figure  2  shows  the
hierarchical cluster (tree) generated from R software, where the cause numbers (C1, C2... C41) refer to
the causes listed in Table 1.

In the analysis, 10,000 bootstrap resamplings were used to reduce the error (Suzki and Shimodaira,
20016). In Figure 2, four rectangles have an AU p-value of 99 (0.99), therefore, for a cluster with AU
p-value 95 (0.95), the hypothesis is rejected with significance level 0.01 for one cluster and 0.00 for
three clusters, which indicates how strongly four clusters are appropriate as each cluster group contains
objects which have a relationship with each other (Figure. 2).

5.1.1. Results – four cluster classification

The four cluster groups were defined based on causes of cost overrun and the literature as scope
changes, market and regulatory uncertainty, inadequate planning and control and unforeseen
circumstances. Table 1 shows how each of the 41 causes in Table 1 is allocated to one of the
four clusters.

Figure 1: Elbow plot for the cluster determination
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Note 1: Values at branches are AU p-values (left-red), BP values (right-green), and cluster labels (bottom). Clusters with AU  95 are indicated
by the four red rectangles.
Note 2: Inadequate planning and control (IP&C), Market and regulatory uncertainty (M&RU), Scope changes (SC) and Unforeseen
circumstance (UC).

Figure 2: Hierarchical clustering with four cluster solution

As shown in Table 1, the first cluster group is scope changes (SC), which represents the causes of cost
overrun due to design changes, additional work and rework, and change in the scope of the project. The
causes in this cluster are related to time, that is the urgency of the project, namely how much time there
is to complete the job. Forcing the project team to take short-cuts or to work on tasks which clash with
other tasks and working on concurrent tasks and projects are known to cause delays and cost overrun.
The second cluster group is market and regulatory uncertainty (M&RU), which includes causes of cost
overrun that relate to the chance or speculation changing costs, whether directly or indirectly. The third
cluster group is inadequate planning and control (IP&C), it represents the causes of cost overrun which
relate to project planning and control, which comprise the most critical causes of cost overrun in large
projects in Saudi Arabia. Inadequate planning and control dimension is referring to the factors that could
increase the complexity and thus difficulty of controlling the project cost. The last cluster group
unforeseen circumstance (UC). The causes of this cluster relate to environment issues, as well as social
and cultural impacts. These issues increase the pressure to find a solution to these problems associated
with the project site. For example, the increase of environmental requirements has a significant impact
on construction operations, which leads to technical uncertainty that relates to the physical difficulty of
completing a project.

M&RU

UC

IP&C

SC
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Table 1: Four-cluster classification scheme for causes of cost overrun

Classification
clusters

Key Causes of cost overrun Relationship to
cost overrun

Scope
changes

C17 Design changes* Unclear project scope
forces project team to
take short-cuts,
crashing tasks,
concurrent
tasks/projects, which
are known to cause
delays and cost overrun
(Shenhar and Dvir,
2007).

C10 Additional work and rework*

C29 Change in the scope of the project*

Market and
regulatory
uncertainty

C5 Market conditions (materials and labour)*

Increases the volatility
of input costs and thus
chances of overrun
(Pindyck, 1993).

C41 Practice of assigning the contract to the lowest bidder*
C4 Slow payment of completed works*
C3 Cash flow during construction
C33 Obstacles from government
C1 Inflation
C35 Laws and regulatory frameworks
C16 Failure to price in some risks
C2 Monthly payment difficulties from agencies (e.g.

contractor, owner)
C34 Political complexities
C7 Deficiencies in cost estimates prepared by public

agencies
C32 Fraudulent practices
C23 High interest rate charged by bankers on loans
C6 Fluctuation in money exchange rate

Inadequate
planning and
control

C40 Delays (decision making, in approval of drawings,
material delivery)*

Increases the
complexity of
coordination of parties
and tasks, thus making
it harder to meet
present targets
(Baccarini, 1996).

