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1  INTRODUCTION 

This paper is motivated by the ongoing discussion in the popular media, among policy makers 

and in academic circles (e.g., Samuelson, 2004) about “decreasing patent quality” as a consequence of 

decreasing patent office “service quality”. “Patent quality” can be defined along two major 

dimensions; namely (a) the techno-(economic) quality created by a patent’s underlying invention; and 

(b) the legal quality created by a patent’s reliability as an enforceable property right (Thomas, 2002). 

This second (legal) dimension of quality pertains to a patent’s sustainability when challenged. In this 

regard, a patent office’s role in providing consistent service is twofold. First, it must consistently 

assess patent applications and only grant patents with sufficient technological quality 

(novelty/inventive step) (Reitzig, 2005). Second, it must assess those patents that have been 

challenged using criteria that are consistent with initial assessments. The quality of patent office 

assessments, however, has been heavily debated. Critics claim that assessment quality is decreasing. 

Many of these claims are based on the observation that patent offices are (allegedly) incapable of 

examining patent quality in areas where no prior art patents exist. This concern is most applicable in 

emerging technological areas, such as software or nanotechnology (Merges, 1999). However, related 

empirical evidence is mixed (Allison & Tiller, 2003; Merges, 1999; Quillen & Webster, 2001). The 

impact that patent validity assessments has on national innovative activity and the heated debate at 

present suggests that there exists the need for robust empirical evidence shedding light on the question 

of how good patent granting procedures are. At present, it is unclear how reliable it is that a patent, 

once granted, will survive challenges (i.e., validity suits), and if not, the reasons why such 

inconsistency occurs. 

Our research focuses on one core component of “assessment quality”, validity examination 

quality, and whether patent offices (can) provide it in novel technological areas. We empirically assess 

whether the European Patent Office (EPO) consistently based its judgments on technological quality 

when repeatedly deciding on the validity of identical individual patents during granting and challenge 

phases. In addition, we critically discuss how such consistency can be undesirable in ensuring 

assessment quality. We focus our empirical analysis to study the existence of systematic 
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(in)consistencies between these granting decisions and challenge decisions relating to individual 

patents. 

We focus on the EPO for various reasons. First, the EPO is relevant in being one of the biggest 

patent offices worldwide, administering the protection of inventions for the largest internal global 

market. Second – and an important reason from our research perspective – EPO patent application data 

allows one to observe granting, “challenge” (i.e. opposition), and opposition outcomes. For the 

purpose of this paper, we assume European “oppositions” are similar to U.S. “central validity suits” 

(see Harhoff & Reitzig, 2004 for a detailed comparison), such that any EPO ruling on an opposition 

will affect all designated national member states where applicants sought patent protection. To test our 

model, we require observations of opposition rulings made by patent offices; subsequently, we focus 

on biotechnology patents initially filed between 1978 and 1987. At this time, biotechnology was an 

emerging technology from the perspective of the EPO (Orsigeno, 1989). In this regard, decisions by 

patent offices about biotech patents are comparable to decisions currently relating to software and 

nanotechnology, but for which challenge decision data are not yet available (Merges, 1999).  

Our econometric analysis and theoretical approach to questions of assessment consistency 

provides some notable departures. We model information on the technological quality of patents 

available to the EPO by using information in the form of standard bibliographic indicators (e.g., 

backward references; family size; forward cites). We estimate a series of discrete choice models using 

these bibliographic indicators to explain patent grant and opposition outcomes. The parameter 

estimates provide insight (termed “paramorphic representation” by Hoffman, 1960) into how patent 

offices make assessments; namely the estimates quantify those dimensions of quality that are given 

more emphasis in patent office decisions. If patent offices act consistently, we expect similar 

parameter estimates for granting and opposition decisions. A major econometric and theoretical 

obstacle, however, is that these two sets of estimates are confounded with decision variability, as well 

as other sources of random error. Our econometric approach is based upon and extends a set of 

discrete choice models already used in other fields, such as marketing and transportation (see 

Louviere, Hensher and Swait, 2000; Louviere, 2001). We apply these models here because they can 
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account for issues of variability – including its confounding effects on parameter estimates – ensuring 

valid comparisons and conclusions.  

We summarize our major empirical findings as follows: within the general limitations of our 

indicator-based research design, particularly our framework of assumptions and for our chosen data, 

we cannot confirm that the EPO assessed the technological quality of biotech patents consistently in 

the early 1980s. Specifically, we do not find convincing evidence of congruent systematic effects 

driving the assessment of a patent’s technological quality during granting or opposition stages. We 

consider that examiners (who decide initially whether to grant a patent) and members of opposition 

divisions (who decide on cases when a granted patent is opposed) may have different information. We 

use preliminary bibliographic indicators to capture informational change between grant and opposition 

stages. After including these indicators in our models, we find that examiners and opposition divisions 

do not primarily disagree because one holds more “costly-to-generate” information than the other. 

Rather, it seems that patent offices assess patent-quality related information differently at these two 

stages; hence, it less likely that inconsistency is driven by an effort of patent offices to allocate 

resources optimally between grant and opposition. Time effects, which do not relate to a patents’ 

technological quality, seem to explain most of the decision-making of patent offices across stages. 

These findings indicate that changing environmental conditions in which examiners operate, as well as 

their own learning over time, account for most of the decision making pattern. 

In Section 2 we provide clearer definitions of the term “patent quality”, conceptually link it to 

the central notion of “assessment quality”, and discuss prior research. In Section 3 we develop our 

testable hypotheses and introduce our methodology. In Section 4 we describe the data and present 

estimation results. In Section 5 we discuss these and highlight several research limitations. Section 6 

concludes and presents new questions for research into patent quality. 
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2 BACKGROUND – THEORY AND RELATED PRIOR EMPIRICS 

2.1 Theory 

2.1.1 Dimensions of “patent quality” – techno-economic and legal considerations 

 The economic arguments for patent protection relate to stimulating research and development 

(R&D); encouraging disclosure of technological knowledge; and, facilitating technology transfer (see 

Gallini, 2001). Underlying these arguments are two fundamental assumptions: (1) technology 

contributes to social welfare; and (2) the economic value of a patent is in its underlying technological 

sophistication (for critiques on these assumptions see Merges, 1988, and Reitzig, 2005). Prior 

literature suggests that patent offices should adjust their minimal conditions for patentability 

requirements to guarantee that inventions have a sufficient level of technological quality (Nordhaus, 

1967; Scotchmer & Green, 1990; Green & Scotchmer, 1995; Barton, 2001). This is because many 

economists traditionally assume that technological quality correlates highly with a patent’s economic 

value; therefore it is also termed technological ‘merit’ (see Merges, 1988). This is also why we use the 

terms “techno-economic” and “technological quality” interchangeably in the following. Economists 

believe that a patent must exceed an absolute threshold of technological quality for it to be granted. 

Lawyers, on the other hand, traditionally concentrate on another dimension of a patent’s 

quality: namely, its legal sustainability. According to Thomas (2002) 

“‘quality patents’ are [...] valid patents [which may] be reliably enforced in court, 

consistently expected to surmount validity challenges, and dependably employed as 

a technology transfer tool” (Thomas, 2002: 730)  

This definition focuses exclusively on legal certainty or consistency. For Thomas, as for other lawyers, 

the optimal absolute adjustment of patentability parameters (disclosure, novelty, and inventive step), 

and identifying a technological threshold appear second-order compared with ensuring requirements 

of legal certainty; hence, lawyers focus on the relative comparability of patent assessments from one 

case to another. In general, Merges (1999) appears to share Thomas’ (2002) standpoint, however, he 

admits that resource constraints during the granting procedure prohibit calling every patent a bad 

patent that does not surmount a validity challenge after being granted:  
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“A ‘bad patent’ is a patent that should have been weeded out after a reasonable 

investment of effort, but was not” (Merges, 1999: 581) 

2.1.2 The link between patent quality and patent assessment quality 

Arguably, assessing patent validity at various stages of a patent (application)’s ‘life’ is the most 

important service that patent offices provide. Incorporating work by Parasuraman et al. (1991), two 

major constructs constitute the quality of a patent office’s services; namely the ability of patent offices 

to act in a consumer orientated fashion and to do so in a reliable manner. In the context of patent 

offices, there are various customers; namely, these are the applicants, as well as society as a whole. 

These stakeholders expect patent offices to judge patentability requirements correctly against a given 

yardstick (i.e., economic dimension of quality), and reliably (or consistently) in the sense that the 

service can be trusted (i.e., legal dimension of quality). For the purpose of this paper, and, in keeping 

with prior literature, we therefore define patent assessment quality as:  

“a patent office’s consistent categorization of patents along a dimension of technological 

quality leading to sustainable property rights”. 

 

2.1.3 Maximal and optimal levels of patent assessment quality 

In an ideal world where patent offices can objectively assess patent quality and maximize it, we 

would expect to observe no inconsistencies in patent validity assessments. That is, once a patent is 

granted, we would not expect it to be amended or revoked/annulled. Service quality, however, comes 

at a cost, and as such is not a self-purpose but will have a theoretical optimum. In particular, patent 

assessments are the product of a (subjective) human activity, prone to errors arising from our cognitive 

and emotional imperfections. Completely eliminating these errors comes at a prohibitive cost. Thus, 

various errors occur that force us to rethink the desirability of “consistent” assessments5. We now 

discuss three errors in respect to the initial granting procedure (see Box 1).  

Insert Box 1 about here 

                                                           
5  The source of such imperfections (e.g., demand to meet quotas) or how they can be minimised in 
general (e.g., training) is not the purpose of the paper and we do not discuss these in any detail. An assumption is 
made that patents are assessed in an equitable fashion, given the environment encountered by assessors. 
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First, patent offices may make minor errors in their initial subjective judgment of the objective 

technological quality of patents (Stage 1), although this may be inconsequential to decision outcomes 

(we label these error “type α”). That is, even allowing for some human error between objective and 

subjective assessments of quality, examiners may still correctly classify a good patent as good and a 

bad patent as bad. Second, patent offices may incorrectly reject patents fulfilling patentability 

requirements (we label these error “type β”). Third, patent offices may incorrectly grant a patent, even 

though it has an objectively poor level of quality (we label this error “type γ”).6 The latter two errors 

are most consequential for patent applicants.  

Patent offices can rectify initial patent granting errors, however, provided that they have 

mechanisms in place for correcting these. At the EPO, the “appeal to grant” procedure corrects for 

“type β” errors, and the “opposition procedure” corrects for “type γ” errors. Patent offices must 

optimally balance the various errors that occur. This is difficult if one considers that some errors in 

patent assessment may be desirable if offices are willing to rely on re-assessment procedures to rectify 

their mistakes in their quest to maximize ex-post efficiency.  

 For example, being more stringent in Stage 1 (granting) assessments (indicated by ‘Threshold 

A’ in Box 1) and granting fewer patents initially, places greater demands on patent office resources in 

managing the procedures of “appeal to grant”. Demands may also fall on inventors themselves, as it 

delays patentable inventions and requires allocating resources to rectify mistakes through the appeals 

to grant procedures. This could increase uncertainty and delay investment in emerging industries. 

Indeed, some patents may never see the light of day as a result of stringent granting policies. On the 

other hand, the use of less stringent thresholds in Stage 1 assessments (indicated by ‘Threshold B’ in 

Box 1) implies a greater level of γ errors. In practice, a greater number of poor patents may saturate 

the market and stakeholders may lose faith in the granting procedures of patent offices.  

Similar types of errors exist at Stage 3, where previously granted patents are reassessed upon 

challenge. The major difference, however, is that there may exist opportunities to minimize such 

errors, given the privilege of hindsight and that reviewers have extra search resources for prior art. 

