

Abstract—Software as a service (SaaS) is a Cloud Computing

service model that exploits economies of scale for SaaS service

providers by offering a single configurable software and

computing environment for multiple tenants. This contemporary

multi-tenant service requires a multi-tenant database that

accommodates data for multiple tenants using a single database

schema. In general, traditional Relational Database Management

Systems (RDBMS) do not support multi-tenancy and require

schema extensions to provide multi-tenant capabilities. This paper

proposes a multi-tenant database schema called Elastic Extension

Tables (EET), which is highly flexible in enabling the creation of

database schemas for multiple tenants by extending a preexisting

business domain database, or by creating tenant business domain

database from the scratch at runtime. The empirical results

presented in this paper indicate that the EET schema has potential

to be used for implementing multi-tenant databases for multi-

tenant SaaS applications.

Index Terms— Cloud Computing, Software as a Service, Multi-

tenancy, Elastic Extension Tables, Multi-tenant Database.

I. INTRODUCTION

LOUD Computing has recently emerged as a new

computing paradigm that transforms the IT industry,

making the computing software and hardware more appealing

to use as a service over the internet [17], [26]. This new

computing paradigm has been gaining popularity for two

reasons. First, the internet has become affordable and its speed

has significantly increased [29]. Second, rapid growth in

computer usage, in areas such as businesses, governments,

health services, education, social media networks, mobile

applications, and other computational aspects [17]. This

increase in internet speed and the computer usage resulted in

the need to maximize the use of computational resources and to

minimize the cost. Cloud Computing offers a solution to this

need by moving applications and their data from desktop and

portable Personal Computers into large data centers [16]. Cloud

Computing is rapidly evolving, with the prospects that it will be

one day the fifth used utility after water, electricity, gasoline,

and telephone [5], [15], [19]. Cloud Computing includes a

number of service delivery models such as Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) [16], [18], [24], [27]. Multi-tenancy is a

fundamental characteristic of Cloud Computing services that

allows SaaS vendors to run a single application that support

multiple tenants using the same software and hardware

infrastructure [13], [25], [28]. It is a common practice in SaaS

applications to use a multi-tenant database architecture with a

single database schema shared among all tenants [4], [21].

Cloud database service providers regard such a database as an

effective resource sharing storage as it reduces the costs by co-

locating multiple tenants’ databases into a single database

schema. It also reduces the total cost of ownership of the

service. Such data architecture consists of two types of data:

shared data and tenant’s private isolated data. Combining these

two types of data provides tenants with a complete view of data

that fits their business requirements [7], [9].

Most modern Relational Database Management Systems

(RDBMS) have been designed to manage data for a single

tenant. However, single-tenant databases do not support the

unique requirements of individual tenants and this can lead to

incorrect assumptions and query plans [1], [21]. Various multi-

tenant database schema techniques have been studied and

implemented to overcome this challenge, including Private

Tables, Extension Tables, Universal Table, Pivot Tables,

Chunk Table, Chunk Folding, and XML Table [2], [8], [12],

[14], [22], [21]. These multi-tenant schema techniques are

based on traditional RDBMS [4], [7]. However, these multi-

tenant schema techniques suffer from various limitations that

still need to be addressed [5], [11], [21], [23], and overcoming

Elastic Extension Tables for Multi-tenant

Cloud Applications

Haitham Yaish1, 2, 3, Madhu Goyal1, 2, George Feuerlicht2, 4

1 Centre for Quantum Computation & Intelligent Systems

2 Faculty of Engineering and Information Technology,

University of Technology, Sydney

P.O. Box 123, Broadway NSW 2007, Australia

3 Faculty of Engineering,

American University of the Middle East, Kuwait

4 Faculty of Information Technology,

University of Economics, Prague, Czech Republic

haitham.yaish@uts.edu.au, madhu@it.uts.edu.au, george.feuerlicht@uts.edu.au

C

these limitations in the context of SaaS applications has

received a lot of attention, both from academic and industry-

based researchers.

In this paper, we propose a novel multi-tenant database

schema called Elastic Extension Tables (EET) that consists of

Common Tenant Tables (CTT), Extension Tables (ET), and

Virtual Extension Tables (VET). This multi-tenant schema

enables tenants to build their own virtual database schema by

creating the required number of tables and columns, creating

virtual database relationships, and assigning suitable data types

and constraints for table columns during multi-tenant

application run-time execution. It also gives tenants the

opportunity to address their individual business requirements

by choosing from three database models: (1) Multi-tenant

Relational Database, (2) Integrated Multi-tenant Relational

Database with Virtual Relational Database, and (3) Virtual

Relational Database. In addition, it allows tenants to store

different data types, including structured, semi-structured, and

unstructured data. In this paper, several experiments are

performed to evaluate the feasibility and effectiveness of EET

multi-tenant database schema by comparing it with Universal

Table Schema Mapping (UTSM) [2], which is commercially

used by Salesforce. Significant performance improvements

obtained using EET when compared to UTSM, makes the EET

schema a good candidate for implementing multi-tenant

databases and multi-tenant applications.

The rest of the paper is organized as follows: section 2

discusses the related work of multi-tenant database schema

designs. Section 3 proposes the Elastic Extension Tables multi-

tenant database schema. Section 4 proposes three Elastic

Extension Tables database models. Section 5 presents an

example to compare other multi-tenant database schema

designs with the Elastic Extension Table design. Section 6

presents a set of experiments that compare the performance of

Elastic Extension Tables with Universal Table Schema

Mapping. Section 7 concludes this paper and discusses future

work.

II. RELATED WORKS

A number of multi-tenant database schema designs and

techniques have studied and implemented to address multi-

tenant database challenges. This section presents seven multi-

tenant database schema techniques, including Private Tables,

Extension Tables, Universal Table, Pivot Tables, Chunk Table,

Chunk Folding, and XML Table [2], [8], [12], [14], [22], [23].

All of these multi-tenant database schema techniques are based

on traditional RDBMS [4], [7].

A. Private Tables

The Private Tables technique allows each tenant to have his

own private tables, which can be extended and changed [22],

[23]. Using this multi-tenant query technique can be

transformed from one tenant to another by renaming tables, and

metadata without using extra columns like ‘tenant_id’ to

distinguish and isolate the tenants’ data. In contrast, many

tables are required to satisfy each tenant needs. Therefore, this

technique is suitable only for a small number of tenants to

ensure sufficient database load and good performance [23].

B. Extension Tables

The Extension Tables are separated tables joined with the

base tables by adding tenants’ columns to construct logical

source tables [22], [23]. This technique adapted from the

Decomposed Storage Model that splitting up n-columns table

into n 2-column tables joined using surrogate values [22].

Multiple tenants can use the base tables and the extension tables

[7]. It is regarded as a better design when compared to Private

Tables described above. Using this design, the number of tables

grows with the number of tenants, and variety of their different

business requirements [22].

C. Universal Table

A Universal Table contains a large number of columns that

enable tenants to store their required columns. It is structured

with two main columns 'tenant_id' and 'table_id', and other

generic data columns, which have a flexible VARCHAR data

type in which different data types with different data values can

be stored in these columns [2], [22]. A flexible technique that

enables tenants to extend their tables in different ways

according to their business needs. However, the rows of the

universal table can be too wide with an overhead in the number

of NULL values, which the database has to handle [22].

D. Pivot Tables

 In using the Pivot Tables technique, the application maps the

schema into generic structure in the database, in which each

column of each row in a logical source table is given its own

row in the Pivot Table. The rows in the Pivot Table comprise of

four columns, including tenant, table, column, and row that

specifies which row in the logical source table they represent.

