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Abstract

Environmental scanning electron microscopy (ESEM) and environmental photoelec-

tron yield spectroscopy (EPYS) enable electron imaging and spectroscopy of surfaces

and interfaces in low vacuum, gaseous environments. The techniques are both appeal-

ing and limited by the range of gases that can be used to amplify electrons emitted

from a sample, and used to form images/spectra. However, to date, only H2O and

NH3 gases have been identified as highly favorable electron amplification media. Here

we demonstrate that ethanol vapor (CH3CH2OH) is superior to both of these, and

attribute its performance to molecular complexity and valence orbital structure. Our

findings improve present understanding of what constitutes a favorable electron ampli-

fication gas, and will help expand the applicability and usefulness of the ESEM and

EPYS techniques.
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Introduction

Environmental scanning electron microscopy (ESEM) is a common tool for imaging of ma-

terials that charge up during electron irradiation and can not be studied using conventional,

high vacuum microscopes.1–3 Moreover, the use of a gaseous environment inside the spec-

imen chamber enables SEM studies of vacuum-incompatible materials and processes. For

example, H2O vapor, the most common ESEM imaging gas, enables real-time nano and mi-

cro scale studies of water droplet formation and the wettability of surfaces,4–8 nanoparticle

self-assembly during condensation,9 humidity-induced swelling,10 water transport through

carbon nanopipes,11 chemical vapor deposition of nanowires in dry and wet environments,12

beam-directed electrodeposition performed using aqueous deposition precursors,13,14 and

electron beam induced etching of carbonaceous materials.15–19 The most attractive feature

of ESEM is the ability to image these processes and materials in real time with SEM spatial

resolution. However, the gas employed in ESEM plays a central role in secondary electron

(SE) amplification (Figure 1a) and electron image quality, and the applicability of ESEM is

limited by the fact that only a handful of gases have favorable electron amplification charac-

teristics. Numerous potential ESEM imaging gases have been evaluated to date, including

air, CO2, N2O, N2, He and NH3.20,21 However, all of these except for NH3 have been shown

to be inferior SE amplification media relative to H2O.

Environmental photoelectron yield spectroscopy (EPYS)22–25 is an emerging surface anal-

ysis technique which is analogous to ESEM in that it permits the use of gaseous environments

in conjunction with measurements that are typically performed only in high or ultra-high vac-

uum. EPYS exploits the photoelectron effect, and entails measurement of the photoelectron

emission current as a function of the energy of incident photons. It enables characterization

of the electronic properties of a surface as it is modified by gas-mediated (spontaneous or

thermally driven) chemical reactions. However, as in the case of ESEM, the gas used in the

EPYS analysis chamber is used to amplify the emitted electrons in a gas ionization cascade

(Figure 1b and c), and therefore limits the signal-to-noise ratio of EPYS spectra and the
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scope and applicability of the technique.

Here, we identify ethanol vapor (CH3CH2OH) as an excellent gas amplification medium

for secondary electrons in ESEM and photoelectrons in EPYS. We show that ethanol is su-

perior to H2O and NH3, the only two high performance electron amplification gases reported

to date. The superior properties of CH3CH2OH can not be explained by standard ESEM

gas selection guidelines which are based on the first ionization energy of the gas molecules.

Instead, we ascribe it to the valence orbital structure of the molecules. This finding will

help guide identification and selection of high performance gases and gas mixtures for ESEM

and EPYS, and will enable broader deployment of these imaging and spectroscopic tech-

niques. In particular, the use of ethanol and other complex gas molecules paves the way

to real-time studies of processes such as chemical vapor deposition, wetting dynamics of or-

ganic nanodroplets, heterogeneous catalysis, and other gas-solid reactions using ESEM and

EPYS.
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Figure 1: Schematic illustration of (a) electron amplification in an ESEM gas ionization
cascade, (b) an EPYS vacuum chamber, and (c) photoelectron amplification in an EPYS
gas ionization cascade. In both methods, electrons are accelerated by an electric field between
the sample and a detector anode, and are amplified by ionizing gas molecules. Electrons and
ions generated in the cascade flow to and away from the anode, respectively, and currents
induced in the anode or the specimen stage can be used to form ESEM images and EPYS
spectra. The EPYS chamber consists of a pumping system (not shown), gas inlet and outlet,
specimen stage, heater, gas cascade detector, and an optical window. (d) Lewis diagrams
showing the number of valence electrons contributing to the interaction cross sections of
H2O, NH3 and CH3CH2OH.
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Experimental Section

