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ABSTRACT 

 
Color-guided depth up-sampling is to enhance the resolution of 

depth map according to the assumption that the depth discontinuity 

and color image edge at the corresponding location are consistent. 

Through all methods reported, MRF including its variants is one of 

major approaches, which has dominated in this area for several 

years. However, the assumption above is not always true. Solution 

usually is to adjust the weighting inside smoothness term in MRF 

model. But there is no any method explicitly considering the 

inconsistency occurring between depth discontinuity and the 

corresponding color edge. In this paper, we propose quantitative 

measurement on such inconsistency and explicitly embed it into 

weighting value of smoothness term. Such solution has not been 

reported in the literature. The improved depth up-sampling based 

on the proposed method is evaluated on Middlebury datasets and 

ToFMark datasets and demonstrate promising results. 

 
Index Terms— depth map up-sampling, Markov Random 

Field (MRF), depth recovery 

 

1. INTRODUCTION 

 
Acquirement of high-quality depth data is the key problem in the 

field of 3-D computer vision, which is required in many 

applications, e.g., interactive view interpolation, 3DTV, 3D object 

modeling, robot navigation, and 3D tracking. Recently, ToF 

sensors are widely used, especially for dynamic scenes. However, 

depth maps captured by ToF are noisy and have lower resolutions, 

for example, 176×144 and 200×200, compared with high-

resolution (HR) color cameras [1]. 

In order to up-sample the depth map in low resolution (LR), 

many methods have been proposed throughout the past years. 

Generally speaking, they can be classified into two classes: non-

color-guided methods [16, 17] and color-guided methods [2-15]. In 

non-color-guided methods, paper [16] only requires a single image 

for up-sampling by using smoothing priors from local self-

similarities but it either has difficulties in textured areas, or only 

work well for small up-sampling factors. Another type of non-

color-guided approach [17] is to fuse multiple displaced LR depth 

maps into a single HR depth map, which is not convenient for real 

applications. In addition, the color-guided depth map super-

resolution (SR) intends to improve the quality and resolution of the 

original depth data captured directly by using a registered high 

resolution (HR) color image. The fundamental assumption of 

color-guided depth up-sampling methods is that the depth 

discontinuity and color image edge at the corresponding location 

are consistent [2]. Under this assumption, registered color image 

can provide structure information that is missing in low resolution 

depth map to fulfill the task of depth up-sampling. Color-guided 

up-sampling methods can be classified into three categories that 

are filter-based [3-7], global-based [2,8-11] and learning-based 

[12-15].  

Compared with filter-based solutions, global-based methods 

are more robust to noise in depth map captured by sensors. MRF 

based methods are major methods in the category of global-based 

solutions. MRF is also the interest of this paper. Thus, MRF-based 

global optimization and its variants are particularly explored here. 

There are two terms in MRF, which are data term and smoothness 

term. Data term indicates the compatibility of the value with the 

given data and smoothness term contributes to a piecewise smooth 

solution. Diebel et al. modeled depth map SR as solving a multi-

labeling optimization problem via Markov Random Fields (MRF) 

[2]. Lu et al. [8] further extended this work by designing a data 

term which more fits to the characteristics of depth maps. Zhu et al. 

[9] updated the traditional spatial MRF to dynamic MRFs, 

therefore, both of the spatial and the temporal information can be 

introduced in energy function, which improves accuracy and 

robustness of up-sampling depth for dynamic scenes. Park et al. 

[10] used a non-local term to regularize depth maps and combined 

with a weighting scheme which involves edge, gradient, and 

segmentation information extracted from HR color images. Ferstl 

et al. [11] modeled the smoothness term as a second order total 

generalized variation regularization, and guided the depth up-

sampling with an anisotropic diffusion tensor which is computed 

from a HR color image, providing high-quality up-sampling results.  

Although color-guided up-sampling methods work well, color 

guidance image might contribute to texture-copy artifact as well as 

depth discontinuity blurring. The main problem is that the 

fundamental assumption of color-guided methods is not always 

true. That is, depth discontinuity regions on depth map do not 

necessarily correspond to the regions of color edge in the 

registered color image. 

In fact, these artifacts have been noticed for a long time, and 

almost all state-of-the-art methods mentioned above adopt various 

ways to eliminate the texture-copy and depth discontinuity 

blurring artifacts. But they do not explicitly evaluate the edge 

inconsistency between color image and depth map. Therefore, they 

cannot adaptively control the effect of guidance from color image 

when up-sampling depth map.  

