
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Towards Safer Medical Device Software Systems:
Industry-Wide Learning from Failures and the Use of

Safety-Cases to Support Process Compliance

Marion Lepmets
Regulated Software Research Centre

Dundalk Institute of Technology
Dundalk, Ireland

marion.lepmets@gmail.com

Tom McBride
Faculty of Engineering and IT

University of Technology Sydney
Sydney, Australia

tom.mcbride@uts.edu.au

Fergal McCaffery
Regulated Software Research Centre

& Lero
Dundalk Institute of Technology

Dundalk, Ireland
fergal.mccaffery@dkit.ie

Abstract—Software safety is checked today in regulatory audits,
which verify software development process compliance to
regulatory requirements. Ensuring safety is a critical task in
complex life-supporting systems and despite many existing ways
of assuring it, unanticipated failure will always be possible.
Checking process compliance to required standards ensures the
quality of the processes by which software is developed but does
not necessarily indicate the quality of the resultant software.
Since medical device domain is facing an increasing amount of
device recalls due to software failures, our goal is to explore the
underlying reasons for this and suggest two improvements within
this paper. First, we will introduce complicated and complex
systems to illustrate why there will always be unforeseeable and
unanticipated situations that could cause the failure of the entire
system. We will then describe how medical device software
systems are reviewed for compliance and safety today,
highlighting the shortcomings in the current methods adopted in
the medical device domain and suggest the use of systems
thinking. We then propose two improvements to medical device
software development where process compliance is supported by
safety cases and industry-wide learning from experience.

Keywords—medical device software; software safety; systems
thinking; learning from failure; Cynefin framework; safety-critical
systems

I. INTRODUCTION

Safety-critical systems such as medical devices embedding
software are increasingly complex as they are integrating
various sub-systems together. When building such sub-
systems, the focus needs to be not only on the quality and
safety of the components within a sub-system but also on the
interaction of the various sub-systems in order to guarantee a
safe and functioning overall system. In addition to that, these
systems reside in an environment of various other systems
with which it interacts. Systems thinking should be adopted
when building such complex systems like medical devices as
it encourages understanding of the system, i.e. any set or
group of interdependent or temporally interacting parts, by
examining the linkages and interactions between the elements
that comprise the entirety of the system [1].

One system may have various types of problems that
require different solutions. The Cynefin framework [2]
provides a way to apply systems thinking as it was developed
to distinguish between different types of problems and to
recommend practices to solve them.

II. BACKGROUND TO SAFETY-CRITICAL SOFTWARE
SYSTEMS

Systems science argues that the only way to fully
understand why a problem or element occurs and persists is to
understand the parts in relation to the whole. In this Section,
we provide a background to complex safety-critical software
systems. First, we illustrate the Cynefin framework to
elaborate why complex systems have a high probability of
unforeseen failure. We then describe the current software
compliance practices in the medical device domain.

A. Cynefin Framework
Cynefin was first developed by Dave Snowden in 1999 in

the context of knowledge management and organizational
strategy as a phenomenological framework, meaning that it is
about how people perceive and make sense of situations in
order to make decisions. By 2002, it had been developed to
include complex adaptive systems theory [2]. In simplest
terms, the Cynefin framework exists to help us realize that all
situations are not created equal and to help us understand that
different situations require different responses to successfully
navigate them [3].

Cynefin has two large domains: Order and Unorder, each
containing two smaller domains - Simple and Complicated in
the Ordered domain, and Complex and Chaotic in the
Unordered domain. In the centre of the framework is the fifth
domain called Disorder where multiple perspectives fight for
prominence, factional leaders argue with one another and
cacophony rules. Disorder should be avoided by organizations
as it disrupts work. In the domain of order, the most important
boundary of sense-making is between what we can use
immediately (what is known) and what we need to spend time
and energy on finding out (what is knowable). In the domain
of Unorder, distinctions of ‘knowability’ are less important

than distinctions of interaction; that is, distinctions between
what we can pattern (what is Complex) and what we need to
stabilize in order for patterns to emerge (what is Chaotic). In
the Ordered domain, the whole is the sum of the parts and the
optimization of the system can be achieved by the
optimization of the parts. In the domain of Unorder, the whole
is never the sum of the parts as any action changes the nature
of the system. Cynefin’s value as a sense-making framework
lies in helping system decision-makers understand where their
systems lie among these domains, and by extension, what
kinds of tools, approaches, processes, or methods are more
likely to work successfully in a given system [1].

