"DETERMINATION OF RAINFALL/RUNOFF MODEL PARAMETERS"

A. G. GOYEN

Submitted in fulfilment of the requirements for the Master of Engineering Degree at the New South Wales Institute of Technology.

December 1981

CERTIFICATION STATEMENT

I hereby declare that the content of this thesis does not comprise any work or material which I have previously submitted for a Degree or other similar award from any other Institute of Technology or University.

> Production Note: Signature removed prior to publication.

Allan G Goyen B E. MIE. Aust.

ABSTRACT

"DETERMINATION OF RAINFALL/RUNOFF MODEL PARAMETERS"

KEY WORDS: <u>Stochastic-Deterministic</u>, <u>Rainfall/Runoff Models</u>. Joint Probability, <u>Antecedence</u>, Parameters-Field Measurements.

Runoff estimates both peaks and volumes ABSTRACT: are called for in design analysis for the sizing of a wide range of engineering structures. In many instances runoff records are very short or not available and it is necessary to use synthetic rainfall data and apply a rainfall/runoff model to estimate appropriate design hydrographs. This particular thesis addresses the portion of the rainfall/runoff process conversion dealing with the development of excess hyetographs prior to catchment routing and the estimation of the parameters affecting such development. Details are given on field based parameter estimating procedures as well as further model development to better reflect measurable input parameters. A joint probability model linking moisture deficiency criteria prior to an event, rainfall data and measured catchment parameters is developed and applied on Canberra data.

REFERENCE: GOYEN, A.G. (1981). Determination of Rainfall/Runoff Model Parameters. Thesis M.Eng., N.S.W. Institute of Technology, December (unpublished).

iii

ACKNOWLEDGEMENTS

The assistance of the National Capital Development Commission in providing funds for field measurements and computer use is greatly acknowledged as this thesis would not have been possible without such financial assistance. The Department of Housing & Construction is also acknowledged for providing basic rainfall and runoff data, for the Giralang, Gungahlin and Mawson study catchments, used extensively in this thesis.

TABLE OF CONTENTS

ABSTRACT	Page iv
ACKNOWLEDGEMENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	x
LIST OF PHOTOGRAPHS	xi
LIST OF SYMBOLS	xii

<u>Chapter</u>

1	INTRODUCTION	1
2	BACKGROUND AND SCOPE OF THESIS	3
	2.1 Description of RSWM	4
3	FIELD DATA COLLECTION AND ANALYSIS	10
	3.1 Introduction 3.2 Study Catchments	10 15
	3.2.1 Giralang and Gungahlin 3.2.2 Mawson 3.2.3 Black Mountain Reserve	15 17 17
	3.3 Scope of Data Collection Program 3.4 Description of Sampling Stations 3.5 Sampling Methods	
	3.5.1 Soil Moisture Profiles 3.5.2 Infiltration Parameters	27 34
	3.6 Results from Gauging Program	37
	3.6.1 Long Term Soil Moisture Fluctuations	37
	3.6.2 Sorptivity and Hydraulic Conductivity	44
	3.7 Discussion on Results	45

4 • 1 4 • 2	Develop	sion on Current Techniques oment of a Combined Stochastic inistic Rainfall/Runoff Model	47 - 50
	4.2.1 4.2.2	General Continuous Water Balance Mode Development	50 e1 56
		 4.2.2.1 Urban Land Domains 4.2.2.2 ARBM Model Results 4.2.2.3 Development of an Antecedent Moisture Index 	73 75 86
	4.2.3 4.2.4 4.2.5	Review of Existing Stochastic Deterministic Models Development of SDRRM Model Results from SDRRM	c- 89 92 102
4.3 4.4	Gauged Runoff	ter Assessment for Ungaged and Urban Catchments Generation from Different Lar	105 nd
4.5	SDRRM a	s ative Analysis Employing the and Existing Runoff ting Procedures	106 107
	4.5.1 4.5.2 4.5.3	Introduction Catchment Data Rational Formula Method of	108 108
	4.5.4 4.5.5	Analysis Regional Flood Frequency Technique Runoff Routing Approach	109 111
	4.5.6	Employing a Design Storm with Initial and Continuing Losses Runoff Routing Approach Employing a Stochastically	111
	4.5.7	Derived Rainfall Excess Lumped Catchment Runoff Routing Approach Employing a Stochastically Derived Rainfall Excess-	111
		Separate Pervious- Impervious Consideration	112

vi

	4.5.8 Direct Application of	
	the SDRRM	112
	4.5.9 Frequency Analysis of	
	Gauged Data	112
	4.5.10 Discussion on the	
	Methods and their Results	110
	Results	113
	4.6 Application of Proposed	
	Parameter Estimating and	
	Modelling Techniques	114
	A.C. 1. Maion Designed	
	4.6.1 Major Drainage	1 1 4
	Analysis and Design 4.6.2 Minor Drainage	114
	Design	115
	besign	115
5	SUMMARY AND CONCLUSIONS	119
	5.1 Introduction	119
	5.2 Combined Stochastic-	
	Deterministic Urban	100
	Drainage Model	120
	5.3 Summary	120
	5.4 Conclusions	122
6	REFERENCES	123
-		