It also includes a single data type column that stores the values

of the logical source table rows according to their data types in

the designated pivot Table [8], [21]. For example, the Pivot

Tables can include two pivot tables, the first table 'pivot_int' to

store INTEGER values, and the second table 'pivot_str' to store

STRING values. The performance benefits are achieved using

this technique by avoiding NULL values and by selectively

reading from smaller numbers of columns. Pivot Tables

technique, which partitions data vertically performs better when

it allows selectively read in columns to improve the

performance, when it compared with others multi-tenant

database schema techniques that partition data horizontally (e.g.

Universal Table) [22].

E. Chunk Table

 The Chunk Table is another generic structure technique that

is similar to Pivot Table, except it has a set of data columns with

a mixture of data types that replace the column ‘col’ in the Pivot

Table with ‘chunk’ column in the Chunk Table [22]. This

technique partitions the logical source table into groups of

columns. Each group is assigned a chunk ID and is mapped into

an appropriate Chunk Table. This technique has four

advantages over Pivot Table, including (1) Reducing metadata

storage ratio, (2) reducing the overhead of reconstructing the

logical source tables, (3) reducing the number of columns, and

(4) providing indexes. This technique is flexible, but it adds

complexity to database queries [22].

F. Chunk Folding

Chunk Folding is a schema mapping technique that partitions

logical source tables into chunks vertically [8], [22]. These

chunks are folded in different physical tables and joined

together, where a chunk of columns is partitioned into a group

of columns and each group has a chunk id [8]. Aulbach et al.

[22] performed experiments to measure the efficiency of Chunk

Table and Chunk Folding techniques, and they found that

Chunk Folding technique outperform the Chunk Table

technique. In addition, they state that the performance of this

technique is enhanced by mapping the most used tenants’

columns of the logical schema into conventional tables, and the

majority of tenants does not use the remaining columns in the

Chunk Tables. However, the main limitation and weakness of

the Chunk Folding technique is that the common schema that is

used by multiple tenants must be known in advance, which is

not a practical solution for multi-tenant databases. This issue is

also present in Extension Tables, Pivot Tables, and Chunk

Table multi-tenant schema techniques.

G. XML Table

The XML Table database extension technique is a

combination of relational database and Extensible Markup

Language (XML) [8], [12], [23]. The tenants’ extension

columns can be provided as native XML data type, or storing

the XML document in the database as a Character Large Object

(CLOB) or Binary Large Object (BLOB) [23]. XML data type

facilitating the creation of database tables, columns, views,

variables and parameters, and isolating the application from the

relational data model [12]. This technique satisfies tenants’

needs because their data can be handled without changing

original database relational schema, and XML data type can be

supported by several relational database products [8], [12].

However, this technique reduces the data access performance

[23], and Heng et al. [14] state that this technique has the

poorest performance (e.g. highest response time), when

compared to Private Tables, Universal Table, Pivot Tables,

Chunk Table and Chunk Folding techniques.

Heng et al. [14] conducted a number of experiments to

evaluate retrieving data from five different multi-tenant

schemas used in multi-tenant SasS applications, including

Private Tables, Universal Table, Pivot Tables, Chunk Table,

Chunk Folding, and XML Table. The results of these

experiments show that retrieving data from Universal Table is

faster than the other schema techniques, except the Private

Tables schema. Aulbach et al. [23] conducted experiments to

compare Private Table schema and the Universal Table (Spare

Columns) schema. The results of these experiments show that

the Universal Table schema has the same or better performance

than the Private Tables schema when retrieving or inserting

data, except when inserting a large amount of data, the

Universal Table schema is slower than the Private Tables

schema. Such experimental results lead to conclusion that the

query performance of Universal Table schema is the best

performance out of the five multi-tenant schema techniques, as

the Private Tables schema is only suitable for a small number

of tenants. Overall, the experimental results make the Universal

Table schema the optimal schema to use for a multi-tenant

database when it is compared to Pivot Tables, Chunk Table,

Chunk Folding, and XML Table. Nevertheless, the Universal

Table can be too large introducing overhead with the number of

NULL values, which the database has to handle. This suggests

that the currently available multi-tenant database schemas still

have remaining challenges, and represent suboptimal designs.

Section 5 presents an example that clarifies how the data is

populated in the seven multi-tenant database schema designs

that are discussed in this section.

III. ELASTIC EXTENSION TABLES

The EET multi-tenant database schema proposes a novel way

of designing and creating an elastic database that consists of

three table types, the first type is CTT, the second type is ET,

and the third type is VET. Fig. 1 shows the details of EET multi-

tenant schema. The design of this schema enables tenants to

build their own virtual database schema by creating the required

number of tables and columns, rows, creating virtual database

relationships, and assigning suitable data types and constraints

for table columns during the runtime execution of a multi-tenant

application.

A. Common Tenant Tables

The Common Tenant Tables are the tables that can be shared

between tenants who are using a multi-tenant single database

schema. These tables are RDBMS, and are used as a business

domain database schema that is shared between multiple

tenants. For example, a multi-tenant application of a sales

business domain may have a database schema with sales tables,

such as salesperson, customer, product, sales-fact, and any

other sales tables. These tables have columns that are used by

most of the tenants, and the column tenant ID is used to

differentiate between the tenants’ rows. For example, the

‘sales_person’ CTT in Fig. 11 shows some common columns,

such as ‘first_name’, and ‘last_name’, while the ‘tenant_id’

column is used to differentiate between the tenants’ rows.

B. Extension Tables

The Extension Tables are metadata tables that are used to

create virtual tables for multiple tenants who are using a single

multi-tenant database schema during the application’s runtime

execution. They consists of the following eight physical tables:

1) Db_table Extension Table

The ‘db_table’ ET allows tenants to create virtual (logical)

tables and give them unique names. The structure of this

table has a composite primary key that consists of

‘db_table_id’ and ‘tenant_id’ columns. The ‘db_table_id’

column is a unique primary key of the table, while the

‘tenant_id’ column is a foreign key refers to the ‘tenant’

CTT and at the same time is a combined primary key with

‘db_table_id’ for this table. In addition, this table has the

‘db_table_name’ column that stores the virtual tables’

names. In using this table, each tenant can have unique table

names. For example, tenant-A can create a VET name

‘sales_person’, but cannot create the same VET name again

for his VETs. However, tenant-B can create the

‘sales_person’ name even if tenant-A already created this

VET’s name.

2) Table_column Extension Table

The ‘table_column’ ET allows tenants to create virtual

columns for a VET that created in the ‘db_table’ ET. The

structure of this table has a composite primary key consists

of ‘table_column_id’, ‘tenant_id’, and ‘db_table_id’. The

‘table_column_id’ is a unique primary key for this ET,

while the other two columns ‘tenant_id’ and ‘db_table_id’

are primary keys in this table, and foreign keys that refer to

primary key columns of the ‘tenant’ CTT, and the

‘db_table’ ET. Moreover, this table has other columns,

including ‘table_column_name’, ‘default_value’,

‘data_type’, ‘is_indexed’, ‘is_null’, ‘is_relationship’,

‘is_primary_key_column’, and ‘is_unique_column’. The

‘table_column_name’ column has UNIQUE constraint, and

VARCHAR data type. The ‘default_value’ column stores

already defined value to be used once the database saves a

table row, when there is no value specified to be stored in

this column. The ‘data_type’ column specifies the data type

of a virtual column that is stored into any of the three row

ETs, which are presented in the following point. The

‘is_indexed’ column specifies whether a column has an

index or not. The ‘is_null’ column specifies whether a

column accepts to store NULL values or not, and if it does

not, then this column is considered a mandatory column that

must have a value. The ‘is_relationship’ column specifies

whether a column has at least one relationship with any of

the CTTs or the VETs. The ‘is_primary_key_column’

column specifies whether the column is a primary key. The

‘is_unique_column’ column specifies whether a column has

a UNIQUE constraint.