To use the Cynefin framework when trying to categorize a
problem space, one must inspect the relationship between
cause and effect of the problem space. If the relationship
between cause and effect is straightforward and obvious to all,
then your problem is in the simple domain. If the relationship
between cause and effect is not obvious, but can be analysed
in advance, then you have a complicated problem. On the
other hand, if the cause and effect can only be determined with
the benefit of hindsight, then you are in the complex domain,
while if there is no obvious relationship between cause and
effect, you are in the chaotic domain.

As software development organisations face Complex or
Chaotic domains they must take on board more new learning,
more situational assessment and understanding, looking and
combining capabilities to manage emerging patterns and
knowledge, applying experiences, looking for diversity of
opinions and searching for new wisdom or insights. Here
expertise and experience, collaboration and relationships need
significant leveraging, as you often diverge / converge while
working through the potential answers [4]. The mindset here is
different and it is one that is based on detection. Innovation is
far more demanding, pushing frontiers, exploring discoveries,
dealing in a series of exchanges and recognizing emerging
patterns to piece together real ‘new to the world’ innovations.
The Cynefin framework can be used to guide an approach to a
set of different situations, but the characteristics also explain
enough to help recognize the situation in which one currently
resides. Simply put, you may have developed a great solution,
but if you apply it in the incorrect context, it may be worthless
or worse, harmful [4].

Pelrine [5] suggests that software development activities
tend to be weighted more to the complicated and complex
domains, with activities related to the coding aspect of
software development landing in the complicated (or
sometimes simple) domain, and activities associated with
project management landing in the complex (sometimes
chaotic) domain. Tasks dealing with interaction with a
computer tended to be in the ordered domains, tasks dealing
with interaction with other humans tended to be in the
unordered, i.e., complex and chaotic, domains. Although this
does not suggest that the entire software development activity
as a whole is complex, it does suggest that many parts of it are
amenable to analysis and treatment using complexity-based
tools and techniques.

B. Complex Safety-Critical Systems
Many safety-critical systems fail in unforeseeable ways due

to complex interactions of various components within the
system as well as interactions with other systems in their
ecosystem. When we develop these systems we are unable to
predict exactly how they will be used, how they will respond
to and what their interactions with their environment will
produce. So we predict what we can, control what we can but,
ultimately, we must try the system out and see what happens.
This is a form of probe-sense-learn suggested by the Cynefin
framework as suitable for exploring, understanding and
working with complex domains. In software development,
such practices correspond to agile methods’ rapid feedback
loops and iterative development with self-organizing teams
and highly skilled individuals. Despite various benefits of
agile methods, to date their quality assurance has relied on the
knowledge and expertise of the developers supported by
various forms of automated quality assurance, e.g. automated
testing, configuration management, defect management. They
fail to incorporate the quality assurance thinking that is central
to safety critical systems development. In designing sub-
systems one at a time, the risk management activities are
limited to the sub-system while the failure of a system as a
whole either being built or at some time in the future is largely
not considered. When all possible interactions between system
components (including sub-systems) and between the system
and its environment as well as the system’s particular history
are not accounted for in the development of a complex safety-
critical system, there is a serious cause for concern in relation
to the system safety [6].