                                                           
6  We do not enter the philosophical discussion whether “objective” technological quality exists, but 
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That is, in Stage 3, there will still be some level of misclassification of patents in terms of patent 

quality, but we anticipate that the level of such errors will be lower relative to Stage 1; hence, 

assessments in Stage 3 should be closer to the “true” objective assessment of technological quality 

relative to initial assessments in Stage 1. Indeed, this paper is motivated by accounting for these 

anticipated error differences across stages of assessment. Once accounted for, as is achieved in our 

subsequent models presented, questions of systematic consistency can then be properly examined. 

These “desirable errors” should largely be exceptions to the (empirical) rule; otherwise, there is 

a danger these errors could become standard, resulting in a completely arbitrary granting process for 

patents. This can hardly be optimal. On average, therefore, validity decisions should be systematically 

consistent. That is, while we make little comment on how patent offices can reduce errors, we 

conjecture that it is desirable to improve the human imperfections through various strategies such as 

additional examiner training or an appropriate number of examiners to meet demand. 

2.2 Prior empirical research into patent assessment quality 

To the best of our knowledge, few large-scale empirical studies shed light on the question of 

what level of assessment quality patent offices (can) provide, particularly under the aggravating 

circumstances prevalent in novel technological areas. Patent offices face a series of reproaches 

suggesting that low ‘patent quality’ is becoming a problem. We classify these into two major 

categories. Namely, these categories capture (a) commentaries or case-based annotations, stating that 

inventive step (US: non-obviousness) requirements fell systematically over time, and granted patents 

are falling below an acceptable threshold (Samuelson, 2004); as well as (b) comments and anecdotal 

observations about the (increasing) assessment inconsistency by patent offices with respect to the 

technological quality of comparably sophisticated inventions submitted at the same time (Merges, 

1999: p. 589). We summarise the few large-scale empirical findings speaking to these allegations in 

the following sub section.  

2.2.1 Decreasing technological quality requirements over time 

Sampat et al. (2003) track changes in patents’ technological quality using forward citation 

measures. For their chosen sample of university patents, the authors observe a significant decline in 

                                                                                                                                                                                     
rather, in line with the whole idea of a patent system, take this assumption for granted.  
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forward citations since 1980. It is unclear, however, whether one can generalise these results to non-

university patents. Moreover, it is unclear whether this decline in technological quality was because 

patentability standards for non-obviousness steps were actually falling. 

Sanyal & Jaffe (2005) examine several effects that may account for observable increases in 

patenting rates. In particular, they attempt to disentangle the effects relating to potential decreasing 

patentability standards. Within their framework of assumptions, they attribute increases in filing rates 

to increases in overall inventiveness, whereas evidence for decreases in patenting standards is mixed.  

2.2.2 Inconsistent assessments of technological quality for similar patents 

Quillen & Webster (2001) examine the USPTO (United States Patent Office) granting rates. 

The authors indicate that split applications (continuations) have a higher chance of being granted than 

original applications – all else being equal – because of internal procedures. Indirectly, their results 

support the hypothesis that patent quality was judged along different dimensions in similar cases. For a 

selection of patents with identical priorities (i.e., a patent stems from the same original invention), or 

‘twins’, Graham et al. (2002) track the fate of European oppositions and compare them to US re-

examinations. Their findings indicate that the European and US offices rule distinctly differently in 

similar cases. Although we recognize the attractiveness of their approach, their focus on inter-

institutional consistency contrasts with our focus on intra-institutional patent assessment consistency.  

Allison & Tiller (2003) compare U.S. business method patents with those from ‘established’ 

patenting areas along a series of bibliographic indicators. Within their framework of assumptions, and, 

depending on each indicator’s ability to capture effects relating to patent quality, the authors find no 

significant differences between business method patents and other patents. Despite the study’s 

contribution and although it uses a rich underlying data base, the rather descriptive character of its 

results may render it difficult to draw final conclusions. In essence, the authors compare patents using 

several bibliographic indicators without forcing these indicators to capture quality related 

phenomena.7 
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3 EMPIRICAL RESEARCH DESIGN 

3.1 A Research Gap of Public Sector Relevance 

As the previous section highlighted, large-scale empirical data on patent offices’ consistency 

of discriminating between patentable and non-patentable technology along a yardstick of 

technological quality is missing. From scientific and applied perspectives, this research gap calls for 

an answer. The public sector relevance of this research gap appears tremendous. Reactions of patent 

offices to allegations that their service quality is sub-standard reflect this.8 

Although a fully-fledged analysis of EPO service quality would examine α , β , and γ  errors, 

we focus on analyzing γ  (and somewhat less on α ) errors; that is, we seek to understand patent 

office “service quality” by analyzing if and why patents were “falsely” granted.9 We do this in two 

ways. First, we require an understanding of the degree of systematic (in)consistency for the reasons 

mentioned before (see 2.1.3). We wish to determine if systematic inconsistency are exceptions, since 

neither a maximal nor optimal degree of assessment quality can exist if judgment inconsistencies are 

the norm. Second, we focus on understanding the residual inconsistency: we consider reasons why 

patent assessments are (in)consistent and what this reveals about patent offices’ resource allocations to 

patent assessment  

To examine these two questions, and assessing the EPO’s assessment quality when it is 

exposed to the challenge of judging new technologies (Merges, 1999), we first map the technological 

quality of a patent econometrically. We then compare these assessments during the granting phase and 

the subsequent challenge phase for a given set of patents. To turn these research aims into testable 

hypotheses, the following section introduces the decision making logic of the EPO. We also introduce 

our set of explanatory variables (bibliographic indicators), which we use in our later analyses. Section 

                                                                                                                                                                                     
7  As is well known to researchers in the field, bibliographic indicators are noisy measures of a patent’s 
technological quality, and only a part of their variance captures quality-related phenomena. 
8  See for example U.S. Department of Commerce published public report PTD-9977-7-0001 entitled 
“Patent Quality Controls are Inadequate”, attesting an increase in the USPTO’s official error rate of more than 
1000% from 1992 until 1996, as measured by assessment inconsistencies for a random set of cases. Initiatives to 
ensure “patent quality” by introducing quality control mechanisms (so called “second-pair-of-eyes” checks) 
demonstrate the concerns and uncertainties on the side of the offices regarding their current service quality level 
(SUEPO, 2002). Nota bene that patent office definitions of service quality are only concerned with the 
consistency/reliability of their service and less so with the absolute correctness of their judgment. 
9  We elaborate on the shortcomings of this approach in our discussion. 
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3.2 presents the fundamental logic of our estimations and Section 3.3 describes the independent 

variables. In Section 3.4, we present our testable hypotheses. Section 3.5 finally elaborates on the 

econometric specificities of the non-standard estimators chosen for the analysis. 

3.2 Modeling the Decision Making Process of the EPO  

EPO patent data is suitable for the study of the aforementioned research gap for various 

reasons. The paramount argument is that it allows us to simultaneously observe two procedural stages 

relevant for our analysis; namely, the granting procedure and the opposition procedure (including the 

ruling on the opposition). Essentially, as we elaborate upon below, mapping the EPO’s decision on 

granting and opposition outcomes econometrically allows testing of whether an EPO patent – once 

granted – will survive any opposition. In turn, this will provide a good indication of whether EPO 

decisions reflect a normative understanding of ‘quality’ patents (Thomas, 2002).  

Insert Figure 1 about here 

Figure 1 reflects the stages of a European patent application. Upon application and 

examination request, the EPO makes decisions about the patentability of an application. Examiners 

assess applications in terms of several patentability requirements including novelty, inventive step 

(pendant in the US: non-obviousness), disclosure, and susceptibility to industrial commercialization. 

An application is granted patent status if it fulfills these requirements (Stage 1).10 A granted patent can 

be challenged (i.e., attacked centrally for all designated states) within nine months, through an 

opposition procedure (Stage 2). For our purposes, it seems sufficiently correct to state that oppositions 

resemble (first instance) validity suits of a patent at the European level. Oppositions must relate to a 

patent’s inability to meet the aforementioned requirements. The EPO decides on the opposition and 

one of three outcomes occurs: a patent is revoked, amended, or the opposition is rejected (Stage 3). 

If patent offices acted in fully consistent ways (i.e. maximizing assessment quality regardless 

of its desirability) and the information on which granting decisions are based did not change from the 

date of grant until the date of opposition, the rejection rate of oppositions should be close to 100% 

(with a residual error arising from the “human factor”). This is because the general criteria for granting 

a patent initially and upholding a patent during opposition are virtually identical. Across all industries, 
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however, the rejection-of-opposition rate is far from 100%. We propose three explanations: either (A) 

a patent office acts inconsistently (according to our aforementioned definition) because it does not 

correctly assess information available at the time of granting about an invention’s technological 

quality; (B) available information about a patent’s underlying technology between the day of grant and 

the day of the opposition is different; or (C) both. 

Each explanation assumes the existence of γ errors (i.e. falsely granted patents), although the γ 

error may or may not be systematic. Systematic γ errors (explanations B and C) shed a different light 

on the quality of a patent office’s services than unsystematic γ errors (explanation A): e.g. the new 

information, originally provided during the opposition phase, may alter the assessment between patent 

grant and patent opposition. This may indicate that resource constraints, associated with generating 

prior art during the initial examination, drive the result. Alternatively, patent offices may assess 

identical information differently from granting to opposition phases: this is a larger subjective error 

than an error attributable to human factors11. In turn, assessments may appear erratic in this case. 

3.3  Measuring (In)Consistency With Indicators of Technological Quality 

To measure patent assessment quality – and decide for one of the potential explanations A 

through C – we can relate granting and opposition outcome decisions by the EPO to information 

relating to a patent’s quality. This information, available to examiners and members of the opposition 

division, refers to a patent’s novelty, inventive step (non-obviousness), disclosure, and susceptibility to 

industrial commercialization. In practice, patent offices examine information that is idiosyncratic and 

very complex (as complex as application and prior art documents, sometimes more than 100 pages of 

full text). For researchers, however, it is often not feasible to engage in activities of reviewing this 

information when examining a large sample of patents as we do. Instead, in large-scale patent 

econometric studies, typically researchers use a set of standard bibliographic indicators to capture 

phenomena relating to patent quality. Consequentially, in our study, we model a patent’s (latent) 

                                                                                                                                                                                     
10  Applicants may appeal against the denial of a patent grant, however, this is not the focal theme of this 
Paper (as mentioned before). See also Section 5.1. 
11  In our discussion we elaborate on the possibility that this human error is a matter of fact, in reality also 
reflects the resource constraints examiners face – namely a time constraint when evaluating the information. In 
that case, the human error would have systematic character, too. 
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objective technological quality with a set of bibliographic indicators, which have been used in prior 

studies. Table 1 provides an overview of our explanatory variables. 

Insert Table 1 about here 

Several of our proxies were originally validated as indicators of a patent’s economic/financial 

value (see Reitzig, 2004 for a survey), which is admittedly not quite the same as being indicators of a 

patent’s objective technological quality, despite the two being structurally related (see Reitzig, 2005). 

We list the rationales that link these proxy variables to objective technological quality in column 4 of 

Table 1. Although our indicators are blurred measures of a patent’s technological quality, these should 

still capture a good part of its variance. In particular, works by Guellec and van Pottelsberghe (2000) 

and Reitzig (2005) support this allegation. In their work, the authors validate a large part of the 

aforementioned indicators as correlates of patent granting as well as opposition outcome decisions. We 

will bear the weaknesses of our approach in mind when qualifying our results. We discuss our 

indicators’ limited ability to capture informational changes about patent validity over time. Finally, we 

also consider issues relating to an omitted variable bias (see 3.4 for more details).  

3.4 Testable Hypotheses 

Using the decision making logic of the EPO to shed light on our principal research questions, 

we formulate three complementary testable hypotheses to study within a framework of assumptions.12 

In testing our hypotheses relating to patent assessment consistency (Hypotheses 2 and 3), we assume 

that the EPO issues patents that are of a high quality along all dimensions and it does so – as best it 

can – in a constant regulatory environment (Assumption 1). We are not stating that such behavior is 

optimal: the assumption merely serves to set up our empirical test. We base our testing on the premise 

that we can proxy parts of a patent’s technological merit by using bibliographic indicators (see above). 