In this paper, the main contributions are in three aspects, 1. 

Proposing method explicitly considering the inconsistency 

occurring between depth discontinuities and the corresponding 

color edges, and measuring inconsistency quantitatively; 2. 

Proposing method explicitly embedding inconsistency 

measurement above into weighting value of smoothness term in 

MRF energy function; 3. Evaluating the proposed method on 

Middlebury datasets and ToFMark datasets by comparing with the 

state-of-the-art algorithms and showing the improved performance 



against the state-of-the-art depth map SR methods on Middlebury 

stereo datasets and ToFMark datasets. 

The rest of this paper is organized as follows. Section 2 

presents the proposed algorithm via Markov Random Fields with 

inconsistency measurement. In section 3, the experimental results 

are presented. Section 4 concludes this paper. 

 

2. PROPOSED METHOD IN MRF FRAMEWORK 

WITH INCONSISTENCY MEASUREMENT 

 
A Markov random field, also known as a Markov network or an 

undirected graphical model has been widely utilized for many 

image processing applications and tasks. MRF formulates depth 

map SR as solving an optimization problem. The input includes 

HR image and LR depth map. According to the Hammersely-

Clifford theorem [18], solving MRF is equivalent to optimizing the 

Gibbs energy function, whose general formulation is defined as 

follows: 


   arg min  , ,

p p

data p p pq smooth p q

D d p O p q N

D E d D E d d 
  

         (1) 

where D indicates the value set of the reconstructed HR depth map, 

pd indicates the reconstructed value of pixel p , and
pN is the set 

of 8-connected neighboring pixels for the pixel p . O is the pixel 

set consisting of pixels which have observed depth values. 
pD is 

the observed depth value of pixel p .
dataE is called the data term 

which maintains the consistency between the reconstructed depth 

value and the initial observed depth value. 
smoothE is called the 

smoothness term which penalizes the differences between the 

reconstructed depth value and the depth values in the neighboring 

region. The parameter  is used to balance the data term and 

smoothness term. 
pq links color image to depth map, which 

provides the guidance from color image for depth up-sampling 

based on the assumed consistency between color edge and depth 

discontinuity (i.e. depth edge) [2]. As mentioned above, this 

assumption is not always true. It is the root problem of texture-

copy and depth discontinuity blurring happening during depth up-

sampling because of the wrong guidance from color image. 

Section 2.1 proposes the quantitative measurement on the 

inconsistency between color edge in color image and depth 

discontinuity in the corresponding regions on depth map. Section 

2.2 and 2.3 explicitly embed such measurement into energy 

function in MRF framework to adaptively adjust MRF 

optimization. 

 

2.1 Measurement on the inconsistency between color 

edge and depth discontinuity in the corresponding 

regions 

 
Since the structure of an image region is determined by its edges, it 

is sensible to perform the inconsistency measurement between 

depth map and color image via their edge maps. Motivated by 

image quality assessment [19], this paper models edge 

inconsistency measurement between color image and depth map as 

edge map quality assessment in bi-direction evaluation. In order to 

introduce image quality assessment into edge inconsistency 

measurement, a few specific points should be discussed. 

1) Because registered color image and the corresponding 

depth map have the structural similarity observed only on the 

relevant edge maps, this paper measures the inconsistency on 

binary edge maps generated by the registered color image and the 

corresponding depth map respectively. 

2) In ideal situation, the inconsistency measurement should be 

independent of up-sampling scaling factors. That is, such 

inconsistency is one of essentials existing in the pair of the 
registered color image and depth map. Therefore, to obtain the 

evaluation of such essential inconsistency, ground truth depth map 

and registered color image should be the image pair under 

evaluation. In our case, in order to have the same scale of depth 

map and color image, the registered color image and the initial up-

sampling depth map which is up-scaled by Bicubic interpolation to 

the same resolution of color image are the image pairs for 

inconsistency measurement.  

Canny operator [20] is applied in color image and coarse up-

sampled depth map to generate relevant edge maps. Due to coarse 

up-sampled depth map, the positions of corresponding edge pixels 

on color edge map and coarse up-sampled depth edge map are not 

consistent. In this paper, inconsistency measurement is casted as a 

MRF optimization problem. For each edge position on reference 

edge map, it will search the best consistency in its neighboring 

region around the corresponding position on the target edge map 

because of the small displacement between the positions of 

corresponding edge pixels mentioned above. Moreover, the 

displacement between each reference edge position and its 

consistency should be similar (i.e. no significant change) to its 

neighboring edge positions’ displacements on the reference edge 

map. These two constrains are solved in a MRF framework 

through its data term and smoothness term respectively.  