C21 Design error*
C8 Deficiencies in the infrastructure*
C20 Changes in material specification and type*
C13 Shortage of site workers
C18 Incorrect planning and scheduling by contractors
C24 Inadequate specifications
C14 Unrealistic contract duration and requirements imposed
C11 Lack of experience of project manager (e.g. location,

type)
C28 Lack of constructability
C15 Strategic misrepresentation
C22 Project size
C12 Contractor’s poor site management and supervision skills
C19 Late delivery of materials and equipment
C25 Waste on site
C9 Labour, insurance, work security or workers’ health

problems
C27 Poor financial control on site
C26 Equipment availability and failure
C31 Optimism bias
C30 Inadequate modern equipment (technology)

unforeseen
circumstances

C37 Site constraints Increases the
uncertainty of tasks andC36 Weather conditions
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C38 Social and culture impact (e.g. problems with
neighbours)

outcome, thus making
planning and
estimating difficult
(Ofori, 1992).

C39 Heritage material discovery

Note: (*) ranked in the top ten causes

5.2. Development of the risk-based cost contingency estimation model

To build the model using multiple linear regressions (MLR), as there are 160 cases and 41 causes, the
data was randomly split into two data sets with two-thirds of the data as the training set (100
cases=62.5%) for model building and the remaining one-third (100 cases=37.5%) as the test set to
ensure more reliable results and also to reduce bias in the validation (Kothari, 1985). For model
validation, bootstrap resampling of multiple linear regressions was employed. Then, the estimates by
RBCCEM were compared with those produced by alternative models such as fixed contingency and
RCF. Error indices such as mean absolute error (MAE), mean absolute percentage error (MAPE), mean
square error (MSE) and root mean square error (RMSE) were used to compare the accuracy of estimates
produced (Han and Kamber 2006). Then, RBCCEM, fixed cost contingency (10%), RCF (P50 & P90)
and hybrid (is a combination of two models which used to increase the accuracy of cost contingency
estimation as Liu et al., (2010) identified) were compared based on the distribution of the means of
adjusted cost overrun as the smallest dispersion with the shortest distance between the mode and median
indicates the most accurate model (Rothwell, 2005; Lawrence, 2007).

5.2.1. Risk-based cost contingency estimation model building

The regression results using the training subsample are reported in Table 2. The results in Table 2 show
all four clusters have significant impact on cost overrun. It is worth noting that Table 2 shows that the
R-squared is 32% and adjusted R is 30%, which indicates that the four clusters explains about 30% of
variance in cost overruns (Chambers, 1992). The interpretation here is that the observed variation in
cost overrun is also explained by other factors beyond those captured in the equation.  It is not the
intention of this paper to delve into which other factors explain overrun, as it focused on the four clusters
(p-value < 0.05) as all variations that were categorised based on 41 causes that are frequently identified
in the literature are significant. Therefore, the RBCCEM is represented by the equation 1.= % = . + . ( ) +. ( & ) +. ( & ) + . ( )

Equation 1
Note: the value of inadequate planning and control, market and regulatory uncertainty, scope changes and unforeseen circumstances ranges
from 1-5 as 1 has low risk and 5 has major risk.
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Table 2: Residuals, coefficients and p-values of regression analysis

Note:  p < 0 ‘***’, p < 0.001 ‘**’, p < 0.01 ‘*’, p < 0.05 ‘.’

5.2.2. Models validation

The bootstrapping method was used for validating the RBCCEM. 5,000 bootstrap samples were created
to validate the predictive ability of the proposed RBCCEM (multi-linear regression (MLR) model).
According to all three measures (Table 3), the coefficient was statistically significant (the default for
boot.ci is a 95% confidence interval) as they are centred to the normal, which indicated the model was
valid. As reported in Table 3, the mean values of the four regression coefficients estimates from the
RBCCEM bootstrapping were close to the proposed RBCCEM (Tables 2 and 3). Also, the standard
error values of the four-parameter estimates from the RBCCEM bootstrapping were close to the
proposed RBCCEM (Tables 2 and 3). The similarity of estimates of the RBCCEM model from both
split samples suggests that RBCCEM is valid and robust.

