
1	Introduction
As	one	of	the	most	important	systems	in	mechanical	engineering,	almost	all	the	multibody	dynamic	mechanical	systems	(or	mechanisms)	involve	various	uncertain	factors,	which	may	influence	the	performance

of	a	system	especially	for	the	high-speed	dynamic	systems.	For	instance,	the	geometry	size	of	a	component	in	the	mechanism	has	a	tolerance	to	facilitate	manufacturing	process;	the	fabrication	of	different	kinds	of

raw	material	may	lead	to	the	inhomogeneous	distribution	of	the	material,	which	will	further	lead	to	the	variation	of	material	properties,	such	as	the	Young's	modulus,	Poisson's	ratio,	and	material	density.	To	improve

the	computational	accuracy	of	dynamic	analysis	of	the	mechanism,	it	is	necessary	to	investigate	their	dynamic	responses	by	considering	these	unavoidable	uncertain	factors.

The	dynamic	 study	of	 the	mechanisms	under	deterministic	 conditions	has	been	developed	 from	 traditional	 rigid	multibody	 systems	 to	 flexible	multibody	 systems	and	 rigid-flexible	multibody	 systems.	The

modelling	of	rigid	multibody	systems	has	been	well	studied	[1],	and	some	commercial	 software	has	also	been	widely	used.	On	 the	other	hand,	 the	study	of	 flexible	multibody	systems	and	rigid-flexible	multibody

systems	has	been	attracting	more	and	more	attention	over	the	past	two	decades.	When	the	flexible	components	are	involved	in	multibody	systems,	the	deformation	of	these	flexible	components	has	to	be	considered.

Since	flexible	components	in	multibody	systems	often	experience	large	rotation	and	deformation,	the	traditional	finite	element	methods	based	on	the	small	rotation	and	deformation	may	give	an	improper	solution	[2].

However,	 the	Absolute	Nodal	Coordinate	 Formulation	 (ANCF)	 [3]	 shows	 good	 capability	 for	 solving	 flexible	multibody	 problems	with	 large	 rotation	 and	 deformation.	 ANCF	 defines	 elemental	 coordinates	 as	 the

absolute	displacements	and	global	slopes,	which	forces	the	mass	matrix	of	the	system	equations	to	remain	constant	and	the	centrifugal	and	Coriolis	forces	identically	equal	to	zero	[4,5].	As	a	non-incremental	finite
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Abstract

This	paper	proposes	an	uncertain	modelling	and	computational	method	to	analyze	dynamic	responses	of	rigid-flexible	multibody	systems	(or	mechanisms)	with	random	geometry	and	material	properties.

Firstly,	the	deterministic	model	for	the	rigid-flexible	multibody	system	is	built	with	the	absolute	node	coordinate	formula	(ANCF),	in	which	the	flexible	parts	are	modeled	by	using	ANCF	elements,	while	the

rigid	 parts	 are	 described	by	ANCF	 reference	nodes	 (ANCF-RNs).	 Secondly,	 uncertainty	 for	 the	 geometry	 of	 rigid	 parts	 is	 expressed	 as	 uniform	 random	variables,	while	 the	 uncertainty	 for	 the	material

properties	of	flexible	parts	is	modeled	as	a	continuous	random	field,	which	is	further	discretized	to	Gaussian	random	variables	using	a	series	expansion	method.	Finally,	a	non-intrusive	numerical	method	is

developed	to	solve	the	dynamic	equations	of	systems	involving	both	types	of	random	variables,	which	systematically	integrates	the	deterministic	generalized-α	solver	with	Latin	Hypercube	sampling	(LHS)

and	Polynomial	Chaos	(PC)	expansion.	The	benchmark	slider-crank	mechanism	is	used	as	a	numerical	example	to	demonstrate	the	characteristics	of	the	proposed	method.
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element	method,	the	ANCF	has	been	considered	as	an	effective	approach	for	analysis	of	flexible	multibody	dynamics	[6].	There	have	been	some	applications	with	the	flexible	multibody	systems	solved	by	using	the

ANCF,	such	as	the	flexible	multibody	systems	with	viscoelastic	materials	[7],	the	clearance	and	lubricated	joints	problems	[8],	and	large	deformation	problems	[9–12].

To	solve	the	rigid-flexible	multibody	systems,	Tian	et	al.	[13]	combined	ANCF	with	Natural	Coordinate	Formulation	(NCF)	to	build	dynamic	models	of	rigid-flexible	multibody	systems,	in	which	the	flexible	parts

were	modeled	by	using	ANCF	elements	and	the	rigid	parts	were	described	by	the	NCF.	Liu	et	al.	[14]	used	the	ANCF-NCF	method	to	compute	the	dynamic	response	of	a	large	scale	rigid-flexible	multibody	system

composed	of	composite	laminated	plates.	Similar	to	the	concept	of	NCF,	Shabana	[15]	employed	the	ANCF	reference	nodes	(ANCF-RNs)	to	describe	the	rigid	body.	As	a	result,	the	complicated	rigid-flexible	multibody

systems	could	be	modeled	by	using	the	ANCF-based	method,	in	which	the	flexible	parts	were	built	by	the	ANCF	elements	while	the	rigid	parts	were	described	by	the	ANCF-RNs.	More	applications	about	the	ANCF-

based	method	on	the	rigid-flexible	multibody	systems	can	be	found	in	[16].

To	 solve	 the	multibody	 systems	 containing	 uncertain	 parameters,	 not	 only	 the	 aforementioned	 deterministic	methods	 but	 also	 some	 uncertain	 analysis	methods	 have	 to	 be	 used.	 Based	 on	 the	 different

characteristics	of	uncertain	parameters,	the	uncertain	analysis	methods	can	be	divided	into	two	categories,	which	are	the	probabilistic	methods	to	solve	the	random	parameters	and	the	non-probabilistic	methods	to

solve	other	non-probabilistic	parameters	[17,18].	Non-probabilistic	methods	[19–25]	are	mainly	used	as	a	complimentary	of	probabilistic	methods	when	the	probabilistic	information	of	uncertain	parameters	may	not

be	obtained.	There	also	have	been	some	references	focusing	on	the	hybrid	uncertain	methods	[26,27].This	paper	is	focused	on	the	probabilistic	methods	by	assuming	the	characteristics	of	random	parameters	are

known.

In	 a	 rigid-flexible	multibody	 system,	 the	 uncertain	 parameters	 of	 the	 rigid	 parts	may	 be	 directly	 described	 by	 random	 variables,	 e.g.	 the	mass,	mass	 center,	mass	moment	 of	 inertia,	 and	 geometry	 size.

Specifically,	the	geometry	size	is	certainly	subject	to	uncertainty	for	the	tolerance	of	manufacture,	and	it	will	lead	to	the	uncertainty	of	other	parameters,	e.g.	mass	center,	mass,	mass	moment	of	inertia,	gravity	force,

and	constraint	conditions.	On	the	other	hand,	the	inhomogeneous	distribution	of	material	in	space	may	result	in	uncertainty	of	material	properties	(e.g.	Young's	modulus	and	Poisson's	ratio),	which	may	continuously

vary.	Therefore,	the	uncertainties	of	material	properties	should	be	described	as	random	fields.	The	random	field	has	been	widely	used	in	structure	analysis	[28–30],	but	it	is	rarely	used	in	the	dynamic	computation	of

multibody	systems.

The	continuous	random	field	is	defined	as	an	indexed	set	of	random	variables,	and	the	index	belongs	to	some	continuous	uncountable	set.	Since	the	uncountable	index	set	is	not	convenient	to	implement	in	the

computation,	 the	random	field	needs	to	be	discretized	 into	a	set	of	countable	random	variables.	Ghanem	and	Spanos	[30]	has	stated	that	a	continuous	random	field	can	be	approximately	represented	by	a	set	of

countable	random	variables.	The	most	widely	used	discretization	methods	for	the	random	field	are	series	expansion	methods,	which	aim	at	expanding	any	realization	of	the	original	random	field	over	a	complete	set	of

deterministic	functions	[31].	After	the	series	is	obtained,	the	discretization	is	implemented	by	truncating	the	series	after	a	finite	number	of	terms.	Karhunen-Loeve	(K-L)	expansion	[30],	orthogonal	series	expansion

(OSE)	 [32],	 and	expansion	optimal	 linear	 estimation	 (EOLE)	method	 [33]	 all	 belong	 to	 the	 series	 expansion	methods.	 The	K-L	 expansion	method	has	 the	 highest	 discretization	 accuracy,	 but	 only	 few	 covariance

functions	(e.g.	the	exponential	autocorrelation	function)	have	a	closed-form	solution	for	K-L	expansion.	Numerical	methods	have	to	be	used	to	realize	the	K-L	expansion,	which	can	be	found	in	references	[29,30].

