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ABSTRACT 

 

We show that volatility spillovers are large enough to matter to investors. We 

demonstrate that standard deviations of returns to mean-variance portfolios of 

European equities fall by 1-1.5% at daily, weekly, and monthly rebalancing horizons 

when volatility spillovers are included in covariance forecasts. We estimate the 

conditional second moment matrix of (synchronized) daily index returns for the 

London, Frankfurt and Paris stock markets via two asymmetric dynamic conditional 

correlation models (A-DCC): the unrestricted model includes volatility spillovers and 

the restricted model does not. We combine covariance forecasts from the restricted 

and unrestricted models with a wide range of assumed returns relatives via a polar co-

ordinates method, and compute out-of-sample realized portfolio returns and variances 

for testing. Diebold-Mariano tests confirm that most risk reductions are statistically 

significant. Stochastic dominance tests indicate that portfolios accounting for 

volatility spillover would be preferred by risk averse agents. 
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1. Introduction 

There are many empirical studies of time-varying second moments but fewer studies 

which actually measure whether new models will benefit investors. Since a key ingredient 

in successful portfolio selection is an accurate prediction of covariance between asset 

returns, better forecasting models should generate measurably lower portfolio risk. 

Volatility spillovers, for example, have been extensively documented as a feature of 

financial data but their importance for efficient investment has not been evaluated. In this 

study, we incorporate volatility spillovers into covariance forecasts, form mean-variance 

portfolios of European equities, and quantify any resulting benefits to investors. 

A volatility spillover occurs when changes in price volatility in one market produce 

a lagged impact on volatility in other markets, over and above local effects. Volatility 

spillover patterns appear to be widespread in financial markets. There is evidence for 

spillovers between equity markets (see for example Hamao, Masulis and Ng 1990, and 

Lin, Engle and Ito 1994), bond markets (Christiansen 2003), futures contracts (Abhyankar 

1995, Pan and Hsueh 1998), exchange rates (Engle, Ito and Lin 1990, and Baillie and 

Bollerslev 1990), equities and exchange rates (Apergis and Rezitis 2001), various 

industries (Kaltenhauser 2002), size-sorted portfolios (Conrad, Gultekin and Kaul 1991), 

commodities (Apergis and Rezitis 2003), and swaps (Eom, Subrahmanyam and Uno 

2002). Despite the interest that investors might have in these pervasive spillover effects, 

we are not aware of any study that investigates the question of their impact on efficient 

asset allocation.  

Our first step towards answering this question is to construct a covariance model to 

comprehensively capture the data while isolating the impact of volatility spillovers. 

Investors in our study hold mean-variance portfolios allocated among the risk-free asset 

and equities in two of three major European stock markets, London, Frankfurt and Paris. 
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Portfolio weights therefore depend on forecasts of the bivariate conditional covariance 

matrix of stock market returns. To generate these forecasts while isolating the impact of 

volatility spillovers on portfolio efficiency, we estimate two nested models of returns 

volatility using an Asymmetric Dynamic Conditional Correlation (A-DCC) set up 

(Cappiello, Engle and Sheppard 2004). The benchmark (restricted) model captures time-

varying volatility and correlation, including asymmetric effects, but omits volatility 

spillover terms, which we add to the unrestricted model1. We estimate the models over 

the first part of the sample and then forecast the conditional covariance matrix over 

remaining data at a range of horizons, computing optimal portfolio weights at each 

forecast. 

Mean-variance portfolio weights depend on expected returns as well as expected 

second-order moments, and it is well known that out-of-sample portfolio performance is 

often degraded by a poor choice of expected returns (Chopra and Ziemba 1993). A new 

approach, developed by Engel and Colacito (2004), offers a method for minimizing the 

impact of expected return choice on out-of-sample portfolio efficiency: in a two-asset 

portfolio, relative rather than absolute returns matter to optimal portfolio weighting, so by 

computing weights for a wide range of returns ratios, we can better separate the effects of 

covariance forecasting from returns forecasting. Finally, using optimal weights, we 

compute realized portfolio returns and variances, and then test for significant difference 

between the volatility spillover formulation and the benchmark.  

We find that accounting for volatility spillovers in conditional covariance forecasts 

results in small but significant improvements in portfolio efficiency, relative to 

benchmark. The efficiency gains arising from modelling volatility spillovers range from a 

0.02 to a 1.51 per cent reduction in portfolio standard deviation. For a portfolio returning, 

say, 10 per cent per year, this represents a small risk-adjusted improvement of at most 

0.15 per cent, however tests confirm that, in the majority of cases, these risk reductions 
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are statistically significant at all forecasting horizons. In addition, stochastic dominance 

tests point to significant improvements in investor utility arising from volatility spillover 

forecasting.  

Since including volatility spillover effects in the portfolio selection process does 

not incur any additional transactions costs, even small gains can represent improvement 

for investors. 

This paper proceeds as follows. The next section reviews relevant features of the 

volatility spillover literature. We outline the benchmark and alternative models in Section 

3, and describe portfolio construction in Section 4. Section 5 describes the data and 

reports parameter estimates, and presents results of tests comparing the performance of 

portfolios constructed from the benchmark and volatility spillover models. Section 6 

concludes.  

2. Literature Review 

Interest in volatility spillovers across international equity markets intensified after the 

October 19, 1987 stock market crash when a sharp drop in the US equity markets 

appeared to create a widespread volatility ripple across international markets. In an 

attempt to explain this, King and Wadhwani (1990) put forward a ‘market contagion’ 

hypothesis, arguing that stock price turbulence in one country is partly driven by 

turbulence in other countries, beyond the influence of fundamentals. Identifying and 

testing the transmission of turbulence between markets has been the focus of the volatility 

spillover literature. 

Early studies of volatility spillovers typically focus on developed country equity 

markets, and the transmission of volatility from larger to smaller country markets in 

particular. For example, Hamao, Masulis and Ng (1990) find unidirectional volatility 

spillovers from US markets to the UK and Japan, and the UK to Japan, while 
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Theodossiou and Lee (1993) argue for additional transmissions from the US market to 

Canada and Germany.  

Further, the large-small country effect appears to be mirrored within equity markets 

on a firm-size level. Studies document volatility spillover from large to small firms 

(Conrad, Gultekin and Kaul 1991, and Reyes 2001), although bad news may cause 

spillover in the reverse direction as well (Pardo and Torro 2003). 

More recent studies investigate spillover effects between developed and emerging 

markets, and among emerging markets themselves. A typical finding (see, for example, 

Wei et al, 1995) is that volatility transmits from developed to emerging markets, and that 

the smaller, less developed markets are likely to be more sensitive to transmitted shocks.  