А	Ρ	Ρ	Ε	Ν	D	Ι	С	Ε	S
---	---	---	---	---	---	---	---	---	---

APPENDIX	Α	Engineeri	ng Logs
		Stations	Nos 1-8

LIST OF FIGURES

Figure		Page
2 - 1	Diagrammatic Sketch of RSWM	6
2 - 2	Typical Watershed Breakup for Analysis by RSWM	7
3-1	Location of Canberra Study	
2 0	Catchments	11
3 - 2 3 - 3	Giralang Urban Catchment Mawson Urban Catchment	12 13
3-3	Giralang and Gungahlin Paired	15
5-4	Catchments	14
3 - 5	Troxler Surface Moisture/	
	Density Meter	29
3-6	Scatter Diagram Comparing	
	Nuclear and Conventional Soil	2.0
2 7	Moisture Readings	32
3-7	Shallow Soil Moisture Readings during the 1979/1980 Period	39
3-8	Profile Summaries	40
4 – 1	Annual Max 30, 60, and 120	
· -	Minute Rainfall Bursts and	
	Simulated Runoff 1933-75	53
4 – 2	Seasonal Distribution of Annual Max	
	30, 60 and 120 Min. Rainfall Bursts	54
4 – 3	Canberra Intensity-Frequency Duration, Pan Evaporation and Daily Rainfall	
	Distribution	55
4 – 4	Diagrammatic Sketch of the ARBM	57
4 - 5	Sensitivity of ARBM Model Parameters	61
4 - 6	Gungahlin Scatter Diagrams	77
4 - 7	Long Term (US) Soil Moisture	7.0
	Simulation	78
4 - 8	Antecedent Rainfall-Pre Burst Moisture Scatter Diagram for Simulated	
	Max. Ann. Pervious Runoff Events.	84
4 - 9	Probability Curves for Index	
	Туре І	87
4 - 10	Probability Curves for Index	
	Type II	88
4 - 1 1	Diagrammatic Representation of	93
4 - 1 2	The SDRRM Model SDRRM Model Output	99
4-12	Flow Diagram of SDRRM Routing	
7-13	Operations	101
4 - 1 4	Simulated Excess Rainfall and	
	Runoff Peaks for Different	
	Land Domains	103
4 - 15	Simulated Excess Rainfall and	104
	Runoff Peaks for Giralang viii	104

4-16	Sensitivity of Runoff Peaks to Land Domains, Giralang	
	Catchment	107
4-17	Comparative Simulations for	
	Mawson	110
4-18	Simulated Total Storm Losses	116
4-19	Simulated Rational Method,	
	Canberra Runoff Coefficients	118

LIST OF TABLES

Table		Page
3-1	Average Sorptivity and Hydraulic Conductivities	45
4 - 1	Summary of Typically Recommended Initial and Continuing Loss Rates for Australian Conditions	51
4 - 2	ARBM Parameters Reference Set	60
4 - 3	Dry Grass Parameter Set	75
4 - 4	Adopted Domain Based Parameter Sets	79
4 - 5	Annual Maximum Rainfall (Yarralumla) and Annual Maximum Simulated Pervious Excess Statistics 1933-1970	81
4 - 6	Maximum Annual Upper Soil Storage Levels 1933-1969	85
4 - 7	Annual Maximum Gauged Flow Peaks, Mawson.	113

х

LIST OF PHOTOGRAPHS

Photo	Pag	je
3-1	Giralang Station No. 1 - General View	20
3-2	Giralang Station No. 1 - Strata Details	20
3 - 3	Giralang Station No. 2 - General View	21
3 - 4	Giralang Station No. 2 - Strata Details	22
3 – 5	Giralang Station No. 3 - General View	23
3 - 6	Giralang Station No. 3 - Strata Details	23
3 - 7	Giralang Station No. 5 - General View	24
3-8	Giralang Station No. 5 - Showing Initial Nuclear Gauging	24
3 – 9	Giralang Station No. 6 - General View	25
3-10	Giralang Station No. 6 - General View	25
3-11	Blackmountain Station No. 8 - General View.	26
3-12	Black Mountain Station No. 8 - Detailed Surface View	27
3-13	Installation of Thermocouples Station No. 1	33
3 - 1 4	Completed Installation of Thermocouples Station No. 1	33