The ESEM gas cascade amplification efficiencies of H2O, NH3 and CH3CH2OH were eval-

uated by measuring the specimen stage current (see Figure 1a) versus gas pressure and

detector anode bias using a variable pressure FEI XL-30 ESEM. The electron beam energy

and current were fixed at 20 keV and 2.1 nA, and the sample-anode gap was 13.5 mm. A

polycrystalline platinum foil sample and a Faraday cup were used to measure the total gas-

amplified electron signal (IΣ), and the component generated by gas cascade amplification

of electrons liberated from gas molecules ionized by the electron beam, respectively. The

difference between these two values is the gas-amplified electron emission current (Iδ+η),

generated by secondary and backscattered electrons emitted from the sample.

Complimentary EPYS measurements were performed using the same polycrystalline plat-

inum foil sample, and the system that is shown in Figure 1 and has been described previ-

ously25 (the EPYS sample-anode gap distance was 12 mm). Briefly, low energy photoelec-

trons were generated by illuminating the sample with broadband UV light spanning the

spectral range of approximately 180-350 nm. The spot size had a diameter of ∼5 mm. The

EPYS technique has previously not been used for characterisation of gas cascade amplifi-

cation. Our results demonstrate that such an analysis is highly complementary to ESEM

studies which are complicated by the fact that high energy backscattered electrons are emit-

ted from the sample and amplified by the ESEM imaging gas in parallel with SEs. This

is problematic because the gas amplification characteristics of backscattered electrons are

different from those of SEs, due to large differences between their energy spectra.26,27 In

contrast, the cascade-amplified EPYS current (Ip) has a single component generated by

photoelectrons which are emitted over a narrow band of energy (0 < E < 7 eV) that is sim-

ilar to the energy spectrum of SEs in ESEM (SE imaging is the most common SEM/ESEM

imaging mode because it yields high resolution topographic contrast and electronic structure

contrast3,28–32).

We note that deposition of carbon was not observed during the ESEM and EPYS experi-
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Figure 2: Gas-amplified electron emission current measured versus pressure using ethanol,
NH3 and H2O. (a) In ESEM, the current is a sum of two components (Iδ+η) that correspond
to cascade-amplified, low energy (≤ 20 eV) secondary electrons and high energy (≤ 20 keV)
backscattered electrons. (b) In EPYS the current (Ip) is generated by low energy (< 7 eV)
photoelectrons. The detector anode bias was fixed at 400 V in both cases.

ments. Consequently, all results were reproducible when repeat acquisitions were performed

using fixed sample regions. The absence of deposition in an ethanol atmosphere is attributed

to negligible coverage of ethanol adsorbates at room temperature.

Results and Discussion

Figure 2(a) shows plots of Iδ+η versus pressure, measured for ethanol, NH3 and H2O using

an ESEM. Ethanol is the most efficient amplifier over the entire pressure range typically

used in ESEM (< 6 Torr). Optimum amplification in ethanol, NH3 and H2O occurs at 2.6,

4.7 and 6 Torr respectively.

Figure 2b shows equivalent EPYS data, revealing the same trend for gas-amplified pho-

toelectrons. Ethanol is the most efficient amplifier at pressures smaller than ∼ 2.5 Torr, and
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optimum amplification in ethanol, NH3 and H2O occurs at 1, 1.5 and 1.9 Torr respectively.

The differences between the ESEM and EPYS data (i.e. the EPYS curves are shifted to

lower pressures) arises from the contribution of backscattered electrons to the ESEM sig-

nal. Backscattered electrons have significantly higher energy than secondaries, and optimal

amplification therefore occurs at higher pressures.26,27,33

Figure 3: Total gas-amplified electron signal (IΣ) and the gas-amplified electron emission
current (Iδ+η) measured versus ESEM detector anode bias using ethanol, NH3 and H2O, at
gas pressures of (a) 0.1 Torr, (b) 1 Torr, and (c) 5 Torr. The maximum current reached at
the onset of dielectric breakdown of the gas is shown for each curve.