Geographic locality, regardless of market size, is also likely to be a factor in 

volatility spillover. Bekaert and Harvey (1997) are able to distinguish between local and 

global shocks, studying volatility spillovers across emerging stock markets. Regional 

factors are important for Pacific Basin markets, over and above the world-market effects 

of spillovers from the US (Ng 2000). In a related study, Miyakoshi (2003) goes further, 

arguing that regional effects are stronger than world market influence for markets in the 

Asian region.  

Europe represents a particularly interesting geographic area for volatility spillover 

studies since it encompasses a number of developed markets with common economic and 

financial features, and overlapping trading hours. Thirteen European markets and the US 

are studied by Baele (2003), who decomposes volatility spillovers into country specific, 

regional and world shocks. (The model also allows for regime switches in the spillover 

effects.) Both regional and world effects are reported as significant. Further, spillovers 

appear to have intensified over the 1980s and 1990s, with a more pronounced rise among 

European Union (EU) markets. In a related study, Billio and Pelizzon (2003) find that 

volatility spillovers to most European stock markets from both the world index and the 
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German index have increased since the European Monetary Union (EMU) came into 

effect. 

The importance of regional spillovers for Europe is not restricted to equity markets. 

Testing for volatility spillover effects in European bond markets, Christiansen (2003) 

finds evidence of spillover from both the US and Europe to individual country’s bond 

markets. The European volatility spillover effects are stronger than the US volatility 

spillovers in both bond and equity markets. 

An important methodological issue for transmission studies is whether volatility 

spillovers can be identified separately from lags in information transfer due to non-

overlapping trading hours between markets. For example, in the foreign exchange market 

Engle, Ito and Lin (1990) investigate volatility spillovers across Tokyo and New York for 

the Yen/USD exchange rate. Since these two markets trade a common security, but 

operate in different time zones, the authors argue for a ‘Meteor Shower’ effect, whereby 

surprises in one market while the other is closed show up as soon as the second market 

opens. In addition, by studying open-to-close against close-to-open equity returns, Lin, 

Engle and Ito (1994) find that shocks to New York daytime equity returns are correlated 

with overnight Tokyo returns and vice versa. In the latter case they conclude that 

information revealed during the trading hours of one market has a simultaneous impact on 

the returns of the other market. Any study of volatility spillovers needs to distinguish 

between contemporaneous shocks that appear lagged because of staggered trading hours, 

and real-time lead-lag effects between security markets (Martens and Poon 2001).  

Existing empirical research provides evidence of volatility spillovers both across 

and within various markets. Our choice of equity markets (London, Frankfurt and Paris) 

facilitates investigation of larger-smaller market effects as well as the intra-regional 

influences which appear to be strengthening in Europe. In addition, we restrict the study 
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to synchronous price observations, avoiding the confusion that can arise from trading 

lags.  

3. Model Specification and Estimation 

We build two bivariate Asymmetric Conditional Correlation (ADCC) models to capture 

time-varying volatility and asymmetric effects while also allowing correlations between 

security returns to vary over time. Recent studies (Cappiello, Engle and Sheppard 2003, 

Kearney and Poti 2005) have established the importance of correctly modelling time-

varying correlation, particularly among European security markets.  

Consider a vector of returns for two equity markets, 1 2[ ]′=rt t tr r  such that 

  (1) = +r c ut t

t ,  (2) t t=u D ε

where  is the unconditional mean vector of r ,  contains conditional standard 

deviations on the main diagonal and zeros elsewhere,  are the innovations standardized 

by their conditional standard deviations, and 

c t Dt

tε

1−Ψ t  represents the conditioning information 

set at time t  such that 

 

 . (3) (1| ~ ,t t t−Ψε 0 R )

tObserve that  is also the conditional correlation matrix of the 

standardized innovations. We can therefore specify the conditional covariance matrix for 

the returns vector r  as 

1t t tE ′⎛ ⎞
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and since  is a function only of information at tD 1−t , we can write the conditional 

covariance matrix as 

  

  (5) 
1

1

( )t t t

t t t t t

Var

E
−

′⎛ ⎞
⎜ ⎟− ⎝ ⎠

≡

=

H r

D ε ε D

                                                                                          (6) = D R Dt t t .

The elements of the  matrix are the conditional standard deviations, where  Dt

 

 
11

22

0

0

⎡ ⎤
⎢ ⎥,⎢
⎢
⎢ ⎥
⎢ ⎥,⎣ ⎦
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t

t

t

h

h
⎥
⎥ .  (7) 

We use two specifications of conditional variances to separately capture the effects 

of asymmetric dynamics and volatility spillover: 

 

Asymmetric GJR(1,1,1)2: 

  

 ( ) 2
1 1, − , −= + + +ii t t ii t ii th I uω α δ β 1, −h  (8) 

 where  ,

,

1 0
0 0

ii t
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I
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Asymmetric GJR(1,1,1) with volatility spillover: 
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Next we model the conditional correlation matrix  following Cappiello, Engle 

and Sheppard (2004). From (1) and (2) above, the standardized residuals can be 

calculated as 

Rt

 

 1
t t t
− = ,D u ε  (10) 

where the elements of  have been derived from estimated equations for each of the 

formulations for 

1−Dt

,ii th  above. By using these standardized residuals we are able to estimate 

a conditional correlation matrix of the form:  

 

  (11) 1−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=R Q Q Qt t tdiag diag 1−

t

 1 1 1 1 1(1 )t t t tφ η ϕ φ ϕ η′ ′
t t− − − −= − − − + + +Q Q m ε ε m m Q −  

where ,φ  ϕ  and η  are scalar parameters. The vector [ ]0t tI= <m ε o tε  (where  is the 

Hadamard product) isolates observations where standardized residuals are negative. 

Notice that Q  resembles a GJR(1,1,1) process in the standardized volatilities. Finally, 

we implement variance targeting, where 

o

t

1
t tT

′= ∑Q ε ε  and 1 ′= ∑m mt tT m

t

. Combining 

estimates for (6) and (10) results in a conditional covariance matrix for the returns vector 

 which can be used, along with a vector of expected returns, to predict optimal portfolio 

weights -periods ahead: 

rt

t

    (12) = .H D R Dt t t

  

4. Portfolio construction 

In this study, investors use short-horizon mean-variance strategies to create 

portfolios from two equity market indices and the (zero-return) risk-free asset, relying on 
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forecasts of conditional covariance from dynamic models. On one hand, mean-variance 

portfolios are not ideal for equity investors, since they maximize utility only when asset 

returns are elliptically distributed, but on the other hand, mean-variance modelling is a 

well-understood analytic tool that maps into the portfolio performance literature, is 

commonly applied in funds management practice, and can be simply adapted to changing 

levels of risk aversion. 