Table 3: RBCCEM bootstrapping

Ordinary
nonparametric
bootstrap

Estimate bias std. error
(Intercept) 0.57073 - 0.01413 0.092570
Scope changes 0.14501 0.00348 0.128087
Market and regulatory uncertainty 0.07840 - 0.00275 0.101091
Inadequate planning and control 0.03820 - 0.00481 0.083566
Unforeseen circumstances 0.03298 0.00148 0.100938

Bootstrap
Confidence
interval
calculations

Level Normal Percentile BCa
95% ( 0.2662,  0.9035) ( 0.2243,  0.8637 ) (0.2453,  0.8803)

Note: Calculations and Intervals on Original Scale

Residuals Min 1Q Median 3Q Max
-2.109362147 -

0.515626813
0.00002042 0.47228 1.52539

Coefficients Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.65196 0.08967 2.35254 0.00027***
Scope changes 0.15733 0.10251 0.46178 0.00452**
Market and regulatory
uncertainty

0.08865 0.11366 0.77998 0.03734*

Inadequate planning and
control

0.04728 0.06818 0.54674 0.05218

Unforeseen circumstances 0.02431 0.11406 2.13199 0.03558*
Residual standard error: 0.0159 on 95 degrees of freedom
Multiple R-squared:  0.3249
Adjusted R-squared:  0.3048
F-statistic: 9.463 on 4 and 95 DF
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5.2.3. Models evaluation using estimation accuracy measures

In the models evaluation we used two methods. The first method was by using estimation error (error
indices). The second method was comparing the adjusted cost overrun percentage means by using
independent samples t-test. The following section will discuss these two methods and the results are
delivered.

5.2.3.1. Model evaluation using measures of forecast accuracy (error indices)
To further validate the model, the estimates produced by RBCCEM were compared with alternative
methods such as RCF. RCF uses a database of actual performance of comparable past projects within a
given reference class to provide an objective reference point for the cost forecast of a current project
(Flyvbjerg, 2006). For a particular project, reference class forecasting requires the following three steps
(Flyvbjerg,  2006,  p.  8):   (a)  identifying  a  relevant  reference  class  of  past  projects  as  the  base,  (b)
establishing a probability distribution for the selected reference class and (c) comparing the specific
project with the reference class distribution.

To compare the models, the accuracy of each model was measured. Forecast accuracy measurements
were based on the distributions of absolute errors (|E|) or squared errors (E2), taken over the number of
observations (n), which are the most commonly used measures to compare the performance of
predictive models (Hyndman and Koehler, 2006). These include mean absolute error (MAE), mean
absolute percentage error (MAPE), mean square error (MSE) and root mean square error (RMSE)
(Swanson et al., 2011). Table 4 presents MAPE MAE, MSE and RMSE where values of 0 indicate a
perfect fit (Singh et al., 2013). Table 4 shows that the RBCCEM has comparable error indices to that
of RBCCEM bootstrapping. In contrast, the error indices for RCF are much higher, suggesting
RBCCEM is more accurate.

Table 4: The MAE, MAPE, MSE, and MAPE of MLR and error estimates of the four-clusters model:
Proposed RBCCEM, RBCCEM bootstrapping and RCF model

MAE MAPE MSE RMSE RMSE -MAE
Proposed RBCCEM 0.473786 15.78 % 0.426456 0.653036 0.18
RBCCEM bootstrapping (5,000
bootstrap of test data) 0.428924 14.68 % 0.358026 0.598353 0.17

RCF model 0.872376 25.19 % 1.190669 1.091178 0.22

5.2.3.2. Models evaluation by comparing the means of adjusted cost overrun
percentage of the models

As discussed, 1 to 4 were estimated based on a sample of 100 and the model was validated using
bootstrapping based on the 60 samples, which shows the model was valid and accuracy was improved
compared with RCF. In this section, the mean of the adjusted cost overrun percentage of the RBCCEM
was compared with those estimated using alternative approaches, such as RCF and fixed contingency
(10%), using the split sample. The result in Tables 5 and 6 shows the adjusted cost over. The comparison
results  reported  in  Tables  5  and  6  showed  that  the  adjusted  cost  overrun  of  RBCCEM  results  are
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significantly lower than adjusted cost overrun of fixed (10%) cost contingency, RCF and hybrid
approach.