We will test this premise separately for our sample (H1) and critically review this in our discussion 

section. In addition, we emphasize that we test relational and not causal hypotheses. Although we test 

whether our indicators are valid correlates of the information available to patent offices, we do not test 

whether the indicators are ever causal for the office’s decisions.13 We are aware that examiners and 

                                                           
12  We relax some of these assumptions in Section 4.4 to shed more light on our theory-driven findings.  
13  We thank one of our referees for pointing us to the so-called “cookie-cutter” approach – a term coined 
in connection with US patent examinations. This term describes a situation in which examiners do base their 
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opposition divisions draw from different informational sources; however, we assume that our proxies 

are valid. 

H1 speaks to our indicators’ ability to capture technological quality. In line with earlier works 

(Guellec and van Pottelsberghe, 2000) we propose for our sample:  

H1: For our given sample, the EPO’s assessments of a patent’s technological quality during 

validity decisions can be modeled by patent indicators, including backward references; family 

size; the PCT indicator; the number of applicants and inventors; and, the forward citations 

received until the date of grant. 

Essentially, if H1 cannot be rejected, we are confident that our indicators are proper measures of 

patent validity. 

H2 then is the first comparative interpretation of the observable outcomes for patent grant and 

opposition outcome. To test H2 we use the observation that patent examiners (deciding whether to 

granting patents) and opposition divisions (deciding about opposition cases) share partly identical 

information. This time-invariant information is reflected in the time-invariant patent indicators 

(backward references; family size; PCT indicators; number of applicants and inventors) as well as 

those forward citations received until the date of grant.14 If the EPO was able to accurately assess 

technological quality from the outset, this information would correlate similarly with their rulings in 

Stages 1 (granting) and Stage 3 (opposition outcome). Consequently, we propose: 

H2: When the EPO’s assessment decisions on a patent’s technological quality are modeled by 

patent indicators (including, backward references; family size; PCT indicators; number of applicants 

and inventors; forward citations received until the date of grant) then there is no significant difference 

in the role of these predictors in granting and opposition outcome decisions. 

 

                                                                                                                                                                                     
decision directly on first-sight information of the type we use in our statistical analysis to model validity-related 
information. If this approach had been adopted during the grant of patens described in our sample as well, then 
the indicators we employ might in fact even be causal for the decision-making we observe. We do, however, 
have no information that EPO examiners ever adopted this cookie-cutter approach and hence assume that the 
indicators are mere correlates of the examiners’ decisions. 
14  Note: as we explain in more detail in Section 4, we draw from the official European Patent Register 
EPOLINE in its version of December 2003. Based on all our inquiries – including talks with fellow researchers 
using EPO data as well as data experts at the EPO, the indicators we consider time-invariant should not change 
post-grant in the electronic registers. 
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Essentially, if H2 is rejected, patent assessment quality would, to an extent that it is measurable 

with bibliographic indicators (see before), be erratic in terms of reliability. However, even if the 

individual variables in H2 show similar roles in predicting granting and opposition outcomes, overall 

inconsistency may exist in the model and this result could be driven by unobservable heterogeneity. In 

other words, there would be a γ  error (i.e., classifying an invention as patentable when objectively it 

fails to meet a quality threshold) in patent office’s assessment, but we do not know what exactly drives 

it. Information that is subjectively new to a patent office15 may be introduced during the opposition 

proceedings. This may change the γ  type error, if there is one, from unsystematic to systematic (see 

above). Optimally we would be able to characterize informational change after grant when correlating 

them with the concordance of the EPO’s decision making. Unfortunately, when using electronic 

sources it is difficult (not to say impossible) to capture the precise informational change per patent.16 

For our data, we find one indicator only that can capture some of the dynamics (information increase 

over time). Namely, this is the forward citation indicator that we assume is to some extent a measure 

of informational change over time (Assumption 2). Forward citations received after the date of grant, 

but before the end of the opposition procedure, should correlate with observable inconsistencies of a 

patent office. Consequently, with the aforementioned set of assumptions, we propose: 

H3: If there is a significant difference in the EPO’s rulings for granting and opposition outcome 

decisions of patents, then this difference should be correlated with a patents’ forward citations 

received after the date of grant. 

In summary, H1 proposes that patent offices systematically assess patents. This is proposed to 

occur when a patent is initially assessed (Stage 1) and when it is re-assessed following a challenge 

(Stage 3). H2 proposes that systematic consistency across stages should exist in these assessments. We 

propose patent offices use available information to assess technological quality to their best abilities. 

This implies that quality-related information available at the date of grant is assessed identically 

                                                           
15  Of course it must not be objectively new since prior art is only judged until the date of filing. 
16  Currently, this information is only available in the form of scanned paper files that are substantially 
difficult to read/comprehend for the non-legal expert. Preparing this information for analysis is a challenging 
research project in itself that is left to future studies. Hence, we have no exact estimates of the precise 
informational change per patent. According to our interview partner in the Biotechnology Opposition Division of 
the European Patent Office, however, in most opposition proceedings additional information will be revealed 
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during examination (Stage 1) and opposition (Stage 3). We examine H3 only if inter-stage consistency 

does not hold. H3 involves testing our proposal that inconsistency can be explained and is not random; 

particularly, changes in information availability between grant and opposition are modeled. Failing 

this, we propose to examine an open-ended set of possible sources of inconsistencies. 

At this point, a disclaimer appears in order. In essence, our hypotheses suggest testing a model 

of patent quality as being a function of certain observable components (bibliographic indicators). Of 

course, the idiosyncratic nature of each patent remains unobservable. To that extent, the model must 

be somewhat mis-specified because a number of unobservable components are excluded. This 

however, should be of little concern, unless there is reason to believe that the omitted variables affect 

the coefficient estimates of our independent variables (bias). For this to happen, the omitted variables 

would need to systematically – not randomly – relate to a patent’s validity (the dependent variable) 

and correlate with (at least some of) the existing variables. While we can, by definition, never claim 

that we do not omit such variables, we deem the probability relatively low.17 With this assumption 

(Assumption 3), however, our tests relating to inter-stage inconsistency are valid. 

 

3.5 Methodological Aspects – Understanding the Scope and Usefulness of Variance 

Decomposition Discrete Choice Models for this Study 

The empirical methods we introduce and use in this paper do not (yet) belong to the standard 

repertoire used by empirical researchers in the patent arena. An in-depth description of our methods 

and summary of the background literature we draw upon requires considerable space. For brevity, 

Appendix B describes our empirical approach in considerable detail. We dedicate this section (Section 

3.5) to all other readers curious to obtain a fast working knowledge of the methods’ scope and 

                                                                                                                                                                                     
that was not considered during the examination. Cases like EP 93 114 141, where the opposition division bases 
its judgment on the same set of information as a patent examiner, are considered to be the exception. 
17  We draw this inference based on two observations. First, from the set of established patent indicators 
(see Reitzig, 2004: 948, for an overview) we use the better part in this paper. The correlations (see Appendix A) 
among all our regressor variables are very moderate. Moreover, we do not find changes in the significance of 
individual coefficients when dropping variables from the models in Tables 3 to 5. Hence, we think that the 
likelihood of overlooking another important bibliographic indicator causing an omitted variable bias is low. 
Second, bibliographic indicators appear to capture parts of the variance of a patent’s validity that are likely not 
proxied by other indicators we may be overlooking. See Reitzig (2004: 955) for an admittedly preliminary 
comparative test of bibliographic and other indicators. 
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comparative advantages relative to standard regressions used in the field, rather than familiarizing 

themselves with all the associated technical aspects. 

Referring the reader to Figure 1, we can formulate our overall testing goals as follows: does 

our matrix of indicators X capture patent office decisions about patent validity in Stage 1 (grant) and 

in Stage 3 (challenge) (H1)? That is, are β1 and β3 significant? On average, are vectors β1 and β3 

identical, recognizing that the difference between ε1 and ε3 must be accounted for (H2)? If β1 and β3 

are identical the EPO interpreted information on technological quality (proxied by X) consistently 

during both granting and challenge phases. If β1 and β3 are not identical, which elements of the vectors 

account for any inconsistencies (H3)?  

Testing H1 is a straightforward empirical problem for which we use standard binary discrete 

choice models (logit). Testing H2 and H3 is a bit trickier. In testing H2 and H3, we are hoping to make 

a direct comparison of how patent offices use available information to assess the quality of patents 

initially and upon challenge; this means comparing β1 and β3 (see Figure 1). The problem, however, is 

that in traditional choice models, estimates of β1 and β3 are inversely confounded with ε1 and ε3, 

respectively. Ultimately, a simple comparison of β1 and β3 is meaningless unless one can account for 

this confound. The random error components are different for numerous reasons; of major concern for 

this particular data set is that the set of Stage 3 observations are dependent on Stage 1 observations 

(“selection bias”). In particular, Stage 3 are the set of patents deemed to be of a high technological 

quality at Stage 1, but this has been questioned in the form of an opposition (the opponent implying 

that a patent was falsely granted). In turn, an ability to distinguish between valid and invalid patents in 

Stage 3, using the same set of indicators X as in Stage 1, is more difficult. That is, we expect the 

degree of error to differ in both stages, and that this will be reflected in ε1 and ε3.  

One solution to our testing problem comes in the form of variance decomposition discrete 

choice models (VDDCM). These models make explicit use of an empirical feature in discrete choice 

estimations that standard methods tend to “neglect” for the sake of simplicity. Namely, this is the so-

called distinction between “estimate” and “scale”. Standard discrete choice models (both simple and 

nested ones) estimate a vector β that is, in reality, not β but β times λ. Here, λ is a scale parameter of 

the random component and commonly set to unity in estimations. λ is inversely proportional to the 
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variance component, ε. Variance decomposition discrete choice models do not ignore λ, - unlike most 

choice models (including random coefficient models) - but separate the β (true estimate) and the λ 

(confounding scale parameter) from one another.  

By applying variance decomposition discrete choice models, we can disentangle spurious 

differences from true differences in assessments of technological quality during the grant and 

challenge phase. This allows us to correct for one of the most pressing problems created by the 

selection bias in the data for Stage 3.18 Moreover, we can use the methods to determine the nature of 

potential assessment inconsistencies when testing H3. 

 

4 EMPIRICAL RESULTS 

4.1 Data – Stratification Criteria and Descriptive Statistics 

For our analysis we chose biotechnology patent data from the 1970s and 1980s. This data 

allows us to examine a patent office’s ability to assess the technological quality of patents consistently. 

At this time, the biotechnological industry was novel and emerging (Orsigeno 1989). In turn, it creates 

a “quasi-experimental” set-up that should capture the characteristics of similar cases concerning 

Merges (1999); namely, it is a situation where little prior art appeared in patent databases, but would 

be more likely to be documented in scientific publications and other sources. The examiners in our 

analysis faced similar informational challenges to those experienced by examiners today in fields such 

as software or nanotechnology.19  

The selection of the industrial field was based on an updated version of the widely accepted 

OST INPI ISI classification by Schmoch (1994, personal note on an update from 1998). Biotech 

                                                           
18  The selection bias is also likely to change the distribution in a different way which we do not explicitly 
account for but which we deem less important in the context of this paper. With Priest & Klein (1984), Cooter & 
Rubinfeld (1989), and Waldfogel (1991), we assume that an opponent’s propensity to challenge a patent is 
driven by the value at stake as well as their subjectively perceived probability of winning the case. The 
opponents will initiate the opposition (see Lanjouw & Lerner, 1998; Harhoff & Reitzig, 2004; Reitzig, 2005) 
if: ( ) ( )oppositionlosepoppositionwinp opponentloseoppositionnoopponentwin ¦¦ ⋅−>⋅ πππ  where profits are those of the 
opponent. Hence, from a theoretical perspective we would expect not to see those patents in Stage 3 that are of 
very low techno-economic quality (since challenging them is worthless for the opponent, no matter how high the 
likelihood of winning) as well as those patents that are of extremely high legal quality (since challenging them 
appears pointless, no matter how valuable they are). Overall, however, we consider these two types of patents to 
be exceptions, delineating the margins of our overall distributions, and hence the issue negligible in this first 
study of patent assessment quality we conduct. This being said, it may be a worthwhile challenge to refine the 
estimation approach and custom-tailor it to the specific estimation problem in future studies on the subject. 
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patents were identified as showing one of the following IPC subclasses as their main classification: 

C07G; C12 M, N, P, Q, R, S. As of December 2003 (the date of data extraction) the European patent 

register contained 36,452 applications and 9,960 granted patents in these areas. 808 (8.11%) patents in 

the sample were opposed. For 558 of these opposed patents, a decision by the opposition division was 

observable. For the remaining part of patents, no clear ruling by the opposition division could be 

identified at that date (pending case either in opposition or appeal). Figure 2 shows the share of 

unidentified oppositions among the total sample versus the year of patent priority. 