4.1 Weight selection 

A single-horizon investor chooses portfolio weights to minimize portfolio variance 

subject to a required return µ0. 

 

  (13) min ′w H w
t

t t tw

 ts t oµ′. . =w µ  (14) 

deriving an optimal weighting vector: 

 

 
1

1
t

t
t

oµ
−

′ −=
H µw

µ H µ
,  (15) 

where µ  is an assumed vector of expected returns to be described below, and 0µ  is 

the required rate of return to the portfolio, here set to unity.  is the expected 

(forecasted) covariance matrix of returns. We do not impose full investment or short-sales 

constraints on the portfolio allocations, so any wealth not accounted for by  is 

implicitly invested in the risk-free (assumed zero return) asset, and the weight vector may 

include negative values.  

Ht

wt

The individual variance formulations described by equations (8) and (9), in 

combination with the A-DCC correlation estimates, generate two sets of conditional 
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covariance matrices for each pair of market returns,{ }2
1=itH , where model i=2 includes 

volatility spillover effects and model i=1 does not. We forecast Ht  and rebalance the 

portfolio at daily, weekly (5 days) two-weekly (10 days) and monthly (20 days) 

frequencies, using the A-DCC models described above, testing to see if the impact of 

volatility spillover tapers off over longer rebalancing horizons.  

4.2 Expected Returns 

Engle and Colacito (2004) propose a solution to the problem of forecasting 

expected returns. Expected return estimation errors are not only usually large, but also 

amplified in the mean-variance optimization process, causing poor out-of-sample 

portfolio performance. Engle and Colacito point out that, for two-asset portfolios, optimal 

weights are functions of relative returns, not of the absolute size of expected return to 

each asset. Since it is the return ratio that matters, a wide spectrum of relative returns 

between two assets can be mapped out over the zero-one interval. By applying their 

method, we can test for the impact of volatility spillover on portfolio efficiency without 

jointly testing a peripheral hypothesis about expected returns. 

We span a wide range of returns relatives by choosing pairs of expected returns as 

polar co-ordinates, sin ,cos
20 20

j jπ π⎡= ⎢⎣ ⎦
µ ⎤

⎥  and allowing j to vary from 0 to 10, 

{ }0 10∈ ,..., .j  The resulting values (listed in Table 1 ) range from zero to one for each 

asset, including a mid-point where the expected returns of both assets are equal. 

Combined with  forecast covariance matrices 
2

1

i
t i

⎧ ⎫
⎨ ⎬
⎩ ⎭ =
H , these eleven expected return pairs 

 allow us to compute optimal portfolio weights from (15). If one conditional 

covariance model performs better for all eleven expected returns relatives, we can be 

confident that it is a better model for any choice of returns vector. 

11

1

k
t k

⎧ ⎫
⎨ ⎬
⎩ ⎭ =
µ
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[INSERT TABLE 1 HERE] 

Since comparison between eleven portfolios is cumbersome we also derive a 

Bayesian probability for each value of j and compute a probability-weighted summary 

measure of portfolio risk and return. Again following Engle and Colacito (2004), we 

compute non-overlapping sample means (using 40 observations) { }1 2 1=
,l l

l
µ µ ,

L

1 ,d D

 from the 

sample data for each market pairing. Any mean pair where either value is negative is 

dropped, leaving a subset of size = ,... . D From this sample we back out  values of 

2

2 2
2 1

2 cos ,

, ,+

⎛= ⎜
⎝ ⎠

d

d d
d a µ

π µ µ
θ ⎞

⎟  and use these values of θ  to calculate maximum likelihood 

parameters of the Beta distribution  and b . Finally, we infer the empirical probability 

of each pair of the eleven polar co-ordinate returns 

â ˆ

( )20 20sin cos= ,j jk π πµ  by computing 

the value  

 
ˆˆ 1 1

1 ˆˆ 1 1

0

(1 )1Pr
( )

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠ − −

−
= =

ϒ ∫

a b
j j

j a bt t dt

θ θ
θ θ .  (16) 

where 1
ϒ

 is a normalizing constant (and ( ) ( )
( )

1 ˆˆ 1 1

0
( )a b a b

t t dt
a b

− − Γ Γ
=

Γ +∫  ) for each pair 

of markets. 

Figure 1 graphs the probability density functions for θ computed from this 

procedure, with all showing some skewness across the range of relative returns. All but 

the most extreme values of θ have some weight in the density, so focusing on the most 

likely value may be misleading.  

[INSERT FIGURE 1 HERE] 
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4.3 Performance measurement 

Portfolio performance is a guide to forecasting accuracy, since the best model of 

covariance will generate the least risk. Engle and Colacito (2004) show that, for a given 

required rate of return µ0, the portfolio with the smallest realized standard deviation will 

be a portfolio constructed from the true covariance matrix. We infer that a covariance 

forecasting model that is closer to the underlying data generating process (DGP) will 

predict better than other models, and generate lower portfolio risk. So if ∗σ  is the 

portfolio standard deviation achieved using the true covariance matrix, and σ̂  is the 

standard deviation from an inefficiently estimated covariance matrix, then ∗σ  will be less 

than for ˆ ,σ  such that  

 

 
ˆ∗

<
o o

.
σ σ
µ µ

 (17) 

Consequently, if including volatility spillover effects improves conditional 

covariance forecasts then portfolios constructed from the better forecasts will have 

lower realized standard deviations. Another way of expressing this efficiency gain is 

by computing the required rate of return we would need in order to maintain a 

constant risk-to-reward ratio while switching covariance forecasts. Let *
0µ  be the 

required rate of return associated with the true covariance matrix and 0µ̂ be the 

required rate of return associated with an inefficient covariance matrix, and rewrite 

(17) as an equality: 

 *
0 0

ˆ
ˆ

σ σ
µ µ

∗

=  (18) 

where *
0µ  < 0µ̂ . Equivalently we can write (18) as: 
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 0
*
0

ˆ ˆµ σ
µ σ ∗=  (19) 

The ratio on the left hand side of equation (19) measures the addition to returns 

which would compensate the investor for a less efficient covariance matrix. (We 

report estimates of portfolio standard deviation ratios in Tables 4 –6 below.)  