   

 

arg min , ,
p

p p k

L l p ref p ref k N p

L C p p l V l l
   

            (2)     

where  , pC p p l is the data term of the MRF model. 

p represents the position of edge pixel in the reference edge map. 

pl stands for the displacement so
pp l represents a position of 

edge pixel q which is in a neighboring region corresponding to the 

coordinate of p in target edge map. The size of neighboring region 

is determined by up-sampling scaling factor in the proposed depth 

SR task. In our work, the size of neighboring region is 5 5 for 2X 

SR up-sampling, 7 7 for 4X SR up-sampling, 9 9 for 8X SR 

up-sampling and 11 11 for 16X SR up-sampling. Thus, data 

term  ,C p q calculates the consistency between the position of the 

reference edge pixel p and the position of target edge pixel q in 

target edge map. Given p , if certain target pixel q in neighboring 

region of p is not an edge pixel in target edge map, it is regarded 

definite inconsistency. In that case,  ,C p q is assigned to the 

maximum inconsistency value (i.e. 1 in our work). Otherwise, this 

inconsistency measurement is measured on two blocks where edge 

pixel p and edge pixel q are the center position respectively. In this 

paper, the size of block is 3 3. We 

define  1 2, ,...,p p p pME e e e and  1 2, ,...,q q q qNE e e e to represent 

the sets of edge pixels in these two blocks respectively 

(excluding p and q ). M and N are the number of edge pixels 

inside these two sets. Thus, the inconsistency measurement 

between p and q is regarded as a matching problem between two 

data sets 
pE and

qE . This matching problem is sorted out by using 



Bipartite graph matching [21] which is more robust than MAD 

(mean of absolute difference) and Euclidean distance. The 

Bipartite graph  , ,p qG E E W is defined, where
pE and 

qE are 

vertices in Bipartite graph and W represents the link between 

vertices whose weight is defined as  ,i j which is a monotonic 

function that returns a positive penalty for local structural 

matching.  

   , x x y yi j f i j i j                      (3) 

where      0 0,  1 1,  2 1.6f f f   and   2f x  when 2x  . 

,i j are vertices in Bipartite graph, ,x yi i are the coordinate of .i  

Bipartite matching [21] is employed to enforce one-to-one 

matching between edge pixel data sets above. That is, it assures 

any edge pixel in /p qE E matches only one edge pixel in /q pE E , 

leaving M N unmatched pixels. Unmatched pixels represent the 

potential structure differences between edge pixel sets ,p qE E . 

Therefore, this paper introduces them into the calculation of 

inconsistency value between certain pixel pair ,p q , described in 

Eq.(4). 

   
 ,

, , / 2 / 8
s s pq

s s

p q E

C p q p q M N


 
   
 
 
          (4) 

      1 1 2 2, , , ,... ,pq r rE p q p q p q  is edge pixel pair sets selected 

by Bipartite graph matching [21].  ,s sp q is the weight of the 

link between edge pixel
sp and edge pixel

sq and 1,2,3...s r . 

Therefore,  
 ,

,
s s pq

s s

p q E

p q


 is the matching cost of Bipartite 

matching [21] mentioned above. Through normalization, the range 

of data term  ,C p q is [0, 1]. 

 ,p kV l l is the smoothness term in Eq.(2), which gives a 

penalty when adjacent edge pixels have different displacements as,  

 
 

0,     ;
,

1,     ;

p k

p k

p kk N p

l l
V l l

l l



 


                      (5) 

 ,p kV l l takes the connectivity of adjacent edge pixels into 

account, which means that connectivity of adjacent edge pixels is 

encouraged to maintain in the solution of Eq.(2). 

 is a balance factor between data term and smoothness term. 

It is set to 0.1 in this paper.  N p is the set of 8-connected 

neighboring pixels of p . 

Graph cut [23] is adopted to solve Eq.(2) MRF problem. The 

output of data term C computed by optimized 

displacements L represents the inconsistency between reference 

edge map and target edge map. 