Insert Figure 2 about here 

Figure 2 shows a peak of unidentified opposition outcomes in the year 1985, which translates 

into an ascent from 1988 onwards. Pending a better explanation, we attribute this increase to the share 

of opposition cases still to be decided in December 2003 by the opposition division of the EPO. As 

this paper focuses on decisions of the opposition division, we remove patents applied for from 1988 

onwards. In doing so, we obtain a residual 7.2% of unidentified first ruling opposition cases (including 

appeals20 in some cases) between 1978 and 1987.21 Thus, the final data for analysis comprises 5,051 

patent applications, out of which 3,162 were granted. A total of 334 granted patents in that period were 

opposed. The number of outliers dropped for the estimations is 24 cases (< 0.5%). Table 2 contains the 

descriptive statistics for the sample. 

Insert Table 2 about here 

The most important findings are the following. The rate of opposition in the biotechnology 

industry is high (10.56%), but it is lower than more litigious industries such as polymers (approx. 12% 

opposition between 1978 and 1990). Third parties invalidated patents in about 34% of all oppositions. 

                                                                                                                                                                                     
19  Or, as some of our interviewees at the EPO puts it: “in the early 1980s, examiners in The Hague did not 
even have data bases where they could look up prior art in the area of biotechnology”.  
20  Note: legally speaking, the opposition procedure comprises the (potential) subsequent appeal to the 
opposition. Appeals against the decisions of the Opposition Division can be made by all parties, patent holders 
and opponents, and are decided by the Board of Appeals.  As is intuitively understandable, appeals to 
oppositions delay the final outcomes of opposition cases even longer.  Hence, incorporating appeal decisions into 
opposition rulings would lead to even more data truncation problems than already present. Thus, for the purpose 
of this paper we focus on the first decision of the Opposition Division and not on the final decision by the Board 
of Appeals. We only include appeal decisions if they were decided before 2003 (extraction date) anyhow in 
order to avoid further truncation problems in the data. Admittedly, the data “quality” of our opposition rulings 
therefore differs as we incorporate the decision by the Board of Appeals in some cases. Even though we 
eventually deem this problem to be minor, this imperfection shall not be hidden from the reader. 
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Patents were amended in 32% of cases; opposition was rejected in 21% of cases because a challenge 

was not substantiated. In 13% of the remaining oppositions, the procedure was closed (7%) or no 

outcome identifiable (7%). Most of the explanatory variables appear within the “normal” range 

comparative to earlier studies, with some biotechnology specificities observable. On average, 2.9 

references to patents of prior art were made by the EPO examiners during the European search 

procedure. This figure is slightly low (e.g., polymer patents average 3.5). Each patent cites 2.6 non-

patent literature references as relevant state of the art. This figure is clearly higher than in more mature 

industries than biotech was in the 1980s. For example, polymer patents with priority dates 1977 and 

1990 filed at the EPO quote only 0.5 non-patent references as relevant state of the art. Hence, as 

expected, the sample shows some of the experimentally desired properties (see above) relating to prior 

art. On average, patents were applied for in 9 states (i.e. countries signing the EPC) and almost three 

inventors (2.8) were involved in each application. The average accelerated examination requests is 

fairly low, with about one percent of all patent applications following the Programme for Accelerated 

Prosecution of European Patent Applications (PACE). 10% of filings were made according to Chapter 

II of the Patent Corporation Treaty (PCT); this is lower than for the entire population of EP patents, 

but higher than in polymers for the same time period. This indicates that applicants delay costly 

decisions in more than 10% of the applications by choosing the PCT II route. Finally, we computed 

forward citations for two different periods of time (namely for five-year and ten-year time windows 

after the application’s publication date). We calculate different measures because of Hypothesis 3. In 

order to capture alterations in the information status about a patent’s technological quality over time 

we use forward citations as a proxy. Optimally, we would like to distinguish which citations the 

published patent application received before grant and that received afterwards. By calculating 

forward citations for different time spans (as described above) we obtain a proxy for this distinction. 

We find an average grant lag (time span from the filing date until the granting date) of 5.4 years and 

an opposition outcome lag (time span from granting date until date of opposition outcome) of 5.1 

years. Since forward citations were computed from the application date of a patent, 5-year forward 

                                                                                                                                                                                     
21  The resulting “imperfection” of the data set appears acceptable, considering that with 7.2% unidentified 
cases (including oppositions that we “deemed to be withdrawn”), the “disturbance” of the opposition outcome 
variable is negligible.  
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citations capture information that was available for patent examiners during the first 5 years after 

application. Hence, for about a half of our patents, all information contained in this variable was 

revealed during the EPO granting phase. Ceteris paribus, the forward citations calculated for the 10-

year time frame capture information revealed during the first 10 years after patent filing. For more 

than 95% of patents, this information falls at least partly into the period after patent grant. Finally, the 

difference between the two citation variables is an admittedly imperfect, but is a reasonable proxy for 

information revealed largely (i.e. for a large part of a patents in our sample) between grant and 

opposition outcomes.22 As expected, the average number of forward citations in subsequent EPO 

search procedures increases with the length of the time window. For a five and ten year period it is 

1.51 and 2.00, respectively.  

4.2 Hypothesis 1: Systematic Assessment of Patents (Application and Challenge Stages) 

According to Hypothesis 1, patent office assessments systematically relate to an observable set 

of quality indicators. These systematic assessments should be evident in the outcomes of Stage 1 

(grant; not grant) and, if applicable, the outcomes of Stage 3 (patent revoked/amended; patent 

maintained/granted). We estimated a binary choice model for each stage. The systematic component 

of assessments in Stage 1 and Stage 3 are captured by β1 and β3, respectively. In Table 3, the binary 

choice models (Grant; Oppo) map the outcomes in Stage 1 (granted; not granted) and, if applicable, in 

Stage 3 (patent revoked or patent amended vs. patent maintained as granted).23 The EPO’s decisions 

were modeled using the aforementioned patent indicators (number of references to patent and non-

patent literature; number of applicants and inventors; accelerated examination request; PCTI/II 

indicators; forward citations). We logarithmically transformed some of the explanatory variables when 

                                                           
22  Since grant and opposition outcome lags vary, fixed citation time windows will never exactly capture 
pre- and post grant information for all patents. We picked the time windows in such form, however, that this 
measurement error should be minimal on average. 
23  Note: the coding of the binary outcome for Stage 3 is based on the following consideration. While there is 
only one technological quality threshold in Stage 1 (non-Grant vs. Grant) there are in fact 2 thresholds in Stage 3 
(patent revocation vs. patent amendment and patent amendment vs. patent maintenance). Since, for econometric 
reasons, we need to boil down the complexity of Stage 3 to a binary decision we focused on the threshold in 
Stage 3 that would be most comparable to the granting threshold in Stage 1. Namely, whether a patent was 
upheld in exactly the same form as it was granted. Hence, we pooled the revocation and amendment of a patent 
on the one hand and the rejection of the opposition and the closure of the opposition procedure on the other (we 
dropped the cases of undecided oppositions). We preliminarily tested how our results would change if we coded 
the outcome in Stage 3 differently. These preliminary analyses suggest that the differences would not be radical, 
however, we did not inquire this in more detail. 
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(1) marginal effects of the variables on technological quality are decreasing (see Harhoff & Reitzig, 

2004) and (2) the distributions of the individual variables were highly left-skewed (see Table 1). 

We first estimate both models separately. The scale parameters (which inversely relate to the 

variance of random/error component) associated with each decision stage, λ1 and λ3, are not 

identifiable and arbitrarily set to unity. The estimates are provided in Table 3.  

Insert Table 3 about here 

We first examine the initial patent assessment decision in Stage 1 (model Grant), consistent 

with our framework of assumptions and in keeping with prior literature – in particular Guellec and van 

Pottelsberghe (2000). Our results suggest that we can proxy patent office assessments of technological 

quality using our set of indicators X – this supports Hypothesis 1. The model is overall well specified 

(p<0.001). We obtain individually and jointly significant coefficients for the variables relating to 

backward references to patent literature, accelerated examination requests, number of inventors, and 

forward citations received within five years of the publication date. Counter intuitively, the family size 

variable (coded as the ln[1+number of designated states]) correlates negatively with the likelihood of a 

patent being granted. We can only speculate about this finding; one plausible explanation is that large 

and cost-insensitive firms, with patenting tactics that cover wider product markets significantly more 

often, file patents for incremental inventions with a higher likelihood of not being granted. 

Admittedly, this explanation may be challenged. 

The model of opposition outcomes in Stage 3 (model Oppo) suggests that the factors that were 

significant for granting initially are no longer significant. The overall model is badly specified (with 

p=0.30 the model is overall insignificant) – suggesting that the coefficients of the variables are not 

significantly different from zero; one important consequence would be to reject Hypothesis 1. For 

various reasons, we do not lean towards this interpretation. The most important one is sample size. In 

fact, when running Model Grant (Stage 1) on randomly chosen subsets of data comprising roughly 300 

observations, we do not obtain significant results, either – whereas we do obtain them for N=5,027 

observations (Table 3). Thus, the insignificant coefficients from Model Oppo (Stage 3) are likely to be 
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affected by the comparatively small N – and we estimate inefficiently.24 Given this, and considering 

the substantial empirical evidence of our indicators’ ability to capture phenomena related to 

technological quality in Stage 1 (see Table 1, see Section 3.3), we are inclined to give more weight to 

the findings of that model. In turn we proceed with our analysis under the assumption that H1 is 

fulfilled for our specific set of data. 

4.3 Hypothesis 2: Inter-stage Consistency in Assessment of Patent Quality 

 According to Hypothesis 2, patent offices use quality-related information in a systematic and 

identical fashion to assess the underlying quality of a patent initially (granting phase) and upon 

reassessment (challenge phase). Our time-invariant indicators capture information that should be 

identical at the day of grant and at the day of opposition. Comparing the estimates relating to these 

indicators at each stage will reveal whether the EPO is consistent in their decision-making. We do this 

in model 4 but account for potentially spurious results in the β’s arising from differing error structures 

(as reflected in the ε’s and, hence, λ’s, see Section 3.5). Econometrically speaking, in this model we 

test whether coefficients for X are consistent when variance components from the two data sets on 

grant (stage 1) and opposition (stage 3) are allowed to differ. That is, we introduce the restriction β1 = 

β3 = β, given λ1 ≠ λ3. As described in detail in Appendix B, the data for stages 1 and 3 are pooled for 

this test and treated as independent data sets.25 We interpret the overall goodness of the model by 

focusing on the likelihood ratio values. 