Cook [7] observed that complex systems contain a large
number of latent failures all waiting for the right
circumstances to expose them, and a change to a complex
system introduces new forms of failure. Cook was describing
the characteristics of general complex systems, not complex
software systems. He ventured that complex systems are
heavily and successfully defended against failure, with
multiple layers of defenses and where a catastrophe requires
multiple failures rather than a single point failure. After the
Therac-25 case in the US, FDA reacted quickly to assure
proper requirements were in place for complex software
systems embedded in medical devices by checking the
medical devices prior to market access for software
specification and documentation, software quality assurance
practices, compliance with international standards, software
design documentation, software testing and coding practices,
documented software audit trails and usability among various
others [8]. One of the most important aspects that was learnt
from that case and is now a common practice in medical
device software development is the assumption that
developers have to adopt when building a safe system -
software can always fail. While it may be true that some
complex software systems do have defenses in depth against
failure, it would be difficult to claim that all complex software
systems have such defenses or that all software developers
know how to design and develop fault tolerant systems.

Software systems are modified to correct latent or actual
faults, to maintain compatibility with component libraries, or
to introduce new functions. Some of the larger, more critical,
higher performance e-commerce systems such as Amazon,
Facebook, Twitter or Netflix are finding that some well-
known design principles really need to be applied rigorously.
These are principles such as to maintain high cohesion and
low coupling within and between objects or components, or to
enforce the SOLID principles of object oriented design. In part
these principles help ensure that modifications to the system
do not introduce subtle defects. For example, a system may
have a component that has a defined interface. That interface
is generally taken to be a contract between the component and
anything that invokes any of its services. However, over time
the component may be modified or enhanced in such a way
that the interface now behaves in a subtly different way.
Possibly a parameter changed from one type of integer to
another type, or a list of enumerated codes was extended.
Nothing may happen for quite a long time until something
somewhere else in the system changes in such a way that the
consequences of the changes to the component now become
significant. Given that most software now is constructed from
numerous components that, in turn, may be constructed from
other components, it is difficult to argue that any software
system can be made determinate. Software systems do not
suffer from the wear and tear of hardware systems but they do
suffer from gradual degradation of their integrity as various
components are modified.

C. Medical device software regulation
Safety is the central concern for medical device software

development and the development of safe systems is
rigorously supported by various regulatory requirements
focusing on development process compliance. In other words,
a strong emphasis is placed on regulatory oversight and device
approval before market release to ensure proper verification
and validation of these devices. Due to the increased
complexity of software in the devices requiring regulatory
review, the time to pre-market approval has increased
tremendously [9]. This results in the impediment of
innovations in the field as the success of innovations is often
dependent on the speed of time-to-market. Furthermore, the
high percentage of medical device recalls due to software
failures [10] indicates that despite the regulatory efforts to
oversee the safety and quality of new devices, many faulty
software systems are still being passed through the compliance
audits.

Two of the largest global bodies responsible for issuing and
managing medical device regulation belong to the central
governing functions of the US and EU. In the case of the US,
the Food and Drug Administration (FDA) issues the pertinent
regulation through a series official channels, including the
Code of Federal Regulation (CFR) Title 21, Chapter I,
Subchapter H, Part 820 [11]. In the EU, the corresponding
regulation is outlined in the general Medical Device Directive
(MDD) 93/42/EEC [12], the Active Implantable Medical
Device Directive (AIMDD) 90/385/EEC [13], and the In-vitro

Diagnostic (IVD) Medical Device Directive 98/79/EC [14] -
all three of which have been amended by 2007/47/EC [15].

In order to satisfy the regional regulation, there are several
international standards published to advise and support
medical device companies on their road to compliance. In
most countries in the world, the medical device companies
need to implement a Quality Management System for which
they could use the requirements and guidance provided in ISO
13485 [16].

For a medical device manufacturer to demonstrate that all
risks have been identified, analysed, evaluated and mitigated
in their development of a safe medical device, a risk
management process has to be implemented that would satisfy
the requirements outlined in ISO 14971 [17]. In the case of
developing software as or embedded in a medical device, the
guidance on applying the requirements of risk management
process to software development can be followed, i.e.
Technical Report IEC 80002-1 [18].