5. Empirical Results 

5.1 Data and estimation 

We estimate4 the A-DCC models using daily returns from three major European 

stock market price indices, valued in US dollars: FTSE 100 (London); DAX 30 

(Frankfurt); and CAC 40 (Paris). Returns are calculated as log differences and do not 

include dividends. No currency hedging is implemented. Trading hours for the London, 

Frankfurt and Paris stock exchanges overlap imperfectly, so to ensure synchronous prices 

we take index values at London 16:00 time (Frankfurt and Paris 17:00 time).5 The models 

were estimated using the first 2700 observations of the 3523 size sample, leaving the 

remaining 823 observations for testing. The estimation period runs from 1 January 1992 

to 6 May 2002, and predictive power for portfolio formation is tested over the three years 

from 7 May 2002 to 4 July 2005. 

 Martens and Poon (2001) point out the importance of synchronous data for studies 

of daily conditional correlation and volatility spillover. Substantial mis-estimation of 

returns correlation and spillovers can result from a failure to account for timing 

differences at the daily level. Correlations will be under-estimated, and estimated 

spillover patterns changed, if non-synchronous daily data are used in correlation models. 

By synchronizing prices we ensure that estimated spillovers and correlations more 
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accurately expose real-time interactions, rather than representing lags in information 

flows, misalignments in trading, or mismatched data collection.  

Table 2 reports key features of the data sample. Average returns are highest for the 

DAX 30 index, which also displays the largest standard deviation and degree of 

skewness. The FTSE 100 has annualized returns around two per cent lower than the DAX 

30 and the least variance of the three markets. All three daily returns series show 

considerable non-normality manifested in negative skewness and excess kurtosis. 

Average skewness is -0.11, and kurtosis, 5.35. 

[INSERT TABLE 2 HERE] 

A graph of the daily returns in Figure 2 shows clusters of volatility, where groups 

of large or small changes persist for a number of periods. More frequent periods of 

turbulence are evident from 1998 to 2003 (when volatility begins to drop off) and 

volatility patterns appear related, as might be expected among such closely-aligned equity 

markets. 

[INSERT FIGURE 2 HERE] 

Table 3 reports estimates for a total of six bivariate A-DCC models: two for each of 

the three pairs of returns series (London-Frankfurt, London-Paris and Frankfurt-Paris). 

We compute a benchmark without volatility spillover and an alternative with volatility 

spillover for each market pair. (Appendix 1 gives details of the estimation method.) 

[INSERT TABLE 3 HERE] 

The top portion of Table 3 reports parameter estimates and standard errors for the 

variance equations, and the lower portion reports estimates of the parameters of the 

correlation matrices. With the exception of statistically insignificant volatility spillover 

parameter from Paris to Frankfurt, all parameters have the expected (positive) sign. All 

models show evidence of high levels of volatility persistence, with parameters on lagged 

variables summing to just below one. Estimates from the benchmark model (GJR (1,1,1)) 

 - 16 - 



show significant asymmetry effects ( )δ  in all three markets. We find that the asymmetric 

effect is strongest for the UK market, dominating the symmetric volatility shock 

component. 

In terms of volatility spillover ( )γ , we find significant transmission from Frankfurt 

and Paris to London, and from Frankfurt to Paris, so we observe that Frankfurt is 

unaffected by lagged volatility shocks from the other markets in this sample. Although all 

volatility spillover coefficients are small, Frankfurt to Paris shocks are greatest in 

magnitude. Estimates of volatility spillover effects from London to the continental 

markets are positive, but smaller and poorly estimated, a surprising result given the 

relative sizes of the markets.6

Figure 3 presents graphs of estimated conditional variance series for the volatility 

spillover model. Conditional variances confirm earlier observations (Figure 2) that the 

three markets have become increasingly volatile since early 1997, possibly in connection 

with the beginning of the Asian crisis. The German market shows the most, and the UK 

market, the least, volatility over the whole sample.7

[INSERT FIGURE 3 HERE] 

Conditional correlation parameter estimates ( ), ,φ η ϕ  for the benchmark and 

alternative models differ only slightly. This result should help us isolate the effects of 

volatility spillovers on the portfolio selection process. The Frankfurt-Paris combination 

displays the most persistence (η ) in conditional correlations8. Asymmetric effects in 

conditional correlations are smaller than their symmetric counterparts in all three 

combinations, with the London-Frankfurt pair exhibiting the largest asymmetric effect 

and London-Paris, the smallest. Kearney and Poti (2005) report weak asymmetry effects 

for conditional correlations among Euro-zone equity markets. 
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Figure 4 graphs the conditional correlation series from the volatility spillover 

model, showing that time-variation in conditional correlation is an important feature of 

the second-moment dynamics. 

[INSERT FIGURE 4 HERE] 

5.2 Portfolio Standard Deviations 

We forecast from estimated benchmark and volatility spillover models, generate 

predicted covariances  at 1, 5, 10 and 20-step horizons, and compute optimal 

portfolio weights  from equation (15), for two equity markets and the risk-

free asset. This procedure simulates realized portfolio returns from the remaining 

(823) observations of the data set:  

2

11i k,⎧ ⎫

t .

1

i
t i

⎧ ⎫
⎨ ⎬
⎩ ⎭ =
H

1t k
⎨ ⎬
⎩ ⎭ =

,w

  (20) 'i k i k
t tπ , ,= w r

where  corresponds to the benchmark and alternative portfolios and  

indicates the vector of expected returns.  

1 2= ,i 1,...,11k =

As outlined in Section 4, we expect the more efficient covariance model to produce 

a lower portfolio risk for any required return. (Here, 1= .oµ ) Tables 6-8 set out realized 

standard deviations for the benchmark and volatility spillover models for London-

Frankfurt, London-Paris and Frankfurt-Paris, respectively. We report volatility ratios for 

daily, weekly, ten-day and monthly forecasting and rebalancing horizons. In each row, we 

set the least standard deviation equal to 100, and then report the larger standard deviation 

as a proportional increase over the smaller. The last row in each column reports the 

probability weighted average of the whole column of standard deviations, where the 

weighting applied to each row is given by the Bayesian probabilities associated with each 

return relative for that data. (These are graphed in Figure 1.) For example, in Table 4, 
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which gives the standard deviations for the London-Frankfurt market pairing, the last row 

under 10-steps-ahead forecasts shows that the portfolio standard deviation for the 

benchmark model was 1.52 per cent bigger than the standard deviation for portfolios 

computed using the volatility spillover model.9 On a weighted-average basis, the 

volatility spillover model performs better than the benchmark at every forecast horizon, 

and for all market pairs.  