However,	the	orthogonal	basis	of	the	expansion	obtained	by	most	of	the	numerical	methods	is	no	more	optimal	[31].	The	EOLE	can	be	considered	as	a	special	case	of	the	Nystrom	method	that	is	a	type	of	numerical

method	to	implement	the	K-L	expansion	[29],	and	it	is	based	on	an	optimal	basis.	The	paper	[31]	gave	a	comparison	of	the	discretization	methods	and	indicated	that	the	EOLE	could	be	used	in	more	general	cases	with

high	accuracy.

After	the	discretization,	the	uncertain	material	properties	of	the	flexible	parts	have	been	transformed	to	several	random	variables,	the	same	as	other	random	parameters	in	the	rigid	parts.	At	this	stage,	the	key

is	to	obtain	the	uncertain	characteristics	of	response	(output)	from	the	input	random	variables,	which	is	the	about	uncertainty	propagation	of	the	random	variables.	The	statistical	method	[34]	is	the	first	strategy	to

handle	this	problem,	which	collects	a	large	number	of	samples	of	the	random	variables	according	to	their	probability	distribution	and	then	estimates	the	mean,	variance,	and	even	the	probability	distribution	function

of	the	output	directly.	The	Monte	Carlo	method	[35]	is	one	important	statistical	method,	but	its	accuracy	depends	on	the	sampling	size,	in	accordance	with	the	weak	law	of	large	numbers.	Therefore,	to	get	sufficient

accuracy,	it	usually	requires	thousands	of	samples,	which	is	quite	expensive	for	the	dynamic	computation	of	rigid-flexible	multibody	systems.	As	a	result,	the	Monte	Carlo	method	is	often	used	as	the	reference	of	other

methods.	The	samples	of	Monte	Carlo	method	are	produced	randomly,	some	other	sampling	strategies	can	be	used	to	improve	the	convergence	ratio	of	Monte	Carlo	method,	such	as	the	Latin	Hypercube	sampling

(LHS)	[36],	Orthogonal	Sampling	[37],	low	discrepancy	sampling	[38]	and	so	on	[39].	This	paper	will	use	the	LHS	method	to	improve	the	convergence	ratio	of	statistical	method.

Non-statistical	methods	[34]	can	also	be	used	to	handle	the	random	variables,	e.g.	the	perturbation	method,	Neumann	expansion	method,	and	Polynomial	Chaos	(PC)	expansion	method	[40].	These	methods	can

be	regarded	as	a	kind	of	surrogate	model-based	methods,	in	which	the	perturbation	method	and	Neumann	expansion	method	are	more	like	the	low-order	polynomials.	They	require	the	uncertainty	extent	of	random

variables	to	be	small.	The	PC	expansion	method	approximates	the	response	of	system	by	a	truncated	orthogonal	series	and	then	uses	the	characteristics	of	orthogonal	polynomials	to	estimate	the	first	and	second



moment	of	the	random	response.	The	PC	expansion	can	be	regarded	as	a	type	of	high-order	polynomials	model.	It	can	be	used	to	handle	the	random	variables	with	relatively	larger	uncertainty.	The	PC	expansion

method	has	been	widely	used,	such	as	in	fluid	mechanics	[41],	vehicle	dynamics	[42,43],	multibody	dynamic	systems	[44–46],	structure	dynamics	[47],	optimization	problems	[48],	and	hybrid	uncertainties	[27,49].	One

weakness	for	the	PC	expansion	is	the	dimensional	curse	problem,	so	that	it	may	not	be	suitable	for	the	high	dimensional	problems.	Another	problem	for	the	PC	expansion	is	that	its	accuracy	strongly	depends	on	the

smooth	extent	of	the	system	responses,	so	it	may	be	not	efficient	for	the	rigid-flexible	multibody	systems	which	contain	many	high	frequency	responses,	which	will	be	discussed	in	Section	5.

The	paper	investigates	the	dynamic	response	of	the	rigid-flexible	mechanisms	containing	both	geometry	and	material	uncertainties	which	are	modeled	by	random	variables	and	random	field.	A	non-intrusive

numerical	method,	which	systematically	integrates	the	ANCF,	discretization	of	random	field,	solver	of	DAEs,	statistical	and	PC	expansion	methods	will	be	proposed.	Some	guidelines	about	their	applications	in	the

rigid-flexible	multibody	systems	will	also	be	provided.

2	ANCF-based	method	for	solving	the	rigid-flexible	multibody	system
2.1	The	ANCF-based	element	and	ANCF-RN

This	paper	studies	the	planar	mechanism,	so	we	just	briefly	review	the	two-dimensional	ANCF	beam	elements,	and	more	other	ANCF	elements	can	be	found	in	references	[5,12,50–52].	Fig.	1	shows	the	planar	shear	deformable

beam	element,	where	the	X-Y	denotes	the	global	coordinate	system.

The	displacement	field	of	the	element	can	be	defined	in	the	global	coordinate	system	as

where	r	denotes	 the	nodal	coordinates	 in	 the	global	coordinate	system,	S	 is	 the	shape	 function	of	 the	element,	e	denotes	 the	absolute	nodal	coordinate	vector	of	node	 i	and	 j,	rp	(p=i,	j)	 is	 the	 position	 coordinates	 defined	 in	 the

global	coordinate	system,	rp,x	is	the	derivative	of	rp	with	respect	to	local	coordinate	x,	and	rp,y	is	its	derivative	with	respect	to	y.

The	rigid	parts	are	described	by	the	ANCF-RNs	[15],	where	the	two-dimensional	ANCF-RNs	are	shown	as	Fig.	2.	The	X-Y	and	Xk-Yk	are	the	global	coordinate	system	and	 local	coordinate	system,	respectively.	The	absolute

coordinate	vector	of	node	k	in	ANCF-RNs	is	defined	as

Fig.	1	Two	dimensional	ANCF	beam	element.

alt-text:	Fig.	1

(1)

(2)



Similar	to	the	ANCF	element,	rk	is	the	position	coordinates	of	node	k	defined	in	the	global	coordinate	system,	rk,x	and	rk,y	are	two	vectors	paralleling	to	the	local	coordinate	axes	Xk	and	Yk,	respectively.	To	describe	a	rigid	body

in	two-dimensional	space	by	the	ANCF-RNs,	the	following	three	constraint	equations	should	be	added

Based	on	the	Fig.	2,	any	point	P	on	the	rigid	body	can	be	expressed	by	the	following	equation

where	ekr	 is	the	local	position	coordinate	vector	of	point	P,	x	and	y	are	the	local	coordinates,	I2	 is	the	2	by	2	unit	matrix,	and	Sr	denotes	the	shape	function	of	the	rigid	body.	It	can	be	found	that	the	position	coordinates	of	points

on	the	rigid	body	are	expressed	by	the	same	formula	as	the	ANCF	element,	but	their	shape	functions	are	different.

2.2	Dynamic	equations	of	the	rigid-flexible	multibody	system
The	nodal	coordinates	e	can	be	transformed	into	the	generalized	coordinates	q	of	a	rigid-flexible	multibody	system.	The	equations	of	motion	for	a	constrained	rigid-flexible	multibody	system	can	be	expressed	in	a	compact	form

of	the	differential	algebraic	equations	(DAEs)	[4]	as

where	M	 is	 the	 system	mass	matrix,	Φ(q,	t)	 is	 the	 vector	 that	 contains	 the	 system	constraint	 equations	 corresponding	 to	 the	 ideal	 joints,	 t	 represents	 the	 time,	Φq	 is	 the	derivative	matrix	 of	 constraint	 equations	with	 respect	 to

the	system	generalized	coordinates	q,	λ	 is	the	Lagrangian	multipliers	associated	with	the	constraints,	Q(q)	 is	the	system	external	generalized	forces,	e.g.	the	gravity	force,	other	external	spring	force	and	damping	force,	and	F(q)

denotes	the	system	elastic	force	vector.