Insert Table 4 about here 

The estimates are shown in Table 4. It is clear that the successful rescaling procedure is 

questionable, given a negative scale ratio. Specifically, since the scale is inversely related to the 

variance, in a correct and acceptable model this ratio must be positive. This is confirmed when 

comparing the proposed model to the unrestricted model. The likelihood-ratio value is 23.99, which is 

greater than the χ2 value of 18.31. As a result, we conclude that once differences in variability are 

                                                           
24  This problem of inefficient estimation should become smaller once we pool the sub samples 
(see Tables 4,5, and 6) in order to test hypotheses 2 and 3. Note again that a simple comparison of  the 
absolute sizes of the coefficients for X in Models Grant (Stage 1) and Oppo (Stage 3) to test H2 and 
H3 are meaningless since they may be the result of a spurious scale artifact (biased). 
25  See FN 19: resulting imperfections from this assumption in our empirical design offer, in our eyes, 
scope for future research, however, they do, in our understanding, not preclude our first careful analysis 
presented in this paper. 
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accounted for, the model 4 in which we propose that the office shows consistent assessments about a 

patent’s technological quality across both granting and opposition stages (Hypothesis 2) is not 

supported (its H0 is not rejected). In turn, one should examine the restricted estimates with caution26. 

 

4.4 Hypothesis 3: Theoretical Sources of Inter-stage Inconsistency in Assessment of Patent 

Quality – Informational changes between grant and opposition 

According to Hypothesis 3, potential inconsistencies are attributable to incremental knowledge 

obtained after the day of grant. That is, we attempt to account for beneficial hindsight knowledge 

provided to opposition division members. Using incremental forward citations received largely after 

grant as a proxy for hindsight information, model 5 tests H3 in a way that is comparable to our testing 

of H2, but for one important difference: in model 5 we estimate a pooled model of the two assessment 

stages where some combination of assessment homogeneity and assessment heterogeneity by the EPO 

is imposed, while still allowing variance heterogeneity to exist. It is important to note that we restrict 

the model so that the assessment heterogeneity may only be explained by the incremental forward 

citations, our proxy for hindsight information. This is in line with our theoretical expectation (H3). Of 

course, patent offices should systematically consider other (= time invariant) aspects of technological 

quality in the same way (i.e., consistent) across the two periods of assessment.27 Econometrically 

speaking, in model 5 we introduce identical restrictions to model 4 (β1=β3) and the same relaxed 

assumptions relating to the error terms (λ1≠λ2), but introduce the β representing information changes 

(k=10) as a heterogeneous parameter (i.e., βk=10
_Stage1≠βk=10

_Stage3).  

Insert Table 5 about here 

The results indicate that Model 5 proposes a set of restrictions that do not enable the model 

estimates to converge to an acceptable solution, That is, the data sets cannot be combined simply by 

                                                           
26  We caution the reader to interpret the model estimates. Essentially, we proposed that we can estimate a 
model in which the bibliographical indicators of quality were used in an identical fashion to judge quality in 
stages 1 and 3, recognizing the errors at the two stages differ. Hence, this would imply only a single set of 
estimates are required. This model was rejected, which indicates that the ‘k’ estimates themselves are 
misleading. 
27  The reader may note that in model 5 we drop the forward citations received until grant (5-year frame) 
from the set of homogenous parameters. We do so to avoid obtaining potentially confounding collinearity effects 
between the forward citation measures. Essentially, our parameterization in model 5 therefore gives the data the 
“maximum chance” to show consistency across Stages 1 and 3. 
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rescaling and with a single heterogeneous parameter. This is since the model introduced is overly 

restrictive (note: this result holds even when introducing a heterogeneous intercept term to allow for 

different propensities in the granting or upholding of patents by the office; the results of this test are 

not shown, but available upon request). The results suggest that a model of consistency in patent 

assessment (as proxied by indicators of patent quality) over assessment stages cannot be supported, 

even when allowing for different levels of error and possible information changes as proxied by 

incremental forward citations.  

We can, therefore, formulate an important interim summary: within the framework of our 

assumptions, particularly with an assumption that bibliographic indicators can act as proxies for 

validity-related information, we do not find that the EPO assessed technology related information 

consistently between grant and opposition during the 1980s in the area of biotechnology. The 

inconsistency we observe is not solely attributable to informational change between grant or challenge 

decisions. 

While we think that our tests support our conclusions quite substantially, we reiterate that it is 

not the aim of the paper to downplay any individual’s efforts at the EPO to deliver the best possible 

service during the period we study. We do not make conclusions of low assessment quality based on 

an isolated empirical affirmation. Instead, we prefer to examine (self-)critically which technical 

premises and theoretical aspects of our research design should be relaxed to explain our empirical 

findings comprehensively. The following Section is dedicated to doing this.  

4.5 Investigating Further Potential Sources of Inter-Stage Inconsistency 

In testing our research hypotheses, we concluded that the office may use indicators of patent 

quality in a systematic fashion (H1), but do so in a inconsistent fashion at the two stages of 

assessment; namely upon initial patent assessment and upon challenge. This was evident even when 

correcting for the confound in parameter estimates introduced by difference in error structures (H2) 

and allowing for informational changes to be heterogeneously assessed (H3). In other words, 

hypotheses 2 and 3 are rejected.  

To this extent, we are motivated to investigate further reasons why our proposal of 

homogeneity (and hence, consistency), as well as theoretically comprehensible heterogeneity, is 
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rejected. Could it be that simply one or a few bibliographical indicators (i.e., parameters 2 through 9) 

are the pieces of information which reflect inconsistent assessments? Or could it be that a completely 

different set of criteria is used to judge patent quality in challenge stages and that the rectification of γ 

errors by the office is difficult to comprehend relative to their assessments made in Stage 1? Perhaps 

the answer is somewhere in between? In models 6a and 6b we propose and test whether inconsistency 

in the EPO’s ruling – as found in 4.3 – is driven by only a few of the informational indicators we use; 

thereby this test relaxes the assumption that hindsight knowledge may only be captured by incremental 

forward citations (Assumption 2). Secondly, we relax our framework by dropping the assumption 

which states the EPO worked with constant conditions over time (Assumption 1); in other words, we 

allow for the γ errors to be driven by pure time-trend contingencies. These contingencies may be 

exogenous to examiners and members of opposition divisions, or reflect their own behavior (e.g. their 

learning about the new technologies). 

To relax Assumption 2, we estimate a model that is similar to model 5, however, we make no 

prediction or impose no restriction on assessment heterogeneity. Any of our indicators may now 

capture heterogeneous assessments. In searching for sources of heterogeneity (inconsistency), we 

tested several models to identify a potential set of parameters accounting for the heterogeneity. Table 6 

presents the results of two specifications which emerged as the most significant and stable ones after 

comprehensive testing. Moreover, we split Table 6 into columns A (restricted parameter set without 

incremental forward citations) and B (parameter set including the incremental forward citations 

received after granting). By contrast, the two models provide an additional indication on the usefulness 

of our incremental forward citations to measure informational change after grant. It also serves as a 

robustness check for our rejection of H3.  

Insert Table 6 about here 

The findings show distinct variables are driving the variance heterogeneity across assessment 

Stages 1 and 3 in both models 6a and 6b. Namely, these are accelerated examination request; number 

of inventors; absolute number of forward cites received within 5 years after publication (in model 6a); 

and incremental forward citations received between 5 and 10 years after application (in model 6b). We 

cannot offer a rational explanation for why a patent office would interpret information correlated with 
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acceleration requests or the number of inventors differently across the granting and opposition stage. 

On the other hand, it is intuitive why the incremental forward cites (received between five and ten 

years after publication) exhibit variance heterogeneity. Specifically, the variable was included to 

capture potential informational changes over time in model 5. It appears to show the desired effect 

only in a model which is less restricted (6b). It is somewhat puzzling that forward citations within the 

5-year period are also driving heterogeneity (model 6a). Theoretically, this variable should not exhibit 

any variance heterogeneity across assessment stages. The correlation structure among the independent 

variables suggests, however, that a moderate correlation between incremental forward cites and 5-year 

time frame forward cites is driving this result. This correlation as well as the measurement error of this 

variable in picking up pre- vs post-grant information leads us to revisit the ability of our measures to 

pick information status at different stages, and address this in our discussion. 

To relax Assumption 1, we re-ran models 6a and 6b including a set of time dummies to 

capture the variance in the EPO’s decision-making on patent validity over time above and beyond its 

(re-)assessment of technological quality for identical patent (application)s. We created time dummies 

for each patent filing year to capture the contingencies of providing services that are (a) exogenous 

from an examiners perspective (i.e. change in fee structures, change in number of applications, etc.), 

and (b) reflect examiner behavior (e.g. learning).28 Our results are summarized in Figure 3: 

Insert Figure 3 about here 

The reader may note the time trend created by the significant coefficients of the time dummies 

on the probability of a patent being held valid (all else being equal). The years 1978 and 1979 were 

combined due to a lack of observations in Stage 3 for patents being filed in these years,  and acted as 

the reference year in the estimation (hence, the coefficient equal zero by default). Of importance, but 

not visible from Figure 3, is that almost all remaining indicators of technological assessment quality 

are insignificant in VDDC models 6a and 6b (except backward references to patent literature for both 

models and PCT I for Model 6a)29  Finally, with the exception of the two (one) indicators, model 6a 

                                                           
28  This approach does not allow us to disentangle fully exogenous effects from the perspective of patent 
examiners/opposition divisions from endogenous ones. 
29  Readers familiar with the use of European patent data may wonder whether these last results could, in 
part be driven by the fact that some of our measures, while time-invariant for the individual patent, show 
distributional changes over our sampling period (e.g. the maximum number of states to be designated changed 
from 1978 until 1987). We can not exclude that this is the case to some extent; however, if it was, this would 



 - 27 - 

(6b) that include additional time dummies show overall support for H2. In summary, for our sample – 

and within our framework of assumptions – the EPO was consistent in its rulings on patent validity, 

but its decisions were not based on assessments of patents’ technological quality; instead decisions 

were driven by changing environmental (internal and external) conditions! 

 

5 DISCUSSION 

5.1 Limitations 

Our discussion begins with some considerations about the robustness of our findings, as well 

as a repeated disclaimer.  

Conceptually, our analysis focuses on only one aspect of patent assessment quality, although it 

is an important one. We study assessment inconsistencies arising from errors (we term these γ errors), 

which occur when a poor patent – one that should never be granted – is granted. The isolated 

inspection of γ errors may be misleading when assessing overall/total patent assessment quality.30 This 

is because, theoretically, the desirability of γ errors is dependent upon patent offices having 

mechanisms in place to correct for β errors (i.e., falsely rejected patent applications during grant). If an 

institution has a harsh granting procedure and the number of falsely rejected patent applications is 

high, then the risk for γ errors occurring is likely to be low; the need for institutional features to correct 

for γ errors (falsely granted patents), therefore, will also be low. Conversely, if there is a mechanism to 

correct for β type errors, there must be mechanisms in place to deal with γ errors. The EPO has 

mechanisms in place for correcting both β and γ  type errors. β errors (falsely rejected applications) 

can be corrected through the “appeal to grant” procedure. A profound analysis of this institutional 

feature would be beyond the scope of this paper, but the reader may note the following descriptive 

statistics. Out of our sample of 5,051 patent applications, 81 grant examination decisions were 

appealed. Out of the 3,162 granted patents, 334 were opposed and 79% of those were admitted for 

opposition. We have no objective yardstick against which to measure these figures; we do, however, 

                                                                                                                                                                                     
render our results even more powerful – unless one assumes that bibliographic measures are unsuited to proxy 
technological quality.  
30  We thank one of our referees of this paper for encouraging us to delve deeper into this discussion – 
which we deem very important. 
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find the number of appeals to be relatively high considering that the discrimination between patent 

validity in Stage 1 should, on average, be easier than in Stage 3 (see our aforementioned arguments). 

Hence, we interpret this figure as an indication that the EPO’s “appeal against examination” procedure 

is avidly used. Thus, we do further assume that the desirability for the EPO to commit γ errors is 

limited, reinforcing our argument to study γ errors as an important indicator of overall patent 

assessment quality. 

Empirically speaking, we recall that our results are based on the assumption that the 

bibliographic indicators we adopt allow operationalizing a patent’s technological quality. In general, 

we consider this assumption unproblematic since it is supported by an extant literature in the field. 