[INSERT TABLES 4, 5 AND 6 HERE] 

In terms of economic value, the relative efficiency gains are not large. The greatest 

efficiency gain for the volatility spillover model on a weighted-average basis is for the 5-

step-ahead forecast model for London-Frankfurt, where the benchmark model standard 

deviation is 101.52, meaning that neglecting volatility spillover effects increases portfolio 

risk by about 1.52 per cent of standard deviation. Or, in terms of risk-adjusted returns, if 

investors who allow for volatility spillover ∗⎛ ⎞
⎟
⎠

⎜
⎝
σ  are receiving 10 per cent returns 

, then investors who forecast using the benchmark ( 10=µ )∗ ( )σ̂  would need 

ˆ 10 152µ = .  per cent returns to equalize the return to risk ratio such that 
*

0ˆ0
ˆ

µ µ
σσ ∗ = . The 

efficiency gains to predicting covariance using the volatility spillover model thus 

represent risk-free return improvements around 15 basis points on a ten per cent return 

portfolio. Nevertheless these small efficiency improvements do not disappear at longer 

forecast horizons, as can be seen from weekly, fortnightly and monthly portfolio standard 

deviations. In fact as Figures 2. 1 – 2. 4. (in Appendix 2) suggest, gains seem to peak 

between weekly and monthly forecasting horizons before they start to diminish at longer 

horizons where the forecasts converge to unconditional values. 
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5.3 Diebold-Mariano Tests 

We test the statistical significance of any risk reductions by the Diebold and Mariano 

(1995) method for distinguishing between forecasted volatilities. The Diebold-Mariano 

test statistic is derived from the estimated difference between realised variance for the 

benchmark symmetric and alternative asymmetric models, calculated as  

  

   (21) 
21 2k k k

t t tv π π, ,⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −
2
,

forming 11 series for each market pairing, 
11

1

k
t k

v⎧ ⎫
⎨ ⎬
⎩ ⎭ =

. Under the null hypothesis the 

expected value of  is zero, such that including volatility spillover effects in 

covariance models does not reduce portfolio variance

11⎧ ⎫

1

k
t k

v⎨ ⎬
⎩ ⎭ =

10.  

We conduct a joint test of this null hypothesis using a GMM estimate of the parameter β  

from the regression tV tβι ε= + .
11k⎧ ⎫ We first stack all values of 

1t k
v⎨ ⎬

⎩ ⎭ =
 and estimate a single 

moment condition for the coefficient β . We also construct a system of eleven moment 

conditions, one for each , again restricting the system to a single estimate of k
tv .β  We 

report t -tests of the null hypothesis that 0= ,β  using robust Newey-West standard errors 

from the GMM estimation. Table 7 reports results for each market pairing and forecast 

horizon. The majority of tests of β  (including short-horizon forecasts for London and 

Paris) reject the null hypothesis and confirm that portfolio variances are significantly 

lower when volatility spillover is modelled in the conditional covariance matrix. But the 

volatility spillover model does not get unqualified support, with significant negative 

values for β  at the longer horizon tests of the London-Paris pair. 

[INSERT TABLE 7 HERE] 
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5.5 Stochastic dominance tests 

Tests for second-degree stochastic dominance can tell us whether risk-reductions are 

likely to matter to any risk averse investor. Consider two samples of portfolio returns 

1{ } =
M

I IY  and 1{ } =
M

I IX with cumulative distributions (CDFs) G  and . Second degree 

stochastic dominance (SD2) establishes the conditions under which any risk averse agent 

prefers one portfolio to another: Portfolio Y  will be preferred to portfolio 

F

X  by any 

agent whose utility over portfolio returns ( )U π  obeys ,  when 

 for all 

( ) 0U π′ ≥ ′′

π π

( ) 0U π ≤

( ) ( )
o o

G t dt F t dt≤∫ ∫ π .  

Barrett and Donald (2003) derive a Kolmogorov-Smirnov style test for stochastic 

dominance of any degree, evaluating the CDFs at all points in the support. This technique 

avoids the problem of choosing an arbitrary set of comparison points which can result in 

inconsistency.11 The null hypothesis to be tested is that  (weakly) dominates  to the 

second degree, against the alternative that it does not. From random samples of equal size, 

the test statistic is given by:  

G F

  

 1 2
2 22ˆ ˆ ˆ( ) sup( ( ) ( ))

2 MM
M I IS G

π
π π/= ; − F; ,  (22) 

where 2 2
1 1

1 1ˆ ˆ( ) 1( )( ) ( ) 1( )(
M M

i i iMM
i i

)iI Y Y I XG FM M
π π π π π

= =

; = ≤ − , ; = ≤ −∑ ∑ Xπ ,

)

and 

 is the indicator function, returning the value 1 when (1( )⋅ iX π≤  and zero otherwise. 

Under the null hypothesis, the test statistic is no greater than zero. Bald comparisons 

between CDFs or their integrals are subject to non-trivial sampling error when the 

population density is unknown, so we need some approximation to the sampling 

distribution, here derived by block bootstrapping.  
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We follow Linton, Maasoumi and Whang (2002), and Lim, Maasoumi and Martin 

(2004), and adjust the bootstrapping method to keep underlying serial dependence intact. 

Block size is set at  where 28=B = ,B Tα  α  is a positive constant and T  is sample 

size, here 823.12 Each set of portfolio returns is divided into overlapping blocks of size ,B  

then a random selection is made, choosing sufficient (contemporaneous) blocks to create a 

distribution of size  Bootstrap samples are used to build an empirical distribution of the 

test statistic.  

.T

We report results for one-step-ahead forecasts and two-steps-ahead forecasts, since 

5 and other multi-step forecasting generates samples too small for reliable testing. We 

conduct the test on a weighted average of returns to the  portfolios, where weights are 

the Bayesian probabilities shown in Figure 1. Results in Table 8 show that the null 

hypothesis that the benchmark model dominates the volatility spillover model can be 

rejected in all but one of six tests. So we can infer that in five of six cases, the volatility 

spillover forecasting model is preferred by risk averse investors. 

k

[INSERT TABLE 8 HERE] 

 

6. Conclusions 

Recent advances in modelling time-varying second moments have highlighted an 

array of features in security returns volatilities that were previously overlooked. 

Among these, volatility spillovers are both significant and widespread, well-identified 

in a large number of studies across a range of security markets and geographic 

locations. However the economic importance of any aspect of time series dynamics, 

including volatility spillovers, depends not on whether it can be statistically identified, 

but on whether it can alter investment outcomes.  