The	mass	matrix	is	composed	of	element	mass	matrix	and	the	mass	matrix	of	rigid	bodies,	which	are	constant	and	can	be	computed	by	the	following	equation

Here	Me	is	the	element	mass	matrix,	Mr	denotes	the	rigid	body	mass	matrix,	ρe	and	ρr	is	the	density	of	element	in	flexible	parts	and	rigid	body	respectively,	Ve	denotes	the	volume	of	element,	and	Vr	is	the	volume	of	rigid	body.

The	system	elastic	force	F(q)	is	composed	of	element	elastic	force	Fe,	which	is	computed	by	the	following	formula	[53]

where	 the	 nonlinear	 stiffness	matrix	K(e)	 is	 the	 summation	 of	 a	 constant	 stiffness	 matrix	K1	 and	 another	 nonlinear	 stiffness	 matrix	K2(e)	 which	 is	 depend	 on	 the	 generalized	 coordinates.	 The	 constant	 stiffness	 matrix	 of	 the

element	is	expressed	by

Fig.	2	Two	dimensional	ANCF-RNs.

alt-text:	Fig.	2
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where	the	G	denotes	the	Young's	modulus,	and	κ	is	the	Poisson's	ratio.	The	entry	of	nonlinear	stiffness	matrix	K2(e)	can	be	computed	by

where	the	 	is	a	constant	matrix,	termed	as	invariant	matrix	[53],	which	is	expressed	as

It	should	be	noted	that	all	the	parameters	in	the	above	equations	are	considered	as	constant	in	deterministic	case.

Several	numerical	methods	can	be	used	 to	solve	 the	DAEs	shown	 in	Eq.	 (5),	which	can	be	 found	 in	 the	 literature	 [54].	The	generalized-α	method	 [55]	will	be	used	 in	 this	paper,	 since	 it	has	a	good	 trade-off	between	 the

numerical	accuracy	at	low-frequency	and	numerical	damping	at	high-frequency.	In	the	algorithm,	the	Eq.	(5)	is	firstly	discretized	to	the	following	algebraic	equations	at	each	time	step,	and	then	the	Newton	iteration	is	employed	to

solve	the	algebraic	equations.

where

Here	the	subscript	i	denotes	the	ith	time	step,	h	is	the	step	size,	and	a	is	the	a	new	generalized	vector	that	is	determined	by	following	equations

The	β,	η,	αm,	and	αf	are	the	parameters	in	the	generalized-α	algorithm.	More	detailed	iteration	procedure	of	the	generalized-α	algorithm	can	be	found	in	the	reference	[55].

3	Expression	of	random	uncertain	parameters
3.1	Uncertain	geometry	size	of	rigid	body

The	geometry	size	is	the	main	uncertain	source	of	the	rigid	body.	The	tolerance	of	components	will	make	the	geometry	of	a	rigid	body	uncertain,	so	the	geometry	size	of	each	component	manufactured	by	the	same	process	is

still	different.	However,	it	is	subject	to	change	within	a	given	interval	(tolerance	range).	We	can	obtain	the	probability	distribution	information	of	geometry	size	by	sampling	a	large	number	of	components,	and	then	it	can	be	expressed

by	the	random	variables.

In	this	study,	the	uncertain	geometry	size	is	assumed	to	satisfy	the	uniform	distribution.	Using	the	symbol	Ε~U[−1,1]k	to	represent	a	vector	with	k	independent	standard	uniform	distribution	random	variables,	the	volume	of	the

rigid	body	is	rewritten	as	Vr(Ε).	Based	on	the	definition,	the	system	mass	matrix	(defined	as	Eq.	(6))	depends	on	the	volume	of	the	rigid	body,	so	it	will	be	expressed	by	the	random	variables	Ε.	At	the	same	time,	the	system	generalized

external	forces,	e.g.	the	gravity	force	for	this	paper,	depends	on	the	system	mass	matrix,	so	it	is	also	expressed	by	the	random	variables	Ε.	On	the	other	hand,	some	constraints	also	depend	on	the	geometry	size.	Therefore,	they	will	be

expressed	by	a	function	of	the	random	variables	as

In	the	dynamic	analysis,	the	previous	three	parameters	are	changed	with	the	random	variables.	We	can	sample	the	random	variables	with	different	values	to	compute	these	parameters	(e.g.	by	using	Eq.	(6))	and	then	submit

them	into	Eq.	(11)	to	solve	the	system.

3.2	Uncertain	material	properties	of	flexible	body
The	material	properties	are	the	important	uncertain	factors	of	the	flexible	body.	Being	different	from	the	geometry	size,	the	material	properties	of	the	flexible	body	may	change	in	the	space	domain,	so	they	need	to	be	described

(8)
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by	the	random	field.	The	random	field	may	be	thought	as	a	giant	laboratory	where	an	investigator	can	do	numerous	experiments.	The	location	of	each	experimental	setup	in	the	laboratory	is	identified,	in	the	terminology	of	random

fields,	by	a	set	of	coordinates	or	parameters	[56].	For	the	d-dimensional	space,	locations	are	denoted	by	a	vector	x∈D,	where	D	is	an	open	set	of	Rd	describing	the	system	geometry.	When	d=1,	the	random	field	is	called	as	univariate

random	field	which	is	also	termed	as	random	process.	Therefore,	a	random	field	Y(x,	θ)	can	be	defined	as	a	curve	in	L2(Ω,	F,	P),	that	is	a	collection	of	random	variables	indexed	by	the	continuous	parameter	x.	This	means	that	for	a

given	x0,	Y(x0,	θ)	is	a	random	variable.	Conversely,	for	a	given	outcome	θ0,	Y(x,	θ0)	is	a	realization	of	the	field	[31].

The	values	of	a	random	field	at	different	 locations	are	not	 independent,	and	 their	dependence	 is	described	by	 the	covariance	 function	C	or	correlation	 function	 .	For	a	 random	field	Y(x,	θ),	 its	 covariance	 function	 and

correlation	function	are	defined	as	follows

where	Cov[f,	g]	denotes	the	covariance	of	random	variables	f	and	g,	σ(xi)	is	the	standard	deviation	of	random	variable	Y(xi,	θ).

The	random	field	 is	a	Gaussian	field	 if	any	vector	[Y(x1,	θ)	…	Y(xq,	θ)]T	 is	Gaussian.	The	Gaussian	 field	 is	completely	defined	by	 its	mean	μ(x,	θ),	variance	σ2(x,	θ)	and	correlation	 functions	 .	 If	 the	 random	 field	 is

homogenous	(or	stationary	for	one-dimensional	case),	its	covariance	(and	correlation)	function	only	depends	on	the	relative	position	of	the	pints	x	and	 .	This	paper	only	studies	the	homogenous	Gaussian	field.	The	typical	square

exponential	correlation	function	is	given	as	the	Eq.	(16),	more	correlation	functions	can	be	found	in	[31].

where	a	is	the	correlation	length,	which	has	large	influence	on	the	discretization	of	the	random	field.

Based	on	the	definition,	the	continuous	random	field	is	defined	as	an	uncountable	indexed	set	of	random	variables,	which	are	not	convenient	to	implement	in	the	numerical	computation,	so	it	needs	to	be	discretized	to	countable

random	variables.	Using	the	EOLE	method	[33]	to	discretize	the	random	field,	the	continuous	random	field	can	be	approximately	expressed	by

Here	μ	and	σ	are	the	mean	and	standard	deviation	of	the	random	field,	{Εi(θ)}	(i=1,…,	m)	denotes	a	set	of	independent	standard	Gaussian	random	variables	(i.e.	Εi(θ)	~N(0,1)),	ρxX	is	the	correlation	function	vector	at	given

nodes	x1,…,	xq	(q>m),	i.e.	 ,	λi	are	the	m	largest	eigenvalues	of	the	covariance	matrix	CXX	at	the	given	nodes,	with	entry	 ,	and	 	are	the	corresponding	eigenvectors.

The	variance	of	the	error	for	EOLE	is	given	as

The	value	of	m	can	be	determined	by	make	the	relative	variance	error	be	lower	than	a	small	constant,	e.g.	5%	used	in	this	study.	Generally,	the	shorter	correlation	length	of	the	random	field	is,	the	more	terms	need	to	be

remained.	To	this	step,	the	original	random	field	has	been	approximated	by	a	series	governed	by	the	m	independent	standard	Gaussian	random	variables	{Εi(θ)}.

