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ABSTRACT
Recognizing human action from low-resolution (LR) videos
is essential for many applications including large-scale video
surveillance, sports video analysis and intelligent aerial vehi-
cles. Currently, state-of-the-art performance in action recog-
nition is achieved by the use of dense trajectories which are
extracted by optical flow algorithms. However, the optical
flow algorithms are far from perfect in LR videos. In addi-
tion, the spatial and temporal layout of features is a powerful
cue for action discrimination. While, most existing methods
encode the layout by previously segmenting body parts which
is not feasible in LR videos. Addressing the problems, we
adopt the Layered Elastic Motion Tracking (LEMT) method
to extract a set of long-term motion trajectories and a long-
term common shape from each video sequence, where the ex-
tracted trajectories are much denser than those of sparse inter-
est points(SIPs); then we present a hybrid feature representa-
tion to integrate both of the shape and motion features; and
finally we propose a Region-based Mixture Model (RMM)
to be utilized for action classification. The RMM models the
spatial layout of features without any needs of body parts seg-
mentation. Experiments are conducted on two publicly avail-
able LR human action datasets. Among which, the UT-Tower
dataset is very challenging because the average height of hu-
man figures is only about 20 pixels. The proposed approach
attains near-perfect accuracy on both of the datasets.

Index Terms— Low-resolution(LR), Action Recogni-
tion, Elastic Motion Tracking, Mixture Model

1. INTRODUCTION

Human action recognition from low-resolution (LR) videos
typically happens when the videos are taken from a far field of
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Fig. 1. A Sample Frame from UT-Tower Dataset. The human
figure in the frame is only about 20 pixels in height.

view, where the resolution of human figure is very low (gen-
erally ranging from 20 to 50 pixels in height), as illustrated in
Fig. 1. Recognizing human actions accurately from such LR
videos is essential for many applications including large-scale
video surveillance, sports video analysis and intelligent aerial
vehicles.

LR human action recognition suffers more challenges
than those presented in medium or high-resolution videos.
First, the appearance of human figure is usually blurry and
the configuration of body parts tends to be barely distinguish-
able, which means that exact description of human appear-
ance and accurate segmentation of body parts are not feasible
in LR scenarios. Second, the size of human figure is too lim-
ited in LR videos, where the average width of human limbs
is only about 2 or 3 pixels, and the state-of-the-art optical
flow algorithms are far from perfect under such too limited
size[1, 2], so a more accurate and robust tracking method
should be adopted to extract reliable motion features for LR
human action recognition.

Addressing the challenges, we propose to adopt the Lay-
ered Elastic Motion Tracking (LEMT) method [3, 4] to track
the human action. As a result, a long-term common shape and
a set of long-term motion trajectories are extracted from each
video sequence, as shown in Fig. 2. We further present a hy-
brid feature representation to integrate the extracted shape and
motion features, and propose a Region-based Mixture Model
(RMM) for action recogintion.

The main contributions of the paper are two-fold.
(1) We present a hybrid feature representation to effec-



tively integrate the shape and motion features. Since optical
flow algorithms are far from perfect in LR videos, we present
an alternative approach to extract reliable shape and motion
features from each video sequence by adopting the LEMT
method; and further we present a hybrid feature representa-
tion method to effectively integrate the extracted shape and
motion features.

(2) We learn a RMM for each action category to be uti-
lized for action recognition. The RMMs are more informative
than pure bag-of-features (BOF) methods by considering the
spatial layout of features and are able to overcome the diffi-
culties of body parts segmentation in LR videos.

Fig. 2. Long-term Common Shapes and Long-term Motion
Trajectories of Some Actions in UT-Tower Dataset. Each
point in the long-term common shape has a corresponding
long-term motion trajectory.

2. RELATED WORKS

The paper by Efros et al. [5] is one of the earliest works on
human action recognition in LR videos. They presented a
motion descriptor to represent an action and adopted the k-
nearest-neighbor classifier to recognize actions. However, the
only use of motion feature is insufficient to discriminate some
“static” actions, such as pointing and standing.

Chen et al. [2] combined both human poses and motion
information to characterize human actions and they used Sup-
port Vector Machine (SVM) to classify actions.They also cre-
ated and published a UT-Tower dataset which has been a stan-
dard dataset for researchers to evaluate the performance of LR
human action recognition methods nowadays.

Later on, Ryoo et al. [6] held the “Aerial View Activity
Classification Challenge” around the world to encourage re-
searchers to explore techniques for accurately recognizing hu-
man actions in LR videos. There were 4 university teams who
participated in the challenge and the UT-Tower dataset was
used to evaluate each participant’s method. The winner is the

team from the Boston University [7].