 - 22 - 



In this study we value volatility spillovers for investors who select mean-

variance equity portfolios from stock markets in London, Frankfurt and Paris. We 

isolate the portfolio risk reductions that can be attributed to adding volatility 

spillovers to asymmetric dynamic conditional correlation forecasting models. ADCC 

models capture both time-variation and asymmetry effects in variance and 

correlations, allowing us to identify volatility spillovers in a nested model. We also 

minimize the impact of expected return choice on out-of-sample portfolio efficiency 

by combining covariance forecasts with a full range of assumed expected returns 

relatives using polar co-ordinates.  

Portfolio efficiency gains due to volatility spillover effects are small, but 

significant, measurably reducing standard deviations over 1, 5, 10 and 20-step 

horizons in the majority of cases. In addition, stochastic dominance tests confirm that 

in five of six cases, risk averse investors will prefer portfolios that allow for volatility 

spillover effects in covariance forecasts. On a portfolio returning, say 10 per cent p.a., 

efficiency gains arising from modelling spillovers translate to risk-free return 

improvements close to 0.15 per cent, without additional transactions costs. 
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Appendix 1  

A-DCC Estimation 

We follow Engle (2002) and estimate the models in two steps. Assuming that the 

standardized residuals  are conditionally normally distributed so 

that , the log likelihood function for the vector of returns  can be 

expressed as 

tε

(1| ~ ,t t tN−Ψε 0 R ) ,rt

 ( ) 1

1

1 log 2 log
2

T

t t t t
t

L n π ′ −⎛
⎜
⎝

=

= − + + .∑ H u H u ⎞
⎟
⎠

 (1.1) 

Now let the mean parameters, ,c  and the univariate GARCH parameters in  be 

represented by 

Dt

,ψ  and the conditional correlation parameters in , by Rt .ζ  The log 

likelihood can be written as the sum of a volatility part and a correlation part: 

 

 ( ) ( )( ), = + |V CL L L ,ψ ζ ψ ζ ψ  (1.2) 

where the volatility term is 

 

 ( ) 2

1

1( ) log 2 2 log
2

′ −⎛ ⎞
⎜ ⎟
⎝ ⎠

=

= − + +∑ D u D u
T

V
t

L nψ π ,t t t t  (1.3) 

and the correlation component is 

 

 ( ) 1

1

1 log
2

T

C t t t
t

L ζ ψ ′ ′⎛
⎜
⎝

=
t t t

− ⎞
⎟
⎠

| = − − + + .∑ ε ε R ε R ε  (1.4) 

The procedure is further simplified by recognizing that the volatility part of the log 

likelihood is just the sum of the individual univariate GARCH likelihoods: 
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 ( )
2

1 1

1( ) log 2 log
2

⎛ ⎞
⎜ ⎟,⎝ ⎠

= = ,

⎛ ⎞
= − +⎜⎜

⎝ ⎠
∑∑

T n
it

V
t i i t

uL
h

ψ π + .⎟⎟i th

).

 (1.5) 

The two-step estimation method involves maximizing each univariate GARCH 

term separately, standardizing the returns by estimated standard deviations and then 

jointly estimating elements of  by maximizing the correlation component of the log 

likelihood 

Rt

( ,CL ψ ζ  We maximize log likelihoods numerically using the Max SQP 

procedure in OX 3.4. This procedure implements a sequential quadratic programming 

technique to maximize a non-linear function subject to non-linear constraints.  

Although the assumption of normality in tε  is convenient for estimation, it is not 

necessary for consistency, since quasi-maximum likelihood arguments apply as long as 

the conditional mean and variance equations are correctly specified (Hamilton, 1994, 

p.126). However the standard errors need to be adjusted according to the method 

described for the univariate GARCH volatility equations. Standard errors for the 

correlation parameters require a more complicated process explained in Engle (2002). 
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Appendix 2 

Figures 2.1-2.3 graph volatility ratios for different forecasting horizons (not all reported 

in the paper) and show the relative risk reduction as horizon increases. Tables of volatility 

ratios for additional forecasting horizons are available from the authors on request. 

[INSERT FIGURES 2.1-2.3 HERE]. 
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Table 1: Pairs of expected returns 

Range of expected returns used to calculate portfolio weights where ⎥⎦
⎤

⎢⎣
⎡=

20
cos,

20
sin jj ππµ  

 
j 
 

µ(1) 
 

µ(2) 
 

θ 
 

    
0 0.000 1.000 0 
1 0.156 0.988 0.1 
2 0.309 0.951 0.2 
3 0.454 0.891 0.3 
4 0.588 0.809 0.4 
5 0.707 0.707 0.5 
6 0.809 0.588 0.6 
7 0.891 0.454 0.7 
8 0.951 0.309 0.8 
9 0.988 0.156 0.9 

10 1.000 0.000 1 
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Table 2: Summary statistics- daily stock index returns, % p.a. 
Daily returns calculated as  from price indices synchronized at London 16:00 
time, 2 January 1992 to 4 July 2005. All indices are in USD, unhedged. Data supplied by Datastream. 

)/ln(100 1−= ttt ppr

 

 FTSE 100 DAX 30 CAC 40 

 Mean  5.1  7.3  6.1 
 Std. Dev.  16.4  21.6  20.0 
 Skewness  0.03 -0.23 -0.08 
 Kurtosis  5.6  5.8  5.0 

 Jarque-Bera 957.6  1205  570.8 

 Observations  3523  3523  3523 
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Table 3: Parameter estimates, A-DCC models. 
Columns show estimated parameters for GJR ADCC and GJR-ADCC with Volatility Spillover conditional covariance models. P-values are in brackets. GJR and 
GJR(volatility spillover) equations were computed for every market using de-meaned returns, and then standardised residuals were used to compute estimates for the ADCC 
and ADCC(volatility spillover) models. Estimated over 2700 daily returns, sampling 2/1/1992 – 6/5/2002. 
 