Considering	 the	Young's	modulus	and	Poisson's	 ratio	 as	 random	 field	and	using	 the	EOLE	method	 to	discretize	 them,	 if	 their	 correlation	 functions,	mean	and	 standard	deviation	are	given,	 the	 two	parameters	will	 be	 re-

expressed	as

From	Eqs.	(7)–(10),	it	can	be	found	that	the	system	elastic	forces	depend	on	the	Young's	modulus	and	Poisson's	ratio,	so	it	will	be	expressed	by	a	function	of	the	m	random	variables	Εi(θ)

Integrating	the	k	random	variables	of	the	rigid	bodies	with	the	m	random	variables	of	the	flexible	bodies,	we	can	use	one	random	vector	to	denote	them,	i.e.	Ε=[Ε1,…,	Εk+m]T,	in	which	the	first	k	random	variables	satisfy	the

standard	uniform	distribution	while	the	last	m	random	variables	satisfy	the	standard	Gaussian	distribution.	Substituting	the	Eq.	(14)	and	Eq.	(20)	into	the	Eq.	(5),	 the	dynamic	equations	of	the	rigid-flexible	multibody	systems	with

random	parameters	will	be	finally	expressed	by
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The	above	DAEs	contain	the	random	variables,	so	it	is	hard	to	use	the	generalized-α	algorithm	shown	in	Section	2.2	to	solve	directly.	The	solving	strategy	of	this	system	will	be	proposed	in	next	section.

4	Methods	for	solving	the	DAEs	with	random	variables
When	the	random	variables	are	contained	in	the	dynamic	equations,	the	algebraic	equations	after	discretization	(Eq.	11)	will	be	changed	as	the	following	algebraic	equations

The	aim	for	solving	the	above	equation	is	to	compute	the	qi+1	and	λi+1.	Introducing	the	symbol	f	to	denote	the	solution,	i.e.	 ,	we	have	the	following	expression

As	a	result,	the	solution	can	be	thought	as	a	function	with	respect	the	random	variables,	denoted	by	f(Ε).	It	should	be	noted	that	the	analytical	expression	of	this	function	is	not	known,	so	the	function	value	can

only	be	obtained	by	using	the	numerical	method,	i.e.	solving	the	Eq.	(22)	by	fixing	the	random	variables	at	given	values.	Since	the	random	variables	satisfy	some	probability	distribution,	the	function	value	should	also

have	the	statistical	characteristics.	The	main	work	is	how	to	get	their	statistical	characteristics,	including	the	mean	and	variance.

4.1	Statistical	methods
The	most	direct	method	is	to	use	the	Monte	Carlo	method	to	obtain	the	statistical	information	of	the	response.	Use	the	random	sampling	method	to	produce	a	large	number	of	sampling	points	of	the	random	variables,	and	then

solve	the	Eq.	(22)	by	fixing	the	random	variables	at	these	sampling	points,	which	will	produce	a	large	number	of	samples	of	the	solution.	The	unbiased	estimation	of	the	mean	and	variance	of	the	response	can	be	obtained	by

where	N	is	the	number	of	samples,	and	 	are	the	sampling	points	of	random	variables.	One	important	advantage	of	the	Monte	Carlo	method	is	that	it	has	no	limitation	for	the	format	of	function	f(Ε),	which	means	that	f(Ε)	can

be	smooth	or	non-smooth,	or	even	discontinuous.	Another	advantage	is	that	the	Monte	Carlo	method	does	not	have	dimensional	curse	problem	because	its	accuracy	only	depends	on	the	sampling	size.	Therefore,	it	is	quite	appropriate

for	high	dimensional	problems.	Based	on	the	large	number	theorem,	the	convergence	ratio	of	Monte	Carlo	method	is	proportion	to	 ,	so	it	requires	a	large	number	of	sampling	points	to	get	an	acceptable	accuracy.	In	this	study,

solving	the	Eq.	(22)	is	usually	time-consuming,	so	we	cannot	use	too	many	sampling	points.	As	a	result,	the	Monte	Carlo	method	is	only	used	to	produce	the	reference	solution.

To	improve	the	efficiency	of	Monte	Carlo	method,	an	approach	is	to	use	a	more	efficient	sampling	method	to	select	the	sampling	points.	The	Latin	Hypercube	sampling	(LHS)	method	[57–59]	shows	quite	good	performance	in

statistics,	so	it	will	be	employed	to	produce	the	sampling	points.	After	the	sampling	points	are	produced,	we	can	repeat	the	same	procedure	of	the	general	Monte	Carlo	method,	and	then	the	mean	and	variance	of	response	can	be

obtained,	termed	as	LHS-based	statistical	method.	The	convergence	ratio	of	LHS-based	statistical	method	is	much	higher	than	the	general	Monte	Carlo	method,	which	will	be	shown	in	Section	5.

4.2	Polynomial	Chaos	expansion	method
The	basic	idea	of	PC	expansion	is	to	use	a	polynomials	function	fn(Ε)∈Pn(Ε)	to	approximate	the	original	function	f(Ε),	where	the	Pn(Ε)	is	the	space	of	polynomials	of	random	variable	Ε	of	order	up	to	n≥0.	After	the	approximated

polynomials	function	is	obtained,	the	mean	and	variance	of	the	original	function	f(Ε)	will	be	estimated	by	using	the	fn(Ε).

Considering	the	1-dimensional	random	variable	first,	for	any	function	f(Ε)	in	the	mean-square	integrable	space,	its	nth-degree	PC	expansion	is	defined	as

Here	E[g]	represents	the	expectation	or	mean	of	g.	In	the	approximation	theory,	fn(Ε)	is	the	best	approximation	of	f(Ε)	in	the	least-square	sense	if	f(Ε)∈C[a,	b],	such	that
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where	 the	 	denotes	 the	weight	 function,	which	 is	 the	probability	density	 function	of	 the	random	variable	Ε.	Therefore,	 the	Eq.	 (25)	gives	 the	minimum	mean-square	error	under	 the	given	weight	 for	 the	nth-degree	polynomial

approximation.

The	 	in	Eq.	(25)	is	the	coefficients	of	the	PC	expansion,	and	Ψi(Ε)	denotes	PC	basic	functions	that	are	the	orthogonal	polynomial	functions	satisfying	the	following	equation.

where	γi	are	the	normalization	factors,	and	δij	is	the	Kronecker	delta	function.	For	the	continuous	random	variable	Ε,	the	orthogonality	can	be	expressed	by

Therefore,	the	{Ψi(ε)}	are	orthogonal	polynomials	of	ε∈R	with	the	weight	function	 ,	which	is	also	the	probability	density	function	of	the	random	variable	Ε.	By	using	the	orthogonality	of	the	basic	functions,	the	coefficients

can	be	computed	by	the	following	formula

For	the	standard	Gaussian	random	variable,	i.e.	Ε~N(0,1),	its	probability	density	function	is	given	as	 ,	and	the	corresponding	orthogonal	polynomials	are	the	Hermite	polynomials.	For	the	standard	uniform

random	variable	Ε~U(−1,1),	its	probability	density	function	is	 ,	and	the	corresponding	orthogonal	polynomials	are	the	Legendre	polynomials.

Since	the	PC	basic	functions	have	been	known,	the	key	of	PC	expansion	is	to	compute	the	coefficients.	When	the	Eq.	(29)	is	used	to	compute	the	coefficients,	the	numerical	quadrature	method	has	to	be	employed,	because	the

analytical	expression	of	function	f	is	not	known.	By	employing	the	Kth-order	Gaussian	quadrature	formula	[60],	the	coefficients	can	be	computed	by

where	wj	 is	 the	 integral	 coefficient,	 and	 εj	 denotes	 the	 interpolation	 points	 that	 are	 the	 roots	 of	 Kth-order	 orthogonal	 polynomial	ΨK(ε).	 The	 algebraic	 precision	 order	 of	 this	 quadrature	 formula	 is	 be	 2K−1.	Using	 higher	 order

interpolation	points	gives	higher	integral	accuracy,	but	it	increases	the	computational	cost,	because	each	one	interpolation	point	added	means	one	more	call	of	solving	the	rigid-flexible	multibody	systems.	To	trade-off	the	efficiency	and

accuracy,	the	order	of	this	formula	is	usually	set	as	K=n+1.