Recently, state-of-the-art performance in action classifi-
cation is achieved by extracting dense trajectories. Wang et
al. [1] achieved a significantly improved performance in ac-
tion recognition by the use of dense trajectories which were
extracted by computing dense optical flow field. However, the
state-of-the-art optical flow algorithms are far from perfect in
LR videos [1, 2].

The spatial and temporal layout of features is a power-
ful cue for action discrimination. Currently, Ciptadi et al. [8]
proposed a movement pattern histogram (MPH) to encode the
temporal layout of features by decomposing a human action
into several movement primitives (corresponding roughly to
body parts). While,it is not a reasonable hope of decompos-
ing body parts in LR videos.

In this paper, we extract both of the shape and motion fea-
tures to represent human action informatively and discrimi-
natively. Particularly, our motion trajectories are extracted by
the LEMT method [3, 4] instead of optical flow algorithms
and are much denser than those of SIPs. Besides, we learn a
RMM for each action category, which models the spatial lay-
out of features without any needs of body parts segmentation.

3. FEATURE EXTRACTION AND
REPRESENTATION

3.1. Feature Extraction

Given a video sequence, we firstly localize the region of in-
terest (ROI) in each frame and extract the raw edges of hu-
man body in each ROI. In LR videos, one of the relatively
reliable visual cues is the human shape which could be rep-
resented by edges of human body. Edges of human body
could be extracted at very low cost when the foreground
blob is available. By following other published papers, such
as [7, 9, 10, 11, 12], we assume that the foreground masks of
each video frame are available to us so that we could focus
on the recognition problem instead of foreground segmenta-
tion issue. By the use of pixel corresponding relationships
between the original frames and the foreground masks, we
get the foreground blobs; and then we extract the raw edges
of human body in each frame by applying the edge detection
method[13] on the foreground blobs.

We further apply the LEMT method [3, 4] on the raw
edges of human body to extract a long-term common shape
and a set of long-term motion trajectories from each video
sequence (as shown in Fig. 2), where the former reflects
the long-term stable geometric structure of the whole human
body when performing the action and the latter ensures a good
coverage of human motion because they are much denser than
those of SIPs.



3.2. Feature representation

We integrate features in the long-term common shape and
in the long-term motion trajectories into a hybrid fea-
ture set. Firstly, we normalize all the long-term com-
mon shapes and long-term motion trajectories. Secondly,
we represent each long-term common shape as a point set
{(x0i , y0i ); i = 1, 2, ..., N}, where N is the number of points
in the long-term common shape, and (x0i , y

0
i ) denotes the

position of the ith point in the long-term common shape.
Thirdly, we calculate a motion vector from each long-term
motion trajectory. The long-term motion trajectory extracted
by the LEMT method [3, 4] is represented by a sequence of
coordinate values {(xti, yti); i = 1, 2, ..., N ; t = 1, 2, ..., T},
where T is the number of frames in the video sequence, and
(xti, y

t
i) denotes the position of the ith point at frame t. We

calculate a motion vector (µx
i , µ

y
i , e

x
i , e

y
i , v

x
i , v

y
i )T from each

of the trajectories, where µx
i and µy

i are separately the mean
of x-coordinate values and the mean of y-coordinate values
of the ith trajectory, exi and eyi separately denote the motion
energy in x-direction and in y-direction of the ith trajectory,
vxi and vyi separately denote the average moving velocity in
x-direction and in y-direction of the ith trajectory. The exi ,
eyi , vxi and vyi are respectively calculated by formula (1), (2),
(3) and (4). Finally, we combine these two kinds of features
into a hybrid feature set W = {wi; i = 1, 2, ..., N}, where
wi = {gi,mi} denotes the position vector gi = (x0i , y

0
i )T

of the ith point in the long-term common shape and the mo-
tion vector mi = (µx

i , µ
y
i , e

x
i , e

y
i , v

x
i , v

y
i )T of the ith long-

term motion trajectory.

exi =

√∑T
t=1(xti − µx

i )2
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(1)
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(2)
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4. ACTION MODELING AND RECOGNITION

Human actions are results of body parts movements. It is rea-
sonable for one to model an action as a combination of body
parts movements, where each body part has its stable geomet-
ric structure and motion pattern. However, it is not feasible to
accurately separate body parts in LR videos. To overcome
this difficulty, we propose the RMM.

4.1. The Region-based Mixture Model

As illustrated in Fig. 3, the RMM is composed of K com-
ponents which are mixed together by K mixture coefficients.
Each component corresponds to a stable and identifiable re-
gion in the long-term common shapes of the action category
with its own shape and motion distributions. Each hybrid fea-
ture is softly assigned to each region according to the proba-
bility that it is generated from the shape and motion distribu-
tions of the region.