IEC 62304:2006 (IEC 62304 from here on) [19], which can
be used in conjunction with ISO 13485, offers a framework
for the lifecycle processes necessary for the safe design and
maintenance of medical device software. As a basic
foundation, IEC 62304 assumes that medical device software
is developed and maintained within a QMS such as ISO
13485, but does not require an organisation to be certified in
ISO 13485. Therefore, IEC 62304 can be considered to be a
software development specific supplement to ISO 13485.

Although ISO 13485 and IEC 62304 are accepted in the
majority of countries for QMS and medical device lifecycle
process compliance, there are additional requirements outlined
by the FDA when the device is to be marketed in the US such
as FDA QSR [20] for QMS requirements and FDA Guidance
on Premarket Submission [21] for medical device software
requirements, respectively. In addition to these, there are also
the FDA Guidance on Off-the-Shelf software use in medical
devices [22] and FDA Guidance on Software Validation [23]
that are widely used in regulatory premarket audits in the US.

All of the above-mentioned international standards and
FDA guidance documents provide a process compliance
approach to quality and safety of medical device software.
Although the guidance they provide is critical, it may not be
sufficient to guarantee the safety of the software system that is
placed on the market. There could be several reasons why this
could be the case, for example a) following a prescribed
process description in the system development may not
guarantee the improved quality or safety of the end product, b)
the insufficient software development experience and
knowledge among the auditors who evaluate the quality and
safety of the software systems, or c) the standards and the
guidance documents may be lagging behind the innovative
software development practices implemented to develop the
increasingly complex medical device software systems.
Additional goal-based safety management practices should be
introduced to medical device software development that would
support the development of safe medical device systems.

III. RECOMMENDATIONS TO IMPROVE SAFETY OF MEDICAL
DEVICE SOFTWARE SYSTEMS

There is a clear need for better safety management in which
compliance based approach is supported by additional safety
management approaches to allow for a safer system. In this
discussion we will provide two recommendations for
improving the safety of medical device software systems.
First, we will introduce the goal-based approach of safety
cases, which are widely used in the development of safety
critical systems in various domains in conjunction with the
compliance-based approach. Secondly, we will recommend
learning from actual failures already made throughout the
industry that would help inform the verification and validation
processes in the development of complex medical device
software systems as well as the safety cases to be constructed
around the risks already realized in complex systems.

A. Recommendation 1: Using goal-based approach of safety
cases in conjunction with compliance-based approach in
complex medical device software systems

A safety case is a risk-based argument that together with
corresponding evidence demonstrates that all risks associated
with a specific goal in a particular system have been
identified, that appropriate risk controls have been put in
place, and that there are appropriate processes in place to
monitor the effectiveness of the risk controls and the safety
performance of the system on an ongoing basis [24].
Manufacturers and operators of safety-critical systems in
nuclear power plants, petrochemical facilities, railroads,
defense, off shore oil and aviation industries have long been
using safety cases to demonstrate that their systems are safe to
use in a given context.

Safety cases provide a goal-based approach that aims to
overcome the shortcomings of the prescriptive compliance-
based approach which is mandatory in medical device industry
today. In a compliance based approach to safety management
risks may not be properly understood, hindering safety as well
as innovation and progress in the industry [25].

Safety cases provide a goal towards which the development
and the product must steer, in other words they support the
process compliance based safety currently required from
medical device manufacturers and medical device software
developers. As suggested in EC TR 80002-1 Annex E, safety
cases help to structure, document and communicate the
demonstration of an adequate level of safety of a medical
device ensuring safety being maintained throughout the
lifetime of the device [18].

Although safety cases provide an additional risk
management approach for developing safety-critical systems,
there are shortcomings to them as well. First, there is the
confirmation bias or cognitive dissonance suggesting that
people are likely to reframe evidence to support their deeply
held beliefs [28]. This suggests closed loop thinking in which
developers construct a safety case for the foreseeable risks
evident through their own perspective of the device and how it
will interact with the world rather than a systemic and

objective understanding of how their device will actually
interact with the world.