Table 6 shows that the means of adjusted cost overrun percentage using the fixed cost contingency,
RBCCEM, RCF P50, RCF P90 and hybrid (RBCCEM + RCF P50), respectively, are all significantly
different from each other (p-value <0.00). Considering the negative mean (under budget) in the adjusted
cost overrun percentage mean of RBCCEM (-0.11451), the results suggested that the mean of adjusted
cost overrun percentage using the RBCCEM approach is preferable to that using the RCF P50, RCF
P90 and hybrid.

Moreover, Table 6 reports that the adjusted cost overrun using RCF reduce the overrun significantly (p-
value <0.05) as the mean differences for P50 is (0.1049) and for P90 is (0.0140) (Table 5 and 6). Despite
the  fact  that  RCF P50  and  RCF P90  have  lower  mean  differences,  it  should  be  noted  that  the  RCF
estimates are subject to the acceptable risk of cost overrun which RBCCEM does not. In addition, the
RBCCEM model tends to underrun budget while the RCF model tends to overrun budget. The
dispersions of the RCFs are higher than RBCCEM (Figure 3) suggesting RBCCEM produces more
consistent results. In sum, using estimates of contingencies by RBCCEM results in slight average cost
underruns with more consistent and accurate estimates than that from RCF.

In addition, the variance of adjusted cost overrun percentage using the fixed cost contingency,
RBCCEM, RCF P50, RCF P90 and hybrid, respectively, are significantly different (p-value <0.035)
(Table  6).  Considering  that  the  variance  of  adjusted  cost  overrun  percentage  using  the  RBCCEM is
lower than those using fixed cost contingency, RCF P50, RCF P90 and hybrid (Table 6), respectively,
the results indicates RBCCEM produces the most consistent estimates for cost contingency Therefore,
RBCCEM is the preferable method for estimating cost contingency for infrastructure projects.

Table 5: Descriptive statistics for mean of adjusted cost overrun of two models

Note: ^ A negative value denotes under and a positive figure indicates over budget.

N Mean Std.

Deviation

Std. Error

Mean
Fixed cost contingency 10% 60 0.3319 0.22739 0.02935
RBCCEM 60 – 0.1145^ 0.15616 0.02016
RCF uplift P50 60    0.1049 0.17155 0.02214
RCF uplift P90 60    0.0140 0.15604 0.02014
Hybrid of   RBCCEM and RCF uplift P50 60  –0.0096^ 0.32646 0.04215
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Table 6: Test results for the equality of means and variances

Note: Significance codes: p < 0 ‘***’, p < 0.001 ‘**’, p < 0.01 ‘*’, p < 0.05 ‘.’

Figure 3 shows the mean distributions fitting to the data. As can be observed that all distributions are
skewed to the left and the tails of the distributions are longer in the right. Therefore, the mode is the
peak of each distribution, and the median and mean come after it in the right. Furthermore, the
distribution of adjusted cost overrun percentage for RCF P50 and P90 are fitted to Weibull distribution
as can be observed in the Figure 3 by the orange doubled line and black dotted line, respectively.

In addition, the fixed 10% cost overrun (green long dashed dot dot line) is fitted to Weibull distribution
and hybrid (RBCCEM + RCF P50) (blue long dashed dot line) is fitted to exact value distribution. The
adjusted cost overrun of RBCCEM distribution (purple solid line) is fitted to exact value distribution
which is biased toward under-budget (mean adjusted cost overrun=-0.1145). Comparing the dispersions
of the distribution curves presented in Figure 3, RBCCEM has the narrowest dispersion, supporting the
above conclusion that RBCCEM produces the most consistent estimates for cost contingency of
infrastructure projects.