3) The Row Extension Tables

The row ETs store virtual table rows for virtual extension

columns in three separate ETs. Such ETs are separated in

three tables in order to store small data values in the

‘table_row’ ET, which stores values such as NUMBER,

DATE-and-TIME, BOOLEAN, VARCHAR and other data

types. While large data values are stored in other two ETs,

the first ET is the ‘table_row_blob’ that stores BLOB values

of virtual columns that stores BLOB data type (e.g. Images,

Audio, Video), and the second ET is the ‘table_row_clob’

that stores CLOB values for virtual columns that store

TEXT data type (e.g. E-mails, web pages). The EET design

separates these three ETs to reduce the impact of BLOB and

CLOB values from slowing down virtual schema queries.

These three tables have the same columns, except the table

row ID column, which is called differently in the three

tables. In the ‘table_row’ ET called ‘table_row_id’, in the

‘table_row_blob’ ET called ‘table_row_blob_id’, and in the

‘table_row_clob’ called ‘table_row_clob_id’. A table row

ID can be given for several columns that map to one row in

a VET. Fig.14 shows an example of this mapping. The

corresponding columns in these three tables include, first,

the ‘serial_id’ column which is a composite primary key in

these tables. This column stores a serial number of a virtual

column that maps to a row in the virtual table. Second, the

foreign key columns, including ‘tenant_id’, ‘db_table_id’,

and ‘table_column_id’ which at the same time are

composite primary keys with the Table Row ID column and

the ‘serial_id’ column. Third, the ‘value’ column that stores

the virtual column values, however, the data types of these

columns vary in each of the three row tables according to

the data types that supposed to be stored in each table. These

three row ETs are capable to store data types, including

traditional relational data, texts, audios, images, videos, and

XML in structured, unstructured, and semi-structured

format. The structured data, such as traditional relational

data can be stored in CTTs and VETs as it is presented in

the EET design in Section 5. The un-structured data files

such as images, audios, videos can be stored in EET, by

storing the Uniform Resource Identifier (URI) of a file in

the ‘table_row_blob’ ET. Then the actual physical file can

be stored in a folder of a file system, and then this file can

be accessed using the URI that stored in the

‘table_row_blob’ ET and mapped to the physical file that

stored in a folder. The semi-structured data such as XML

files can be used in two ways. Firstly, using the same

method as used for storing unstructured data, then accessing

the XML file using the URI that stored in the

‘table_row_blob’ ET and mapped to the physical XML file

that stored in a folder. Secondly, an XML file can be stored

as text in the ‘table_row_clob’ ET as a CLOB file, and then

accessed from the ‘table_row_clob’ ET. It is being argued

that RDBMSs are not scalable, because they are limited in

offering good performance and scalability properties.

Nevertheless, this issue can be resolved by using any of the

available distributed software products in the market that

scale and optimize RDBMSs on the cloud, such as MySQL

Cluster, VoltDB, Clustrix, ScaleDB, NuoDB, ScaleBase

[20], and many others.

4) Primary Key Extension Table

The ‘table_primary_key_column’ ET allows tenants to create

virtual primary keys for the virtual extension columns which

are stored in the ‘table_column’ ET. The structure of this table

has a composite primary key consists of

‘table_primary_key_column_id’, ‘tenant_id’, ‘db_table_id’,

and ‘table_column_id’. The ‘table_primary_key_column_id’

column is a unique primary key of the table, while the other

three columns ‘tenant_id’, db_table_id’, and ‘table_column_id’

are primary keys and foreign keys. The ‘is_auto_increment’

column specifies whether a primary key can be auto-

incremented or not. The ‘is_composite_key’ column is used to

specify whether a virtual primary key that is stored in a table is

a single primary key or a composite primary key.

5) Relationship Extension Table

The ‘table_relationship’ ET allows tenants to create virtual

relationships between their VETs and CTTs. The table structure

has a composite primary key consists of ‘table_relationship_id’,

‘tenant_id’, ‘db_table_id’, and ‘table_column_id’. The

‘table_relationship_id’ column is a unique primary key of the

table, while the other three columns ‘tenant_id’, ‘db_table_id’,

and ‘table_column_id’ are primary keys and foreign keys. The

‘table_type’ column specifies whether the relationship is with a

CTT or a VET. The ‘target_table_id’ column is used to create a

master-detail relationship between two VETs, by storing into it

the table ID of the master VET that is stored in the ‘db_table’

ET, while the ‘targeted_column_id’ column is used to store into

it the primary key ID of the master VET for the same

relationship. The ‘shared_table_name’ column is used to create

a master-detail relationship between a CTT and a VET, by

storing into it the name of the master CTT while the name of

the ‘shared_column_name’ column is used to store the primary

key column name of the CTT for the same relationship.

Furthermore, this ET can create a master-detail relationship

between two VETs, or a CTT and a VET, even if the master

table has composite primary keys. Such a relationship can be

achieved by storing multiple table rows into the

‘table_relationship’ for the relationship that is between the

master table that has a composite primary key, and the details

VET. Each of these table rows denotes one of the primary key

columns of the composite primary key that relates to the master

table. The following are the database relationships that can be

created using the ‘table_relationship’ ET between two VETs,

two CTTs, or one VET and one CTT, including One-to-One,

One-to-Many, Many-to-One, Many-to-Many, and Self-

referencing.

6) Index Extension Table

The ‘table_index’ ET is used to add indexes for virtual columns

of a VET to improve and speed up the query execution time

when retrieve data from this VET. The structure of this table

has a composite primary key consists of ‘table_row_id’,

‘serial_id’, ‘tenant_id’, ‘db_table_id’, and ‘table_column_id’.

The column ‘table_row_id’ and ‘serial_id’ are unique primary

keys that are referred to values stored into ‘table_row_id’ and

‘serial_id’ columns in the ‘table_row’ ET. While the other three

columns ‘tenant_id’, ‘db_table_id’ and ‘table_column_id’ are

primary keys and foreign keys for this table. The ‘value’

column stores a value that is stored in the ‘table_row’ ET and

this value relates to an indexed virtual column, which is

specified as an index in the ‘table_column’ ET by storing the

necessary value in the ‘is_indexed’ column.

Fig. 1 Elastic Extension Tables.

C. Virtual Extension Tables

Virtual Extension Tables are the tables that tenants can create

during the application’s runtime execution to extend an existing

business domain database schema, or they can create their own

virtual database schema from the scratch to fulfil their business

needs. In Section 5, a detailed example is presented to explain

how the tenants can create their VETs. In EET, VETs are

created as a metadata into the eight ETs. In using this approach,

the service provider who is offering a business domain

database, can accommodate a large number of virtual tables by

allowing tenants to populate these eight ETs with their data.

This approach allows multi-tenant database service providers to

manage their services in an efficient and cost-effective manner,

and at the same time, it allows each tenant to configure its

database schema according to its requirements.

IV. ELASTIC EXTENSION TABLES DATABASE MODELS

The EET multi-tenant database schema allows the service

provider to offer his tenants with the choice of using any of

the following three database models (Fig. 2):

Fig. 2 EET Database Models.

A. Multi-tenant relational database

This database model allows tenants to use a standard

relational database schema for a particular business domain

database without the need to extend the existing database

structures. This business domain database, can be shared

between multiple tenants and differentiate between them by

using a Tenant ID column in the CTTs (physical tables). This

model can be applied to any business domain database such as

Customer Relationship Management (CRM), Accounting,

Human Resources (HR), or other business domains.

B. Integrated multi-tenant relational database with virtual

relational database

This database model allows tenants to use a standard

relational database schema for a particular business domain,

extend it by adding additional virtual database tables, and

combine these tables with the existing database structure by

creating virtual relationships between them.

C. Multi-tenant virtual relational database

This database model allows tenants to create their virtual

database schema from the scratch, by creating VETs, virtual

database relationships between the VETs, and other database

constraints to satisfy the tenants’ special business requirements

of the tenants’ business domain applications.