The inconsistency is measured based on reference edge map 

against target edge map. Thus, the measurement will be different 

when swapping these two edge maps. In this work, the two edge 

maps are color image edge map and depth discontinuity (edge) 

map of depth map. When color image edge map is regarded as the 

reference edge map for inconsistency measurement, it can be 

observed that inconsistent positions detected reflect the texture 

copy happening areas. On the other hand, when depth 

discontinuity (edge) map is regarded as the reference edge map, it 

is observed that inconsistent positions reflect the depth 

discontinuity blurring happening areas. 

 

2.2 Alignment of inconsistency maps 

 
Inconsistency map for reference edge map 

referC consists of values 

of edge pixels computed in section 2.1 and values of non-edge 

pixels which are assigned to 0. 

After bi-direction evaluation, there are two inconsistency 

maps
colorC ,

depthC as well as two displacement maps
colorL , 

depthL available for an image pair. They represent the inconsistency 

measurement and displacement when color image edge map or 

depth edge map are the reference edge map respectively. Before 

embedding the inconsistency measurement values into MRF based 

depth up-sampling framework, these two inconsistency maps must 

be consolidated to each other. 

As mentioned before, in order to have the color image and the 

depth map with the same size for inconsistency measurement, the 

LR depth map is first coarsely up-sampled to the larger size using 

Bicubic interpolation. This coarse up-sampling may shift the 

position of edge pixel a bit from its true location. On the other 

hand, the position of edge pixel on color image edge map is more 

precise because of high quality of color image. Through Bipartite 

graph matching process mentioned above with depth edge map as 

the reference edge map, the displacement between each depth edge 

pixel p and its color image edge pixel q is  depthL p . Consequently, 

the true location of depth edge pixel p supposes to be more close 

to  depthp L p when   1depthC p  which is not the case of definite 

inconsistency that represents no corresponding pixel in color edge 

image for p . Therefore, the 
depthC is adjusted as, 

 

 
 

   

   

min    1

                         

depth
depth

depth depth depth
p p L p

p p L p

depth depth

C p C p if C p

C p C p otherwise

 
 

   

 

       (6) 

In Eq.(6), if there are more than one pixel p mapping to the 

same pixel ,p  the best mapping with the lowest cost is adopted 

and copy the values of the rest mapping in 
depthC to

depthC . 

Once two inconsistency maps
depthC and

colorC are aligned, a 

confidence map
p is defined as below, taking two directions of 

evaluation into account. It describes the final inconsistency status 

between color image edge map and depth discontinuity (edge) map, 

which is embedded into MRF based depth up-sampling framework 

i.e. Eq.(1) (see Section 2.3). 

     max ,p depth colorC p C p                     (7) 

 

2.3 Improved MRF by considering inconsistency 

measurement 

 
According to the MRF based depth up-sampling framework shown 

in Eq.(1), the confidence value in Eq.(7) (i.e. inconsistency 

measurement) is embedded into the model. To simplify the 

explanation in the follows, Eq.(1) is updated below by introducing 

two new terms. 


   arg min  , ,

p p

edge p data p p smooth pq smooth p q

D d p O p q N

D E d D E d d   

  

    (8) 



where
smooth pq 

is to replace
pq in Eq.(1). 

edge p 
is a boolean value 

which is assigned to 0 when p is located on sparse depth 

discontinuity position in high resolution, mapping from original 

LR depth samples. Otherwise it is assigned to 1. The aim of 

edge p 
is to eliminate the unreliable observed values in observed 

value set O . 
The data term is defined according to the depth samples: 

     
2

,data p p p pE d D d D           (9) 

The smoothness term is defined as: 

   
2

,smooth p q p qE d d d d                    (10) 

Generally speaking, guidance information for up-sampling 

task can be derived from two sources, one is registered color image, 

and the other is original depth map. Based on the confidence map 

p computed in Eq.(7), this paper combines it to generate a new 

guidance image to compute the weighting value
smooth pq 

. 

smooth pq 
is constructed as below. 