Figure 3 shows plots of both IΣ and Iδ+η obtained for ethanol, NH3 and H2O using an

ESEM at gas pressures of (a) 0.5, (b) 1 and (c) 5 Torr, respectively. Each curve is plotted
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up to the voltage which marks the onset of dielectric breakdown of the gas and hence the

maximum useful amplification efficiency of the gas. Ethanol is able to sustain the highest

breakdown current ImaxΣ at all pressures, while Imaxδ+η is very similar to NH3 and H2O at 5 Torr.
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Figure 4: Gas-amplified photoelectron emission current (Ip) measured versus EPYS detector
anode bias using ethanol, NH3 and H2O, at gas pressures of (a) 0.1 Torr, (b) 1 Torr, and
(c) 5 Torr. The maximum current reached at the onset of dielectric breakdown of the gas is
shown for each curve. The three amplification regimes (i, ii, iii and iv) labelled on the plots
are discussed in the main text.

Figure 4 shows plots of Ip obtained for ethanol, NH3 and H2O using our EPYS system

at gas pressures of (a) 0.5, (b) 1 and (c) 5 Torr, respectively. The values of Ip were collected
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in 40 V increments until breakdown occurred.

Our results show that ethanol is a more efficient gas amplification medium than NH3 and

H2O at gas pressures lower than ∼ 5 Torr, and comparable at 5 Torr. In order to explain the

amplification properties of the three gases, we must consider electron energy loss and gain

mechanisms in the gas cascade.

The rate of change of energy of an electron in the gas cascade (∂E/∂s, where s is the

electron trajectory between the sample and the detector anode) has three primary compo-

nents:
∂E

∂s
= Γ− Ω− Λ (1)

where:

• Γ is the rate at which electrons gain energy under the influence of the electric field

between the sample and the detector anode.

• Ω is the rate at which energy is lost through ionizing collisions that increase the cascade

current. It is determined by the inelastic cross-sections for electron-gas scattering

processes that lead to ionization.

• Λ is the rate at which energy is lost via non-ionizing inelastic scattering events. It is de-

termined by the inelastic cross-sections for scattering processes that do not lead to ion-

ization (e.g. those corresponding to vibrational and rotation modes of gas molecules34).

Dependence of amplification on pressure

In Figure 2, gas amplification of electrons increases with pressure, reaches a maximum, then

begins to decrease for each gas. The rate of increase is governed by Ω which is greatest for

ethanol, followed by NH3 and lowest for H2O. The rate of decrease is governed primarily

by Λ, which is also greatest for ethanol, followed by NH3 and H2O. The relative values of

Ω and Λ determine the critical pressure at which the amplification efficiency is greatest for

each gas.
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The general shape of the curves in Figure 2 is well understood.26,27,33 At very low pres-

sures, amplification is low because the electron mean free path is long, the number of electron-

molecule collisions in the gas is small, and amplification increases with pressure as the number

density of gas molecules increases. However, the increase in the collision rate with pressure

causes a decrease in the mean electron energy, and a decrease in the amount of energy gained

by electrons between collisions. This trend eventually causes amplification to decrease with

increasing pressure because non-ionizing collisions dominate at low electron energies, partic-

ularly below the ionization threshold (E0) of the gas.34 Thus, 1/E0 typically correlates with

amplification efficiency,27 and E0 is often used as a figure of merit for the relative amplifi-

cation efficiency of a given gas. However, ethanol, NH3 and H2O have ionization thresholds

of 10.5, 10.1 and 12.6 eV respectively,35–37 which cannot be used to explain why ethanol is a

more efficient amplifier than NH3 and H2O. This can, however, be explained by the valence

orbital structures of the gas molecules, and in particular the number of outer shell electrons

with a binding energy that is similar to E0, illustrated by the Lewis structures shown in

Fig 1 (d). The contribution of valence orbitals to interaction cross-sections is described by

a basic additivity rule,38,39 which builds a total cross section of a molecule by summing the

number of valence electrons (and nuclei) of the constituent atoms. Modified additivity rules

have been developed to account for molecular geometries and the redistribution of atomic

electrons due to molecular binding.40,41 However, as a general rule molecules composed of

a greater number of atoms have larger scattering cross sections,42,43 thus they posses a rel-

atively large Ω for high electron energies. The ionization energy and number of valence

electrons for ethanol, NH3 and H2O are summarized in Table 1.