Further, the small negative mean of adjusted cost overrun of using RBCCEM can be offset by adding
an amount equal to 0.1145As a result, the distribution of RBCCEM +0.1145 (red dashed line) shifted
around zero and has the narrowest dispersion compared to the other distributions.

6. Conclusions

Based on a cross-section survey of managers involved in infrastructure projects in Saudi Arabia, cluster
analysis  was  used  to  reduce  41  causes  of  cost  overruns  to  four  clusters;  scope  changes,  market  and
regulatory uncertainty, inadequate planning and control, and unforeseen circumstances.  Using multiple
- regression analysis, the risk-based cost contingency estimation model (RBCCEM) was developed by
regressing project cost overrun on the four clusters. Then, validity of the RBCCEM was validated by
multiple regression bootstrapping using the remaining split sample (sample size of 60) and by
comparing the cost overrun outcomes of using cost contingency estimates from RBCCEM to those of
using  alternative  estimating approaches such as RCF and fixed contingency.  The validation analysis

Leven's Test for
Equality Variance

t-test for Equality of Means

f sig t df Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

Fixed cost contingency
10% vs. RBCCEM 3.289 0.035 6.54 104.52 0.000*** 0.44650 0.13561

Fixed cost contingency
10%
vs. RCF uplift P50

7. 659 0.005 9.174 109.73 0.000*** 0.23677 0.03117

Fixed cost contingency
10%
vs. RCF uplift P90

7.394 0.006 8.931 104.48 0.000*** 0.31795 0.04360

Fixed cost contingency
10%
vs.  Hybrid of   RBCCEM
and RCF uplift P95

6.616 0.010 6.650 105.342 0.000*** 0.34157 0.05136
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Note: * distribution fitting of fixed % cost contingency of cost overrun (Weibull distribution)
** distribution fitting of adjusted % cost overrun based RCF on 50% percentile (Weibull distribution)
*** adjusted % cost overrun based RCF on 90% percentile (Weibull distribution)
**** distribution fitting of adjusted % cost overrun based on RBCCEM (proposed model) (Exact
                  value distribution)
***** distribution fitting of Hybrid model (RBCCEM + RCF P50) (Exact value distribution)
****** distribution fitting of adjusted % cost overrun based on RBCCEM (RBCCEM + uplift (-0.1145) (Exact value distribution)

Figure 3: The fitting distribution curves of fixed cost contingency, RBCCEM, RCF (P50 & P90),
hybrid and RBCCEM uplifted (RBCCEM-0.1145)

showed that the degree of dispersion of the cost overrun and the mean of the cost overrun after including
the cost contigency is the lowest for RBCCEM, in which it is prefered method of estimation for cost
contingency. However, the accuracy of cost contingency could be improved further by offsetting the
negative mean of cost overrun using hybrid approach, i.e. by deducting the mean from the cost
contingency produced by RBCCEM. Such an adjustment uplifts the means of cost overrun to zero while
the degree of dispersion remains unchanged.

To apply RBCCEM, an organization needs to ascertain a  comprehensive list  of  the risks to  the cost
overrun of similar projects through using questionnaire survey. The questionnaire should be based on
the questionnaire used in this study and tailored to the project at hand. Assuming the survey responses
of at least 30-40, then the organization can proceed to categorizing the risks by conducting clustering
analysis. Subsequently, construct scores can be derived by aggregating the scores of individual risks
within each category. Finally, regression analysis of cost performance on risk categories is conduced to
drive the cost contingency model which will be used to predict cost contingency for the project.
Bootstrapping using a holdout sample is a useful validation of the cost contingency estimation model.

The findings are based on a cross-sectional survey of managers involved in infrastructure projects in
Saudi Arabia. Therefore, caution should be exercised when generalizing to other contexts. Future
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