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Modeling the Effects of Including/Excluding Attributes in Choice Experiments on 

Systematic and Random Components 

 

Abstract 

This paper examines the impact of attribute presence/absence in choice experiments using 

covariance heterogeneity models and random coefficient models. Results show that attribute 

presence/absence impacts both mean utility (systematic components) and choice variability 

(random components). Biased mean effects can occur by not accounting for choice variability. 

Further, even if one accounts for choice variability, attribute effects can differ because of 

attribute presence/absence. Managers who use choice experiments to study product changes or 

new variants should be cautious about excluding potentially essential attributes. Although 

including more relevant attributes increases choice variability, it also reduces bias. 

 

Keywords: Discrete Choice Experiments, Choice Models, Missing Attribute Information 
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1. Introduction 

Several decades of research have focused on what consumers do if attribute level information 

is missing (e.g., Huber & McCann, 1982; Johnson & Levin, 1985; Jaccard & Wood, 1988). For 

example, a consumer may evaluate two digital cameras but only know about one in terms of 

how many photos it can store. The missing information paradigm considers such problems, 

particularly issues related to what level (value), if any, consumers infer about missing attribute 

levels. Prior work has examined cases involving “missing” information based on the 

observation that consumers have limited memory capacity (e.g., Bettman, Luce, & Payne, 

1998; Miller, 1956). A commonly cited example is one in which consumers cannot recall an 

attribute level for an option seen in a store earlier but know the level of another option in a 

current store (Lynch, Marmorstein, & Weigold, 1988).  

In other cases, some attribute information may be missing for all options, which may be 

unrelated to consumers’ cognitive capabilities (e.g., Kardes, Posavac, & Cronley, 2004) but are 

related to managers’ decisions. For example, retailers may limit information to a certain set of 

features for several reasons: because of limited display space or information space on shelves, 

online displays or in catalogues; to help consumers deal with complexity; reducing catalogue 

or online display costs; or to “put their best face forward.” Similarly, regulations may not 

require labels to list all key information, or there may be insufficient package space to provide 

it. 

Researchers also decide to limit feature information in order to control the length and 

complexity of experiments or surveys. For example, each feature added to a choice experiment 

increases its size and complexity (Louviere & Woodworth, 1983; Louviere, Hensher, & Swait, 

2000; Swait and Adamowicz 2001); hence, researchers must decide which attributes to include 

or exclude. 

Issues of whether or how preferences/choices change due to differences in attribute-

information provision is both academically and practically relevant because we do not know 
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how including/excluding such information will impact preferences/choices, except in limited 

cases (e.g., Yates et al., 1978; Meyer, 1981; Sanbonamatsu et al., 1992; Kivetz & Simonson, 

2000). For example, consumers may respond to subsets of attributes in different ways, such as 

devaluing options that omit information about certain attributes. Alternatively, they may 

perceive greater/lesser risk or uncertainty about options, leading to more choice variability.  

A key contribution of this paper is to design and implement discrete choice experiments 

(DCEs) that systematically and independently manipulate the inclusion of attributes and 

examine the consequences of doing so under controlled conditions. A further contribution is to 

show that inclusion/exclusion of attributes in DCEs not only impacts mean utility (“systematic 

utility component”) but also impacts choice variability (“random utility component”). The 

latter contribution addresses Louviere’s (2001) call to recognise that actions by managers and 

experimenters can impact moments of distributions other than the mean. A final contribution is 

a comparison of covariance heterogeneity models (CHMs), with random coefficient models, in 

terms of prediction accuracy and their ability to capture attribute inclusion/exclusion effects. 

 

2. Conceptual Framework 

Kardes, Posavac, and Cronley (2004) comprehensively reviewed missing information and 

consumer inferences, and we use their ideas to develop a conceptual framework to anticipate 

potential impacts of varying the inclusion of attributes in DCEs. They describe several ways 

that consumers may respond to missing information, embedded in a broader context of 

inference-making. They note that consumers will make inferences about missing attribute 

information only if consumers notice that information is missing; if consumers do notice, their 

sensitivity to missing attribute information should increase, and the probability of choosing 

options with missing information should decrease. Thus, if relevant information is missing in a 

DCE, choice variability should decrease because consumers should choose more consistently 
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and should be more likely to choose options about which they have more information. Kardes 

et al. (2004) also noted that, when consumers compare options, this increases sensitivity to 

missing information relative to when consumers examine options separately. DCEs involve 

comparisons, so we expect to find these effects in DCEs. We also expect consumers to focus 

more on missing information relating to relevant attributes. 

Sanbonmatsu et al. (2003) noted that if consumers notice that potentially relevant 

attributes are missing, they should rely less on presented attributes. That is, if consumers do 

not notice or care about missing information, available attribute information should be 

weighted more than missing information. Sanbonmatsu et al. (2003) show this effect for open-

ended (thought listing) and closed-ended (constant sum scale) measures of attribute 

importance. In many cases, however, consumers seem to ignore missing information and give 

more weight to presented attributes regardless of the amount of information presented. Yet, if 

consumers notice that important attributes are missing, evaluation uncertainty should increase, 

which should increase choice variability. A related issue involves "non-diagnosticity” 

(Troutman & Shanteau, 1977) or “dilution” (Zukier, 1982) effects, whereby individuals 

process information irrelevant to the task objectives. For example, Carpenter, Glazer, and 

Nakamoto (1994) noted that consumers may use any attribute that is present to compare 

options, even those that are ambiguous or irrelevant in evaluating options. Sanbomatsu et al. 

(2003) showed further that consumers try to use available information, inferring that any such 

information is somehow relevant. 

The more attributes used to describe options in a DCE, the greater the task complexity, 

if all else is equal (e.g., Lussier & Olshavsky 1979; Miller, 1956). Kardes, Posavac, and 

Cronley (2004)  suggest that, because additional attributes increase task complexity, more 

attributes may lead to more spontaneous inferences, greater use of heuristic decision rules, and 

more inter-attribute trade-offs — all of which should increase (within subject) choice 
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variability (e.g., Payne, Bettman, & Johnson, 1993). Also, as task complexity increases, 

(between subject) choice variability should increase because consumers differ in how they 

make inferences about missing attributes and their use of decision heuristics.  

Further, adding attributes to DCEs should lead to more ‘preference uncertainty’, which 

refers to how certain consumers are about either which option they prefer or to what degree. 

Preference uncertainty is associated with attribute conflicts (Fischer, Luce, & Jia, 2000). 

Attribute conflicts arise if options have both negative and positive attribute levels, such as a car 

with good acceleration, braking and handling, but poor comfort and safety. Roberts and Urban 

(1988) also noted that consumers’ uncertainty about brands increases as they evaluate more 

information about each brand. This also is consistent with work by Peterson and Pitz (1986; 

1988), who found that consumer uncertainty increases with more attributes. Thus, these 

sources suggest that consumers’ abilities to evaluate options should improve with fewer 

attributes.  