For example, if a service provider offers a sales database

schema to be used by multiple tenants, and with this database

schema the service provider uses the EET, then this service

provider can offer the three database models listed above that

fulfil various business requirements. This example assumes that

the service provider has three tenants.

Fig. 3 The EET Three Database Models Example.

The first user evaluated the Sales database, and found that

this database suits his business requirements without any

modifications. Therefore, this user will use the Sales database

schema as originally provided by the service provider as

illustrated in Fig. 3 (a). The second user has evaluated the Sales

database schema and found that he needs to add extra tables to

fulfil his business needs. Thus, this user created VET 1, VET 2,

and VET 3, and then, created virtual database relationships

between these VETs and the already existing physical tables

(CTTs) in the sales database schema. The database model for

this user is shown in Fig. 3 (b). The third user evaluated the

same database schema and found that it did not suit his business

requirements. Therefore, he decided not to use the Sales

database schema at all, and instead created virtual relational

tables from scratch and established database relationships

between them as shown in Fig. 3 (c). This example illustrates

the three database models of EET multi-tenant schema. These

three database models allow tenants to design their databases

and automatically configure their behaviors during their

application’s runtime execution.

V. AN EXAMPLE TO COMPARE MULTI-TENANT DATABASE

SCHEMA DESIGNS WITH ELASTIC EXTENSION TABLES

This section presents an example that clarifies the seven

multi-tenant database schema designs that presented in the

related work section, and clarifies the differences between these

designs and the EET multi-tenant schema design. This example

shows three different tenants, including Tenant-A, Tenant-B,

and Tenant-C. Each of these tenants uses a multi-tenant

database, and in this database, they configure their sales

database structure according to their different business needs.

For simplicity, this example illustrates only one sales table that

stores a sales person’s information by using different multi-

tenant database schema designs. Moreover, this example

presents how the EET enables tenants to create their own

database schema by extending an existing RDBMS database

schema, including the required number of tables and columns,

rows, virtual database relationships with any of the CTTs or

VETs, primary keys for the columns, indexes for the columns,

and assigning suitable data types for columns during multi-

tenant application runtime execution. In order to show the

difference between the table structures and how database is

populated we use the same data across all the designs in this

example.

The Private Tables in Fig. 4 show three tenants each of them

with different Sales Person table that fulfil their business

requirements. Tenant-A has the ‘sales_person_tenant_a’ table,

which consists of six columns, including ‘sales_person_id’,

‘first_name’, ‘last_name’, ‘phone’, ‘age’, and ‘gender’.

Tenant-B has the ‘sales_person_tenant_b’ table, which consists

of four columns, including ‘sales_person_id’, ‘first_name’,

‘last_name’, and ‘business_id’. Tenant-C has the

‘sales_person_tenant_c’ table; the columns in this table are the

same as ‘sales_person_tenant_a’ table. The same data that was

used to populate the private table was used to populate the rest

of the multi-tenant database schema designs and EET schema,

which are presented in the example of this section.

Fig. 4 Private Tables.

The Extension Tables in Fig. 5 show how the columns of the

Sales Person tables for the three tenants split-up between the

base table ‘sales_person’ and two extension tables

‘sales_person_tenant_a_&_c’ and ‘sales_person_tenant_b’. All

of these three tables have two fixed common columns,

including ‘tenant_id’ and ‘row’. The ‘tenant_id’ column is used

to map data rows in the base table and the extension tables with

the tenant who owns these rows. The ‘row’ column is used to

give each row in the base table a row number and map it with

other rows in the extension tables. The ‘sales_person’ base table

has five columns, including ‘tenant_id’, ‘row’,

‘sales_person_id’, ‘first_name’, and ‘last_name’. All the

tenants share the last three columns. The extension table

‘sales_person_tenant_a_&_c’ has five columns, including

‘tenant_id’, ‘row’, ‘phone’, ‘age’, and ‘gender’. This table is

shared by two tenants Tenant-A and Tenant-C, due to the

similarity in the extension columns that both tenants need. The

‘sales_person_tenant_b’ is used by Tenant-B, which has three

columns ‘tenant_id’, ‘row’, and ‘business_id’.

Fig. 5 Extension Tables.

The Universal Table in Fig. 6 shows how the tenants’ data

are stored in the universal table. This table has a number of

columns, including ‘tenant_id’, ‘table_id’, and ‘col_1’ until

‘col_n’. The ‘tenant_id’ column is used to map rows with their

tenants. The ‘table_id’ column is used to map rows to a

particular table. The columns, including ‘col_1’ until ‘col_n’

are the universal columns that store any data the tenants wish to

store to fulfil their business requirements.

Fig. 6 Universal Table.

The Pivot Tables in Fig. 7 show how the tenants’ data with a

specific data type is stored in a specific pivot table. In this

example, we have two pivot tables, the first table is ‘pivot_int’

that stores INTEGER data values, and the second table is

‘pivot_str’ that stores STRING data values. Each pivot table has

standard columns, including ‘tenant_id’, ‘table’, ‘col’, and

‘row’. In addition to a column that can vary in each pivot table

according to the data type that is specified for that table. For

instance, the pivot table that stores STRING values will have a

column that stores STRING values, and the column name could

be called ‘str’. The ‘tenant_id’ column is used to map each row

in a pivot table with a tenant. The ‘table’ column is used to map

a data type value to a particular table. The ‘col’ column is used

to map a data type value to a particular column in a particular

table. The ‘row’ column is used to map a data type value to a

particular row in a particular table.

Fig. 7 Pivot Tables.

The Chunk Table in Fig. 8 shows how a set of data columns

with a mixture of data types is structured. The ‘chunk_int_str’

table has six columns, including ‘tenant_id’, ‘table’, ‘chunk’,

‘row’, ‘int1’, and ‘str1’. The ‘tenant_id’ column is used to map

each table row in a chunk table with a tenant. The ‘table’

column is used to map a table row to a particular table. The

‘chunk’ column is used to compound data for more than one

logical column for a particular table. The ‘row’ column is used

to map a data value to a particular row in a particular table. The

‘int1’ column is used to store all the INTEGER data values for

different columns of different tables. The ‘str1’ column is used

to store all the STRING data values for different columns of

different tables.

Fig. 8 Chunk Table.

The Chunk Folding tables in Fig. 9 show how the most

commonly used tenants’ columns are structured in the

‘account_row’ table, while the remaining columns are

structured into Chunk Folding table called ‘chunk_row’. The

remaining columns that are used by tenants have extra business

requirements, which are not applied in the common columns in

the ‘account_row’ table. The ‘tenant_id’ column in both tables

is used to map each table row with a tenant. The ‘row’ column

in both tables is used to map a data value in a particular row of

a particular table. The table ‘account_row’ consists of five

columns, including ‘tenant_id’, ‘row’, ‘sales_person_id’,

‘first_name’, and ‘last_name’. The last three columns in this

table are the common columns that are shared by the three

tenants (Tenant-A, Tenant-B, and Tenant-C). The ‘chunk_row’

table consists of six columns, including ‘tenant_id’, ‘table’,

‘chunk’, ‘row’, ‘int1’, and ‘str1’. The ‘table’ column is used to

map a row to a particular table. The ‘chunk’ column is used to

combine data for more than one column for a particular table.

The ‘int1’ column is used to store all the INTEGER data values

for different columns of different tables. The ‘str1’ column is

used to store all the STRING data values for different columns

of different tables.

Fig. 9 Chunk Folding.

The XML Table in Fig. 10 shows how this technique

combines RDBMS and XML, by having fixed columns shared

by all tenants, including ‘tenant_id’, ‘sales_person_id’,

‘first_name’, ‘last_name’. The ‘tenant_id’ column is used to

map each table row in the ‘account_row’ table with a tenant.