Another serious shortcoming that has been pointed out in
risk management and safety case arguments is their
incomplete or inherently faulty reasoning [29]. Fallacies in
system’s safety argument could undermine the system’s safety
claims and contribute to a safety-related failure of the system.
Greenwell et al [29] studied the frequency and types of
fallacies committed in safety cases of safety-critical systems
suggesting taxonomy of fallacies that could be used to detect
them in safety case reasoning to prevent system failures.

Despite these potential pitfalls of using safety cases, they
could provide for a more proactive and structured safety
management for complex medical device systems in line with
the aims of FDA to ensure more comprehensive approaches to
prevent safety problems in medical device and healthcare
industries [24].

The FDA required that a safety case be included in a 501(k)
submission for infusion pumps since 2010 [26]. The FDA is
using the infusion pump safety case as a pilot study to assess
the results before expanding requirements for their use to all
510K submissions. While medical device manufacturers
oppose to the requirement of safety cases on the grounds that
they are an impediment in getting a device to market,
alternative means of addressing the increasing rate of Class I
recalls have not been proposed [27].

B. Recommendation 2: Accommodate industry-wide learning
from failures

Current regulatory practices imply that the device
manufacturer is responsible for determining the acceptable
levels of risk and for ensuring that the device is adequately
safe for use in a specific context [6]. There are various
problems with such assumption where a) the manufacturer
might not be fully aware of the operational context of the
device since each user has a different configuration in the
environment in which the device will be installed, and b) with
software being subcontracted, the requirements and risks are
not fully and openly discussed between device/system level
and software level resulting not only in potential integration
difficulties but risks which could result in faulty devices.

For risk management of complex safety-critical systems,
learning from failures must be ingrained in organizations’ and
in fact the entire industry’s culture. In order to learn from
adverse incidents, all data have to be taken into account,
including the data that cannot immediately be seen. This
culture must be supported with context-specific learning
strategies required to effectively defect and analyse failures
[28]. Organizational learning occurs through shared insight,
knowledge, and mental models built on past knowledge and
experience - that is, on memory [30]. Such memory can only
be built with shared experience that includes the mistakes and
errors that have been made and from which other
organizations across the industry can learn in the future.

Syed points out that the biggest problem of not admitting to
making a mistake or taking everything into account to analyse
a potential mistake, is that mistakes that have been made

become impossible to acknowledge and learned from [28].
This, he suggests, is the risk of healthcare industry where the
mistakes that have been made are not publicly discussed and
analysed because of the prevalent culture of blame-assertion
making the possibility for an industry-wide learning from
failures very small if not impossible. Yet, at a level of
systemic complexity, success can only happen when we admit
the mistakes, learn from them and create a climate where it is,
in a certain sense, “safe” to fail [28]. Similarly to Syed,
Greenwell also stresses the importance of learning from
previous observed system failures and incorporating this
knowledge when developing the safety-case of the new
complex system [29].

FDA today publishes the data about the medical devices
that have produced faults or failed while in use with the name
of the manufacturer and a short description of the device itself.
Unfortunately, there is no public failure repository which
would allow medical device software developers learn from
the mistakes of others in the development of innovative safety-
critical devices of their own. The data of such a repository
could be built by the FDA or European Commission as the
recalled devices go through detailed analysis. The anonymized
failures in the system or software should be described in as
detailed manner as possible. These actual failures can then be
used by other medical device developers in their pre-
acceptance reviews or hazard analysis to produce a safer
medical device through industry-wide learning.

We propose that the regulatory authorities of medical
devices publish data about failures made in medical device
software development across the domain that would allow the
industry to learn and improve the safety and quality of the
devices placed on the market. We suggest using such data as
one of the input sources against which validation, verification
and risk management of new medical device software is
conducted, as illustrated on Figure 1.