Haaijer, Kamakura, and Wedel (2000) studied response latencies, choice uncertainty, 

and error in DCEs and found that faster choices were more systematic than slower ones. This 

finding was supported by Rose and Black (2006) and Haaijer et al. (2000), who showed that 

response times impact preference heterogeneity and choice consistency in DCEs. Thus, we 

expect that the subjects in DCEs  with fewer attributes will make faster choices; the cited 

studies related to response latency suggest that we also should expect more systematic choices 

(i.e., less response variability). 

We follow Louviere (2001) in suggesting that choice variability can be independently 

identified and modeled separately from mean utility. This focus on both preference and choice 

variability is similar to the JUMP model of Chandrashekaran et al. (2000), who suggested that 

various factors may separately impact both judgment magnitude (i.e., systematic utility 

components) and judgment uncertainty (i.e., choice variability). However, our research differs 



 7

from this model in several key ways, such as focusing on choices (not ratings) and using 

experimental (not observational) data. We also note that the JUMP model is similar to choice 

models that parameterize preference heterogeneity using covariate main effects and 

interactions.  

Swait and Louviere (1993); Louviere, Hensher, and Swait (2000); and Louviere (2001) 

noted that all empirical choice models confound estimated parameters with choice variability, 

which poses statistical inference issues unless one controls for and/or accounts for differences 

in choice variability. We are unaware of prior work in the missing-information paradigm that 

controlled for choice variability differences. In this study , we show that missing attribute 

information has little effect on choices, but if one does not control for choice variability 

differences, one is likely to conclude that there are effects on choices. 

To show such effects, we use covariance heterogeneity models (CHMs) similar to those 

discussed by Louviere, Hensher, and Swait (2000, p. 195) to model unobserved heterogeneity 

sources using covariates. CHM use is growing in applied economics (e.g., DeShazo & Fermo 

2002; Swait & Adamowicz, 2001b), and CHMs also have been used in marketing (e.g., 

Delleart, Brazell, & Louviere, 1999). CHMs allow one to decompose choice experiment 

effects on both systematic and random components. This allows one to capture the unobserved 

variability associated with a) each attribute level, and b) the inclusion/exclusion of attributes 

across experimental conditions. Much prior work in marketing and applied economics has used 

random coefficient models to capture preference heterogeneity, so we compare CHMs with 

these models. We now describe and discuss the CHMs that we used, followed by a discussion 

of random coefficient models. 

 

3. Modeling the Impact of Including/Excluding Attributes 
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The conceptual basis for the models and DCEs used to produce data for our model estimation 

is random utility theory (RUT). RUT posits that preferences are latent and unobservable, such 

that the latent utility that consumer ‘n’ associates with option ‘i’, Uin, can be expressed as an 

additive function of a systematic component, Vin, and a random component, in (Manski, 1977; 

McFadden, 1974; Thurstone, 1927). That is, 

Uin = Vin + in.           (1) 

Systematic utility (Vin) is assumed to be a function of predictors represented by the parameters 

of a generalized regression function (Ben-Akiva & Lerman, 1985). We define the variable xinkp 

, which takes the value 1 if option ‘i’ evaluated by consumer 'n' has level 'p' on attribute 'k', the 

value 0 if another level is evaluated, or the value -1 if this level is unknown. Hence, we capture 

included levels of each attribute with dummy codes and its exclusion with effects-coded 

variables. We define a set of parameters () to capture the effect that each of these coded 

attribute levels have on mean utility. That is, 

i

K

1k

k

1p
inkpkpin XxV

P

 
 

,         (2) 

where K is the total number of attributes, and kP is the number of levels for attribute ‘k’. Thus, 

Equation (2) specifies each measurable component relative to attribute ‘k’ being missing. In 

most published applications of choice models, k captures preferences for an attribute level, 

‘p’, relative to a base level of attribute k. We estimate km, the impact of each attribute on 

mean utility when attribute information is missing, via Equation (3): 
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We also propose that included/excluded attribute information impacts random error 

component variability (i.e., response variability), 
2. In any model of latent utility, the scale 
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(magnitude) of the parameter vector is inversely related to the standard deviation of the error 

distribution, . For example, errors in multinomial logit (MNL) models are assumed to be 

independently and identically distributed (IID) extreme value type 1 variates, with zero 

location parameter and scale parameter, , where  = SQRT(2/6
2). McFadden (1974) 

showed that the probability that option 'i' is chosen from a set of 'J' options (dropping 'n' for 

simplicity), can be written as Equation (4): 









J

1j
j

i
i

)Vexp(

)Vexp(
P .          (4) 

In any given data set,  is not identified and so must be made constant (e.g., “1”). Ben-Akiva 

and Lerman (1985) showed that the estimated parameter vector, ̂ , is  and not true ; hence, 

estimates of  are confounded with  in all choice models (McFadden 1974; Swait & Louviere, 

1993; Train 2003). Thus, by ignoring , researchers can make incorrect inferences about 

consumers’ preferences.  

 Because scale is confounded with model parameter estimates , prior empirical results 

suggesting that consumers devalue options with missing information by devaluing missing 

attributes may be due to not controlling for choice variability differences. That is, because  is 

inversely proportional to the error variance, factors that increase error variance decrease 

estimated parameter magnitudes ( ̂ ), which may lead to misinterpreting such effects as 

devaluation. Thus, comparisons among different conditions that include and exclude attribute 

levels are confounded by variability differences and should be accounted for in any analysis. 

 Using a CHM approach, we address the identification problem by specifying the 

variance of the random component to be a function of attributes varied in DCEs. Various 

names have been applied to CHMs in prior work, creating some confusion in nomenclature. 

For example, Swait and Adamowicz (2001a) called it a “Parameterized Heteroscedastic MNL 
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model” (PHMNL), using it to specify  as a function of an entropy-based measure of task 

complexity. DeShazo and Fermo (2002) called it a “Heteroscedastic MNL model” (HMNL), 

using it to specify scale as a function of covariates that measure the quantity of information in 

a choice set and the way in which information is configured. Delleart et al. (1999) also called it 

“HMNL”, using it to specify scale as a function of absolute price levels and price differences. 

 We expect that varying attribute level information about option 'i' — i.e., whether an 

attribute is missing — will impact choice variability. Following Louviere et al. (2000), Swait 

and Adamowicz (2001a), DeShazo and Fermo (2002), and Delleart et al. (1999), we represent 

these effects by a design matrix, Xi, with scale effects specified as  = exp(Xi), where  is a 

variance-scale ratio of various conditions relative to a reference condition. The resulting choice 

model is Equation (5): 
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The significant elements of  and  imply noteworthy effects on mean utility and scale, 

respectively. Scale multiplies the systematic component elements, so significant scale effects 

magnify effects of corresponding attributes in the systematic component, implying interactions 

between scale effects and systematic component effects. Hence, CHM allows both non-linear 

and non-additive effects on preferences.  