The rest of the columns are Sales Person columns that are

shared by all tenants. The fifth column is ‘ext_xml’, this column

is used to store an XML structure includes the rest of the logical

columns that tenants may need to fulfil their extra business

needs. For instance, as shown in the first table row in the

‘account_row’ table, there are three values stored using XML

structure in the ‘ext_xml’ column, including phone, age, and

gender.

Fig. 10 XML Table

Fig. 11 shows an example of the EET, which have three

VETs that were created using the ETs. These three VETs are

the tenants’ tables that presented in the Private Tables in Fig. 4.

In this example, the ‘sales_person’ table is a CTT shared by all

the three tenants and has predefined columns that are commonly

used by these tenants. The Tenant-A has a business requirement

to have a Sales Person table that includes the columns that

predefined in the ‘sales_person’ CTT, in addition to three extra

columns, including ‘phone’, ‘age’, and ‘gender’. This business

requirement can be fulfilled by creating the

‘sales_person_tenant_a’ VET, and adding to this table these

extra three columns. In addition to, adding the

‘sales_person_id’ column that is a virtual foreign key, which

builds the virtual relationship between ‘sales_person_tenant_a’

VET and the ‘sales_person’ CTT. The Tenant-B has a business

requirement to have a Sales Person table that includes the

columns that are predefined in the ‘sales_person’ CTT, in

addition to the ‘business_id’ column as an extra column to the

CTT. This business requirement can be fulfilled for this tenant

by creating the ‘sales_person_tenant_b’ VET, in addition,

adding the ‘sales_person_id’ column that is a virtual foreign

key, which builds the virtual relationship between

‘sales_person_tenant_b’ VET and the ‘sales_person’ CTT. The

Tenant-C has a business requirement the same as the business

requirement of Tenant-A. Therefore, the

‘sales_person_tenant_c’ VET of the Tennant-C has a similar

structure and relationship of the ‘sales_person_tenant_a’ VET.

The shared columns of the ‘sales_person’ CTT store the three

tenants’ data, while the rest of the tenants’ data is stored in

VETs by using the ETs, including ‘db_table’, ‘table_column’,

‘table_row’, ‘table_relationship’, table_index’, and

‘table_primary_key_column’. The details of this data are

shown in Fig. 12 – 18.

Fig. 11 Virtual Extension Tables (VET).

Fig. 12 The data stored in the ‘sales_person’ CTT

Fig. 13 The data stored in the ‘db_table’ ET

Fig. 14 The data stored in the ‘table_column’ ET.

Fig. 15 The data stored in the ‘table_relationship’ ET.

Fig. 16 The data stored in the ‘table_primary_key_column’ ET.

Fig. 17 The data stored in the ‘table_row’ ET.

Fig. 18 The data stored in the ‘table_index’ ET.

VI. PERFORMANCE EVALUATION

In this section, we compare the performance of accessing

data from EET and Universal Table Schema Mapping (UTSM)

[2]. In EET, data is partitioned vertically, when in UTSM data

is partitioned horizontally. Liao et al. [2] state that the data

architecture of UTSM is similar to Salesforce data architecture,

which originated from the Universal Relations [6]. In addition,

a number of database query examples presented in [2], [3], and

used to retrieve data from this data architecture. Some of these

queries are used in the experiments in this paper, in addition to

other queries that are used to show the difference in accessing

data from EET and UTSM. The UTSM technique had to be

chosen to compare it with EET technique, because as discussed

and concluded in the related work section, the Universal Table

that is used in UTSM, is considered as the optimal schema

design for multi-tenant applications. Moreover, this is one of

the multi-tenant database schema techniques implemented

commercially by Salesforce. The data architecture of UTSM is

shown in Fig. 19. The ‘Data’ table is the universal table that

stores all tenants’ data, and it has fixed number of data columns.

The number of columns of this table should be large to

accommodate the number of columns required by different

tenants (e.g. Salesforce uses 500 columns for this table). These

columns store data that maps to objects and fields created in the

‘Objects’ and ‘Fields’ tables. The data type of these columns is

VARCHAR, which allows the storage of different data types

(STRING, NUMBER, DATE, etc.). The ‘Objects’, ‘Fields’,

and ‘Relationships’ tables are used to construct virtual tables

and their virtual columns, and build relationships between these

virtual tables. Whereas the ‘Index’ and ‘Uniquefields’ tables are

used to optimize the query execution time of retrieving data

from the ‘Data’ universal table [1], [2].

In this performance evaluation, the focus is on comparing the

performance of accessing data from EET and UTSM directly

from the database level, irrespective of the software solution

built on top of these two multi-tenant database schemas for two

reasons: (1) The most significant challenge in multi-tenant

applications is designing multi-tenant database schema that

improves multi-tenant query processing. This schema design

influences the software design built on top of the schema and

its performance. (2) Co mparing the performance of two

multi-tenant software solutions under the same conditions, and

using the same hardware resources is difficult, in particular as

some software may not be available to be installed on the same

application server.

Fig. 19 Universal Table Schema Mapping [2].

A. Experimental Data Set and Setup

Typically, multi-tenant databases store massive data volumes

across multiple servers to optimize the performance of data

retrieval. However, before considering scale-up or scale-out for

multi-tenant databases to optimize its performance, we believe

that we should perform a comparison between EET and UTSM

using a single server instance. In order to test the effectiveness

of accessing data from these two multi-tenant database

architecture designs without affecting their performance by

using any scalability. In our experiments, we focus on

benchmarking the performance of the main tables of both data

architectures where most of the tenants’ data is stored, and we

disregard the lookup queries. For example, in EET, we discard

the queries which check whether a virtual column is indexed or

not from the ‘table_column’ ET. On the other hand, we

disregard the queries which check whether a column is indexed

or not from the ‘fields’ table of UTSM. In this case, our focus

in EET is on ‘table_row’, and ‘table_index’ ETs, and in UTSM

is on ‘Data’, ‘Index’, and ‘Uniquefields’ tables. Furthermore, in

order to run comparative experiments, exactly the same data

was populated in the ‘table_row’, and ‘table_index’ ETs of EET

in a separate database, and the ‘Data’, ‘Index’, and

‘Uniquefields’ tables of UTSM in another database. No indexes

were used other than the default indexes of each schema, which

are the primary keys and the foreign keys indexes that are

automatically generated in the RDBMS once the primary key

and foreign key constraints are specified. The number of virtual

rows that were already populated in ‘table_row’ ET is 200,000

rows and the same number of rows in the ‘Data’ universal table.

These rows belong to the ‘product’ virtual table, and the

structure of this table in EET and UTSM is shown in Fig. 20.

There was no data populated in these two databases other than

the populated 200,000 rows.

In the multi-tenant database, each tenant’s data is isolated in

a table partition. Therefore, the experiments are per-formed for

one tenant to evaluate the effectiveness of retrieving data for

each single tenant from the multi-tenant database. These

experiments are divided into four types that are sharing the

details of this data set. Each query of these experiments is

performed ten times, and the average execution time of these

queries is shown in Fig. 21 – 28. The queries that are related to

EET and UTSM are shown in Table 1. The inputs and the

outputs of EET and UTSM queries are the same. However, the

structures of these queries are different because the data

architectures of the two schemas are different. The four

experiments details are listed below:

Fig. 20. The virtual ‘product’ table structure.

1) Retrieving Rows Experiment (Exp.1)

The aim of this experiment is to benchmark the query execution

time of retrieving rows from EET and UTSM. This experiment

is divided into four experiments including:

Retrieving Rows without Using Query Columns Filters

Experiment (Exp.1.1): In this experiment, Query 1 (Q1) and

Query 2 (Q2) are executed. The Q1 retrieves rows from the

‘table_row’ ET of EET without specifying any query filters

other than the tenant ID, and the ‘project’ table ID. Whereas the

Q2 retrieves rows from the ‘Data’ universal table without

specifying any query filters other than the tenant ID and the

‘project’ object ID. In this study, eight tests using these two

queries are performed to retrieve 1, 10, 50, 100, 500, 1000,

1500, and 2000 rows.