Fig. 3. Illustration of the RMM for an Action Category. The
spatial layout of features is modeled by the stable and identi-
fiable regions in the long-term common shapes of the action
category. Each region has its shape and motion distributions.

The RMM is parameterized by Θ = {πk, θGk , θMk ; k =
1, 2, ...,K}, whereK is the number of regions, πk is the mix-
ture coefficient of the kth region and

∑K
k=1 πk = 1, θGk are

parameters that govern the kth region shape distribution, θMk
are parameters that govern the kth region motion distribution.
Each hybrid feature wi is viewed as a random sample gener-
ated from the RMM, and the density for each wi is

p(wi|Θ) =

K∑
k=1

πkp(gi|θGk )p(mi|θMk ) (5)

In practice, we model the shape distribution of a region
as a Gaussian distribution which is governed by parameters
θGk = {µG

k ,Σ
G
k }, and model the motion distribution of a re-

gion also as a Gaussian distribution which is govern by pa-
rameters θMk = {µM

k ,Σ
M
k }.

4.2. Learning Model Parameters

Given L training video sequences of an action category, we
extract L hybrid feature sets Z = {Wl; l = 1, 2, ..., L} ,
where Wl is the hybrid feature set that exacted from the lth
training video sequence. The problem of learning model pa-
rameters is actually a maximum likelihood estimation (MLE)



problem which is to find the best Θ maximizing the log-
likelihood log(p(Z|Θ)).We adopt expectation maximization
(EM) algorithm to solve the problem.

Initialization: We build a compact vector vj =
(x0j , y

0
j , µ

x
j , µ

y
j , e

x
j , e

y
j , v

x
j , v

y
j )T by concatenating the posi-

tion vector gj = (x0j , y
0
j )T and the motion vector mj =
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j )T in each hybrid feature wj , where

j = 1, 2, ..., J and J is the total number of hybrid fea-
tures in Z. Then, we adopt k-means algorithm to cluster
all the compact vectors {vj ; j = 1, 2, ..., J} into K clus-
ters. Inside each cluster, we compute the initial values µG(0)

k

and Σ
G(0)
k with the use of {(x0s, y0s)T ∈ cluster k; s =

1, 2, ...Jk}, the initial values µM(0)
k and Σ
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of {(µx
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y
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s , e

y
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x
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y
s )T ∈ cluster k; s = 1, 2, ...Jk}, and

the initial occupancy probability of each resion π(0)
k = Jk/J ,

where Jk is the number of features belonging to the kth
cluster. Finally, we get the initial estimate of the model
parameters Θ(0) = {π(0)

k , µ
G(0)
k ,Σ

G(0)
k , µ

M(0)
k ,Σ

M(0)
k ; k =

1, 2, ...,K}.
E-Step: we evaluate the expected value as follow

Q(Θ,Θ(0)) =

K∑
k=1
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j=1

log(πk)p(k|wj ,Θ
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where
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(8)
M-Step: By maximizing the expectation which isd by (6),

We find the updated expressions for each parameter:
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where ΣM∗

k and ΣG∗

k are diagonal covariance matrices.

4.3. Action Recognition

With the learned RMMs which are parameterized by Θc,
where c = 1, 2, ..., C and C is the number of RMMs (i.e.
the number of action categories), the task of recognizing a
new input action is to find a RMM which best matches the
hybrid feature set Wnew extracted from the new input video
sequence in the same way as that of training video sequences.
We find the best matching RMM by calculating and compar-
ing the posterior distribution p(Θc|Wnew) of each RMM. The
posterior probability of each RMM is caculated by

p(Θc|Wnew) ∝ Nc

NTotal
p(Wnew|Θc) (14)

where Nc is the number of training samples for the cth action
category,NTotal is the total number of training samples for all
action categories, p(Wnew|Θc) =

∏Nnew

i=1 p(wnew
i |Θc)and

Nnew is the number of hybrid features in Wnew.

5. EXPERIMENTS AND RESULTS

We evaluate the performance of the proposed approach on
two publicly available LR datasets: the Weizmann dataset [9]
and the UT-Tower dataset [14], both of which provide the
foreground masks. Even though there exist other public hu-
man action datasets, such as the Hollywood dataset and the
UCF101 dataset, we omit them in our experiments because
they have human figures in medium or high-resolution. Al-
though there are other LR datasets, for example the Soccer
dataset and the VIRAT dataset, we do not use them in our
experiments. Because, as declared in section 3.1, we focus
on the recognition problem instead of foreground segmen-
tation issue in this paper. By following other published pa-
pers [7, 9, 10, 11, 12], we assume that the foreground masks
are provided by datasets so that we could directly use them as
inputs of our experiments. While neither Soccer nor VIRAT
dataset provides these masks.