 CHMs can be viewed as a type of random coefficients model because scale is inversely 

proportional to error variance, and a CHM with all attribute effects in the scale function 

captures variability in the estimates across a sample population. Thus, the CHM results we 

report later estimate the variability in each attribute level, and significant estimates can be 

graphed to visualize relationships between attribute levels and unobserved variability. 
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 Finally, we compare CHM with the mixed logit model (MIXL) of Revelt and Train 

(1998). MIXL can be written as: 

 Pi = exp[(k + k)Xki] / jC exp[ (k + k)Xkj],    (6) 

where k is a vector of random effects, including alternative-specific intercepts with associated 

disturbance terms, k, that correspond to the design matrix of covariates Xki and Xkj. The 

disturbance terms allow each of the k = 1, …, K parameter vector elements to be distributed 

across the sample population. We specify the K-element vector in the same way as the CHMs. 

All attributes are effects coded, but each attribute has an additional “level” to estimate the 

effect of it as “missing”. We follow Revelt and Train (1998) in assuming that random effects 

are normally distributed with mean k and variance k. Because MIXL is not a closed form, 

we estimate it with simulated maximum likelihood (SML) (Revelt & Train, 1998), modifying 

Train’s GAUSS code (http://elsa.berkeley.edu/~train/software.html) to do this. 

 We think that this is the first CHM and MIXL comparison with comparable statistical 

effects. Specifically, both CHM and MIXL estimate conditional means associated with each 

attribute level. However, CHM estimates the scale effects associated with each attribute level, 

while MIXL estimates standard deviations. CHM assumes the errors are non-independent 

extreme value type-1 random variates, while MIXL assumes that errors are IID  extreme value 

type-1 random variates, with attribute level effects distributed as standard normal random 

variates (with estimated standard deviations). Thus, we expect both models will provide 

similar statistical descriptions of the effects; both capture unobserved variability but do so in 

different ways.  

 

4. Impact of Missing Information on Choices 

Our CHM specification allows us to anticipate signs and parameter-estimate magnitudes based 

on prior work. For example, work in economics and psychology suggests that consumers 
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evaluate attribute level information about products, combining the level values to holistically 

evaluate each option (e.g., Fishbein & Azjen, 1975; Louviere, 1988).  In the missing 

information paradigm, the experimental participants know the attribute exists, but there is no 

information for one or a few options. In our case, “missing” attributes are not shown, so our 

experimental participants do not know that a missing attribute describes choice options (unless 

they make assumptions or inferences). 

Prior work consistently shows that missing information impacts systematic utility 

components, but as we noted earlier, we are unaware of attempts to account for differences in 

choice variability. For example, Meyer (1981) showed that if attribute information is missing, 

consumers tended to assign a score equal to their adaptation level. Huber and McCann (1982) 

showed that consumers used beliefs about price and quality correlations to infer missing price 

or quality levels. Broniarczyk and Alba (1994) noted that consumers’ existing (i.e., prior) 

beliefs can influence their inferences. Thus, common themes in this paradigm are a) the role of 

inferences or beliefs that go beyond the information provided (e.g., Bruner, 1957), and b) 

devaluation of choice options (e.g., Sanbonamatsu et al., 1992; Johnson & Levin, 1985; Meyer, 

1981; Simmons & Lynch, 1991). In the case of devaluation, discounting of options that have 

missing information is a typical hypothesis. For example, Meyer (1981) noted that missing 

attribute levels are assigned “below neutral” utility value and that this devaluation impacts the 

overall evaluation. Johnson and Levin (1985) found that evaluations decreased with more 

missing information. Simmons and Lynch (1991) suggested that devaluation is due to negative 

cues provided by missing information. 

Our CHM specifications estimate km to capture effects on mean utility when a level of 

attribute 'k' is missing. As noted, prior work suggests that inferred levels of missing attributes 

will be negative. Our CHM specifications include estimates that capture effects on the scale 

component for missing attribute levels (km): positively signed km imply that, if a level of 
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attribute 'k' is missing, response variability decreases. Signs and magnitudes of km matter 

when interpreting behavioral outcomes because such effects suggest that option devaluation 

due to missing attribute information may be due to scale differences. Specifically, 

observationally equivalent results can occur with slightly negative and insignificant km 

combined with positive km (i.e., less choice variability). As previously noted, we expect 

response variability to decrease if an attribute is excluded in a DCE condition; therefore, we 

expect the km estimates to be significant and positive.  

 

5. Research Approach 

We designed an experiment to obtain choice data to estimate the model effects described 

earlier and control for as many other effects as possible. Specifically, if each attribute can be 

included or excluded, attribute information has two states. Thus, for K attributes, there are 2K 

total ways to vary information (include/exclude) for any set of K attributes. 

We studied two product categories (delivered pizzas and packaged juices) and varied 

the inclusion of seven attributes in both categories. Each category had core attributes that were 

always included (brand name and price for pizzas; brand name, price, and type of juice for 

juices). We used an orthogonal fractional factorial design to create 32 “master conditions,” in 

which each attribute occurs equally often and each pair of attributes co-occur equally often 

(Hahn & Shapiro 1966, Experimental Plan Code 6c). Known as a “Resolution 5” design, it 

allows all main effects and two-way interactions to be estimated independently of one another 

but not independently of higher-order interactions, which must be assumed insignificant. The 

master design can be split into two orthogonal main effects designs and used to conduct 

rigorous split-half comparisons, as we later discuss. 

We selected pizza and fruit juice to study because these are familiar to our student 

respondents, who can afford to purchase them. These also represent different product types 
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with different price points, allowing cross-category comparisons. Attributes and levels are in 

column 1 in Appendix A and B. Pizza attributes and levels are based on local pizza supplier 

menus and ingredient lists; juice attributes were based on package information from 

supermarkets. Attributes and levels were refined using focus groups with participants from the 

study population. In every condition, brand and price are always present and vary across four 

levels. 

In each of the 32 master conditions we used an orthogonal main effects plan (OMEP) to 

create product profile attribute/level descriptions for attributes assigned to that condition. For 

example, condition one, pizzas, has five 4-level attributes and five 2-level attributes (25x45). 

Condition two, juices, has four 4-level attributes and four 2-level attributes (24x44). We created 

different designs for each of the 32 conditions but based all designs on a common OMEP from 

the 8 x 48 factorial. That is, we assigned all 4-level attributes to a fixed set of columns in the 8 

x 48 OMEP, and we assigned all 2-level attributes to other columns by collapsing each 4-level 

column into two two-level columns (2 x 2 sub-designs). This ensures that each attribute always 

varies in the same way with other attributes regardless of the conditions where it occurs. The 

full experiment consists of 32 x 32 treatments (product profiles or scenarios) = 1024 x 2 

categories = 2048 total scenarios. It is worth noting that one could also design the experiments 

as choices among pairs, triples, etc. Optimal design theory for these problems recently has 

become available (e.g., Street, Burgess and Louviere, 2005), making it feasible to control for 

differences in design efficiency. 

 We randomly assigned 18 subjects to each of the 32 master conditions to complete the 

paper and pencil survey. Each subject evaluated the 32 product profiles in the master condition 

to which they were assigned. Participants were recruited from undergraduate marketing 

classes, receiving class credit consistent with university ethics guidelines. 
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Subjects evaluated each pizza or juice description one-at-a-time and decided whether to 

buy each of the 32. We used this binary response task because a) such tasks are used in applied 

economics and marketing (Louviere et al., 2000), and b) they resemble traditional conjoint 

tasks. On average, subjects took approximately 20 minutes to complete the tasks.  