For	the	multi-dimensional	case,	such	as	the	k+m	dimensional	random	variables	in	Section	3.2,	the	bases	are	defined	as	the	product	of	the	each	univariate	orthogonal	polynomials,	i.e.

where	the	subscript	i	is	a	(k+m)-dimensional	multi-index.	As	a	result,	the	nth-order	PC	expansion	of	function	f(Ε),	Ε	∈	Rk+m,	is	expressed	as	the	following	equation

where	 ,	 and	 the	 number	 of	 coefficients	 is	 s=(n+1)k+m.	 The	 coefficients	 can	 still	 be	 computed	 by	 the	 multi-dimensional	 Gaussian	 integral	 formula	 or	 by	 the	 least	 square	 method	 [44],	 and	 the

interpolation	points	will	be	the	tensor	product	of	the	roots	of	univariate	orthogonal	polynomials	with	order	n+1	in	k+m	dimensional	space,	expressed	as

It	should	be	noted	that	the	number	of	interpolation	points	equals	to	the	number	of	coefficients	in	PC	expansion,	i.e.	(n+1)k+m,	which	increases	exponentially	with	the	increase	of	dimension.	Figs.	3	and	4	show	the	interpolation

points	in	2-dimensional	space	of	uniform	random	variables	and	Gaussian	random	variables	with	order	5,	respectively.

		 	

		 	

(27)

(28)

		 	

(29)

		 	

		 	

(30)

(31)

(32)

		 	

(33)



After	the	PC	expansion	is	finished,	the	statistical	methods	can	be	employed	to	get	its	mean	and	variance.	This	process	does	not	increase	the	computation	burden	much,	because	the	analytical	expression	of	the	functions	has

been	obtained.	However,	there	is	another	more	convenient	way	to	compute	the	mean	and	variance.	By	using	the	orthogonality	of	the	PC	basic	function,	the	mean	and	variance	can	be	computed	by

The	error	of	the	mean	is	only	induced	by	the	numerical	integral	error	from	Eq.	(30),	while	the	error	of	variance	is	induced	by	two	parts,	which	are	the	truncated	error	in	Eq.	(25)	and	the	numerical	integral	error	from	Eq.	(30).

As	a	result,	 the	mean	usually	has	higher	accuracy	than	the	variance.	Specifically,	 in	Eq.	(30),	 the	error	will	be	quite	 large	 if	 the	 function	f(Ε)	 is	unsmooth	(or	contains	many	high	frequency	signals),	which	does	not	often	occur	 in

traditional	mechanics	problem	of	structures	but	is	quite	common	for	the	rigid-flexible	multibody	systems	studied	in	this	paper.	More	detailed	analysis	about	the	error	will	be	provided	in	Section	5.

4.3	Numerical	implementation	process
The	numerical	 implementation	process	can	be	illustrated	by	the	flowchart	Fig.	5,	which	mainly	contains	4	steps:	 (1)	determine	the	uniform	random	variables	of	 the	geometry	size	and	discrete	the	random	field	of	material

properties	to	a	finite	standard	Gaussian	random	variables;	(2)	produce	the	sampling	points	by	using	the	LHS	and	the	interpolation	points	of	PC	expansion;	(3)	build	the	dynamic	equations	of	rigid-flexible	multibody	systems	using	the

ANCF-based	method,	and	then	solve	the	equations	using	general-α	method	by	fixing	the	values	of	random	variables	to	be	the	sampling	points	and	interpolation	points;	(4)	compute	the	mean	and	variance	by	using	the	statistical	method

and	PC	expansion	method.

Fig.	3	The	interpolation	points	for	Ε~U(−1,1)2.

alt-text:	Fig.	3

Fig.	4	The	interpolation	points	for	Ε~N(0,1)2.

alt-text:	Fig.	4

(34)



5	Application	on	the	slider	crank	mechanism
In	this	section,	a	slider-crank	mechanism	is	used	as	the	numerical	examples	to	show	the	accuracy	and	stability	of	the	proposed	uncertain	analysis	method.

The	schematic	of	slider-crank	mechanism	 is	shown	 in	Fig.	6,	 in	which	 the	slider	and	crank	are	considered	as	 rigid	body,	while	 the	 link	 is	made	by	aluminum	that	 is	 thought	as	 flexible	body.	Three	ANCF

elements	are	used	to	build	the	model	of	flexible	link,	where	the	nodes	are	denoted	by	points	A,	D,	E,	and	B.	The	rotation	velocity	of	the	crank	is	ω=2π	rad/s,	and	the	deformation	of	the	spring	is	zero	in	the	position

shown	in	the	figure.	The	geometry	of	all	components	is	prismatic,	and	some	parameters	under	the	deterministic	case	are	provided	in	Table	1.	As	the	crank	and	slider	are	considered	to	be	rigid	bodies,	there	is	no

elastic	force	produced	by	the	bodies,	so	the	Young's	modulus	and	Poisson's	ratio	are	not	provided	in	Table	1.

Table	1	The	parameters	of	the	slider-crank	mechanism.

alt-text:	Table	1

Component Density	(kg/m3) Length/X	(m) Height/Y	(m) Width/Z	(m) Young's	modulus	(GPa) Poisson's	ratio

Crank 7800 0.2 0.01 0.01 – –

Link 2700 0.6 0.01 0.01 69 0.34

Slider 7800 0.08 0.08 0.2 – –

5.1	Long	correlation	length	of	random	field
Assume	that	the	length	of	the	crank	satisfies	the	uniform	distribution	l~U(0.19,	0.21),	which	can	be	expressed	by	the	standard	uniform	random	variable,	i.e.	l=0.2+0.01Ε1,	where	Ε1~U(−1,	1).	At	the	same	time,	the	Young's

modulus	of	the	link	is	considered	as	a	homogenous	Gaussian	field	with	2	m	correlation	length	in	X	direction,	so	the	correlation	function	is	given	as

Fig.	5	Flowchart	of	solving	rigid-flexible	multibody	system	with	random	parameters.

alt-text:	Fig.	5

Fig.	6	The	schematic	of	slider-crank	mechanism.

alt-text:	Fig.	6



The	mean	of	the	Young's	modulus	is	the	value	shown	in	Table	1,	and	the	standard	deviation	is	1%	of	mean,	i.e.	0.69	GPa.	Use	the	EOLE	method	to	discretize	the	random	field,	truncated	by	1	term,	which	means	the	random	field

is	discretized	to	one	Gaussian	random	variable.

The	error	of	variance	after	the	discretization	is	shown	in	Fig.	7,	which	indicates	that	the	maximum	error	is	about	0.043<5%	required	by	this	study.	As	a	result,	there	are	two	random	variables	in	this	system,	which	are	the

Ε1~U(−1,	1)	and	Ε2~N(0,	1).	The	stiffness	of	the	spring	and	damping	ratio	are	considered	in	two	cases,	which	are	(1)	K=1000	N/m,	C=100	Ns/m;	(2)	K=10	N/m,	C=1	Ns/m.

(1) 	K=1000	N/m,	C=100	Ns/m

If	the	second	order	PC	expansion	is	used	to	approximate	the	uncertain	solution,	there	will	be	32=9	interpolation	points,	shown	as	Fig.	8(a).	The	LHS	is	used	to	produce	the	same	number	of	sampling	points,	which	are	shown	in

Fig.	8(b).	Based	on	 the	9	 interpolation	points	and	9	sampling	points,	 implementing	 the	 third	step	and	 fourth	step	shown	 in	Fig.	5	gets	 the	mean	and	standard	deviation	of	 the	 system	responses.	The	 following	 four	 responses	are

considered	as	evaluation	indexes:	1)	qX:	the	displacement	of	the	node	B	in	X	direction,	2)	qY:	displacement	of	the	node	E	in	Y	direction,	3)	FX:	the	reaction	force	at	point	A	in	X	direction,	4)	FY:	the	reaction	force	at	point	A	in	X	direction.

