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ABSTRACT:  While the majority of the photochemical states and pathways related to the 
biological capture of solar energy are now well understood and provide paradigms for 
artificial device design, additional low-energy states have been discovered in many systems 
with obscure origins and significance.  However, as low-energy states are naively expected to 
be critical to function, these observations pose important challenges. A review of known 
properties of low energy states covering eight photochemical systems, and options for their 
interpretation, are presented. A concerted experimental and theoretical research strategy is 
suggested and outlined, this being aimed at providing a fully comprehensive understanding. 
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GRAPHICAL ABSTRACT:  
 

 
 
HIGHLIGHTS  
• Unexpected low-energy states have been uncovered in many photosynthetic systems. 
• In many cases, their nature and significance largely remain unknown. 
• Their presence can challenge established ideas concerning photosynthetic function. 
• Concerted new experimental and computational strategies are required. 
• Similar states may be critical in artificial solar-energy capture devices. 
 
KEYWORDS:  photosynthesis, excited states, exciton coupling, charge transfer, non-
photochemical quenching, primary charge separation 
 
ABBREVIATIONS: 
PPC:  pigment-protein complex 
PSIcc:   Photosystem I core complex 
PSIIcc:  Photosystem II core complex 
PSII-RC: Photosystem II reaction center 
LHC-I:  plant light-harvesting complex I 
LHC-II:  plant light-harvesting complex II 
LH1:  bacterial light-harvesting complex 1  
LH2:  bacterial light-harvesting complex 2 
FMO:  Fenna–Matthews–Olson 
C-PCC:  C-phycocyanin 
C-APC:  C-allophycocyanin 
OEC:  oxygen evolving complex  
CT:   charge transfer 
Chl:  chlorophyll 
HOMO: highest-occupied molecular orbital 
LUMO:  lowest-unoccupied molecular orbital 
CD:  circular dichroism 
MCD:  magnetic circular dichroism  
HB:   hole-burning 
2DES:  two-dimensional electronic spectroscopy 
∆FLN:  change in fluorescence line narrowing 
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1. Introduction 
 
Photosynthesis provides virtually all the energy sustaining 

the biosphere [1].  The understanding of the process by which 
sunlight is converted into stored chemical energy presents an 
important and ongoing challenge to fundamental scientific 
research.  The current worldwide effort to develop energy sources 
that do not add to the carbon dioxide burden of the atmosphere 
presents a clear focus to the purpose of this research. Many 
researchers are now striving to emulate in artificial devices the 
light harvesting, initial conversion of optical to electrical energy, 
and electrical to chemical energy conversion processes of natural 
photosynthesis [1, 2]. 

Much of the basic science concerning light harvesting and 
energy transport leading up to primary charge separation is now 
considered to be well understood, though controversy remains as 
to the importance of quantum coherence and other non-classical 
effects to the process [2-8].  However, a variety of parallel 
discoveries concerning different photosynthetic apparati have 
challenged key established principles.  These discoveries, 
considered in detail later in this review, concern observed low-
energy absorption and/or emission from the Photosystem I core 
complex (PSIcc), the Photosystem II core complex (PSIIcc), plant 
light-harvesting complexes I (LHC-I), plant light-harvesting 
complex II (LHC-II), bacterial light-harvesters I (LH1) and II 
(LH2), the Fenna–Matthews–Olson (FMO) protein, as well as in 
carotenoid systems and in phycobilisomes such as C-phycocyanin 
(C-PC) and C-allophycocyanin (C-APC).  

Low-energy states inherently act as sinks for energy, a 
property utilized, for example, in bacterial photosynthesis and in 
many artificial devices.  For the photosystems we consider, 
established operation principles [9, 10] do not embody the many 
low-energy states now known, and basic photosynthetic function 
is considered to proceed via states of higher energy. The presence 
of these low-energy states could therefore naively be expected to 
prevent or inhibit basic function by facilitating alternate pathways.  
However, in some cases, direct optical excitation of these 
unanticipated states has been shown to actually lead to functional 
operation of the photosynthetic unit, bypassing the established 
higher-energy mechanisms. 

Thus, either the principles currently held are incomplete in 
that an over-riding factor remains to be discovered, or else some 
established principles may prove to be fundamentally incorrect.  
This issue has been flagged [11] as being one of the two most 
important challenges facing the photosynthesis community today. 
The other area of interest and controversy relates to the CaMn4O5 
oxygen evolving complex (OEC) of PSIIcc [12].  The areas are 
somewhat related, in that the OEC also absorbs (albeit weakly) at 
low energies and such excitation(s) can lead to manganese 
photochemistry and/or photophysics [13].  