Parameter    London-Frankfurt London-Paris Frankfurt-Paris

 
 

 
GJR (1,1,1) 

 
GJR (1,1,1) 

Volatility  
spillover 

 
GJR (1,1,1) 

 
GJR (1,1,1) 

Volatility  
spillover 

 
GJR (1,1,1) 

 

 
GJR (1,1,1) 

Volatility  
spillover 

  
UK 

 
DE 

 
UK 

 
DE 

 
UK 

 
FR 

 
UK 

 
FR 

 
DE 

 
FR 

 
DE 

 
FR 

 
ω 

 
0.0272 
(0.079) 

 

 
0.0251 
(0.028) 

 
0.0259 
(0.018) 

 
0.0248 
(0.048) 

 
0.0272 
(0.079) 

 

 
0.0246 
(0.099) 

 
0.0236 
(0.044) 

 
0.0259 
(0.220) 

 
0.0251 
(0.028) 

 
0.0246 
(0.099) 

 
0.0259 
(0.042) 

 
0.0297 
(0.079) 

α 0.0162 
(0.304) 

 

0.0428 
(0.001) 

0.0017 
(0.894) 

0.0431 
(0.002) 

0.0162 
(0.304) 

 

0.0210 
(0.006) 

0.0021 
(0.862) 

0.0186 
(0.063) 

0.0428 
(0.001) 

0.0210 
(0.006) 

0.0436 
(0.004) 

0.0013 
(0.887) 

β 0.9242 
(0.000) 

0.9220 
(0.000) 

0.9160 
(0.000) 

0.9212 
(0.000) 

0.9242 
(0.000) 

0.9426 
(0.000) 

0.9168 
(0.000) 

0.9397 
(0.000) 

0.9220 
(0.000) 

0.9426 
(0.000) 

0.9223 
(0.000) 

0.9341 
(0.000) 

δ 0.0595 
(0.000) 

0.0352 
(0.042) 

0.0665 
(0.000) 

0.0334 
(0.053) 

0.0595 
(0.000) 

0.0363 
(0.011) 

0.0660 
(0.000) 

0.0329 
(0.020) 

0.0352 
(0.042) 

0.0363 
(0.011) 

0.0362 
(0.036) 

0.0461 
(0.0018)

γ       0.0133 0.0021 
(0.033) 

 
(0.819) 

0.0151 0.0088 
(0.077) (0.374) 

-0.0021 0.0185 
(0.803) (0.026) 

 
φ 

 
0.0229 

 
0.0216 

 
0.0317 

 
0.0317 

 
0.0318 

 
0.0321 

η 0.9391      0.9412 0.9149 0.9115 0.9609 0.9600
ϕ 0.0241      0.0278 0.0143 0.0182 0.0161 0.0187
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Table 4: Portfolio standard deviations, London – Frankfurt 
Notes: Smallest portfolio standard deviation for each pair of expected returns is scaled to 100. Values over 100 represent proportional increases in standard deviations. The 
final row is a weighted average of the preceding rows where weights are the Bayesian probabilities reported in Figure 1. 
 

  One-step-ahead 
forecasts 

Five-steps-ahead 
forecasts 

Ten-steps-ahead 
forecasts 

Twenty-steps-ahead 
forecasts 

J GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER

0.00         100.00 100.35 102.12 100.00 101.24 100.00 100.00 100.30
1.00         100.00 100.24 100.90 100.00 100.23 100.00 100.00 100.03
2.00         100.52 100.00 100.00 100.22 100.17 100.00 100.74 100.00
3.00         100.85 100.00 100.37 100.00 101.17 100.00 100.43 100.00
4.00         100.12 100.00 102.68 100.00 103.10 100.00 100.00 100.02
5.00         100.00 100.06 103.10 100.00 102.58 100.00 100.31 100.00
6.00         100.13 100.00 101.31 100.00 100.49 100.00 100.62 100.00
7.00         100.35 100.00 100.37 100.00 100.36 100.00 100.77 100.00
8.00         100.59 100.00 100.40 100.00 101.27 100.00 100.99 100.00
9.00         100.83 100.00 100.78 100.00 102.20 100.00 101.32 100.00
10.00         101.03 100.00 101.25 100.00 102.92 100.00 101.67 100.00

          100.31 100.00 101.39 100.00 101.52 100.00 100.49 100.00
 
 

 - 35 - 



 
Table 5: Portfolio standard deviations, London – Paris 
Notes: Smallest portfolio standard deviation for each pair of expected returns is scaled to 100. Values over 100 represent proportional increases in standard deviations. The 
final row is a weighted average of the preceding rows where weights are the Bayesian probabilities reported in Figure 1. 
 

  One-step-ahead 
forecasts 

Five-steps-ahead 
forecasts 

Ten-steps-ahead 
forecasts 

Twenty-steps-ahead 
forecasts 

J  GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER

0.00         100.00 100.17 104.04 100.00 102.27 100.00 101.81 100.00
1.00         100.00 100.31 102.37 100.00 101.39 100.00 100.74 100.00
2.00         100.07 100.00 100.00 100.25 100.00 100.38 100.00 100.22
3.00         100.70 100.00 100.00 101.51 100.00 101.37 100.00 100.55
4.00         100.38 100.00 100.48 100.00 100.00 100.62 100.00 100.27
5.00         100.01 100.00 102.41 100.00 100.72 100.00 100.50 100.00
6.00         100.19 100.00 101.83 100.00 100.93 100.00 100.70 100.00
7.00         100.32 100.00 100.15 100.00 100.09 100.00 100.07 100.00
8.00         100.49 100.00 100.00 101.23 100.00 100.90 100.00 100.84
9.00         100.70 100.00 100.00 101.99 100.00 101.71 100.00 101.63
10.00         100.89 100.00 100.00 102.24 100.00 102.27 100.00 102.16

          100.28 100.00 100.73 100.00 100.02 100.00 100.05 100.00
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Table 6: Portfolio standard deviations, Frankfurt – Paris 
Notes: Smallest portfolio standard deviation for each pair of expected returns is scaled to 100. Values over 100 represent proportional increases in standard deviations. The 
final row is a weighted average of the preceding rows where weights are the Bayesian probabilities reported in Figure 1. 
 

  One-step-ahead 
forecasts 

Five-steps-ahead 
forecasts 

Ten-steps-ahead 
forecasts 

Twenty-steps-ahead 
forecasts 

J  GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER GJR(1,1,1)

GJR(1,1,1) 
VOLATILITY 
SPILLOVER

0.00         100.66 100.00 100.41 100.00 103.17 100.00 100.64 100.00
1.00         100.62 100.00 100.18 100.00 102.84 100.00 100.35 100.00
2.00         100.53 100.00 100.00 100.09 102.17 100.00 100.00 100.05
3.00         100.34 100.00 100.00 100.26 100.87 100.00 100.00 100.42
4.00         100.00 100.00 100.32 100.00 100.06 100.00 101.17 100.00
5.00         100.00 100.00 101.02 100.00 103.64 100.00 103.59 100.00
6.00         100.91 100.00 100.24 100.00 100.92 100.00 100.13 100.00
7.00         100.13 100.00 100.14 100.00 100.32 100.00 101.33 100.00
8.00         100.42 100.00 100.90 100.00 101.38 100.00 102.16 100.00
9.00         100.58 100.00 101.19 100.00 102.12 100.00 102.21 100.00
10.00         100.64 100.00 101.27 100.00 102.57 100.00 102.09 100.00

          100.36 100.00 100.51 100.00 101.40 100.00 101.48 100.00
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Table 7: Diebold-Mariano tests for portfolio variance equality. 
GMM estimates of coefficients and robust p-values for the test that difference in portfolio variances (u) is jointly zero for all expected returns. An asterisk indicates rejection 
at the 1% (***), 5 % (**) or 10 % (*) level. Significant positive values for β indicate that portfolio variances are less under the volatility spillover model, negative values 
indicate that they are more.  
 