To	validate	 the	results,	 the	general	Monte	Carlo	method	with	1000	random	samples	 is	used	as	 the	reference.	Fig.	9	 shows	 the	mean	responses,	where	 the	 legend	 ‘PC’,	‘LHS’,	and	 ‘MC’	denote	 the	 results	 obtained	by	PC

expansion	method,	LHS-based	statistical	method,	and	general	Monte	Carlo	method,	respectively.	It	can	be	found	that	the	three	curves	are	coincidence,	which	indicates	both	the	PC	expansion	and	LHS-based	statistical	methods	can

catch	the	mean	responses	only	with	9	simulations.	Compared	to	the	1000	simulations	used	in	the	Monte	Carlo	method,	the	efficiency	of	the	PC	expansion	and	LHS-based	statistical	methods	are	higher.

(35)

Fig.	7	The	discretization	error	of	random	field	with	2	m	correlation	length.

alt-text:	Fig.	7

Fig.	8	Distribution	of	interpolation	points	and	sampling	point.	(a)	Interpolation	points	of	PC	expansion	(b)	sampling	points	of	LHS.

alt-text:	Fig.	8



For	the	standard	deviation	shown	in	Fig.	10,	the	PC	expansion	method	still	gives	quite	close	results	to	the	Monte	Carlo	method,	while	the	LHS-based	statistical	method	shows	larger	difference,	especially	for	the	two	reaction

forces.	The	9	samples	for	LHS-based	statistical	method	are	not	enough	to	get	a	good	estimation	of	the	standard	deviation.

Fig.	9	Mean	responses	by	using	9	samples	(high	stiffness	and	damping	ratio).

alt-text:	Fig.	9



To	describe	the	accuracy	of	the	proposed	method	more	clearly,	define	the	error	of	the	mean	and	standard	deviation	of	the	proposed	method	as	follows

where	 	and	 	are	the	mean	and	standard	deviation	obtained	by	the	PC	expansion	or	LHS-based	statistical	method,	 	and	 	denote	 the	mean	and	standard	deviation	obtained	by	 the	Monte	Carlo	method,	 t	 is	 the	 time.	 It

should	be	noted	that	the	error	defined	in	Eq.	(36)	is	the	difference	between	the	PC	expansion	(or	LHS-based	statistical)	method	and	the	general	Monte	Carlo	method	with	1000	samples.	Since	the	Monte	Carlo	method	also	contains

some	minor	errors,	this	difference	may	not	be	quite	accurate	when	it	is	extremely	small,	but	it	can	conclude	that	a	method	is	bad	if	this	difference	is	too	large.

To	compare	the	accuracy	of	the	PC	expansion	and	LHS-based	statistical	methods	under	different	sampling	size,	the	order	of	PC	expansion	is	set	as	2,	4,	6,	and	8,	respectively,	so	the	corresponding	sampling	size	will	be	9,	25,

49,	and	81,	respectively.	The	error	of	the	mean	and	standard	deviation	changing	with	the	sampling	size	are	shown	in	Figs.	11	and	12.	The	error	of	mean	is	quite	small	(almost	smaller	than	0.001),	so	it	does	not	change	much	with	the

increase	of	 sampling	size.	When	 the	order	of	PC	expansion	 increases,	 the	mean	does	not	change,	which	 indicates	 that	 the	second	order	Gaussian	quadrature	 formula	 is	accurate	 for	computing	 the	 first	coefficient	 (Eq.	 (31)).	 The

fluctuation	of	the	LHS-based	statistical	method	is	induced	by	the	randomness	of	the	sampling	points,	because	there	are	some	random	factors	in	producing	the	sampling	points	by	the	LHS-based	statistical	method.	The	error	of	standard

deviation	obtained	by	the	PC	expansion	method	is	still	quite	stable,	almost	keeping	the	same	with	the	sampling	size	increasing,	which	demonstrates	that	the	high-order	coefficients	of	PC	expansion	is	quite	small	compared	to	its	low-

order	coefficients.	However,	the	fluctuation	of	the	LHS-based	statistical	method	is	obvious,	and	its	error	gets	closer	to	that	of	PC	expansion	method	when	the	sampling	size	increases.	In	summary,	the	PC	expansion	method	can	provide

higher	accuracy	and	more	stable	results	than	the	LHS-based	statistical	method	in	the	case	of	high	spring	stiffness	and	damping	ratio.

(2) 	K=10	N/m,	C=1	Ns/m

Fig.	10	Standard	deviations	by	using	9	samples	(high	stiffness	and	damping	ratio).

alt-text:	Fig.	10
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When	the	spring	stiffness	and	damping	ratio	are	decreased,	the	responses	of	the	mechanism	will	change.	Fig.	13	shows	the	configuration	of	the	slider-crank	mechanism,	where	the	label	‘HIGH’	denotes	the	high	stiffness	and

damping	ratio	while	the	label	‘LOW’	denotes	the	low	stiffness	and	damping	ratio.	It	can	be	found	that	the	deformation	of	the	link	under	the	two	cases	is	obviously	different.

The	mean	responses	with	9	sampling	points	are	shown	in	Fig.	14.

Fig.	11	The	error	of	mean	responses	changing	with	sampling	size.

alt-text:	Fig.	11

Fig.	12	The	error	of	standard	deviations	changing	with	sampling	size.

alt-text:	Fig.	12

Fig.	13	The	configuration	of	the	slider-crank	mechanism.

alt-text:	Fig.	13



Compared	 to	 the	 high	 stiffness	 and	 damping	 case,	 there	 are	 some	 fluctuations	 in	 the	 response	 of	 qY	 and	 the	 reduction	 of	 the	 fluctuation	 of	 FX	 and	FY	 become	 slowly,	 because	 the	 damping	 ratio	 is	much	 lower.	 For	 the

displacements,	the	PC	expansion	and	LHS-based	statistical	methods	give	almost	the	same	results	as	the	Monte	Carlo	method,	so	both	have	high	accuracy.	However,	for	the	reaction	forces,	the	LHS-based	statistical	method	shows

difference,	while	the	PC	expansion	method	gives	a	quite	coincident	result	to	the	Monte	Carlo	method.

The	standard	deviations	by	using	9	sampling	points	are	shown	in	Fig.	15.	The	displacement	of	qX	does	not	show	much	difference	compared	to	the	high	spring	stiffness	and	damping	case	and	the	PC	expansion	method	is	closer

to	the	Monte	Carlo	method	than	the	LHS-based	statistical	method.	There	are	more	high	frequency	signals	for	other	three	responses,	and	the	magnitude	of	the	fluctuation	of	the	LHS-based	statistical	method	is	much	larger	than	the

Monte	Carlo	method	while	the	PC	expansion	method	shows	quite	similar	solution	to	the	Monte	Carlo	method.	Hence,	the	PC	expansion	method	has	better	performance	than	the	LHS-based	statistical	method	when	a	small	number	of

sampling	points	(or	interpolation	points)	are	used.

Fig.	14	Mean	responses	by	using	9	samples	(low	stiffness	and	damping	ratio).

alt-text:	Fig.	14



Similar	 to	 the	high	 stiffness	 and	damping	 case,	 the	PC	expansion	 and	LHS-based	 statistical	methods	with	 different	 number	 of	 sampling	points	 are	 investigated,	 shown	 in	Figs.	16	and	17.	 The	mean	 responses	 of	 the	 PC

expansion	method	are	more	accurate	and	stable	than	the	LHS-based	statistical	methods.	The	randomness	of	the	samples	makes	the	LHS-based	statistical	method	have	a	fluctuated	performance.

Fig.	15	Standard	deviations	by	using	9	samples	(low	stiffness	and	damping	ratio).

alt-text:	Fig.	15

Fig.	16	The	error	of	mean	responses	changing	with	sampling	size.

alt-text:	Fig.	16



As	stated	in	Section	4,	the	error	of	the	standard	deviations	is	usually	larger	than	the	error	of	mean,	which	can	be	found	from	Fig.	17.	Except	the	qX,	all	other	three	responses	indicate	the	PC	expansion	method	has	higher

accuracy	for	the	standard	deviations.	With	the	increase	of	sampling	size,	the	error	of	the	qY,	FX,	and	FY	of	the	PC	expansion	method	decreases	sequentially,	this	demonstrates	that	the	high-order	coefficients	of	the	PC	expansion	are

large	in	this	case.	The	LHS-based	statistical	method	still	shows	unstable	results	for	the	standard	deviations.	In	summary,	when	the	correlation	length	of	the	random	field	is	relatively	long	(2	m	in	this	example),	the	PC	expansion	method

shows	better	performance	than	the	LHS-based	statistical	method	for	both	the	accuracy	and	stability.