Retrieving Rows Using Columns Query Filters Experiment

(Exp.1.2): In this experiment, Query 3 (Q3) is executed on the

‘table_row’ ET of EET and Query 4 (Q4) is executed on the

‘Data’ universal table. Both queries are filtered by specifying

particular numbers of product IDs stored in the ‘product’ virtual

table. In this study, three tests using these two queries are

performed to retrieve rows by specifying 1 product ID for the

first test, 10 product IDs for the second test, and 50 product IDs

for the third test. The structure of Q4 has presented in [3], but

with different value settings.

Retrieving Rows Using Primary Key Indexes Experiment

(Exp.1.3): In this experiment, Query 5 (Q5) is executed on the

‘table_row’ and ‘table_index’ ETs of EET and Query 6 (Q6) is

executed on the ‘Data’ and ‘Uniquefields’ tables of UTSM. In

this experiment, a primary key index is used to retrieve rows

from the ‘product’ virtual table from the ‘table_row’ ET and

from the ‘Data’ table. In this study, three tests using these two

queries are performed to retrieve 1, 10, and 50 rows. The

structure of Q6 has presented in [2], but with different value

settings.

Retrieving Rows Using Custom Index Experiment

(Exp.1.4): In this experiment, Query 7 (Q7) is executed on the

‘table_row’ and ‘table_index’ ETs of EET and Query 8 (Q8) is

executed on the ‘Data’ and ‘Index’ tables of UTSM. In this

experiment, a custom index is used, which is a selective filter

in the tenant’s query. This index should be other than the

primary key and foreign key indexes. This custom index

retrieves rows from the ‘product’ virtual table for both

‘table_row’ and ‘Data’ tables. The ‘standard_cost’ virtual

column is chosen to filter the queries by looking up for all the

products, which have a standard cost greater or equal ‘$ 9000’

from the ‘product’ virtual table. In this study, four tests using

these two queries are performed to retrieve 1, 10, 50, and 100

rows.

2) Inserting Rows Experiment (Exp.2)

The aim of this experiment is to benchmark the query execution

time of inserting rows into EET and UTSM. Query 9 (Q9) is

executed on the ‘table_row’ and ‘table_index’ ETs of EET and

Query 10 (Q10) is executed on the ‘Data’, ‘Index’, and

‘Uniquefields’ tables of UTSM. In this study, four tests using

these two queries are performed to insert 1, 10, 50, and 100

rows.

3) Updating Rows Experiment (Exp.3)

The aim of this experiment is to benchmark the query execution

time of updating rows into EET and UTSM. Query 11 (Q11) is

executed on the ‘table_row’ and ‘table_index’ ETs of EET and

Query 12 (Q12) is executed on the ‘Data’, and ‘Index’ tables of

UTSM. In this study, four tests using these two queries are

performed to update 1, 10, 50, and 100 rows.

4) Deleting Rows Experiment (Exp.4)

Deleting Rows Experiment (Exp.4): The aim of this experiment

is to benchmark the query execution time of deleting rows from

EET and UTSM. Query 13 (Q13) is executed on the

‘table_row’ and ‘table_index’ ETs of EET, and Query 14 (Q14)

is executed on the ‘Data’, ‘Index’, and ‘Uniquefields’ tables of

UTSM. In this study, four tests using these two queries are

performed to delete 1, 10, 50, and 100 rows.

The experiments were performed on PostgreSQL 8.4

database, using the default configuration setup. This database

installed on a PC with 64-bit Windows 7 Home Premium

operating system, Intel Core i5 2.40GHz CPU, 8 GB RAM

memory, and 500 GB hard disk storage.

B. Experimental Result

This section gives four experimental results as follows:

1) Retrieving Rows

This experimental result was divided into four results as

follows. The experimental study of Exp.1.1 shows that the

execution time of Q1 that perform on the ‘table_row’ ET of

EET is approximately 76% faster on average than the execution

time of Q2 that perform on the ‘Data’ universal table when 1,

10, 50, 100, 500, 1000, 1500, and 2000 rows were retrieved.

The details results of this experiment are shown in Fig. 21 – 22.

The experimental study of Exp.1.2 shows that the execution

time of Q3 that perform on the ‘table_row’ ET of EET is

approximately 94% faster on average than the execution time

of Q4 that perform on the ‘Data’ universal table when 1, 10, and

50 rows were retrieved. The details results of this experiment

are shown in Fig. 23. The experimental study of Exp.1.3 shows

ABLE I

THE EXPERIMENTS QUERIES

Query

No.

Query Details

Q1 SELECT * FROM table_row tr WHERE tr.table_row_id in (SELECT

distinct(tr2.table_row_id) FROM table_row tr2 where tr2.db_table_id = 16

and tr2.tenant_id = 1000 LIMIT 1) ;

Q2 SELECT * FROM data WHERE tenantid = 1000 and objectId = 1 LIMIT

1;

Q3 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and

tr.db_table_id = 16 and tr.table_column_id IN (50,52,54) and

tr.table_row_id IN (SELECT table_row_id FROM table_row tr2 WHERE

tr2.tenant_id =1000 and tr2.db_table_id = 16 and (tr2.table_column_id

=47 and tr2.value = '163336'));

Q4 [3] SELECT price, cost, weight FROM (SELECT value0 AS id, value4 AS

price , value2 AS cost, value6 AS weight FROM data WHERE objectid = 1

and tenantid = 1000) AS product WHERE id = '163336';

Q5 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and

tr.db_table_id = 16 and tr.table_row_id IN (SELECT ti.table_row_id

FROM table_index ti WHERE ti.tenant_id =1000 and ti.db_table_id = 16

and ti.table_column_id =47 and ti.value = '163337')

Q6 [2] SELECT * FROM data WHERE objectid =1 and tenantId = 1000 and

dataguid in (SELECT dataguid FROM uniquefields WHERE objectid = 1

and tenantId = 1000 and numvalue IN (163337));

Q7 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and

tr.db_table_id = 16 and tr.table_row_id IN (SELECT ti.table_row_id

FROM table_index ti WHERE ti.tenant_id = 1000 and ti.db_table_id = 16

and ti.table_column_id = 50 and (cast (ti.value as numeric) >= '9000')

LIMIT 1);

Q8 SELECT * FROM data WHERE objectid =1 and tenantId = 1000 and

dataguid in (SELECT dataguid FROM index WHERE objectid = 1 and

tenantId = 1000 and fieldNum =3 and numvalue > = 9000 LIMIT 1);

Q9 INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,1,1000,

'50000000',16,47);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,2,1000, '1000',16,48);
INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,3,1000, '50000',16,49);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,4,1000, '222.50',16,50);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,5,1000, 'Red',16,51);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,6,1000, '242.50',16,52);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,7,1000, '40',16,53);

INSERT into table_row (table_row_id, serial_id, tenant_id, value,

db_table_id, table_column_id) values (50000061,8,1000, '300',16,54);

INSERT into table_index (tenant_id, value, table_row_id, serial_id,

db_table_id, table_column_id) values (1000,

'50000000',50000061,1,16,47);

INSERT into table_index (tenant_id, value, table_row_id, serial_id,

db_table_id, table_column_id) values (1000, '222.50',50000061,4,16,50);

Q10 INSERT into data (dataguid, tenantid, objectid ,name, value0, value1,

value2, value3,value4, value5 ,value6) values(50000061,1000,1,'name',

'50000000', '50000', '222.50','Red', '242.50', '40', '300');