 

6. Results 

6.1 Simulation Comparing Predictive Performance of MIXL and CHM 

To obtain additional insights about in- and out-of-sample performance of CHM and MIXL, we 

designed a simulation study by varying parameter values that reflect different degrees of 

sensitivity (2), preference heterogeneity (2) and choice consistency (2), as described in 

Appendix C. We also used four sample sizes (10, 20, 30, and 50); therefore, the simulation was 

a 23 x 4 factorial. In the interests of brevity, we do not present these results (these are available 

on request). The findings can be summarized as follows:  

 If there is preference heterogeneity in any attribute, MIXL does well on in-sample 

predictions, regardless of sample size or scale; 

 If there is no preference heterogeneity in attributes, neither MIXL nor CHM is 

consistently superior for in-sample predictions; and 

 CHM is superior for out-of-sample predictions, especially at higher scale values. 

Generally, MIXL outperformed CHM for in-sample fits, but CHM outperformed MIXL in out-

of-sample fits. That is, MIXL generally performed better at predicting the choices of the 

hypothetical consumers from which it was estimated (in-sample). However, CHM generally 

performed better in predicting out-of-sample choices or generalizing predictions.  

The reason for this seemingly contradictory result is that MIXL does not capture the 

data generation process (DGP) when there is no preference heterogeneity; perhaps more 

disappointingly, MIXL seems to identify preference heterogeneity when there is none. CHM 
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captures preference heterogeneity via the estimates associated with relative scale and seems to 

capture the mean DGP better than MIXL. Overall, the simulation results support the empirical 

results reported here that show that MIXL is better in-sample, and CHM is better out-of-

sample. 

Following Andrews, Ainslie, and Currim (2002), we analysed our simulation results 

with ANOVA and multiple analysis of covariance (MANOVA). Dependent variables are in- 

and out-of-sample model fits measured by R-sq (MXL_in sample R-Sq; MXL_out sample R-

sq; CHM_in sample R-sq; CHM_out sample R-sq); independent variables are a) heterogeneity 

in an important attribute (low, high); b) heterogeneity in a non-important attribute (low, high); 

and c) scale (low, high). We find significant main effects for heterogeneity in important 

attributes and scale (details available from authors). 

Turning our attention back to our experiments, we summarize the proportions of 

subjects who “would buy” for present/absent attributes (Table 1) to set the scene for the results 

that follow. For Pizza, variances differ on six of seven attributes, while means differ for two of 

seven attributes (at 95% C.I.). For Juice, variances differ for four of seven attributes, while 

means differ for two of seven attributes. In general, omitting information (simplifying 

sampling choice) has a positive impact on choice. These results suggest there are larger 

variance differences in mean responses when attributes are present versus missing. 

Insert Table 1 Here 

6.2. Overall model comparisons 

The estimated model parameters of the CHM and MIXL results are in Appendix A (Pizza) and 

B (Juice). Not surprisingly, CHM and MIXL outperform MNL for both in-sample and out of 

sample tests; thus, for reasons of brevity we omit MNL results (available on request). MNL is 

a restriction on the more general CHM; CHM relaxes the IID error assumption by allowing 

error variances to co-vary systematically with particular attributes. MIXL relaxes the common 
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parameter vector assumption of MNL by allowing a distribution of preference parameters 

within the sample.  

Because subjects completed all choice scenarios, we can calculate the proportion of 

“yes” responses for each profile (32) in each master condition. Thus, we can calculate 

traditional R-squares for each model in each condition by comparing model-predicted choice 

probabilities with observed yes proportions. We evaluate in-sample fits using likelihood ratio 

tests (LRTs) and use R-square values for out-of-sample comparisons. For brevity, we simply 

note that both MIXL and CHM consistently outperform MNL on these tests. 

MIXL is consistently superior to CHM for in-sample fits for both categories. Noting 

that CHM and MIXL have the same number of parameters, the LRT results are: a) Pizza CHM 

Log L = - 11013.1; Pizza MIXL Log L = -9907.9; b) Juice CHM Log L = - 11501.6; and Juice 

MIXL Log L = -10735.9.  

We used split-half cross-validations to compare out-of-sample fits based on R-square 

values for predicted choice proportions for all 32 Master Conditions x 32 scenarios = 1024 

observations. We calculated the proportion of would buy responses for each of the 1024 cases 

and used the models to predict the proportion of “yes” responses. We then split the 32 

conditions into two orthogonal halves. This allows rigorous split-sample comparisons of out-

of-sample fits instead of merely predicting based on some arbitrary set of “holdout choices” 

(Table 2). 

----- Insert Table 2 here ------ 

In two out of four comparisons, CHM outperforms MIXL in terms of out-of-sample fit. 

We use consumer choices to estimate parameters for each person via Bayes rule and use these 

estimates to calculate in-sample fits (i.e., R-square). For out-of-sample fits, we randomly 

selected 16 profiles from the 32 available profiles for each person to calibrate individual level 
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estimates using Bayes rule, and then we used these estimates to predict the remaining 16 

profiles.  

 The most intuitive explanation for our results is that MIXL is better at making in-

sample predictions because it accounts for unobserved variability as preference heterogeneity, 

expressing each sampled individual as a deviation from the overall sample. Hence, MIXL 

captures between-subject differences, while CHM captures all sources of variability, including 

both within- and between-subject variability. Generalizing MIXL to out-of-sample choices is 

problematic if there is new and potentially different between-subject variability. Louviere 

(2006) and Louviere and Meyer (2007) suggest that many potential sources of variability that 

may be constant in an estimation dataset are not constant in a prediction sample. Hence, MIXL 

will do poorly at out-of-sample predictions if the out-of-sample responses differ in some 

material way with regard to within- and/or between-subject heterogeneity. In turn, this implies 

that MIXL may fail to capture some relevant sources of variability in some datasets, posing 

issues for generalizing MIXL to other data sources (samples). Thus, models that can capture 

components of error variability may provide more generalizable predictions than random 

coefficient models. 

6.3. Impact of missing attributes on systematic and random components 

The results in Tables 3a and 3b focus on missing information effects. MIXL pizza 

results indicate several significant effects for included/excluded attribute information; for 

example, if information about extras such as free delivery or salads is missing, the probability 

of saying “yes” decreases, which is consistent with prior work that has shown missing 

information implied devaluation.  However, only one effect is significant (salad, p=0.01). 

MIXL pizza results also imply that the probability of saying “yes” is more likely if the crust is 

missing than present, contradicting prior missing information results, although Sanbonmatsu et 

al. (1992) and Kardes et al. (2004) note that option devaluation occurs only if consumers 
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recognize that information is missing. Overall, the results for the Pizza and Juice datasets are 

similar. 