 Single moment condition Multiple moment conditions 

Market pairing 1 step ahead 5-steps 
ahead 

10 steps 
ahead 

20-steps 
ahead 1 step ahead 5-steps 

ahead 
10 steps 
ahead 

20-steps 
ahead 

 
London –
Frankfurt 

 

0.009** 
(0.02) 

0.152* 
(0.07) 

0.315** 
(0.01) 

0.174* 
(0.10) 

0.002** 
(0.02) 

0.060*** 
(0.00) 

0.122* 
(0.06) 

0.130 
(0.00) 

 
London - Paris 

 
0.0079** 

(0.05) 
0.047 
(0.34) 

-0.030 
(0.44) 

-0.023 
(0.72) 

0.001* 
(0.10) 

0.031*** 
(0.00) 

-0.02*** 
(0.00) 

-0.017*** 
(0.00) 

 
Frankfurt - 

Paris 
 

0.010** 
(0.021) 

0.047 
(0.34) 

0.291*** 
(0.01) 

0.552* 
(0.10) 

0.006*** 
(0.00) 

0.032*** 
(0.00) 

0.159*** 
(0.01) 

0.386*** 
(0.00) 
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Table 8: Stochastic Dominance relations, one-step-ahead and two-steps-ahead forecasts. 
Bootstrapped P-values for tests of second degree stochastic dominance relations between pairs of portfolio 
returns where portfolios are formed on the basis of one- or two-step-ahead forecasts from the benchmark and 
volatility spillover models. Portfolio returns are a weighted average over all values of θ where weights are the 
Bayesian probabilities reported in Figure 1. An asterisk indicates rejection at the 1%(***), 5 % (**) or 10 % (*) 
level when the reverse null is not rejected. Failure to reject both nulls is inconclusive.  
 

 1-step-ahead 2-steps ahead 

 Null Hypothesis Null Hypothesis 

 
Market 
pairing 

Volatility 
Spillover 

dominates 
Benchmark 

Benchmark 
dominates 
Volatility 
Spillover 

Volatility 
Spillover 

dominates 
Benchmark 

Benchmark 
dominates 
Volatility 
Spillover 

 
London 

Frankfurt 
 

0.92 0.07* 0.92 0.07* 

 
London 
Paris 

 

0.93 0.00*** 0.88 0.04** 

 
Frankfurt 

Paris 
 

0.06* 0.95 0.74 0.00*** 

 



 
Figure 1: Probability density functions 

Empirical Bayesian estimate of the probability of assumed expected returns such that each pair is )
2

cos( θπ
 

and )
2

sin( θπ
. Numerical values are listed in Table 5. 
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Figure 2: Daily stock index returns, 2 January 1992 – 4 July 2005. 
De-meaned daily equity index returns: London (FTSE), Frankfurt (DAX), Paris (CAC) 
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Figure 3: Daily conditional variances, 2 January 1992 – 8 May 2002. 
In-sample conditional variance predictions from GJR(1,1,1) model. 
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Figure 4: Daily conditional correlations, 2 January 1992 – 8 May 2002. 
In sample conditional correlation predictions from GJR(1,1,1) ADCC model. 
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Figure 2.1: Loss of portfolio efficiency as forecasting horizon increases, London-
Frankfurt. 
Columns measure increase in portfolio standard deviation for benchmark over volatility spillover model, where 
the volatility spillover portfolio standard deviation is scaled to 100, and the benchmark is a proportional 
increase.   
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Figure 2.2: Loss of portfolio efficiency as forecasting horizon increases, London-Paris. 
Columns measure increase in portfolio standard deviation for benchmark over volatility spillover model, where 
the volatility spillover portfolio standard deviation is scaled to 100, and the benchmark is a proportional 
increase.  
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Figure 2.3: Loss of portfolio efficiency as forecasting horizon increases, Frankfurt-
Paris. 
Columns measure increase in portfolio standard deviation for benchmark over volatility spillover model, where 
the volatility spillover portfolio standard deviation is scaled to 100, and the benchmark is a proportional 
increase.  
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[0, ]

1 Volatility asymmetry was first introduced to the financial literature by Black (1976), and has since become a 
well-documented feature of volatility patterns hence a failure to account for asymmetries may result in distorted 
estimates of volatility spillover. See, for example, Nelson (1991), Koutmos (1992), Poon and Taylor, (1992), 
Campbell and Hentschel (1992), Bekaert and Wu (2000), and Wu (2001). 
2 Glosten, Jagannathan and Runkle (1993). 
3 Engle (2002) shows that a Bollerslev-Wooldridge (1992) covariance matrix gives consistent standard errors 
for the estimates. 
4 We use a two-step estimation process following Engle (2002). Appendix 1 sets out details of the maximum 
likelihood procedure. 
5 Datastream supplies London 16:00 data for a group of major markets. Codes for the series described here are 
FOOTC16(PI) , DAXIN16(PI), and CAC4016(PI). 
6 Harju and Hussain (2005) find that the UK and German markets respond to each other’s innovations using 
intra-daily data.  
7We note that daily returns to the DAX 30 have the largest unconditional variance of the three indices. 
8 Estimated unconditional correlations are London-Frankfurt 0.77, London-Paris, 0.69 and Frankfurt-Paris, 0.66. 
9 Appendix 2 presents results for forecasting horizons of 15, 25 and 30 days. 
10 Following Engle and Colacito (2004), we also calculated a heteroscedasticity-adjusted measure of the 
Diebold-Mariano test-statistic and conduct the same hypothesis tests. Results, not reported here, were 
substantially unchanged. 
11To make the test tractable, each pairing of returns distributions was shifted to the right by the same fixed 
positive amount, sufficient to ensure a lower bound of zero for a support π π%  where π < ∞%

1 1
( 1) 2

/ : <⎧
⎪= : ≤ ≤ − + ,⎨
⎪ − + / : − + ≤ ≤⎩

t

t B t B
B t T B

T t B T B t T
ω

t

. 
12 Before forming the blocks, the returns from each portfolio are weighted to adjust for the number of times 
they are sampled in the overlapping blocks. The weights that follow the rule: 

  
where ω  is the weight and B is block size. 
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