Table 1: Ionization energy and the number of valence electrons of the gaseous molecules
H2O, NH3 and CH3CH2OH.

Molecule Ionization energy (eV) Number of valence electrons
H2O 12.3 8
NH3 10.1 8
CH3CH2OH 10.5 20
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Dependence of amplification on detector bias

The plots in Figure 4 demonstrate a benefit of using EPYS to characterize the gas cascade.

The emitted photoelectrons have a narrow energy distribution concentrated below the ion-

ization threshold of each gas. All electrons must therefore be accelerated beyond E0 before

they can contribute to the gas cascade, and subtle variations in amplification behavior are

therefore resolved as changes in how Ip scales with anode bias. Four distinct scaling regimes,

labeled (i)-(iv), are resolved and indicated on the plots (we note that at low anode biases,

when Ip < 30 pA, absolute differences between the curves should be ignored since they are

on the order of variations in the direct current offset of each dataset).

In regime (i) gas cascade amplification scales approximately exponentially with anode

bias. Exponential scaling is expected from the ideal Townsend gas capacitor model44 (ie: a

straight line, as seen on the logarithmic plot in Figure 4c). It is observed under conditions of

high pressure and high anode bias, where the electron energy distribution is in a steady state

throughout the vast majority of the sample-anode gap (ie: Γ = Ω+Λ) shown in Figure 1c. In

this gas amplification regime, the system is in the so-called ‘swarm-condition’.26 At reduced

pressures (Figure 4a-b), the scaling in regime (i) is not exponential because Γ 6= Ω + Λ, and

changes in anode bias alter the energy distribution of electrons in the gas.

At low voltages, regime (ii), electron-ion recombination in the gas is significant and

the scaling of Ip with bias is modified by the effects of the voltage on the recombina-

tion/separation efficiency. At very low voltages and high pressures, regime (iii), some elec-

trons are never accelerated beyond E0, and a subtle increase in bias can cause an abrupt

increase in amplification (Figure 4c).

At high voltages and low pressures (iv), super-exponential scaling is observed in some

cases, just before the onset of breakdown. This is attributed to an amplification feedback

effect that is discussed below. The super-exponential scaling is observed when amplification is

relatively low, and changes slowly as the voltage is increased. When the amplification factor

is large (and increasing quickly with bias) and the feedback coefficient is low, the contribution
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to IΣ from feedback rises very quickly over a small voltage range close to breakdown, and is

not resolved in the curves in Figure 4.

Ultimate amplification efficiency and dielectric breakdown

Ultimate amplification efficiency is limited by dielectric breakdown of the gas, which is

governed by a positive feedback coefficient (k). The coefficient is non-zero due to electron

ejection from the sample caused by positive ions and excited neutral gas molecules that are

generated in the gas cascade and come into contact with the sample surface. The ejected

electrons are normally attributed to potential rather than kinetic energy transfer from the

ions and excited neutrals to the sample surface. Hence, the emitted electrons are typically

believed to be Auger electrons and photoelectrons induced by ions and excited gas molecules

that neutralize and de-excite at the sample surface.26,44 In this framework, large, complex

molecules have small feedback coefficients because they possess a large number of vibrational

and rotational modes through which they can dissipate energy as they neutralize/de-excite

at a surface.44 This is consistent with the observation that ethanol exhibits the largest

maximum breakdown current, followed by NH3 and H2O, under most conditions investigated

in the present work (see Figures 3 and 4).

Conclusion

We have identified ethanol as a very efficient amplification gas compared to NH3 and H2O in

both ESEM and EPYS. Both techniques were used to characterize the gas amplification prop-

erties of each gas. The rates of electron energy loss due to ionizing (Λ) and non-ionizing (Ω)

inelastic scattering events are attributed to the valence orbital structure and molecular com-

plexity. EPYS was used to study the anode bias dependence of amplification and four regimes

were identified. These include standard Townsend amplification, super-exponential scaling

arising from feedback at high biases, the effect of low bias on separation/recombination of
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low energy electrons and small changes in bias shifting the median electron energy above the

gas ionization threshold.
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