Moreover, model Grant (Table 3) indicates that this is a reasonable assumption for our specific data if 

N is large enough, too (see also Appendix Table A2). We are aware that our indicators are correlates 

of the EPO’s informational decision making basis and not causal for EPO’s decision-making. We do 

not claim that our indicators capture the technological quality concept: we are aware that our 

estimations may be systematically underspecified. However, we do not see why at least those 

indications about a patent’s quality we can measure should exhibit different effects in patent quality 

assessments across different stages (granting vs. opposition procedure). Moreover, we assume that the 

incremental forward citations received between 5 and 10 years after patent grant are, for the majority 

of patents within this sample, a good first proxy for the informational change regarding a patent’s 

technological quality between the day of grant and the day of the opposition outcome (Assumption 1). 

The average time lags for patent granting and opposition decisions as observed for our data render this 

assumption plausible. We know, however, that the variable dos not capture the entire change in 

information for some patents. Moreover, our incremental forward citation measure is unlikely to 

reflect oral information on “prior use” of a technology introduced during the opposition phase. In any 

case, the proxy does not allow us to determine the type of informational change with precision. 

Empirically speaking, the correlation between the different forward citation measures and their similar 

impact on consistency (models 6a and 6b) caution us not to over-interpret related results. Finally, 

except for our final estimations (see Figure 3), we assume that the conditions with which the EPO 

operates over time are constant and, if it is not constant, this should not affect the EPO’s decision 
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making (Assumption 2). We will critically review the suitability of this assumption in the following 

section and discuss implications of our findings relating to assessment (in)consistency.  

5.2 (In)Consistent Technology-Based Assessments?  

 Stimulated by the ongoing discussion about patent assessment quality, this paper sought to 

generate robust empirical evidence on various questions. First, we asked: what is the degree of 

technology-based decision-making consistency between validity-related decisions during patent grant 

and patent opposition? The question relates back to two fundamental issues of patent quality; namely, 

whether patent granting procedures are reliable by (a) categorizing patent applications along a 

yardstick of technological quality; and (b) ensuring that a patent survives a subsequent “validity suit” 

in emerging patenting areas. The answer to this question is easily summarized: within our framework 

of assumptions, Hypothesis 2 is rejected. This means that, for the entire sample of biotechnology 

patents applied for between 1978 and 1987 at the EPO, we do not observe consistent rulings by the 

office in the sense that the EPO assessed identical information on patentability requirements 

(technological quality) differently at the day of grant and the day of the opposition.  

5.3 Sources of Inconsistency 

Second, we asked: what are the sources of inconsistent judgments between patent grant and 

challenge (opposition)? While our analysis does not permit us to answer this question conclusively, we 

offer the following response: the technology-related informational change observed between the day 

of grant and the day of the opposition outcome is, to the extent that it is captured by the incremental 

forward citations, not entirely driving the assessment inconsistencies. This finding follows from our 

rejection of H3. Essentially, the interpretation of identical information, rather than the interpretation of 

different information, drives inconsistent assessments.  

5.4 Desired Inconsistency?  

Third, we posed the question: what we can infer from these findings on the level of service 

quality provided by the EPO in the area of biotechnology during the 1980s? While our assumptions 

and the limits of our empirical design require drawing conclusions carefully, the following appears 

noteworthy. Our results do not support the finding that patent validity-related decisions were based on 

consistent assessments of objective technological quality.  
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We do not find strong indications that the EPO attempted to optimize its service quality. To 

illustrate, consider the following counterfactual chain of thoughts: had the inconsistencies between 

patent grant and patent opposition been largely attributable to a change in information about a patents’ 

validity between the day of grant and the day of opposition, then this would have been an indication 

that the EPO allocates only limited resources to the search of prior art to patent examiners. 

Consequently, this would have led to the discovery of information during opposition that was 

‘overlooked’ during examination. If this was the case, however, one might suggest that the EPO 

provided service quality conditional upon resource constraints (see Merges, 1999), rather than being 

entirely “rationally ignorant” (see Lemley, 2001). Such a conditional resource allocation would 

suggest the EPO did optimize its service quality. Empirically, however, we do not obtain any findings 

suggesting information changes can explain inconsistencies of the EPO; in turn, we therefore second-

guess that the EPO optimized its service quality. Admittedly, the limited explanatory power of our 

measure of informational change over time (incremental forward citations) asks one to treat this 

conclusion with caution. Whether our findings truly reflect an optimal allocation rationale for search 

resources between granting and opposition by the office remains a partly open question to be 

addressed in future research.  

Quite clearly, however, inconsistent assessments regarding identical information during the 

grant and the challenge phase is not desirable in any circumstances.31 Essentially, this inconsistency is 

a “human” error. If available, patent offices should consider options to reduce this error. For example, 

patent offices could grant examiners more time or offer greater training and education – especially in 

“emerging” patenting areas. Given Merges’ suggestions, these options may benefit patent offices in 

the long-run as it requires considerable time to find and interpret prior art. The time trend we plot in 

Figure 3 may be attributable, not only to the changing environmental conditions with which examiners 

operate, but also to their “learning” in new technological areas.32 Such measures, however, do not 

guarantee that “undesired” inconsistency will vanish. If there is a chance that patent offices are, for 

                                                           
31  In fact, only with Lemley (2001) one might argue that it may be a reflection of an optimal resource 
allocation policy of a patent office if examiners and opposition division judge identical information differently. 
Namely, if one argues that not only resources for the search of prior art but also resources for the interpretation 
of prior art should be allocated mainly to the opposition division. We do not elaborate further on this thought for 
reasons given in 2.1.  
32  We thank one of our reviewers for sharing this thought with us. 
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one reason or another, incapable of guaranteeing a high level of consistency at reasonable costs – or 

normative legal quality (Thomas, 2002) – in emerging technologies, what would other options be to 

improve the system? Is there value to introducing a “grace period” for granting patents in new 

technologies? In other words, should society wait and observe a technological area before it acts and 

offers mechanisms for protection? What are the opportunity costs of this approach? These questions 

are highly relevant for future research endeavors examining patent quality. 

 

6 CONCLUSIONS AND FUTURE RESEARCH 

Stimulated by the ongoing discussion about patent quality, this paper sought to generate robust 

empirical evidence on the following two questions: (1) Did the European Patent Office (EPO) 

consistently base (repeated) patent validity decisions on its judgments of technological quality? (2) 

What were the sources of inconsistent judgments (if any) between patent grant and challenge? 

Moreover, we considered what our findings reveal about whether the EPO allocates resources 

optimally between the grant and the challenge phases.  

Using data on European biotechnology patents filed between 1978 and 1987, we show that the 

EPO’s decision making on a patent’s technological quality during granting and opposition phases 

(“validity suit”) was inconsistent; to the extent we can measure this using bibliographic indicators. 

Moreover, we do not find compelling evidence that the inconsistency indicates “optimal” resource 

allocation in a way that can be explained by informational increases on a patent’s technological quality 

from granting until the end of the opposition procedure. While there is some indication that 

information about a patent after its granting accounts for some of the differences in patentability 

assessments over time, we have no conclusive empirical evidence for this. This implies that examiners 

and opposition divisions judge identical information in different ways. We argue this is undesirable. 

Our results are subject to several caveats. In particular, issues of specification (unobserved 

contingencies), specific model assumptions (correlation of error term structures), and preliminary 

character of our measure for informational change over time (= incremental forward citations) may 

distort our findings. In addition, we focus on one emerging patenting area, prohibiting us from making 

any undue generalizations. 



- 32 - 
 

This being said, we would prefer to think that we make several contributions and extend the 

current debate on patent quality. We believe that this paper provides the first large-scale empirical test 

of patent assessment quality according to a definition that captures both economic and legal 

dimensions of patent quality. In addition, our tests are carried out within only one office and one 

industry, but earlier studies compare different industries with one another and face potential problems 

relating to the neglect of important contingencies. 

We know of no prior study that exploits patent data for the aforementioned research question 

beyond the level of rather simple comparisons of average indicator variables. Important information 

regarding the consistency of decision-making of a patent office may be hidden in (or distorted by) the 

variances of these indicator variables; our study is the first to exploit the heterogeneity and richness of 

patent data to shed more light on a patent quality discussion. 

As in many research endeavors, our study has left us with many questions. Some issues we 

deemed important were raised in the discussion, and, in our view, present stimuli for future research. 

In order to understand the generality of our findings, a comparison of the biotechnology industry in the 

1980s with a mature patenting area (e.g., modern polymers) may provide insights. Such a study 

comparable to this one, but using patent data from a different technology, could shed light on the 

question whether Merges’ (1999) criticism is limited to new patenting areas, or whether problems may 

exist in other technological areas. In order to understand the sources of inconsistent rulings, qualitative 

research may be worthwhile. We see little space for “squeezing” existing bibliographic data further 

than in this context, and we would expect good survey or archival data to help identify these sources. 

This particularly applies to the variables capturing the precise informational change between patent 

grant and opposition. Finally, our study focused on γ  errors (false grants) exclusively. A comparative 

study focusing on β  errors (falsely non-granted applications) might reveal additional insights about 

the total service quality provided by the EPO. 
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Figure 1 

Decision Tree: From Application to Opposition Outcome 
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Figure 2 

Share of Unidentified Opposition Outcomes among All Opposition Cases in Biotechnology vs. 
Year of Application  
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Figure 3 
Effect of Application Year on (Pooled) Probability of Patent being Valid in Covariance 

Heterogeneity Model with Mixture of Heterogeneous and Homogeneous Systematic Assessment 
Parameters33  

 
 

 
 

Box 1 

Types of Error in Assessment of Patent Quality 
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33  Note that in order to calculate the time intercepts in Figure 3 we had to adjust the parameterization of  

model 6a slightly in order to avoid multi-collinearity effects of the RHS variables. 
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Table 1 
Patent-Based Measures and their Link to “Patent Validity” (Objective Technological Quality) 

 
Variable 
 

Detailed description of measure Coding Link to technological quality (degree of novelty and inventive step):rationales 
(-: moderate negative correlation; +: moderate positive; ++: strongly positive) 

Basic reference 

Number of Backward 
Citations to a patent 
Literature  

Number of patent references to the state of the art that are 
actively quoted by a patent 

Logarithmic ++: the more developed a technological area, the greater the involvement of professional 
(corporate) inventors, and hence the higher likelihood of the focal patent being of high 
technological quality 
-: the more developed a technological area, the more marginal the focal patent’s contribution 
 

Narin, Noma & Perry 
(1987) 

Number of Backward 
Citations to the Non-
Patent Literature 

Number of non-patent references to the state of the art 
that are actively quoted by a patent 

Logarithmic +: the closer a patent application is to “basic” research, as reflected by the non-patent 
references, the higher its technological quality (relevant for scientific references) 
 
-: the less “scientific” a backward reference, the lower the technological quality (relevant for 
non-scientific references) 

Carpenter, Cooper & 
Narin (1980) 

Number of 
Designated States 
(Family Size) 

Number of states  Logarithmic  +: the higher the applicant’s willingness to pay for enlarged territorial protection, the higher a 
patent’s value (and, hence, potentially its technological merit) 
 
-: the larger a potential market for a patent, the higher the likelihood of the focal patent being 
an incremental contribution and therefore of low technological quality 

Lanjouw, Pakes, & 
Putnam (1998) 

Number of 
Applicants 

Number of applicants (natural and legal persons) 
involved in the application for a patent 

Binary ++: the more applicants contribute resources to the research and development process 
underlying the focal patent, the higher the resulting technological quality 

Guellec and van 
Pottelsberghe de la 
Potterie (2000) 

Number of Inventors Number of inventors (only natural persons) involved in 
the application for a patent 

Logarithmic ++: the more inventors participate in the research and development process underlying the 
focal patent, the higher the resulting technological quality 

Ernst, Leptien, & Witt 
(2000) 

Number of Forward 
Citations (5-year 
frame) 

Number of times the focal patent was quoted as relevant 
state of the art (prior art) during examinations of 
subsequent patent applications filed within five years 
after application of the focal patent application 

Logarithmic ++: the more often a focal patent is quoted as prior art during examinations of subsequent 
patent examinations, the more fundamental its technological contribution to the field, the 
higher its quality 

Trajtenberg (1990) 

Incremental Forward 
Citations 

Number of times the focal patent was quoted as relevant 
state of the art (prior art) during examinations of 
subsequent patent applications filed within the period of 
five to ten years after publication of the focal patent 
application 

Logarithmic See above; the effect of the incremental forward cites should, however, play out particularly 
for fundamental inventions 

See above 

Accelerated 
Examination Request 
(1: yes, 0: no) 

Dummy variable taking on the value 1 if a request was 
filed for an accelerated production of the search report 

Binary +: the higher the applicant’s willingness to pay for accelerated protection, the higher the 
private value of a patent (and, hence, likely the technological quality of a patent) 
 
-: the higher the necessity to receive accelerated protection, the more incremental the invention 

Reitzig (2004) 

PCT I & II (1: yes, 0: 
no) 

Dummy variable taking on the value 1 if a patent was 
filed via Patent Co-operation Treaty (PCT) in order to 
seek global protection, and if the period of time between 
filing date and entry into the regional phase is 20 months 
or less (PCT I) / exceeds 20 months (PCT II).  