Photoprotection and non-photochemical quenching [14] are 
induced by light but are not the emphasis of this review. They are 
important, but are secondary processes involving changes of 
photosystems on longer timescales and larger distances [15-23].  
Emphasis instead is on possible direct functional roles such as that 
identified for peripheral light-harvesting complex Lhca4 
associated with PSI: its low-energy states have recently been 
attributed to mixtures of charge-transfer (CT) and excitonic states 
that harvest low-energy light and make it available for function 
through uphill energy transfer [24, 25]. 

We briefly review the properties of 8 photosynthetic systems, 
examining what is known and unknown about the low-energy 
absorptions in each system.  No doubt, many different 
explanations will emerge to describe these phenomena.  However, 
options and possibilities pertinent to one system may also be 
relevant to others. A comprehensive understanding of the 
properties of any system demands that alternative explanations are 
thoroughly examined.  This review is thus intended to provide a 
conceptual basis for subsequent research in this field. 

 

2. The issues faced in determining the natures of low-energy 
absorption 

 
In general, low-energy absorptions in photosynthesis may 

arise from one of four processes, as illustrated in Figs. 1 and 2: 
1) Individual chromophores having low-energy excited states 
due to interaction with the protein environment in their specific 
binding site (site energies) (Fig. 1b). 
2) Arrangements involving excitonically coupled assemblies of 
chromophores, giving rise to low-energy excited states (Fig. 1c or 
1d). 
3) Low-energy excited states arising from CT transitions in 
which an electron is transferred from one chromophore to another, 
i.e. optically driven charge separation (Fig. 1e) [26]. 
4) Excitation of species arising from a previous absorption. 
This could happen in a number of ways. Fig. 2a shows the 
excitation of an excited state, while Figs. 2b and 2c show the 
excitation of cations and anions, respectively.  For radical ions, 
low-energy tripdoublet bands are possible. 

Tripdoublets are unusual in that they involve the parallel 
excitation of two electrons (see Fig. 2) and are consequently 
nominally “forbidden”. They may however gain significant 
intensity through configuration-interaction with nearby “allowed” 
single electron excitation(s). Tripdoublets can have profound 
consequences on spectra of, for example, Chl cations and anions, 
leading to a relatively intense absorption at an energy where one 
would expect a triplet absorption [27].  However, tripdoublets can 
occur from the infrared at ~5000 nm (~2000 cm-1) through to the 
visible region.  They also can have profound spectral 
consequences in both absorption [28] and Stark spectroscopies  
[29, 30].   

 
Figure 1. Schematics of an assembly of 4 non-identical 
chromophores. Even if they are of the same type, site heterogeneity 
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dictates that they differ in HOMO and LUMO orbital energies.  
Section (a) displays the ground states. Sections (b) to (e) display 
various possibilities for low-energy excited-states, either localized 
on one chromophore, associated with exciton coupled dimers or 
bands, or arising through charge transfer.  While chromophores 
often have near-degenerate HOMO and LUMO levels, complicating 
the nature of the localized excitations, the depicted scenarios 
generally apply. 
 

 
Figure 2.  Possible low-energy hole excitations, electron excitations, 
and/or tripdoublet excitations of a photoactive species: being (a) an 
excited state, (b) a cation, or (c) an anion. Electrons directly 
affected by the transition are highlighted in red or blue; tripdoublet 
transitions are low-energy double excitations whilst the remainder 
are single excitations. 
 