For evaluation, we adopt the standard protocol of
these two dataset: leave-one-out cross validation (LOOCV)
scheme. Experimental results and comparisons show that our
approach is comparable to or better than state-of-the-art re-
sults and, more importantly, our approach works directly with
the raw edges of the human body without any needs of body
parts segmentation, which makes it more general for LR ac-
tion recognition tasks.



5.1. Weizmann dataset

There are 10 types of actions in Weizmann dataset, which are
bend, run, skip, jack, jump, pjump, side, wave1, wave2 and
walk. In implementation, we use a fixed rectangular as a ROI
for each frame, since the view is static in the dataset. We
learn a RMM for each action category. The learned RMMs
imposed over testing frames are shown in Fig. 4. The number
of regions for each RMM is adjusted manually to get the best
recognition accuracy. That is, we learn 8-regions RMMs for
walking and running; 7-regions RMMs for skipping, jacking
and siding; 6-regions RMM for wave2; 5-regions RMMs for
jumping, wave1 and bending; 3-regions RMM for pjumping.
Table 1 shows that our approach is comparable to or better
than state-of-the-art results on the Weizmann dataset.

Fig. 4. Visualization of the learned RMMs imposed over test-
ing frames on the Weizmann dataset. Regions are presented
in different color. Some interesting observations can be made.
For example, in Fig. 4(a), the pink region seems to correspond
roughly to the “head”; the red region roughly to the “arm”; the
yellow region roughly to the “upper legs”; the green region
roughly to the “lower legs”; and the navy blue region roughly
to the “back”.

Table 1. Comparisons of Average Accuracy on Weizmann

Method Average Accuracy (%)
Hejin Yuan, 2015 [10] 93.55

Yang Y et al., 2013 [15] 99
Chaaraoui A A et al., 2013 [11] 92.77

Reddy K K et al., 2012 [16] 90.32
The Proposed Approach 98.92

5.2. UT-Tower dataset

To show the effectiveness of our method on more challenging
LR scenarios, we evaluate it on the UT-Tower dataset which

was created to simulate aerial view video surveillance by tak-
ing videos from the top of the 307-foot tall UT Austin Tower
building. The average height of human figures in this dataset
is only about 20 pixels. In addition to the LR setup, the UT-
Tower dataset also poses other challenges. For example, the
direct sunlight causes salient human cast shadows.

There are 9 categories of human actions in the dataset,
which are pointing, standing, digging, walking, carrying, run-
ning, wave1, wave2 and jumping. In implementation, we use
the provided bounding boxes as a ROI for each frame, and
remove the shadows of the foreground blobs inside each ROI
by the use of shadow removal method [17].

We learn 9 RMMs for the 9 action categories. The Visu-
alization of the learned RMMs imposed over testing frames
is shown in Fig. 5. The number of regions for each RMM
is also adjusted manually to get the best recognition accu-
racy. That is, we learn 2-regions RMMs for pointing, stand-
ing and jumping; 3-regions RMMs for walking and running;
4-regions RMMs for digging and wave1; 6-regions RMMs for
carrying and wave2. Comparing to the state-of-the-art meth-
ods, as shown in Table 2, we obtained the best result with
a simpler approach. Our approach is able to work without
any needs of previously separating body parts, which makes
it more general for LR application.

Fig. 5. Visualization of the learned RMMs imposed over test-
ing frames on the UT-Tower dataset. Regions are presented
in different color. Similarly, we can also make some interest-
ing observations. For example, in Fig. 5(a), the green region
seems to correspond roughly to the “pointing arm” and the
pink region roughly to the “torso” of the human body.

Table 2. Comparisons of Average accuracy on UT-Tower
Method Average Accuracy (%)

Zhao K et al., 2015 [18] 92.45
Guo K et al., 2013 [12] 97.22
Cao X et al., 2012 [19] 98.15

Mukherjee S et al., 2011 [20] 97.22
The Proposed Approach 99.07



6. CONCLUSIONS

Human action recognition in LR videos is an important but
challenging problem in computer vision. We adopt the LEMT
method [3, 4] to extract a long-term common shape and a
set of relative denser long-term motion trajectories from each
video sequence. Then we present a hybrid feature represen-
tation to integrate the extracted shape and motion features.
Furthermore, we learn a RMM for each action category to
be utilized for action classification. The RMMs are more in-
formative than pure BOF methods by considering the spatial
layout of features and are able to overcome the difficulty of
body parts segmentation in LR videos. Experimental results
show the effectiveness of our approach. As future work, we
would like to develop an algorithm to automatically adjust the
number of regions in each RMM to get the best accuracy.
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