Fig. 1. Using "Lessons from failures" in verification, validation and risk

management processes

Furthermore, the lessons learned from each validation,
verification and risk management process of new medical
device software should provide new insight to findings and
possible failures that would be added to the data collected by
the regulatory authorities. A similar approach has long been
applied in the aerospace industry where industry-wide learning
from failures and potential risks are openly discussed and
quickly acted upon to prevent further harm in the future [28,
31].

International standards and FDA guidance documents
cannot be revised so frequently as to be able to keep up with
the innovative software being developed. That is why an
actual failures database could contribute to the safer complex
medical device software systems informing developers of
known failures in software validation, verification and risk
management processes as well as in building safety cases that
target known risks in industry. Failure repository could help
construct safety cases of complex medical device systems by
directing attention to failures that have happened and may
happen again. This would lead to a more realistic and efficient
risk management when compared to what is expected from
medical device software developers today - all errors that may
cause failures be eliminated, which is impossible to reach in
reality.

IV. CONCLUSION
There is a clear need for better safety management in which

a process compliance approach is supported by safety cases
and systems thinking for safer complex medical device
software systems. Complex systems don’t have a clear
relationship between cause and effect making it impossible to
address all errors that can lead to failures. Complex systems
benefit from hindsight of previous failures to enhance their
risk management. In other words, safety of medical device
software systems may further be improved when the industry
could learn from the previous failures across the medical
device industry. This requires not only examples but
information about actual failures in devices that have been
recalled to ensure that both the developers improve the safety
of their devices and that the regulatory auditors better ensure
that faulty devices do not get to the market. With having such
known database, the safety cases as well as process
compliance could target these specific areas providing
evidence on how safety has been ensured in the new devices.

We advocate that medical device researchers and
practitioners collaborate in providing data to an industry wide
knowledge base where actual failures could inform the safety
case development for new complex medical device systems.

ACKNOWLEDGMENT
This research is supported in part by the Science

Foundation Ireland Research Centres Programme, through
Lero - the Irish Software Research Centre (http://www.lero.ie)
grant 10/CE/I1855 & 13/RC/20194.

REFERENCES
[1] H. W. Dettmer, "Systems Thinking and the Cynefin
Framework - A Strategic Approach to Managing Complex
Systems," 2011.
[2] C. F. Kurtz and D. J. Snowden, "The new dynamics
of strategy: Sense-making in a complex and complicated
world," IBM Systems Journal, vol. 42, pp. 462-483, 2003.

[3] R. O'Connor and M. Lepmets, "Exploring the Use of
the Cynefin Framework to Inform Software Development
Approach Decisions," presented at the Proceedings of the
International Conference on Software and Systems Process
2015 (ICSSP 2015), Tallinn, Estonia, 2015.
[4] P. Hobcraft. (2014, March). The Use of the Cynefin
Model for Innovation.
[5] J. Pelrine, "On Understanding Software Agility - A
Social Complexity Point of View," E:CO, vol. 13, pp. 26-37,
2011.
[6] M. A. Sujan, F. Koornneef, and U. Voges, "Goal-
Based Safety Cases for Medical Devices: Opportunities and
Challenges," presented at the SAFECOMP 2007, Nurmberg,
Germany, 2007.
[7] R. I. Cook, "How complex systems fail," Cognitive
Technologies Laboratory, University of Chicago. Chicago IL,
1998.
[8] N. Leveson, "Medical Devices: The Therac-25," in
Safeware: System Safety and Computers, ed: Addison-Wesley,
1995, pp. 1-49.
[9] T. Kampfrath and S. W. Cotten, "The new
collaborative path in medical device development: The
medical device innovation consortium," Clinical
Biochemistry, vol. 46, pp. 1320-1322, 2013.
[10] FDA. (2012, 12.04). FDA News on Software Failures
Responsible for 24% of all Medical Device Recalls. Available:
http://www.fdanews.com/newsletter/article?articleId=147391
&issueId=15890
[11] FDA. (15.05). Chapter I - Food and drug
administration, department of health and human services
subchapter H - Medical devices, Part 820 - Quality system
regulation. Available:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRS
earch.cfm?CFRPart=820
[12] European Commission, "Directive 93/42/EEC of the
European Parliament and of the Council concerning medical
devices," ed. European Commission, Brussels, Belgium, 1993,
p. 43.
[13] European Commission, "Council directive
90/385/EEC on active implantable medical devices
(AIMDD)," ed. Brussels, Belgium, 1990, p. 35.
[14] European Commission, "Directive 98/79/EC of the
european parliament and of the council of 27 october 1998 on
in vitro diagnostic medical devices," ed. Brussels, Belgium,
1998, p. 43.
[15] European Commission, "Directive 2007/47/EC of the
European Parliament and of the Council concerning medical
devices," ed. Brussels, Belgium: EC, 2007, p. 35.
[16] ISO, "ISO 13485: Medical Devices - Quality
Management Systems - Requirements for Regulatory
Purposes," ed. Geneva, Switzerland: ISO, 2003, p. 57.