Determining which process is dominant in any particular 
situation requires an assessment of: 
• Site energies of individual chromophores and excitonic 
couplings of chromophore pairs, requiring information about the 
spatial structure of pigment-protein complexes (PPCs). 
• Intermolecular and intramolecular geometries of excited 
states and their relationship to corresponding ground-state 
geometries.  
• High-resolution absorption and emission spectra of the 
photosystems and their understanding in terms of both Franck-
Condon allowed transitions associated with geometry changes and 
Herzberg-Teller allowed vibronic transitions associated with the 
geometry dependence of electronic wavefunctions [31]. 
• The shape of phonon spectral density [32, 33], which will 
affect the interpretation of experimental data. 
• Coupling of the electronic transitions with phonon modes of 
the medium, which could vary from pigment to pigment. 
• The protein energy landscape [34]. 
• Excitonic coupling modification of excited-state equilibrium 
positions of nuclei. 
• Energies of CT bands for chromophores in their protein 
environments. 
• Configuration interaction coupling between CT states of 
form A+B- with those of conjugate polarity, A-B+. 
• Configuration interaction coupling between CT states and 
neutral excitonic states and locally excited states. 
• Geometry and intermolecular interaction changes upon the 
formation of CT states. 
• Product analysis of the CT states excitation. 
• Classical kinetics of excitation flow through photosystems. 
• Quantum dynamics of exciton flow through photosystems. 
• Properties of (metastable) chemical intermediates formed on 
the ps-ns timescale subsequent to excitation (e.g. a charge-
separated state, an isomeric product, a photodegradation product, a 
triplet state).  
• Determination of which excited-state species survive long 
enough to be excited by another photon under natural light 
conditions. 
• Determination of triplet state energies of protein-bound 
chromophores. 
 
3.   What is known and the current challenges 
 
3.1 Photosystem-I core complex (PSIcc) 
       Although quite a large photosystem, this is perhaps one of the 
best understood. Detailed experimental data is available, including 

full assignments of absorption and time-resolved fluorescence 
spectra [35-47]; one proposed assignment of its absorption 
spectrum is shown in Fig. 3 where the Chl molecules in each 
monomer of its trimeric unit are coloured to indicate its absorption 
range.   High-resolution crystal structures are available for 
cyanobacterial PSIcc [48] and, more recently, also for plant PSIcc 
[49, 50]. 

Work has focused on the local excitation energies of the 
individual chromophores and on the exciton couplings between 
the local states [36, 38].  Unpublished simulations of the extensive 
emission spectral data have shown promising results but were 
based on dividing the system into “exciton domains”, allowing the 
nuclear dynamics to be approximated and the electronic motion 
solved.  While such approaches qualitatively capture the essence 
of the physical situation (and have been shown to work well for 
PSIIcc [51, 52]), there is no strict rule for the definition of exciton 
domains and, therefore, the results are not fully predictive.  A 
significant amount of effort has already been spent in determining 
the electronic structure and its dependence on the nuclear 
coordinates of photosystem I [36, 38, 53].  Thus the data needed 
for full quantum simulation of the nuclear and electronic dynamics 
to be performed is available and thus a priori spectral predictions, 
in principle, can be made.   

 
Fig. 3   A calculation of the lowest energy, highest energy, and 
energy range for absorption of exciton-coupled chlorophyll 
molecules in the PSI-cc trimer [36]. Reproduced from S. Yin, M.G. 
Dahlbom, P.J. Canfield, N.S. Hush, R. Kobayashi, J.R. Reimers, J. 
Phys. Chem. B, 111 (2007) 9923-9930, Copyright (2007) American 
Chemical Society. 

With the exception of some low-energy states in the reaction 
centre [54], CT states have not generally been considered in 
previous modelling, interpretations of electrochromic Stark 
measurements, or interpretations of magnetic-circular-dichroism 
(MCD) data.  These questions are worth pursuing as anything 
learned concerning the low-energy states in this system will 
doubtless be relevant to other photosynthetic systems.  As the 
situation in PSIcc may actually be such that CT states are mostly 
hidden in traditional spectra, focused experiments designed based 
on calculated anticipated properties appear to be required.  Note 
that there has been observed a low energy tail in PSIcc that is 
similar to a critical unexplained feature in PSII [13, 55], extending 
to 840 nm at both ambient and cryogenic  temperatures [56].  This 
could be an immediate focus of attention. 

In the case of PSIcc the interpretation of this surprisingly 
long-wavelength absorbance is perhaps more difficult than for 
PSIIcc due to its spectral overlap with chromophores of the 
antennae, which extend to ~730 nm.  PSIcc absorbance beyond 
800 nm was unambiguously assigned to the reaction center 
pigments by comparing the oxidation kinetics of the special pair 
(P700) in species with a different content of red antenna states. 
The very similar kinetics seen was thus interpreted as being due to 
direct excitation of a low-lying charge transfer (CT) state of the 
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reaction center.  Since the photochemical yield of P700+ arising 
from excitation of this low-energy state was found to be poor it 
was concluded that this CT state was not part of the usual electron 
transfer chain but, if needed, could be tuned in energy such that 
the photochemical yield would increase. So far, only a qualitative 
illustration of the involved free energy surfaces was provided; a 
microscopic explanation is still missing [55, 56]. 