5.2	Short	correlation	length	of	random	field
In	 this	 subsection,	 the	geometry	uncertainty	of	 the	crank	 is	 considered	 to	be	 the	 same	as	 the	 last	 subsection,	 i.e.	 l~U(0.19,	0.21),	but	 the	Poisson's	 ratio	of	 the	 link	will	 be	considered	as	 the	 random	 field	with	a	 shorter

correlation	length	while	the	Young's	modulus	is	deterministic.	Assuming	the	correlation	length	is	1	m	in	X	direction,	so	the	correlation	function	is	given	as

The	mean	of	the	Poisson's	ratio	is	0.34,	and	the	standard	deviation	is	1%	of	its	mean	value,	i.e.	0.0034.	The	EOLE	method	is	used	to	discreet	the	random	field,	truncated	by	two	terms.	The	error	of	the	discretization	is	shown	in

Fig.	18,	where	the	maximum	error	(0.0062)	is	smaller	than	5%.	Therefore,	after	the	discretization,	the	random	field	is	transformed	to	two	standard	Gaussian	variables,	and	there	will	be	three	random	variables	for	the	whole	system,	i.e.

Ε1~U(−1,	1),	Ε2~N(0,	1),	and	Ε3~N(0,	1).	Similar	to	last	subsection,	the	stiffness	of	the	spring	and	the	damping	ratio	are	considered	to	be	high	and	low	cases.

(1) 	K=1000	N/m,	C=100	Ns/m

The	second	order	PC	expansion	is	considered	first,	so	there	will	be	33=27	interpolation	points	being	used,	and	the	LHS-based	statistical	method	uses	the	same	number	of	samples	to	estimate	the	responses.

Fig.	19	shows	the	mean	responses	of	the	two	methods	and	the	Monte	Carlo	method	with	1000	random	samples.	For	the	displacements	qX	and	qY,	both	the	PC	expansion	and	LHS-based	statistical	methods	provide	very	close

Fig.	17	The	error	of	standard	deviations	changing	with	sampling	size.

alt-text:	Fig.	17

(36)

Fig.	18	The	discretization	error	of	1	m	correlation	length.

alt-text:	Fig.	18



solution	to	 the	Monte	Carlo	method.	The	accuracy	of	reaction	 forces	 is	not	as	good	as	 the	displacements,	but	 it	 is	also	acceptable.	 It	should	be	noted	that	only	27	samples	are	used	 in	 the	PC	expansion	and	LHS-based	statistical

methods,	so	they	are	much	more	efficient	than	the	general	Monte	Carlo	method	that	requires	1000	samples.

The	standard	deviations	are	shown	in	Fig.	20.	The	PC	expansion	method	gives	a	higher	accuracy	than	the	LHS-based	statistical	method	for	the	displacements,	but	the	latter	is	better	for	the	reaction	forces.	It	should	be	noted

that	the	accuracy	of	the	standard	deviations	is	lower	than	the	mean	responses.

Fig.	19	Mean	responses	by	using	27	samples	(high	stiffness	and	damping	ratio).

alt-text:	Fig.	19



Considering	the	order	of	PC	expansion	to	be	2,	3,	and	4,	the	sampling	size	will	be	27,	64,	and	125,	respectively.	The	accuracy	of	the	mean	responses	under	different	sampling	size	is	given	in	Fig.	21.	The	accuracy	of	the	LHS-

based	statistical	method	is	higher	than	the	PC	expansion	method	under	all	different	sampling	sizes,	which	is	contrary	to	the	case	of	long	correlation	length	shown	in	Section	5.1.	Especially	for	the	reaction	forces,	the	error	of	LHS-

based	statistical	method	is	almost	one	half	of	the	error	of	PC	expansion	method.	The	fluctuation	of	LHS-based	statistical	method	is	induced	by	the	randomness	of	samples,	while	the	fluctuation	of	PC	expansion	method	is	induced	by	the

numerical	error	of	Gaussian	quadrature	formula.

The	error	of	standard	deviations	is	provided	in	Fig.	22.	The	qX	of	PC	expansion	method	is	better	than	the	LHS-based	statistical	method,	but	all	other	three	responses	of	which	have	smaller	error.	The	convergence	ratio	of	LHS-

based	statistical	method	is	higher	and	more	stable	than	PC	expansion	method.	Also,	the	error	of	standard	deviations	is	larger	than	that	of	mean	responses,	which	is	coincident	with	the	Figs.	19	and	20.	In	summary,	except	the	response

of	qX,	all	other	three	responses	indicate	that	the	LHS-based	statistical	method	has	higher	accuracy	and	more	stability	than	the	PC	expansion	method.

Fig.	20	Standard	deviations	by	using	27	samples	(high	stiffness	and	damping	ratio).

alt-text:	Fig.	20

Fig.	21	The	error	of	mean	responses	changing	with	sampling	size.

alt-text:	Fig.	21



(2) 	K=10	N/m,	C=1	Ns/m

The	configuration	of	the	mechanism	is	shown	in	Fig.	23.

When	the	spring	stiffness	and	damping	ratio	decreases,	the	responses	will	contain	more	high-frequency	signals	in	the	time	domain,	which	can	be	found	in	the	Fig.	24.	For	the	27	sampling	points,	the	mean	displacements	are

accurate	for	both	the	PC	expansion	and	LHS-based	statistical	methods,	but	the	error	of	the	mean	reaction	forces	are	quite	large.	The	sampling	size	may	be	too	small	to	get	acceptable	accuracy,	so	more	sampling	points	should	be	used.

Fig.	22	The	error	of	standard	deviations	changing	with	sampling	size.

alt-text:	Fig.	22

Fig.	23	The	configuration	of	the	slider-crank	mechanism.

alt-text:	Fig.	23



The	standard	deviations	under	the	27	samples	are	shown	in	Fig.	25.	The	accuracy	of	the	qX	is	obviously	better	than	other	three	responses,	and	the	PC	expansion	method	also	shows	better	performance	for	this	response.	The	two

methods	show	similar	accuracy	for	the	standard	deviation	of	the	qY,	but	the	LHS-based	statistical	method	has	higher	accuracy	in	estimating	the	standard	deviations	of	FX,	and	FY.	We	may	find	that	the	standard	deviations	of	the	reaction

forces	are	even	larger	than	their	mean	responses.	In	fact,	both	of	the	two	methods	do	not	have	high	accuracy	for	estimating	the	standard	deviation	of	qY,	FX,	and	FY,	so	more	sampling	points	have	to	be	used	to	get	an	acceptable

accuracy.

Fig.	24	Mean	responses	by	using	27	samples	(low	stiffness	and	damping	ratio).

alt-text:	Fig.	24



Fig.	26	provides	the	error	of	mean	response	under	different	sampling	size.	The	accuracy	of	the	mean	displacements	is	higher	than	that	of	the	reaction	forces.	All	the	four	mean	responses	indicate	the	LHS-based	statistical

method	has	higher	accuracy	than	the	PC	expansion	method,	no	matter	what	the	sampling	size	is.	It	should	be	noted	that	the	error	of	the	mean	reaction	forces	is	quite	large.	Even	though	the	125	sampling	points	are	used,	their	error	is

still	larger	than	10%.

The	error	of	standard	deviations	under	different	sampling	size	is	shown	in	Fig.	27,	which	demonstrates	that	the	error	decreases	sequentially	with	the	sampling	size	increasing.	Similar	to	the	previous	cases,	the	PC	expansion

method	has	higher	accuracy	in	estimating	the	standard	deviation	of	qX.	However,	the	LHS-based	statistical	method	shows	better	performance	for	other	three	responses,	providing	only	less	than	one	half	of	the	error	of	the	PC	expansion

method.	Another	phenomenon	should	be	mentioned	is	that	the	error	of	standard	deviation	(Fig.	27(b))	is	smaller	than	the	error	of	mean	responses	(Fig.	26(b))	for	the	reaction	forces.	If	the	standard	deviation	is	larger	than	its	mean,

estimating	the	standard	deviation	may	be	easier	than	estimating	the	mean.