LIST OF SYMBOLS

	0
А	Subcatchment area in km ² .
Α	Transition Probabilities Matrix.
Α	Infiltration parameter (cm/min ¹),
Ac	Cross-Sectional area of core (cm ²).
A0,A1	Redistribution Parameters.
API5	Five day antecedent prec. index.
В	Subarea coefficient.
В	Infiltration parameter (cm/min ^{3/2}).
b	Conditional probability of Qo _i given R _i .
^b jik	and M _L .
CAPIMP	Imper∛ious store capacity.(mm).
CWI	Catchment Wetness Index.
С	Rational Method Runoff Coefficient.
DS	Pervious Depression storage.(mm).
DSC	Depression store capacity.(mm).
D	Diameter of soil gore. (mm) . Wet density. (g/mm_3) and (g/cm_3) .
D(wet)	Wet density.(g/mm³) and (g/cm³).
D(dry)	Dry density.(g/mm [*]) and (g/cm [*]).
ER	Proportion of transpiration from US.
ECOR	Ratio of Pot. Evap. to A class pan.
f	Dimension of vector Qo.
FIMP	Proportion of catchment that is impervious.
G N	Variable rate groundwater recession factor.
GS	Groundwater storage.(mm).
Н	Hydraulic head - dist. from base of core to
	pondage surface.(cm).
i	Cumulative infiltration.(cm).
ISC	Interception store capacity.(mm).
IAR	Proportion of rainfall intercepted by
TDC	vegetation.
IDS	Impervious depression storage.(mm).
IS	Interception storage.(mm). Rainfall intensity in mm/hr for a return
I	period fy and duration Ta.
I	Infiltration rate.(mm/hr).
KG	Constant rate groundwater recession factor.
K	Subarea storage delay time in hours.
Ko	Saturated hydraulic conductivity.(cm/min).
L	Length of soil core.(cm).
Lsc	Lower soil store capacity.(mm).
ĹĤ	Maxrate of water uptake from roots
2	from lower soil store.(mm/day),
LDF	Lower soil drainage factor.
LS	Lower soil storage.(mm).
1	Dimension of vector R.
Ňĸ	Particular value of parameter.
^m k	Probability of M _k .
N	N

m P(Q) p(Q T P	Parameter value. Peak flow prob. of exceedence. T.). Conditional probability of
p(v,'i, ^k j	,I _k) Conditional probability of Q being exceeded given that T _i ,r _j and I _k
	occur.
p(T _i) p(V _i)	Probability of T, occuring.
p(V ₁)	Probability of T _i occuring. Probability of V _i occuring.
$p(I_j)$ $p(I_k)$ Q	Probability of I occuring. Instantaneous rate of runoff in m ³ /s. 3
Q n	Instantaneous rate of runoff in m ^o /s.
QW	Volume of water discharged in time t.(cm ³).
Qo	Vector representing probability distribution of
a 0	output. Probability of Oo
qoj Qoj	Probability of Qo Particular value of output.
qo ^j	Output variable.
Q(fy)	Peak runoff for return period fy years.(m ³ /s).
R	Vector representing probability distribution
	of input.
r r	probability of R _i .
r'	input variable.
Ri	Particular value of input.
Ri S S O	Main channel slope in %. Sorptivity (cm/min ^{1/2}).
5 50	Sorptivity (cm/min). Sorptivity at zero moisture level.
SMD	Soil moisture deficiency.
t	Time (min).
T	Time of concentration.
Ta	Rainfall intensity averaging time.
(1+U)	Urbanisation factor - equals fraction
	urbanised.
US	Initial moisture content in upper soil
1112	store (mm). Maxrate of water uptake from roots
UH	from upper soil store.
USC	Upper soil store capacity.(mm).3
Ŷt	Total volume of soil sample.(mm ³).
V	Basin storage constant for an assumed
	linear reservoir.
Ww	Weight of water in soil sample (g),
Ws	Weight of dry soil in soil sample (g).
Wt	Total weight of soil sample (g). Moisture content by volume. (%).
W(Vol) W(Wt)	Moisture content by weight. (%).
X)	
Ŷ).	values related to time in infiltration equ.
• / •	

xiii