                             

 
2

2

(1 )

2

pq pq
color pq depth pq

smooth pq e

 



    


                (11) 

where pq

color and pq

depth represent color difference and depth 

difference between position p and its neighboring pixel q in guided 

color image and coarse up-sampled depth map 

respectively.  controls decay rate of exponential function in 

Eq.(11).
pq is set to the average of

p and
q  because of the 

symmetrical relationship of pixel pair ,p q . It is observed that 

when the corresponding color edge map is more consistent with 

depth edge map (
pq has lower value), pq

color is able to play more 

important role in computing the weighting value
smooth pq 

by 

following the principle of color-guided depth up-sampling, and 

vice versa. Therefore, it can preserve depth edges and prevent 

texture-copy artifacts efficiently by adaptively controlling the 

guidance from color image. This paper adopts Conjugate Gradient 

method (CG) [24] to solve problem Eq.(8). 

 

3. EXPERIMENTAL RESULTS 

 
The proposed method is evaluated on Middlebury datasets [22] and 

ToFMark datasets [11] under different up-sampling factors. The 

comparison performance against the state-of-the-art methods are 

demonstrated. 

 

3.1 Parameters setting 

 
All the edge maps are computed through Canny operator. For color 

image edge detection, the dual thresholds setting are 0.04 and 0.12 

respectively in Canny operator. For depth edge map calculation, 

the low resolution depth map is first up-sampled by coarse Bicubic 

interpolation to the relevant resolution according to SR up-

sampling factors. The dual thresholds in Canny operator for depth 

map edge detection are defined as below, which are ranges. 

               
2 2[(log ) 0.01,(log ) 0.02]LTh factor factor    

              
2 2[(log ) 0.03,(log ) 0.04]HTh factor factor            (12) 

where factor is the corresponding SR up-sampling factor. 

It is observed that larger  in MRF framework (i.e. Eq. (1)) 

will be helpful when the depth map has more noise. But to the 

depth map with less noise, smaller value of  is helpful. In the 

experiments, 0.01  is set for the experiments on Middlebury 

dataset and 0.6  is for the experiments on ToFMark dataset. In 

addition,  (i.e. Eq.(11)) is assigned to 2 in this paper. 

 

3.2 Experimental results on Middlebury datasets 

 
Six objects, “Art”, “Book”, “Moebius”, “Reindeer”, “Laundry”, 

and “Dolls” from the Middlebury’s benchmark [22] are used for 

evaluation. The proposed method is compared with state-of-the-art 

methods: Bicubic interpolation, MRF-based method (MRF) [2], 

Spatial-depth super resolution for range images (JBUV) [5], 

guided image filtering (Guided) [6], edge-weighted NLM-

regularization (NLMR) [10], joint geodesic filtering (JGF) [4], 

total generalized variation (TGV) [11]. The results for MRF [2] 

and JBUV [5] on “reindeer”, “laundry” and “doll” RGB-D pairs 

were not provided in the previous papers. 

Table I shows the up-sampling results under four different up-

sampling factors. It is noticed that the proposed method obtains the 

lowest MAD for most cases except 16X case. The proposed 

method is to embed the edge map inconsistency into the color 

guided depth up-sampling. The edge map inconsistency 

measurement is carried between high resolution color image and 

the depth map of the same resolution by coarse Bicubic 

interpolation. In the case of 16X, the coarse up-sampling by 

interpolation introduces significant noise which affects the edge 

map quality. 

Fig.1. shows the result of “Dolls” with 8X up-sampling factor 

by comparing with three state-of-the-art methods, TGV [11], 

NLMR [10] and JGF [4]. From the marked regions which are 

enlarged, it is shown that our result preserves edges better and has 

no texture-copy artifact. 

 

3.3 Experimental results on ToFMark datasets 

 
The proposed method is also tested on ToFMark datasets [11] 

consisting of three RGB-D pairs, “Books”, “Shark”, “Devil”, with 

ground-truth depth maps. The resolution of original depth maps are 

120 160, and the intensity images are the size of 610  810. The 

suggested up-sampling factor is approximately 6.25.  

Table II illustrates quantitative comparison results. The up-

sampling errors are computed by MAD in mm. It is shown that, for 

“Books”, the proposed method achieves the similar performance as 

TGV[11] and shows better performance than other methods. For 

other cases, “Shark” and “Devil”, the proposed method obtains the 

lowest MAD compared with four state-of-the-art methods and 

Bicubic interpolation.  

Fig.2. shows the up-sampling result of “Shark” compared 

with Bicubic interpolation, JGF [4] and TGV [11]. The up-

sampling results and the error maps are listed in the first and the 

third rows respectively. The marked regions are enlarged in the 

second row. It is noticed that TGV [11] and the proposed method 

perform better than other methods when the low resolution depth 

map has much noise. But TGV [11] introduces texture-copy 

artifacts (e.g. the upper edge of box in the center of depth map). 