INSERT into uniquefields values (50000061, 1000, 1, 1,'',50000000,'2013-

12-12');
INSERT into index values (50000061, 1000, 1, 3,'', '222.50','2013-12-12');

Q11 UPDATE table_row set value = '230.50' WHERE tenant_id = 1000 and

db_table_id = 16 and table_column_id = 52 and table_row_id =50000061;

UPDATE table_index set value = '230.50' WHERE tenant_id = 1000 and

db_table_id = 16 and table_column_id = 52 and table_row_id =50000061;

Q12 UPDATE data set value2 = '230.50' WHERE tenantid = 1000 and

objectid = 1 and dataguid =50000061;

UPDATE index set numvalue = 230.50 WHERE tenantid = 1000 and

objectid = 1 and fieldnum =3 and dataguid =50000061;

Q13 DELETE from table_index WHERE tenant_id = 1000 and db_table_id =

16 and table_row_id =50000061;

DELETE from table_row WHERE tenant_id = 1000 and db_table_id = 16

and table_row_id = 50000061;

Q14 DELETE from index WHERE tenantid = 1000 and objectid = 1 and

fieldnum =3 and dataguid =50000061;

DELETE from uniquefields WHERE tenantid = 1000 and objectid = 1 and

fieldnum =1 and dataguid =50000061;
DELETE from data WHERE tenantid = 1000 and objectid = 1 and

dataguid =50000061;

T
im

e
 (

S
ec

)

Number of retrieved rows

 Fig. 21 Retrieving small numbers of rows (Exp. 1.1)

T
im

e
 (

S
ec

)

Number of retrieved rows

Fig. 22 Retrieving large numbers of rows (Exp. 1.1)

T
im

e
 (

S
ec

)

Number of retrieved rows

Fig. 23 Retrieving rows using columns’ query
filters (Exp.1.2)

T
im

e
 (

S
ec

)

Number of retrieved rows

Fig. 24 Retrieving rows using PK indexes (Exp. 1.3)

T
im

e
 (

S
ec

)

Number of retrieved rows

Fig. 25 Retrieving rows using custom indexes

(Exp. 1.4)

T
im

e
 (

S
ec

)

Number of inserted rows

Fig. 26 Inserting rows (Exp.2)

T
im

e
 (

S
ec

)

Number of updated rows

Fig. 27 Updating rows (Exp.3)

T
im

e
 (

S
ec

)

Number of deleted rows

Fig. 28 Deleting rows (Exp.4)

that the execution time of Q5 that perform on the ‘table_row’

and ‘table_index’ ETs of EET is approximately 88% faster on

average than the execution time of Q6 that perform on the

‘Data’ and ‘Uniquefields’ tables of UTSM when 1, 10, and 50

rows were retrieved. The details results of this experiment are

shown in Fig. 24. The experimental study of Exp.1.4 shows that

the execution time of Q7 that perform on the ‘table_row’ and

‘table_index’ ETs of EET is approximately 60% faster on

average than the execution time of Q8 that perform on the

‘Data’ and ‘Index’ tables of UTSM when 1, 10, 50, and 100

rows were retrieved. The details results of this experiment are

shown in Fig. 25.

2) Inserting Rows

The experimental study of Exp.2 shows that the execution time

of Q9 that perform on the ‘table_row’ and ‘table_index’ ETs of

EET is approximately 19% slower on average than the

execution time of Q10 that perform on the ‘Data’, ‘Index’, and

‘Uniquefields’ tables of UTSM when 1, 10, 50, and 100 rows

were inserted. The details results of this experiment are shown

in Fig. 26.

3) Updating Rows

The experimental study of Exp.3 shows that the execution time

of Q11 that perform on the ‘table_row’ and ‘table_index’ ETs

of EET is approximately 51% faster on average than the

execution time of Q12 that perform on the ‘Data’, and ‘Index’

tables of UTSM when 1, 10, 50, and 100 rows were updated.

The details results of this experiment are shown in Fig. 27.

4) Deleting Rows

The experimental study of Exp.4 shows that the execution time

of Q13 that perform on the ‘table_row’ and ‘table_index’ ETs

of EET is approximately 32% faster on average than the

execution time of Q14 that perform on the ‘Data’, ‘Index’, and

‘Uniquefields’ tables of UTSM when 1, 10, 50, and 100 rows

were deleted. The details results of this experiment are shown

in Fig. 28.

0

0.05

0.1

0.15

1 10 50 100

EET
(Q1)

UTSM
((Q2) 0

1

2

100 500 1000 1500 2000

EET
(Q1)

UTSM
(Q2)

0

0.5

1

1 10 50

EET
(Q3)

UTSM
(Q4) 0

0.1

0.2

0.3

1 10 50

EET
(Q5)

UTS
M
(Q6)

0

0.05

0.1

0.15

1 10 50 100

EET
(Q7)

UTSM
(Q8)

0

0.1

0.2

1 10 50 100

EET
(Q9)

UTSM
(Q10)

0

0.05

0.1

0.15

1 10 50 100

EET
(Q11)

UTSM
(Q12) 0

0.05

0.1

1 10 50 100

EET
(Q13)

UTSM
(Q14)

I. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multi-tenant database

schema design called EET, which consists of CTT, ET, and

VET. EET allows tenants to create their own virtual database

schema, including the required number of tables, columns,

rows, virtual database relationships with CTTs or VETs, and

assigns suitable data types and constraints for columns during

the runtime of multi-tenant applications. EET is a single multi-

tenant database schema that has a flexible way of creating

database schemas for multiple tenants, by extending a business

domain database based on RDBMS, or creating tenants

business domain database from the scratch. EET design

improves the multi-tenant database performance by avoiding

NULL values, assigning primary keys to unique columns,

providing indexes to table columns, and storing BLOB and

CLOB data types in separate designated tables. In addition,

EET design allows the storage of different data types, including

structured, semi-structured, and unstructured data. In this paper,

we only use structured data for the empirical evaluation, for two

reasons. First, storing and retrieving data in XML files (semi-

structured data) has the highest response time among the

reviewed multi-tenant database schema designs [14], [23].

Thus, while semi-structured data can be stored in EET, it is not

recommended as storage for multiple tenants. Second, there are

many techniques for storing and retrieving different data types,

and comparing all of these techniques with EET within the

scope of a single paper is difficult due to the paper length

limitations.

EET approach allows the creation of virtual relationships

between the tenants’ shared physical tables (CTT) and the

tenants’ virtual tables (VET), and allows tenants to choose from

three database models: (1) Multi-tenant Relational Database,

(2) Integrated Multi-tenant Relational Database with Virtual

Relational Database, and (3) Virtual Relational Database.

According to our knowledge, this capability is not included in

any other multi-tenant database schema design.

We have compared and evaluated the performance of EET

and UTSM. The design of EET partitions data vertically to

avoid storing rows with NULL values. In contrast, the design

of the Universal Table in UTSM partitions data horizontally,

which can be associated with significant overheads as a result

of a large number of NULL values. The experimental study

reported in this paper shows an improvement when retrieving,

updating and deleting data from EET over the UTSM. In

particular, the experiments of retrieving data from EET indicate

better performance when compared to UTSM. The execution

time for inserting rows into EET is slightly longer than for

inserting rows into UTSM. Overall, this experimental study

makes the EET schema a good candidate for implementing

multi-tenant databases and multi-tenant SaaS applications. As

discussed in the related work section, the Universal Table used

in UTSM is widely accepted as an optimal schema design for

multi-tenant applications. Therefore, this study measured the

feasibility and effectiveness of EET by comparing it with

UTSM. Comparing EET with other existing multi-tenant

database schema designs that are based on RDBMS and other

data storage models will be considered in our future research.

Furthermore, in our future research, we will evaluate the

performance of EET using multiple tenants and focusing on the

scalability of the EET approach.