------- Insert Table 3a and Table 3b here ------ 
 

Yet once variability differences are captured in the CHM, the pizza results change. That 

is, there are no significant missing attribute effects in the systematic utility component, but all 

effects are significant and positive in the scale component. This indicates that the propensity to 

say “yes” did not change if attributes are missing; while respondents neither devalued nor 

inferred more positive values, within- and/or between-person choice variability decreased 

significantly.  

MIXL juice results imply that including attribute information significantly increases the 

propensity to say “yes” for pack-size, added sugar, and for all types of packaging material 

studied. Propensity to say “yes” decreases if calcium is missing. MIXL juice results indicate 

that the estimated impacts on the random component are similar to the pizza results.  

CHM juice results imply that less variability is associated with missing attributes for all 

except one attribute (at the 90% C.I.). In contrast to the CHM pizza results, the effects of type 

of packaging information, pack size, added sugar, and percentage of real juice on the 

systematic component is significant after accounting for random component variability. Hence, 

missing information about pack size, added sugar, and type of packaging increases purchase 

likelihoods, but missing information about the percentage of real juice decreases these (Table 

3b).  

It is worth noting that the systematic utility component results may depend on attribute 

levels experienced by subjects in real life in each category and/or what they believe are the real 

levels when each attribute is included. That is, if subjects are familiar with better/worse 

attribute levels than experimenters present, on average this should decrease/increase propensity 

to say “yes” in response to variation in levels. For example, our results suggest that the sample 
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is more likely to say “yes” if delivery time information is missing. Without other information, 

respondents may believe that (on average) real delivery times are faster than the average of the 

levels that we varied when delivery time was included (10, 20, 30, and 40 min.). If true, it 

could lead to higher estimates about the likelihood of purchase, which suggests that future 

research should consider how expectations relate to attribute levels varied in DCEs (and other 

experiments). 

Similarly, many juice products have relatively low real juice percentages, so it may be 

that the sample inferred that (on average) the percent of juice was lower if this information was 

missing. In turn, this implies that if information about some attributes is missing, consumers 

may be more likely to say “yes” or “no” simply because they like/dislike the levels they see 

when information is included. In any case, the cross-category results for missing attribute 

effects on systematic utility components warrants further investigation, and a logical 

hypothesis to test is that the effect can be manipulated by an experimenter’s choice of levels 

and/or that the choice of levels interacts with respondent expectations.  

6.4. Impact of levels of included attributes on random components 

Both pizza and juice price results show an inverse-U relationship between price levels and 

choice variability, such that choice variability is highest for the highest price levels, as shown 

in Figures 1a (pizza) and 1b (juices). Louviere (2001) noted that variability may be higher for 

extreme levels if a) consumers respond less consistently to higher prices because they don’t 

know if extreme price levels are riskier (they may be higher or lower than expected); and/or b) 

price sensitivity differences across consumers are larger at extreme price levels. 

----- Insert Figure 1a and Figure 1b here ---- 

The results show that choice variability decreases if attribute information is missing 

and is systematically related to the levels of several attributes. For example, choice variability 

exhibits an inverse-U shaped relationship with number of toppings and delivery times, which 
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may be due to different sensitivity to the levels, leading to non-linear conditional utilities. If 

the conditional response functions are non-linear and one aggregates across consumers, errors 

in model estimates are likely to be larger for extreme than middle levels. That is, if utility 

decreases at a decreasing rate for some, but decreases at an increasing rate for others, response 

curves will differ more at extreme than middle levels. 

The random component results also show differences in choice variability associated 

with qualitative attribute levels. For example, juice packaging results (Appendix A, CHM 

results) show that the sample preferred glass (t=12.35) and were indifferent to aluminum (t=-

1.30), but neither packaging type affected the random component (t=0.46 and 0.21 for glass 

and aluminum, respectively). They disliked plastic bags (t=-15.28) and preferred tetra packs 

(t=3.10); their choices reflected consistency in these preferences, as captured by a significant 

and negative scale effect (t=-2.78 for plastic; t=-2.35 for tetra). 

6.5. Comparison of Mean Parameter Estimates of CHM and MIXL 

Both models yield the same mean utility estimates for the attribute levels up to scale, again 

indicating that their primary difference lies in assumptions about unobserved variability. 

Specifically, the estimated parameters are the same up to a scaling factor that reflects 

differences in unobserved variability in the data sources from which the models were estimated 

(Swait & Louviere, 1993). This suggests convergent validity, with correlations between CHM 

and MIXL mean estimates, respectively, of 0.976 for Pizza and 0.953 for Juice.  

Recall that parameter vectors estimated from choice data, ̂ , are confounded with scale. 

In theory, CHM estimates true . We can adjust the data with scales recovered from CHM, 

which should allow us to recover true  for MNL. Therefore, we adjusted for CHM scale and 

re-estimated MNL with an adjusted design matrix, X, instead of X. We obtained a revised 

mean ratio of CHM/(MNL_adjusted with scale), which was not statistically different from 1 

for either category (p=0.64 for Pizza; p=0.31 for Juice; details available on request). 
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7. Discussion and Conclusions 
 
We described and discussed research designed to give better insights into the likely effects of 

including/excluding attributes in DCEs. We used MIXLs and CHMs to separate the effects 

associated with 32 master conditions used to vary attribute inclusion/exclusion, while nesting 

separate DCEs under each master-condition that only varied “included” attributes. This 

approach allowed us to identify and specify both systematic and random components as a 

function of included attribute levels. Our results suggest that excluded/missing attribute 

information effects depend on the attribute levels and/or category that researchers choose. That 

is, our CHM pizza results suggest that missing attribute information did not impact the 

systematic component but increased the scale component, implying that choice consistency 

increased if attribute information was missing. For juice, missing attribute information affected 

both components. Additives and packaging attributes increased propensity to say “yes” if 

missing; similar to the pizza results, missing attributes increased choice consistency. This 

missing information increased choice consistency in both categories, suggesting that 

consumers may respond as if "what I don't know probably won't hurt me," or ignore 

information not presented, which may lead to more consistent choices. 

Behaviorally, our results suggest that decisions to exclude attributes in DCEs will affect 

choice consistency, but the impacts on propensity to buy products are unclear. Decreasing the 

amount of attribute information presented leads to more consistent choices, but choosing 

whether to buy with less information depends on the attribute levels of product profiles relative 

to consumers’ real-life experiences with the attributes. From a statistical modeling perspective, 

our comparison of CHMs and MIXL using simulated data supported our empirical findings. 

CHMs fared worse on in-sample fits but fared better on out-of-sample, split-half predictions, 

suggesting that CHMs warrant more attention by researchers. Our CHM models allowed us to 

separate systematic and random component effects associated with attributes and capture non-



 23

linear and non-additive impacts of attributes on utility and choice. CHMs also are closed-form, 

which may be advantageous in some cases (e.g., quicker estimation). Because of the way in 

which we specified MIXL and CHM, we can visualize relationships not only between attribute 

levels and systematic effects but also between attribute levels and scale-component effects. We 

also found several numerical attributes, such as price, number of toppings, and percent real 

fruit juice, that were associated with U-shaped error variance functions, implying more 

variability at extreme levels than middle levels. The later is consistent with Louviere’s (2001) 

notion that extreme levels may impact within- and between-subject variability, although our 

modeling approach does not allow these two effects to be separated.  