Fig.	25	Standard	deviations	by	using	27	samples	(low	stiffness	and	damping	ratio).

alt-text:	Fig.	25

Fig.	26	The	error	of	mean	responses	changing	with	sampling	size.

alt-text:	Fig.	26



For	the	short	correlation	length	of	the	random	field,	the	LHS-based	statistical	method	shows	better	performance	than	the	PC	expansion	method	in	most	cases,	which	is	contrary	to	the	case	of	long	correlation	length.	Next,	a

more	detailed	discussion	will	be	provided	to	express	which	method	is	better	under	different	conditions.

5.3	Discussion	of	the	PC	expansion	and	LHS-based	statistical	methods
The	highest	order	of	the	PC	expansion	is	4	in	the	last	subsection,	so	one	may	consider	increasing	the	order	of	PC	expansion	to	improve	the	accuracy.	This	section	will	compare	the	accuracy	between	the	PC	expansion	and	the

LHS-based	statistical	methods	by	using	higher	order	expansion.	The	condition	is	considered	to	be	the	same	case	in	the	last	subsection,	but	the	geometries	uncertainty	is	neglected	to	reduce	the	computational	cost.	As	a	result,	there

will	be	only	2	Gaussian	random	variables	that	are	Ε2	and	Ε3.

Using	the	PC	expansion	with	order	4,	6,	9,	12,	and	14	to	estimate	the	dynamic	response	of	the	rigid-flexible	multibody	system,	the	corresponding	sampling	size	is	25,	49,	100,	169,	and	225.	The	LHS-based	statistical	method

using	the	equivalent	sampling	size	is	also	implemented.	The	reference	solution	is	still	produced	by	using	the	Monte	Carlo	method	with	1000	samples.	The	error	of	the	two	methods	changing	with	the	sampling	size	is	shown	in	Figs.	28

and	29.

Fig.	27	The	error	of	standard	deviations	changing	with	sampling	size.

alt-text:	Fig.	27

Fig.	28	The	error	of	mean	(larger	sampling	size).

alt-text:	Fig.	28



It	can	be	found	that	the	LHS-based	statistical	method	shows	higher	accuracy	than	the	PC	expansion	method	when	higher	order	expansion	is	used.	Especially	for	estimating	the	response	of	the	two	reaction	forces,	even	the	PC

expansion	with	order	14	(using	225	samples)	is	worse	than	the	LHS-based	statistical	method	with	only	25	samples.	Therefore,	in	this	case	the	LHS-based	statistical	method	shows	better	performance	than	the	PC	expansion	method	no

matter	what	order	of	PC	expansion	is	implemented.

To	analyze	the	two	methods	in	further,	the	univariate	random	variable	is	studied,	which	can	show	the	shape	of	the	responses	with	respect	to	the	random	variable	clearly.	100	uniform	samples	of	the	random	variable	which	has

the	largest	effect	to	the	responses	will	be	selected,	and	other	random	variables	will	keep	its	mean	value.	For	the	long	correlation	length	case,	the	random	variable	Ε2	is	sampled,	and	the	random	variable	Ε3	is	sampled	for	the	short

correlation	 length	case.	Since	 the	 two	random	variables	are	standard	Gaussian	variables,	 they	will	be	sampled	 from	−3	 to	3	with	100	uniform	grids.	For	 the	 long	correlation	 length	case,	 the	model	with	high	spring	stiffness	and

damping	ratio	will	be	used	to	run	the	simulation,	while	the	low	spring	stiffness	and	damping	ratio	model	will	be	utilized	to	collect	the	responses	for	the	short	correlation	length	case.

The	responses	at	0.8	s	under	the	long	correlation	case	are	shown	in	Fig.	30.

It	can	be	found	that	all	the	four	responses	are	quite	smooth	along	the	random	variable	Ε2,	no	matter	what	the	shape	of	these	curves	is.	The	accuracy	of	the	PC	expansion	method	is	mainly	determined	by	the	accuracy	of	the

Gaussian	quadrature	formula	(Eq.	(30)).	For	the	smooth	function,	the	Gaussian	quadrature	formula	is	usually	highly	accurate,	which	resulting	the	PC	expansion	method	having	quite	good	performance.	Actually	the	LHS-based	statistical

method	also	has	an	acceptable	accuracy	 in	 this	case,	but	 its	stability	 is	 influenced	by	 the	randomness	of	 the	sampling	points.	On	the	other	hand,	 the	LHS-based	statistical	method	still	belongs	to	 the	Monte	Carlo	method,	but	 its

sampling	points	are	specific.	The	convergence	ratio	of	the	Gaussian	quadrature	formula	is	higher	than	the	Monte	Carlo	method	for	the	low-dimensional	smooth	function,	so	the	accuracy	of	the	PC	expansion	method	is	higher	than	the

LHS-based	statistical	method	for	this	case.

Fig.	31	shows	the	responses	at	0.8	s	under	the	short	correlation	case.	All	the	responses	are	non-smooth	with	respect	to	the	random	variable	Ε3.	There	are	many	high-frequency	signals	included	in	these	responses,	which	will

Fig.	29	The	error	of	standard	deviation	(larger	sampling	size).

alt-text:	Fig.	29

Fig.	30	Responses	for	the	long	correlation	length	case.

alt-text:	Fig.	30



leads	to	larger	error	in	estimating	the	mean	and	standard	deviation	for	both	the	PC	expansion	and	LHS-based	statistical	methods.	This	is	the	reason	that	the	accuracy	for	the	case	of	short	correlation	length	is	lower	than	that	of	long

correlation	length	case.

When	there	are	many	large	magnitude	high-frequency	signals	in	the	integrand,	the	accuracy	of	Gaussian	quadrature	formula	decreases	faster	than	the	Monte	Carlo	method.	As	a	result,	the	PC	expansion	method	provides	worse

estimation	than	the	LHS-based	statistical	method	for	most	of	the	responses.	Especially	for	qY,	FX,	and	FY,	the	magnitudes	of	the	high-frequency	signals	are	much	larger	than	the	magnitudes	of	the	low-frequency	signals.	However,	for	qX,

the	two	methods	give	similar	accuracy	that	is	better	than	other	3	responses,	because	its	magnitude	of	the	high-frequency	signals	is	smaller	than	that	of	the	low-frequency	signals.

In	summary,	for	the	smooth	responses,	the	PC	expansion	method	is	more	accurate	and	stable,	because	the	Gaussian	quadrature	formula	is	highly	accurate	in	this	case.	When	there	are	many	high-frequency	signals	with	large

magnitude	contained	in	the	responses,	the	LHS-based	statistical	method	is	better	than	the	PC	expansion	method.	Another	issue	should	be	mentioned	is	that	the	dimension	of	the	random	variables	in	this	paper	is	not	quite	large	(no

larger	than	3).	When	the	dimensional	size	is	quite	large,	the	dimensional	curse	problem	may	reduce	the	performance	of	the	PC	expansion	method.	Hence,	for	high	dimensional	problems,	the	LHS-based	statistical	method	should	be

recommended.

6	Conclusions
This	paper	investigates	the	dynamic	responses	of	the	rigid-flexible	mechanisms	under	geometrical	and	material	uncertainties.	The	deterministic	model	of	the	rigid-flexible	multibody	system	is	built	by	using	the

ANCF	based	method,	in	which	the	flexible	parts	are	modeled	by	using	ANCF	elements,	while	the	rigid	parts	are	built	by	using	the	ANCF-RNs.	The	geometry	uncertainty	of	rigid	parts	is	modeled	as	uniform	random

variables,	while	the	material	uncertainty	of	flexible	parts	is	modeled	by	a	homogeneous	Gaussian	random	field,	which	is	further	discretized	to	independent	standard	Gaussian	random	variables	by	using	the	EOLE

method.	Based	on	the	generalized-α	algorithm	that	is	a	deterministic	solver	for	DAEs,	the	PC	expansion	and	LHS-based	statistical	methods	are	introduced	to	estimate	the	mean	and	standard	deviation	of	the	system

responses.	From	the	analysis	results	of	the	slider-crank	mechanism,	it	can	be	seen	that	the	PC	expansion	method	has	higher	accuracy	and	better	stability	for	the	smooth	responses,	while	the	LHS-based	statistical

method	is	better	for	the	responses	containing	high-frequency	and	large-magnitude	signals.
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