Binary +: the higher the applicant’s willingness to invest in global protection for the focal patent 
(exceeding the EP territory), the higher a patent’s commercial value (and, likely, its 
technological quality) 
 
-: the higher the applicant’s willingness to pay for the delay of cost-intensive decisions during 
the application, the higher the applicant’s uncertainty about the focal patent’s commercial 
value (and, likely, its technological quality) 

Guellec and van 
Pottelsberghe de la 
Potterie (2000) 
 
For the differences 
between PCT I and PCT 
II see Reitzig (2004) 
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Table 2  
Descriptive Statistics 

 
Variable 
 

Mean Standard 
Deviation 

Minimum Maximum 

 
Left-hand side variables 

 
Opposition (1: yes, 0: no)1) 0.11  0 1 
Rejection of Opposition (1: yes, 0: no) 2) 0.21  0 1 
Amendment after Opposition (1: yes, 0: no) 2) 0.32  0 1 
Revocation of Patent after Opposition (1: yes, 0: 
no) 2) 

0.34  0 1 

Opposition Procedure Closed (1: yes, 0: no) 2) 0.07  0 1 
Opposition Outcome not Definable (1: yes, 0: no) 

2) 
0.07  0 1 

 
Exogenous variables (right-hand side) 

 
Number of Backward Citations to patent 
Literature (incl. international search)3) 

2.90 2.44 0 22 

Number of Backward Citations to the Non-Patent 
Literature (incl. international search)3) 

2.64 2.91 0 41 

Number of Designated States (Family Size) 3) 8.97 3.05 1 13 
Number of Applicants3) 1.12 0.43 1 7 
Number of Inventors3) 2.84 1.74 1 19 
Number of Forward Citations (5-year frame) 3) 1.51 2.79 0 37 
Number of Forward Citations (10-year frame) 3) 2.00 3.32 0 44 
Accelerated Examination Request (1: yes, 0: no) 3) 0.02  0 1 
PCT I (1: yes, 0: no) 3) 4) 0.03  0 1 
PCT II (1: yes, 0: no) 3) 4) 0.10  0 1 

 
Legend:  1): Figures calculated for the sample of granted patents comprising N=3,162 patents 

2):  Figures calculated for the sample of opposed patents comprising N=334 patents. 
3):  Figures calculated for the entire sample comprising N=5,051 patent (application)s. 
4): PCTI and PCT II are distinguished from one another based on the time elapsed between the patent’s priority date and the  

entry into the regional phase. Theoretically, the time lapsed should never exceed 30 months. For a small fraction (8%) of our 
PCT cases we do observe lags that exceed 30 months, however. We were not able to resolve this puzzle, but we deem it 
minor for the analysis. 
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Table 3 

Reduced Form Estimates 
 

  

Model Grant 
(N=5027) 

Stage One: Impact of Patent Quality on Probability of Patent Being 
Granted relative to Not Granted upon Application 

 
Excluding Information Revealed Largely After Patent Grant 

 

Model Oppo 
(N=310) 

Stage Three: Impact of Patent Quality on Probability of Patent Being 
Upheld relative to being Revoked or Amended upon Challenge 

 
Excluding Information Revealed Largely After Patent Grant 

 
K Parameter Est. B s.e.  Est. B s.e.  

1 Intercept -0.1407 0.2105   -1.3659 1.2509  
2 ln(1+patent references) 0.2480 0.0479 ** 0.2226 0.2078  

3 ln(1+non-patent 
references) 0.0346 0.0416   -0.2001 0.1772  

4 ln(# designated states) -0.2276 0.0645 ** 0.4397 0.4631  
5 Acc. Exam. Request 0.7923 0.2890 ** -0.9651 0.7875  
6 Applicant (=1) 0.1216 0.1061   -0.1962 0.4605  
7 ln(1+ # inventors) 0.4320 0.0741 ** -0.1757 0.3130  
8 PCTI (=1) 0.2765 0.1775   0.8807 0.5726  
9 PCTII (=1) -0.1628 0.1031   -0.6366 0.5606  
10a ln(1+5-year cites) 0.2865 0.0466 ** -0.0861 0.1529  
  Log-Likelihood (0): -3484.45; Log-L (model): -3249.09 Log-Likelihood (0): -214.876; Log-L (model): -182.323 

* - significant at the α=.05 level; ** - significant at the α=.01 le
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Table 4 
Model of CompleteHomogeneity (with Scale/Variance Heterogeneity) 

Stages 1 (Patent Grant) and 3 (Opposition Outcome) Pooled 
 
 
  Model 4 

Excluding Information Revealed Largely After Patent Grant 
(N=5337) 

 
K Parameter Est. B s.e. t-stat p-value   

 
1 Intercept -0.0718 0.1282 -0.5603 0.5753   
2 ln(1+patent references) 0.1394 0.0289 4.8161 0.0000 ** 

3 
ln(1+non-patent 
references) 0.0289 0.0251 1.1494 0.2504   

4 ln(# designated states) -0.1379 0.0396 -3.4822 0.0005 ** 
5 Acc. Exam. Request 0.5181 0.1693 3.0602 0.0022 ** 
6 Applicant (=1) 0.0787 0.0643 1.2247 0.2207   
7 ln(1+ # inventors) 0.2634 0.0448 5.8745 0.0000 ** 
8 PCTI (=1) 0.1169 0.1046 1.1176 0.2637   
9 PCTII (=1) -0.0813 0.0627 -1.2969 0.1947   
10a ln(1+5-year cites) 0.1707 0.0275 6.2148 0.0000 ** 
  

Scale Parameter 
     

 Scale (Stage 1) 1.6117 0.0774 20.8274 0.0000 ** 
 Scale (Stage 3) -1.4870 0.2457 -6.0525 0.0000 ** 
  Log-Likelihood (0): -3699.327; Log-L (model): -3436.408 
* - significant at the α=.05 level; ** - significant at the α=.01 level 
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Table 5 
Model of Partial Heterogeneity Relating to Post Grant Information (with Scale/Variance 

Heterogeneity) 
Stages 1 (Patent Grant) and 3 (Opposition Outcome) Pooled 

 

  

Model 5 
Including Information Revealed Largely After Patent Grant 

(Homogenous intercept) 
(N=5337) 

 
K Parameter Est. B s.e. t-stat p-value   
  Homogeneous Parameters           
1 Intercept -0.1401 0.1239 -1.1304 0.2583   
2 ln(1+patent references) 0.1386 0.0276 5.0167 0.0000 ** 
3 ln(1+non-patent references) 0.0277 0.0244 1.1335 0.2570   
4 ln(# designated states) -0.1277 0.0378 -3.3761 0.0007 ** 
5 Acc. Exam. Request 0.4671 0.1703 2.7433 0.0061 ** 
6 Applicant(=1) 0.0741 0.0626 1.1845 0.2362   
7 ln(1+ # inventors) 0.2899 0.0436 6.6487 0.0000 ** 
8 PCTI(=1) 0.1624 0.1034 1.5705 0.1163   
9 PCTII(=1) -0.0981 0.0589 -1.6662 0.0957   

10b ln(incremental forward cites) -218.8216^ 54.1432 -4.0415 0.0001 ** 
       
  Heterogeneous Parameters           

10b ln(incremental forward cites) -219.2145^ 54.1432 -4.0488 0.0001 ** 
  Scale Parameters           
 Scale (Stage 1) 1.7017 0.0795 21.3954 0.0000 ** 
  Scale (Stage 3) 0.0015 0.0004 4.0401 0.0001 ** 

    
Log-Likelihood (0):-3699.327;  

Log-L (model):-3424.83 
^ - model failed to converge after 1000 iterations; large standard errors/biased estimates indicate overly 
restrictive model structure. 
* - significant at the α=.05 level; ** - significant at the α=.01 level
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Table 6 

Covariance Heterogeneity Model with Mixture of Heterogeneous and Homogeneous Systematic Assessment Parameters 
Stages 1 (Patent Grant) and 3 (Opposition Outcome) Pooled 

 
  Model 6a 

Excluding Information Revealed Largely After Patent Grant 
(N=5337) 

 

Model 6b 
Including Information Revealed Largely After Patent Grant 

(N=5337) 

K Parameter 
Est. B 

(lambda) s.e. t-stat p-value   Est. B s.e. t-stat p-value   
 Homogenous parameters           

 
1 Intercept -0.5744 0.3296 -1.7426 0.0814   -0.7318 0.4053 -1.8057 0.0710   
2 ln(1+patent references) 0.1808 0.0343 5.2672 0.0000 ** 0.2012 0.0397 5.0673 0.0000 ** 
3 ln(1+non-patent references) 0.0139 0.0298 0.4676 0.6401   0.0273 0.0350 0.7786 0.4362   
4 ln(# designated states) 0.0106 0.1285 0.0822 0.9345   0.0149 0.1569 0.0948 0.9245   
5 Acc. Exam. Request 0.0193 0.2452 0.0787 0.9372   0.0154 0.2977 0.0517 0.9588   
6 Applicant (=1) 0.0739 0.0767 0.9645 0.3348   0.0909 0.0905 1.0041 0.3153   
7 ln(1+ # inventors) 0.1264 0.0912 1.3865 0.1656   0.1591 0.1096 1.4519 0.1465   
8 PCTI(=1) -0.1354 0.0747 -1.8127 0.0699   -0.1581 0.0854 -1.8498 0.0643   
9 PCTII(=1) 0.0854 0.0417 2.0488 0.0405 * -0.7318 0.4053 -1.8057 0.0710   
10a ln(1+5-year cites) -0.5744 0.3296 -1.7426 0.0814   - - - -  
10b Ln (incremental forward cites) - - - - - 0.2907 0.0785 3.7038 0.0002 ** 
  

Heterogeneous parameters            
1 Intercept -0.5032 0.3157 -1.5938 0.1110   -0.5612 0.3900 -1.4391 0.1501   
4 ln(# designated states) 0.1810 0.1282 1.4117 0.1580   0.2058 0.1566 1.3137 0.1890   
5 Acc. Exam. Request -0.5799 0.2452 -2.3655 0.0180 * -0.6898 0.2977 -2.3167 0.0205 * 
7 ln(1+ # inventors) -0.1972 0.0909 -2.1704 0.0300 * -0.2750 0.1092 -2.5186 0.0118 * 
10a ln(1+5-year cites) -0.1309 0.0395 -3.3104 0.0009 ** - - - -  
10b Ln (incremental forward cites) - - - -  -0.3003 0.0762 -3.9412 0.0001 ** 
  