 There are several implications of our work for academic and commercial DCE 

research. Failure to account for unobserved variability in comparing or pooling DCE results is 

likely to lead to biased conclusions about mean attribute effects. Thus, one should exercise 

caution in excluding attributes in DCEs and compare effects across conditions only after taking 

variability differences into account. One also should be cautious about assuming constant 

random errors because our results and a growing body of empirical work suggest that they are 

neither constant nor non-systematic.  

 Our results also suggest that unobserved choice variability is likely to be an important 

behavioral phenomenon in its own right, as noted by Louviere (2001), Louviere et al. (2002), 

and Louviere and Meyer (2007). However, we know little about unobserved variability. 

Despite much research on variability between individuals (preference heterogeneity) in the last 

decade, this is only one type of unobserved variability. Thus, the field would benefit from 

more research into sources of unobserved variability in real and experimental markets. 

 Overall, our results suggest that the decisions researchers make about which attributes 

(and associated attribute levels) to include in DCEs impact both mean utility and choice 

variability. This probably also applies to real markets, such that managers’ marketing actions 
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impact both components. For example, if price levels impact both mean utility and choice 

variability, at least part of the price impact may be due to scale differences, not real utility 

differences. Louviere and Meyer (2007) showed that scale impacts on price effects can be as 

much as 35% to 40% of the estimated price effect. In some cases, manipulating prices may 

lead to more or less consumer uncertainty or heterogeneity, while in other cases, it may lead to 

changes in both. To accurately assess pricing and other policies, managers need to know which 

is which. CHMs can separate these effects and relate them to observable covariates like age, 

education and geographical location, providing insights into impacts on both components. 
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 Appendix A: Detailed Model Estimation of Pizza Results 
 
 CHM Model Mixed Logit 

 Systematic Component Scale Component Systematic Component Variance Component 

Parameters Est. () t-stat prob. Est. () t-stat prob. Est. () t-stat prob. Est. () t-stat prob. 

 
Pizza Hut 

 
0.0729 

 
3.3 

 
0.00 

 
-0.0068 

 
-0.2 

 
0.87 

 
0.1998 

 
4.9 

 
0 

 
2.0137 

 
40.5 

 
0 

Dominos -0.0130 -0.5 0.59 -0.0186 -0.5 0.64 -0.0539 -1.4 0.16 0.5214 10.9 0 

Pizza Pizza 0.1852 8.8 0.00 0.0188 0.4 0.71 0.3452 9.3 0 0.4352 8.3 0 

Ginos 
 

-0.2451 -12.2 0.00 0.0066 0.2 0.84 -0.4911 -10.5 0 1.0571 21.6 0 

Price = $10 0.5271 26.1 0.00 0.0030 0.1 0.94 1.1143 27.9 0 1.4738 27.4 0 

Price = $12 0.2793 14.1 0.00 0.0647 2.0 0.05 0.4972 14.4 0 0.0875 1.8 0.07 

Price = $14 -0.1155 -6.1 0.00 0.0416 1.0 0.31 -0.2608 -7.7 0 0.2356 3.9 0 

Price = $16 
 

-0.6909 -31.9 0.00 -0.1093 -2.9 0.00 -1.3507 -26.2 0 1.1507 21.9 0 

Regular Crust 0.1225 2.8 0.01 -0.0057 -0.1 0.89 0.1811 3.5 0 0.0232 0.4 0.66 

Thin Crust -0.0939 -2.6 0.01 -0.0796 -1.2 0.22 -0.1373 -2.4 0.02 0.8573 14.9 0 

Thick Crust -0.0353 -1.0 0.31 -0.1055 -1.8 0.07 -0.1251 -2.4 0.02 0.2256 3.7 0 

Pan Crust -0.0026 -0.1 0.96 -0.0265 -0.4 0.66 -0.0706 -1.4 0.17 0.0109 0.2 0.86 

Crust Missing  
 

0.0093 0.2 0.82 0.2173 3.8 0.00 0.1519 2.9 0 0.6440 11.1 0 

1 Topping -0.8064 -23.0 0.00 -0.1455 -2.8 0.01 -1.3256 -19.5 0 1.2090 17.7 0 

2-3 Toppings 0.1248 4.0 0.00 0.0063 0.2 0.88 0.2210 4.1 0 0.4721 6.5 0 

4-5 Toppings 0.2484 8.0 0.00 0.0433 0.9 0.38 0.4222 8.0 0 0.1815 3.0 0 

6 or more  0.4333 12.2 0.00 -0.1066 -2.4 0.02 0.5819 9.9 0 0.5960 9.9 0 

Toppings Missing 
 

-0.0001 0.0 1.00 0.2025 4.3 0.00 0.1005 1.7 0.08 0.9036 13.9 0 

10 min Del. Time 0.5432 14.9 0.00 -0.1111 -2.4 0.02 0.8469 14.6 0 0.5783 10.4 0 

20 min Del. Time 0.2530 7.7 0.00 -0.0394 -0.8 0.44 0.4201 8.2 0 0.0459 0.7 0.46 

30 min Del. Time -0.0838 -2.7 0.01 0.0294 0.5 0.60 -0.1359 -2.7 0.01 0.2329 4.0 0 

40 min Del. Time -0.7195 -21.1 0.00 -0.0893 -1.8 0.08 -1.1757 -19.2 0 0.8484 14.7 0 
Del.Time Missing 
 

0.0071 0.2 0.83 0.2104 4.1 0.00 0.0446 0.8 0.42 0.0087 0.2 0.88 

Free Del. = No -0.1556 -7.9 0.00 -0.0001 0.0 1.00 -0.2695 -6.8 0 0.0481 0.9 0.36 

Free Del. = Yes 0.1480 7.4 0.00 -0.0606 -2.1 0.04 0.2795 7.0 0 0.2552 4.3 0 

Free Del. Missing 
 

0.0076 0.4 0.70 0.0607 2.1 0.04 -0.0100 -0.3 0.80 0.3033 5.4 0 

Bread = No -0.0996 -5.1 0.00 -0.0489 -1.6 0.12 -0.2077 -5.5 0 0.0310 0.5 0.59 

Bread = Yes 0.1041 4.9 0.00 -0.0977 -3.1 0.00 0.1343 3.5 0 0.2053 3.5 0 

Bread Missing 
 

-0.0045 -0.2 0.83 0.1466 4.7 0.00 0.0734 1.9 0.06 0.1743 3.0 0 

Wings = No -0.1275 -6.8 0.00 0.0463 1.5 0.13 -0.2557 -6.0 0 0.5401 10.6 0 

Wings = Yes 0.1406 6.5 0.00 -0.1361 -4.4 0.00 0.1959 4.6 0 0.6048 11.5 0 

Wings Missing 
 

-0.0131 -0.7 0.52 0.0898 2.9 0.00 0.0598 1.4 0.16 1.1449 22.0 0 

Salad = No -0.0627 -3.1 0.00 -0.0300 -1.0 0.34 -0.0469 -1.2 0.24 0.0893 1.7 0.09 

Salad = Yes 0.0486 2.4 0.02 -0.0493 -1.6 0.11 0.1473 3.7 0 0.0626 1.5 0.15 

Salad Missing 
 

0.0141 0.7 0.48 0.0793 2.6 0.01 -0.1004 -2.5 0.01 0.1519 3.1 0 

Intercept 0.1996 17.3 0.00 -0.0692 -2.6 0.01 0.3533 5.9 0 0.1559 3.0 0 
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 Appendix B: Detailed Model Estimation of Juice Results 
 
 CHM Model Mixed Logit 

 Systematic Component Scale Component Systematic Component Variance Component 

Parameters Est. () t-stat prob. Est. () t-stat prob. Est. () t-stat prob. Est. () t-stat prob. 