REFERENCES

[1] C.D. Weissman and S. Bobrowski, "The design of the force.com
multitenant internet application development plat-form," presented at the

Proceedings of the 35th SIGMOD inter-national conference on

Management of data, Providence, Rhode Island, USA, 2009.
[2] C.-F. Liao, K. Chen and J.-J. Chen, "Toward a tenant-aware query

rewriting engine for Universal Table schema-mapping," in Proceedings

of the 2012 IEEE 4th International Conference on Cloud Computing
Technology and Science (CloudCom), 2012, pp. 833-838.

[3] C.-F. Liao, K. Chen, and J.-J. Chen, "Modularizing tenant-specific

schema customization in SaaS applications," presented at the Proceedings
of the 8th international workshop on Advanced modularization

techniques, Fukuoka, Japan, 2013.

[4] C.G. Martinez, "Study of resource management for mul-titenant database
systems in cloud computing," Master the-sis, University of Colorado,

Boulder, USA, 2012.

[5] D. Agrawal, S. Das, and A. El Abbadi, "Big data and cloud computing:
new wine or just new bottles?," Proceedings of the VLDB Endowment,

vol. 3, pp. 1647-1648, 2010.

[6] D. Maier and J. D. Ullman, "Maximal objects and the semantics of
universal relation databases," ACM Transactions on Database Systems

(TODS), vol. 8, pp. 1-14, 1983.

[7] E.J. Domingo, J.T. Nino, A.L. Lemos, M.L. Lemos, R.C. Palacios and
J.M.G. Berbi, "CLOUDIO: A cloud computing-oriented multi-tenant

architecture for business information systems," Proceedings of the 2010

IEEE 3rd International Conference on (CLOUD '10), pp. 532-533, Miami,
USA, 2010.

[8] F.S. Foping, I.M. Dokas, J. Feehan and S. Imran, "A new hybrid schema-

sharing technique for multitenant applications," Digital Information
Management, 2009. ICDIM 2009. Fourth International Conference on,

pp. 210-215, 2009.

[9] G. Liu, "Research on independent SaaS platform," in Information
Management and Engineering (ICIME), 2010 The 2nd IEEE International

Conference on, 2010, pp. 110-113.

[10] H. Yaish, M. Goyal, and G. Feuerlicht, "An elastic multi-tenant database
schema for Software as a Service," in Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth International Conference on, 2011,

pp. 737-743.
[11] I. Gorti, N. Shiri, and T. Radhakrishnan, "A Flexible Data Model for

Multi-tenant Databases for Software as a Service," in Computational

Science and Engineering (CSE), 2013 IEEE 16th International
Conference on, 2013, pp. 1059-1066.

[12] J. Du, H. Wen and Z. Yang, "Research on data layer structure of multi-

tenant e-commerce system," Industrial Engineering and Engineering
Management (IE&EM), 2010 IEEE 17Th International Conference on,

pp. 362-365, Xiamen, China, 2010.

[13] J. Fiaidhi, I. Bojanova, J. Zhang and L.-J. Zhang, "Enforcing multitenancy
for cloud computing environments," IT professional, vol. 14, pp. 0016-

18, 2012.
[14] L. Heng, Y. Dan, and Z. Xiaohong, "Survey on Multi-Tenant Data

Architecture for SaaS," International Journal of Computer Science Issues

(IJCSI), vol. 9, 2012.
[15] L.-J. Zhang, J. Zhang, J. Fiaidhi, and J. M. Chang, "Hot topics in cloud

computing," IT professional, vol. 12, pp. 17-19, 2010.

[16] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis and A. Vakali, "Cloud
computing: distributed internet computing for IT and scientific research,"

Internet Computing, IEEE, vol. 13, no. 5, pp. 10-13, 2009.

[17] O. Brian, T. Brunschwiler, H. Christ, B. Falsafi, M. Fischer, S. G. Grivas,
C. Giovanoli, R. E. Gisi, R. Gutmann, M. Kaiserswerth, M. Kundig, S.

Leinen, W. Muller, D. Oesch, M. Redli, D. Rey, R. Riedl, A. Schar, A.

Spichiger, U. Widmer, A. Wiggins, M. Zollinger and M. Kaiserswerth,
"Cloud Computing," white Paper, SATW, November 6, 2012.

[18] P. Louridas, "Up in the air: Moving your applications to the cloud," IEEE

software, vol. 27, pp. 6-11, 2010.
[19] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud

computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility," Future Generation computer
systems, vol. 25, pp. 599-616, 2009.

[20] R. Cattell, "Scalable SQL and NoSQL data stores," ACM SIGMOD

Record, vol. 39, pp. 12-27, 2011.

[21] S. Aulbach, "Schema flexibility and data sharing in multi-Tenant

databases," PhD Thesis, Technical University of Munich, Germany, 2011.
[22] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, "Multi-

tenant databases for software as a service: schema-mapping techniques,"

in Proceedings of the 2008 ACM SIG-MOD international conference on
Management of data, 2008, pp. 1195-1206.

[23] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold, "A comparison of

flexible schemas for software as a service," presented at the Proceedings
of the 35th SIGMOD international conference on Management of data,

Providence, Rhode Island, USA, 2009.

[24] S. Mohammed and J. Fiaidhi, "The Roadmap for Sharing Electronic
Health Records: The Emerging Ubiquity and Cloud Computing Trends,"

in Future Generation Information Technology. Springer Berlin

Heidelberg, 2010, pp. 27-38.
[25] T. Kwok, T. Nguyen, and L. Lam, "A software as a service with multi-

tenancy support for an electronic contract management application," in

Services Computing, 2008. SCC'08. IEEE International Conference on,
2008, pp. 179-186.

[26] T.Vengattaraman, P. Dhavachelvan, and R. Baskaran, "A model of cloud

based application environment for software testing," International Journal
of Computer Science and Information Security (IJCSIS), vol. 7, pp.257-

260, 2010.

[27] V. Chang, R.J. Walters and G. Wills, "The development that leads to the
Cloud Computing Business Framework", Inter-national Journal of

Information Management, vol. 33, no. 3, pp. 524-538, 2013.

[28] V. Prakash, R. Ramadoss, and S. Gopalakrishnan, “Software as a Service
(SaaS) testing challenges-an in-depth analysis”, International Journal of

Computer Science (IJCSI). vol. 9, 2012.
[29] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An, "A

Study and Performance Evaluation of The Multi-tenant Data Tier Design

Patterns for Service Oriented Computing", in e-Business Engineering,
2008. ICEBE'08. IEEE International Conference on, 2008, pp. 94-101.

Haitham Yaish is an assistant professor

at American University of the Middle

East, and a member of Centre for

Quantum Computation & Intelligent

Systems at University of Technology,

Sydney. Haitham received his PhD in

information technology from University

of Technology Sydney in 2014. He has

16 years industrial experience in the

information technology field. His research interest is in Cloud

Computing, Software as a Service, Big Data, and multi-

tenancy.

 Madhu Goyal is working as a Lecturer in

the School of Software, University of

Technology Sydney. She has done PhD in

Computer Science (2002) from University

of New South Wales, Australia. Her

research is well recognized in the areas of

agent-based computing, data mining and

cloud computing. She has developed

applications for the real-world systems or

for domains such as Firefighting world, ecommerce,

bioinformatics and intelligent tutoring systems. Her research in

Cloud Computing is focused on how Software as Service

providers can provide highly secured, optimized, configurable

environment for same software and computing environment for

multiple tenants.

George Feuerlicht is a senior lecturer at

the University of Technology Sydney, and

an Associate Professor at the Prague

University of Economics, and Unicorn

College. George is the author of over 100

publications across a range of topics in

information systems and computer

science, including recent publications on

enterprise architectures, SOA, and Cloud

Computing models. George is a member of ACM and a number

of conference organizing and program committees. He holds a

PhD from the Imperial College, London University, U.K.