Scale Parameters           
 Stage 1 1.3297 0.0639 20.8201 0.0000 ** 1.1339 0.0530 21.3894 0.0000 ** 
 Stage 3 1.7818 0.2456 7.2563 0.0000 ** 1.4531 0.2010 7.2299 0.0000 ** 
  Log-Likelihood (0): -3699.327; Log-L (model): -3426.318 Log-Likelihood (0): -3699.327; Log-L (model): -3403.65 
* - significant at the α=.05 level; ** - significant at the α=.01 level 
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Appendix A 
 

Table A1 
Correlation Matrix of Independent Variables 

 
 
     I II III IV V VI VII VIII IX X      
I:     ln(1+patent references)  1.0000 
II:    ln(1+non-patent references)  -0.1469 1.0000 
III:   ln(# designated states)  -0.0432 0.0745 1.0000 
IV:   Acc. Exam. Request   -0.0045 0.0421 0.0287 1.0000 
V:    Applicant (=1)   -0.0262 0.0628 0.0160 0.0188 1.0000 
VI:   ln(1+ # inventors)   -0.0070 0.0678 0.0030 0.0113 0.1441 1.0000 
VII:  PCT I    0.0616   0.1141   0.0203  -0.0136   0.0269   0.0105   1.0000 
VIII:  PCT I    0.0892   0.1563   0.0215   0.0062   0.0119  -0.0649  -0.0615   1.0000 
IX:   ln(1+5-year cites)   0 0.2463  -0.0000   0.0546  -0.0149   0.0074   0.1194  -0.1165  -0.2556   1.0000 
X:  Ln (incremental forward cites)  0.2167  -0.0411   0.0203  -0.0097  -0.0068  -0.0020  -0.0886  -0.1767   0.3730   1.0000 
 

 
Table A2       

Prediction of patent grant based on models Grant   
(N=5,027 after outlier correction)    
 

 
 
 No Grant 

(Predicted) 
Grant 
(Predicted) 

No Grant 
(Real) 

263 1,626 

 
Grant 
(Real) 

203 2,959 
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Appendix B: A More Elaborate Description of Variance Decomposition Discrete Choice Models 
 
 

Using the basic axioms of Random Utility Theory (RUT), unobservable (latent) technological 

quality (=techno-economic quality), LQi, of patent ‘i’ can be expressed as an additive function of its 

systematic/explainable technological quality, Qi, and some random/unexplainable component, εi. That 

is, 

 
iii QLQ ε+=  (

1) 

Systematic technological quality (Qi) is assumed to be a generalized regression function of 

various observable and measurable factors. In turn, these factors ultimately determine the overall 

technological quality of a patent as judged by a patent office and hence its likelihood of being granted 

upon application or upheld upon challenge. We assume this function to be linear in the parameters 

(Ben-Akiva and Lerman 1985). We define a matrix iΧ  which describes the measurable technological 

quality of patent ‘i’ on various attributes (see Table 1, exogenous variables). We define a set of 

parameters,β  which capture the effect that these factors have on changes in mean (systematic) 

technological quality. In general, the impact that each dimension of a patent application has on its 

mean technological quality is: 

 
siisQ βΧ=  (

2) 

We use the subscript 's' to suggest that the perceived quality of a patent at different stages of a 

patent process (initial application; patent opposition) may be different. In particular, while the 

(observable) patent characteristics may be constant, it is possible that the average correlation of these 

characteristics with its perceived quality may differ from stage to stage; hence, requiring a separate set 

of parameters, β, for each stage 's'. 

Among the basic empirical models capable of estimating different sets of parameters for 

similar outcomes using discrete choice data are so-called multinomial models. Essentially, by 

comparing sets of different parameters, β, for each stage 's' in our data structure allows us to assess the 
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consistency of the decision making across the different stages. This is why we use discrete choice 

models, however, there are various challenges in applying discrete choice modeling to our data. 

McFadden (1974) introduces several axioms to construct the (basic) multinomial logit model, 

including Independence-from-Irrelevant Alternatives (IIA), positivity, and irrelevance of alternative 

set effect. This implies that the random elements, ε, are iid. By further assuming that this distribution is 

Gumbel (extreme value type I), the closed-form MNL can be constructed (Ben-Akiva & Lerman 

1985). In the multinomial logit model, one assumes that the error component, ε, is distributed iid 

Gumbel, with a zero location parameter (without loss of generality) and scale parameter, λ. Applying a 

multinomial logic to our data, from McFadden (1974), the probability that a patent application ‘i’ ends 

up in one of ‘J’ scenarios, at observation ‘t’, at stage 's' of the patent application process can then be 

expressed as: 

 

∑ λ

λ
=

=

J

1j
jtss

itss
its

)Qexp(

)Qexp(
P   

(

3) 

In the first stage (s=1), Pit is the probability that patent 'i' will be granted. The technological 

quality required for a patent not to be granted must be set to some threshold value (e.g. zero) for 

identification purposes, consistent with a binary logistic regression expression. In the opposition 

(“challenge”) stage, we bundle the three outcomes (rejection of opposition/amendment of 

patent/revocation of patent) into two, and Pit is the probability that patent 'i' is maintained as granted 

(rejection of opposition) or not (patent amended or revoked) (note: by bundling the outcomes in this 

fashion, the thresholds for technological quality in Stage 1 and Stage 3 are set equal). The 

technological quality threshold of a patent being revoked or amended upon such challenge is set to 

zero, again resulting in a binary logistic expression. In turn, concerns about IIA violations are not 

applicable, contrary to what one might think at first sight when looking at the “nested” structure of our 

data.  

In this model, it is not well known that the estimates of vector β, of length 'k', describing the 

impact of various factors on mean systematic quality, are confounded with scale (Louviere, 2001). In 

any single data set, the scale parameter of the random component, λ, a scalar, is not identifiable, so the 

usual procedure is to arbitrarily set its value to 1. By ignoring this parameter, however, one could 
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make erroneous conclusions about the true assessments of technological quality by the patent office in 

the different stages (Stage 1: grant yes/now; Stage 3: patent revoked/amended/upheld as granted). 

Specifically, conclusions about differences between decisions based on estimates of β could be 

explained by differences in the true underlying assessment structure with respect to technological 

quality, differences in underlying variability or both (Louviere, 2001). 

When one estimates a single discrete choice model with a latent dependent variable (including 

probit, mixed logit), true estimates of β are confounded with the scale parameter. In turn, the estimates 

are (λβ), where λ is the scale parameter associated with that particular set of data. The scale is 

inversely related to the variance of the random component, 2
εσ  by the relation: 

 
2

2

6 εσ
πλ =   

(

4) 

In turn, when we compare parameter estimates related to systematic components of 

technological quality assessments, we actually compare a confounded set of parameters. For instance, 

estimates describing the impact of patent characteristics on the likelihood of a patent being granted 

(Stage 1) may be (λ1β1). Estimates describing the impact of patent characteristics on the likelihood of 

a patent being upheld upon opposition (Stage 3) may be denoted (λ3β3). Although we often arbitrarily 

set the value of λ1 and λ2 to unity (as most statistical packages do), we cannot be sure that in 

comparing estimates from two models, say (λ1β1) to (λ3β3), that differences are differences in true 

underlying technological quality assessments (i.e., heterogeneous β), differences in the variance of the 

random components (i.e., heterogeneous λ), or simultaneously differences in both sets of parameters 

(this problem was first addressed in the quantitative marketing literature by Ben-Akivaet.al. 1994, 

Hensher, Louviere, & Swait, 1999, and Louviere, Fox, & Moore, 1993). 34  

                                                           
34  In other areas, the issue related to comparing confounded estimates has been noted and used to identify 

that erroneous conclusions may have often been made in ignoring this statistical truth. For instance, in 
marketing science several authors have demonstrated empirically that often differences that appear to be 
occurring in terms of consumer preference observed in real markets relative to preferences obtained in 
hypothetical settings (e.g., choice experiment) can be dismissed once the differences in variability in 
consumers choices across the two settings are accounted for (Ben-Akiva et al. 1994; Hensher, Louviere, 
and Swait 1999; Louviere, Fox, and Moore 1993). For example, the way in which consumers trade-off 
price (e.g., prefer products with lower prices) and aspects of quality (e.g., prefer higher quality products) 
is often the same whether these evaluations are made in relation to real products (i.e., revealed 
preferences) or in relation to hypothetical products (i.e., stated preferences). In turn, once accounting for 
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Essentially, the underlying empirical possibilities that require testing are two fold. Firstly, we 

wish to ascertain whether technological quality assessments by a patent office are the same (i.e., β1 = 

β2) across granting and challenge stages. Second we wish to do this but account for whether the scale 

parameters (corresponding to variability) are also the same (i.e., λ1 = λ2). Essentially, we wish to test 

whether assessments of a patents technological merit relate to several observable characteristics of this 

patent and consider if these systematic assessments are homogeneous or heterogeneous across two 

data sets (or populations); we simultaneously test whether the randomness with which choices are 

observed are heterogeneous or homogeneous across two data sets. 

In order to address this issue, Swait & Louviere (1993) propose a nested hypothesis testing 

procedure.  

First, the authors estimate a model in which complete heterogeneity is imposed on both the 

scale and assessment components relating to technological quality. That is, essentially, a sample-

specific set of parameters is estimated for each stage (Stage 1: all patent applications; Stage 3: opposed 

patents only). In order to do this, however, the scale parameter cannot be identified and set arbitrarily 

to one in any one data set. The model log-likelihoods, however, provide a base measure for which 

subsequent models imposing various aspects of homogeneity can then be compared.  

Second, Swait and Louviere propose a model of complete technological quality assessment 

and variance homogeneity, in which the data from the two samples are pooled (Stage 1: all patent 

applications; Stage 3: opposed patents only). This model is tested against the base model of complete 

heterogeneity using a likelihood ratio test.  

Third, the authors introduce a model of complete quality assessment homogeneity while 

relaxing the assumption of variance homogeneity. To do this, they manually multiply the independent 

measurable components of one data set by a scale ratio and assume the alternative data set has a scale 

ratio of one. The concavity of the likelihood function with respect to the varying scale ratio allows a 

maximizing scale ratio to be identified under a hypothesis of assessment homogeneity regarding 

                                                                                                                                                                                     
differences in the variability inherent in these evaluations, it can often be concluded that trade-offs are 
identical rather than an initial hypothesis that preferences differ. 

 



 XIX 

technological quality. Comparing this model's likelihood to the base model of complete homogeneity 

allows this hypothesis to be formally tested.  

Swait & Louviere’s (1993) model only assesses the variance differences (using a manual grid 

search), given that homogeneity in the systematic component has been established. If, however, the 

model that allows for variance heterogeneity is significantly different from the model of complete 

homogeneity one question remains. Namely, is this what drives the heterogeneity of the variance? We 

use our own purpose-written software which allows this to be estimated using a full-information 

maximum likelihood (FIML) approach in which a Newton-Raphson algorithm is used, given a closed 

form solution. In more detail, we propose to model and test the variation from an assumption of 

homogeneity by estimating two parameters for each of the potentially heterogeneous variables, such 

that one parameter (homogenous term) describes the average impact across assessment Stages 1 

(Grant) and 3 (opposition outcome) and another parameter describes the deviation from this average 

impact for one assessment stage relative to the other. We use τ to denote the sets of factors suspected 

of being considered by patent offices in a heterogeneous fashion across the two assessment stages. We 

let the impact of these factors be determined by: 

βτ = βτ* + βτsZs        (5) 

where Zs = -1 if initial stage and +1 if challenge stage. βτ* is the average impact of factor τ, 

and βτs provides a test of the degree to which such homogeneity across stages is being violated. That 

is, the impact of factor τ for the initial stage is given by: 

βτ initial = βτ* - βτs      (6) 

and the impact of factor τ for the challenge stage is given by: 

βτ challenge = βτ* + βτs     (7) 

In turn, the t-statistic associated with the mean estimate of βτs provides a formal test to assess whether 

an assumption of preference homogeneity is significantly violated (i.e., Ho: βτs = 0). Since each model 

is also nested within the previous models of homogeneity, appropriate likelihood ratio tests are 

applicable to further confirm the resulting model. 
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