 
Minute Maid 

 
0.0404 

 
2.8 

 
0.01 

 
0.0109 

 
-1.5 

 
0.13 

 
0.1036 

 
3.1 

 
0.00 

 
0.7790 

 
15.5 

 
0.00 

Tropicana 0.1223 8.2 0.00 -0.0580 -1.5 0.13 0.2811 8.3 0.00 0.3061 7.1 0.00 

McCain -0.0510 -3.6 0.00 0.0136 0.5 0.65 -0.1060 -3.3 0.00 0.0717 1.1 0.29 

Del Monte 
 

-0.1110 -7.9 0.00 0.0335 0.8 0.40 -0.2790 -8.0 0.00 0.4008 9.9 0.00 

Price = $0.30 0.2487 17.2 0.00 0.0293 0.8 0.46 0.6175 17.6 0.00 0.8030 17.5 0.00 

Price = $0.40 0.1204 8.7 0.00 0.0443 1.0 0.30 0.2694 8.6 0.00 0.0170 0.4 0.66 

Price = $0.50 -0.0520 -3.7 0.00 0.0213 0.6 0.58 -0.1630 -5.2 0.00 0.0020 0.0 0.97 

Price = $0.60 
 

-0.3170 -20.5 0.00 -0.0950 -2.6 0.01 -0.7240 -17.0 0.00 0.8221 19.2 0.00 

Juice Type -- Apple -0.0040 0.4 0.66 0.0609 2.8 0.01 -0.0290 -1.3 0.21 0.3963 13.0 0.00 
Juice Type – Orange 
 

0.0036 0.4 0.66 -0.0610 -2.8 0.01 0.0286 1.3 0.21 0.3963 13.0 0.00 

Prep (concentrate) -0.1030 -7.7 0.00 0.0031 0.1 0.93 -0.2340 -5.8 0.00 0.4110 8.7 0.00 

Prep (fresh) 0.1041 7.7 0.00 -0.0630 -1.7 0.08 0.2057 5.3 0.00 0.2600 4.4 0.00 

Prep Missing 
 

-0.0010 -0.1 0.92 0.0603 1.7 0.08 0.0281 0.7 0.48 0.6710 12.7 0.00 

10% real juice  -0.7520 -27.7 0.00 0.0518 1.1 0.26 -1.3760 -18.0 0.00 1.4297 18.7 0.00 

40% real juice  -0.3390 -13.9 0.00 0.1069 1.5 0.13 -0.5300 -9.7 0.00 0.5400 7.1 0.00 

70% real juice  0.3508 12.0 0.00 -0.1030 -1.8 0.07 0.7805 14.6 0.00 0.3132 5.7 0.00 

100% real juice  0.8367 21.6 0.00 -0.4480 -9.2 0.00 1.1723 21.0 0.00 0.5109 7.2 0.00 

% real juice Missing 
 

-0.0970 -3.2 0.00 0.3925 7.1 0.00 -0.0470 -0.8 0.43 2.7940 40.2 0.00 

Number of Packs (3) -0.1680 -6.5 0.00 -0.2090 -3.0 0.00 -0.3340 -7.0 0.00 0.0205 0.4 0.72 

Number of Packs (6) -0.0340 -1.5 0.14 -0.0560 -0.8 0.42 -0.1040 -2.2 0.03 0.0150 0.2 0.83 

Number of Packs (9) 0.0206 0.9 0.36 -0.0340 -0.4 0.73 0.0055 0.1 0.91 0.0375 0.5 0.60 

Number of Packs (12) 0.1111 5.2 0.00 0.0960 1.6 0.11 0.2650 5.5 0.00 0.0350 0.4 0.73 

No. of Packs Missing 
 

0.0706 3.0 0.00 0.2020 2.7 0.01 0.1675 3.5 0.00 0.0080 0.1 0.91 

Vit. C = Not Added -0.0770 -5.6 0.00 -0.0710 -1.5 0.13 -0.1530 -4.0 0.00 0.2445 4.6 0.00 

Vit. C = Added 0.0953 7.2 0.00 0.0054 0.1 0.92 0.2089 5.3 0.00 0.0940 1.5 0.13 

Vit. C Missing 
 

-0.0180 -1.3 0.18 0.0659 1.3 0.20 -0.0560 -1.4 0.15 0.1500 2.6 0.01 

Sugar = Unsweetened -0.0120 -0.8 0.42 -0.0590 -1.6 0.12 -0.0120 -0.3 0.78 0.6608 12.5 0.00 

Sugar = Sweetened -0.0420 -2.8 0.01 -0.0980 -2.6 0.01 -0.1180 -2.9 0.00 0.5322 7.9 0.00 

Sugar Missing 
 

0.0538 3.6 0.00 0.1567 4.2 0.00 0.1301 3.1 0.00 1.1930 19.8 0.00 

Calcium = Not Added -0.0470 -3.5 0.00 -0.0490 -1.3 0.20 -0.0310 -0.8 0.43 0.2074 3.7 0.00 

Calcium = Added 0.0345 2.7 0.01 0.0494 1.3 0.19 0.1104 2.8 0.00 0.1849 2.9 0.00 

Calcium Missing 0.0128 1.0 0.34 -0.0010 
 

0.0 0.99 -0.0790 -2.0 0.04 0.3920 6.5 0.00 

Packaging (Glass) 0.2860 12.4 0.00 0.0291 0.5 0.65 0.5913 11.5 0.00 0.3080 4.2 0.00 

Packag. (Aluminum) -0.0290 -1.3 0.20 0.0124 0.2 0.84 -0.1360 -2.5 0.01 0.5842 10.6 0.00 

Packaging (Tetra) 0.0791 3.1 0.00 -0.1470 -2.4 0.02 0.1532 2.9 0.00 0.5233 8.7 0.00 

Packag. (Plastic Bag) -0.4070 -15.3 0.00 -0.1550 -2.8 0.01 -0.8600 -14.0 0.00 0.9452 16.9 0.00 