The proposed method does not have such texture-copy artifacts. In 

addition, the edge of the paper placed on the desk in our result is 

 



TABLE I 

QUANTITATIVE UP-SAMPLING RESULTS (IN MAD) ON MIDDLEBURY DATASETS AT FOUR UP-SAMPLING FACTORS
 

Methods 

Art Book Moebius Reindeer Laundry Doll 

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 

Bicubic 0.48   0.97    1.85    3.59 0.13   0.29   0.59    1.15      0.13   0.30    0.59   1.13 0.30    0.55   0.99   1.88 0.28    0.54   1.04   1.95 0.20   0.36   0.66    1.18 

MRF[2] 0.59   0.96    1.89    3.78 0.21   0.33   0.61    1.20 0.24   0.36    0.65   1.25 N/A   N/A  N/A  N/A N/A   N/A  N/A  N/A N/A  N/A  N/A   N/A 

JBUV[5] 0.55   0.68    1.44    3.52 0.29   0.44   0.62    1.45 0.38   0.46    0.67   1.10 N/A   N/A  N/A  N/A N/A   N/A  N/A  N/A N/A  N/A  N/A   N/A 

Guided[6] 0.63   1.01    1.70    3.46 0.22   0.35   0.58    1.14 0.23   0.37    0.59   1.16 0.42    0.53   0.88   1.80 0.38    0.52   0.95   1.90 0.28   0.35   0.56    1.13 

NLMR[10] 0.41   0.65    1.03    2.11      0.17   0.30   0.56    1.03 0.18   0.29    0.51   1.10 0.20    0.37   0.63   1.28 0.17    0.32   0.54   1.14 0.16   0.31   0.56    1.05 

JGF[4] 0.29   0.47    0.78    1.54 0.15   0.24   0.43    0.81 0.15   0.25    0.46   0.80 0.23    0.38   0.64   1.09 0.21    0.36   0.64   1.20 0.19   0.33   0.59    1.06 

TGV[11] 0.45   0.65    1.17    2.30      0.18   0.27   0.42    0.82 0.18   0.29    0.49   0.90 0.32    0.49   1.03   3.05 0.31    0.55   1.22   3.37 0.21   0.33   0.70    2.20 

Ours 0.25   0.47    0.76    1.96 0.11   0.22   0.39    0.76 0.11   0.24    0.45   0.90 0.17    0.34   0.61   1.30 0.15    0.32   0.59   1.28 0.14  0.28   0.51    1.05 

 

 

     

 
(a)                                     (b)                                       (c)                                        (d)                                        (e) 

Fig. 1. Visual quality comparison for depth up-sampling on Doll from Middlebury Datasets: (a) depth ground truth, depth maps up-

sampled (8×) by (b) TGV [11], (c) NLMR [10], (d) JGF [4], and (e) the proposed method. 

 

 

   

 

    
(a)                                                    (b)                                                  (c)                                                   (d) 

Fig. 2. Visual quality comparison on up-sampling depth for Shark from ToFMark datasets: (a) Bicubic, (b) JGF [4] (C) TGV [11], and (d) 

the proposed method. 

 

 

 

 

 

 

 



TABLE II 

QUANTITATIVE DEPTH UP-SAMPLING RESULTS ON 

ToFMark DATASETS 
 

 

Bicubic JBU[3] Guided[6] JGF[4] TGV[11] Ours 

Books 16.23 16.03 15.74 17.39 12.36 12.39 

Shark 17.78 18.79 18.21 18.17 15.29 14.23 
Devil 16.66 27.57 27.04 19.02 14.68 13.86 

 

sharper than that of others, which prove that our method can 

efficiently preserve depth edges.  

 

4. CONCLUSION 

 
This paper proposes a color-guided method in MRF framework. 

The key contribution is to explicitly measure the inconsistency 

between color image edge map and the depth discontinuity (edge) 

map and embed it into MRF framework. It relaxes the assumption 

in color-guided methods. And it eliminates texture-copy artifacts 

and depth discontinuities blurring. Experimental results on the 

Middlebury datasets and ToFMark datasets prove the improved 

performance of the proposed method. In future, we will extract the 

information from LR depth map more accurately by using more 

advanced methods, instead of using Bicubic interpolation. 
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