[17] ISO, "ISO 14971 - Medical Devices - Application of
Risk Management to Medical Devices ", ed. Geneva,
Switzerland: ISO, 2009, p. 82.
[18] IEC, "IEC TR 80002-1 - Medical Device Software -
Part 1: Guidance on the Application of ISO 14971 to Medical
Device Software," ed. Geneva, Switzerland: IEC, 2009, p. 58.
[19] IEC, "IEC 62304: Medical Device Software -
Software Life-Cycle Processes," ed. Geneva, Switzerland:
IEC, 2006, p. 151.
[20] FDA, "Quality System Information for Certain
Premarket Application Reviews - Guidance for Industry and
FDA Staff," ed. FDA, USA, 2003, p. 19.
[21] FDA, "FDA Guidance for the Content of Premarket
Submissions for Software Contained in Medical Devices," ed.
USA: FDA, 2005, p. 20.
[22] FDA, "FDA's Guidance for industry, FDA reviewers
and compliance on - Off-The-Shelf Software Use in Medical
Devices," ed. USA: FDA, 1999, p. 26.
[23] FDA, "FDA's General Principles of Software
Validation; Final Guidance for Industry and FDA Staff," ed.
USA: FDA, 2002, p. 43.
[24] M. A. Sujan, I. Habli, T. B. Kelly, S. Pozzi, and C.
W. Johnson, "Should healthcare providers do safety cases?
Lessons from cross-industry review of safety case practices,"
Safety Science, vol. 84, pp. 181-189, 2016.
[25] R. Hawkins, I. Habli, T. Kelly, and J. McDermid,
"Assurance cases and prescriptive software safety
certification: A comparative study," Safety Science vol. 59, pp.
55-71, 2013.
[26] Gessnet. (2014, 7th April). Innovative Solutions for
Medical Device Risk Management & Assurance Cases - ISO
14971, Cybersecurity, Interoperability, and Regulatory
Compliance. Available: http://www.gessnet.com/#!blank/c1sfr
[27] S. Eagles and F. Wu, "Reducing risks and recalls:
safety assurance cases for medical devices," Biomedical
Instrumentation & Technology, Association For The
Advancement Of Medical Instrumentation, vol. 48, pp. 24-32,
2014.
[28] M. Syed, Black Box Thinking - The Surprising Truth
About Success: John Murray Publishers, 2015.
[29] W. S. Greenwell, J. C. Knight, C. M. Holloway, and
J. J. Pease, "A Taxonomy of Fallacies in System Safety
Arguments," presented at the 24th International System Safety
Conference, Albuquerque, NM, USA, 2006.
[30] R. Stata, "Organizational Learning – The Key to
Management Innovation," Sloan Management Review, vol. 30,
p. 64, 1989.
[31] D. R. Wallace and D. R. Kuhn, "Failure Modes in
Medical Device Software: an Analysis of 15 Years of Recall
Data," International Journal of Reliability, Quality, and Safety
Engineering, vol. 8, 2001.