Packaging Missing 
 

0.0714 2.9 0.00 0.2607 4.3 0.00 0.2518 4.6 0.00 1.745 28.4 0.00 

Intercept 0.0061 0.7 0.47 0.1151 4.8 0.00 -0.1320 -2.3 0.02 0.1815 3.2 0.00 
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Appendix C: Simulation Design  
We simulated choices based on experiments with four attributes. Attributes A and B were always 

present, but C and D were varied. Attribute C was assumed more important than D. This results in 

four conditions (cond 1: 4 profiles with A and B varied; cond 2: 8 profiles with A, B, and D varied; 

cond 3: 8 profiels with A, B, and C varied; cond 4: 16 profiles with A, B, C and D varied). The 

mean coefficients for the data generation process (DGP) are βA = 0.15, βB = -0.70, βC = 1.0, and βD 

= 0.10. Our choice of important and non-important parameter values are based on theoretical work 

on best-worst scaling by Marley and Louviere (2005). For example, if there are 4 attributes in a 

particular set and a consumer reports their most and least preferred options, the relative importance 

of the 4 attributes are 8, 4, 2 and 1 from most to least preferred attributes. The importance weight of 

least important attribute is 1/8 (= 0.12) relative to the most important attribute. Our choice of βC = 

1.0 and βD = 0.10 is based on that theoretical reasoning. The preference heterogeneity is assumed 

“zero”, “low” (standard deviation of preference heterogeneity,  = β, i.e., coefficient of variation, 

CV =1), and “high” ( = 2 β, i.e., CV =2). Our choice of CV = 0, 1, and 2 is based on empirical 

findings of the most frequent ratios from 9 published articles from different disciplines (e.g., Revelt 

and Train 1998; a complete list is available from authors). Condition 4 is used as the reference 

condition to calculate relative scales. The data generation process is iniin eXU  . Here ein is 

distributed as extreme value. Following Train (2003, p 210),  where),ln(lne  is a draw 

from uniform distribution. The variance of the error term is 2/6λ2=2/6 (assumed scale parameter λ 

=1). Two scale values were used (=1 or 3). Andrews, Ainslie, and Currim (2002) simulation 

study, which investigated merits of discrete and continuous representation of preference 

heterogeneity, used variances 1:4 (equivalent to scale 1 and 2). Our empirical scale estimates from 

current data varied from 1 to 3 (31 scale estimates for Pizza and 31 for Juice; 32 conditions for 

each), and we observed that scales varied from 1 to 3 in other research projects. Following 

estimation of mixed logit model, each individual’s posterior prediction was made using Bayes rule. 
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Figure 1a (Pizza): Random Component Estimates vs. Attribute Levels 

Legend: □ = Mixed Logit ● = CHM 

 

 

Figure 1b (Juice): Random Component Estimates vs. Attribute Levels 

Legend: □ = Mixed Logit ● = CHM 
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Table 1: Proportion who would buy the product under Presence/Absence of Attributes 

 Mean proportion that “would buy” Test of Equality 
Pizza Attributes Missing Present Variances (Sig.)^ Means (Sig.)† 
Number of Toppings 0.577 0.563 0 0.057 
Delivery Time 0.587 0.553 0 0 
Free Delivery 0.563 0.576 0 0.074 
Garlic Bread/Sticks 0.563 0.577 0 0.057 
Chicken Wings 0.571 0.569 0.592 0.789 
Salad 0.562 0.578 0 0.026 
Crust Type 0.577 0.563 0 0.053 
     
Juice Attributes Missing Present Variances (Sig.)^ Means (Sig.)†  
Concentrate/Fresh  0.507 0.508 0.814 0.906 
% of real juice 0.509 0.506 0.388 0.659 
Number of Packs 0.521 0.494 0 0 
Vitamin C 0.506 0.509 0.486 0.724 
Sugar 0.518 0.497 0 0.005 
Calcium 0.514 0.501 0.010 0.099 
Packaging Materials 0.520 0.495 0.001 0.001 

^ - Levene’s Test for equality of variances (two tailed significance reported). Null hypothesis is 
equality of variances. 
† - Independent Sample t-test for equality of means (two tailed significance reported) 

 

Table 2: Percent Correct In and Out of Sample Predictions  

  In Sample Out of Sample 
  MNL CHM MIXL MNL CHM 

 
MIXL 

Model estimated with first 
set of 16 conditions. 
Prediction made on second 
set of 16 conditions 

Pizza 
 

0.780 0.807 0.862 0.672 0.731 0.694 

Juice 
 

0.719 0.789 0.825 0.588 0.600 0.667 

Model estimated with second 
set of 16 conditions. 
Prediction made on first set 
of 16 conditions 

Pizza 
 

0.753 0.803 0.855 0.706 0.736 0.721 

Juice 
 

0.694 0.744 0.801 0.620 0.647 0.660 
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Table 3a: Pizza Model Parameters  
 
 CHM Model Mixed Logit 

 Systematic Component Scale Component1 Systematic Component Variance Component2

Parameters Est. () Prob.  Est () Prob.   Est. () Prob.  Est.() Prob   

Crust Missing 0.0093 0.82   0.2173 0.00 ** 0.1519 0.00 ** 0.644 0.00 ** 

Toppings Miss. -0.0001 0.99  0.2025 0.00 ** 0.1005 0.09  0.9036 0.00 ** 

Del. Time Miss. 0.0071 0.83  0.2104 0.00 ** 0.0446 0.42  0.0087 0.88  
Free Del. Miss. 0.0076 0.70  0.0607 0.04 * -0.0100 0.80  0.3033 0.00 ** 

Bread Miss. -0.0045 0.83  0.1466 0.00 ** 0.0734 0.06  0.1743 0.00 ** 
Wings Miss. -0.0131 0.52  0.0898 0.00 ** 0.0598 0.16  1.1449 0.00 ** 

Salad Miss. 0.0141 0.48   0.0793 0.01 * -0.1004 0.01  * 0.1519 0.00 ** 

* significant at 0.05 level; ** significant at 0.01 level   
1 Positive  estimates indicate decrease in variability. Scale component  =exp()= SQRT(2/6

2).  
 

Table 3b: Juice Model Parameters  
 
 CHM Model Mixed Logit 
 Systematic Component Scale Component Systematic Component Variance Component 
Parameters Est. () Prob.  Est. () Prob.   Est. () Prob.  Est. () Prob.  

Prep Miss. -0.0014 0.92  0.0603 0.08  0.0261 0.48  0.6710 0.00 ** 

Realjuice Miss. -0.0965 0.00 ** 0.3925 0.00 ** -0.0471 0.43  2.7938 0.00 ** 

N_Pack Miss. 0.0706 0.00 ** 0.2020 0.01 ** 0.1675 0.00 ** 0.0083 0.91  

Vitamin C Miss. -0.0180 0.18  0.0659 0.20  -0.0559 0.15  0.1503 0.01 ** 

Sugar Miss. 0.0538 0.00 ** 0.1567 0.00 ** 0.1301 0.00 ** 1.1930 0.00 ** 

Calcium Miss. 0.0128 0.34  -0.0007 0.99  -0.0791 0.04 * 0.3923 0.00 ** 

Pkg Mat. Miss. 0.0714 0.00 ** 0.2607 0.00 ** 0.2518 0.00 ** 1.7450 0.00 ** 

* significant at 0.05 level; ** significant at 0.01 level 