The better-known PSIcc red antenna absorptions at 
wavelengths < 730 nm are characterised by a large change in the 
dipole moment and electronic polarizability between electronic 
ground and excited states, a large exciton-vibrational Huang Rhys 
factor and large pressure shifts. These are all characteristic of 
significant mixing between exciton and CT states. This analysis 
was established using Stark spectroscopy [57] and by combining 
hole-burning, Stark and high pressure spectroscopies [39]. 

 
3.2  Bacterial Light-Harvesting Complex 2  (LH2)    

 
This system is again particularly important, as a large 

amount of data is available [58-60].  Its basic structure is sketched 
in Fig. 4.   Modelling has assisted with detailed interpretation of 
this data, as well as with the identification of specific site energies 
and excitonic coupling strengths [61, 62].  Much is known about 
shape, environment, and the mechanisms of its photophysical 
processes [63-67].  However, some issues remain to be solved that 
are significant in the broader context of forming a unified 
description of the low-energy states of all biological 
photosynthetic units. In particular, the availability of high-
resolution spectroscopic data, depicting how vibrational motions 
couple to the excitation and de-excitation processes, will prove 
useful in future studies.   

 
Fig. 4   The principle cofactors in the structure of LH2 from Rps. 

acidophila [68]. Reproduced from Z. Papiz, S.M. Prince, T. Howard, 
R.J. Cogdell, N. W. Isaacs, J. Molec. Bio., 326 (2003) 1523-1538, 

with permission of Elsevier. 

There is a significant yet unexplained feature found for the 
low-energy 850 nm band of the LH2 complex: this band has 
unexpectedly large electron-phonon coupling [69].  Analogous 
strong coupling is also present in LH1 complexes [70].  No simple 
explanation of this data currently exists.  It was first explained by 
exciton self-trapping, a well-known phenomenon in physics of 
molecular crystals, referring to the fact that due to strong 
interaction with lattice phonons, the B850/B875 molecular 
arrangements might deform, trapping the exciton on a limited 
spatial region of the ring [69-73]. Referring to strong Stark 
absorption effect observed in LH2 and LH1 complexes [74-76], it 
was also suggested that this process might be promoted by mixing 
the low-energy exciton states with CT states between the adjacent 
chromophores in the weakly interacting B850 and B875 rings.  A 
role for CT states in this process, which may also be called exciton 
polaron formation, has further been emphasised in a recent 2D 

study [77] on the wild type LH2 as well a mutant which exhibits a 
40 nm blue shifted low-energy absorbance band.  A red-shifted 
state which quenches the fluorescence has been identified in the 
mutant and has been assigned to a CT state.  There is indirect 
evidence for the presence of this CT state in the wild type at a 
similar energy as in the mutant. The molecular identity of this CT 
state is, however, still an open question. The authors suggest that 
it might be caused by the more weakly coupled B800 pigments, as 
the latter are much less affected by the mutation than the strongly 
coupled B850 pigments. In the context of LH2, possible CT states 
have been modelled theoretically [78-80]. More detailed and 
focused quantum dynamics modelling has yet to be done, and any 
predictions made needed to be tested, e.g., by MCD measurements. 
 
3.3 Plant Light-Harvesting Complex II (LHC-II)  

 
Many aspects of LHC-II, for which the major chromophores 

are shown in Fig. 5, remain controversial [81-83].  In laboratory 
experiments, biological samples including LHC-II are solubilised 
in detergent. The structure of LHC trimers have been shown to 
have been perturbed by the uses of surfactants [84].  It was 
demonstrated that the low-energy region around 685-710 nm 
changes its spectral features significantly when the detergent 
concentration is reduced.  This effect is not associated simply with 
aggregation.  Early observations established that spectral holes 
were not easily formed in this region [85].  Recently, however, 
spectral hole-burning has indeed been identified [86], suggesting 
that these states are associated neither with an underlying 
electronic state nor with very rapid intramolecular energy transfer. 
Such effects would be expected to lead to very broad and 
experimentally undetectable spectral holes, as is the case for the 
lowest energy (CT) state of PSII [87, 88].   

Stark spectra have also been measured and interpreted in 
terms of composite CT/exciton character [89]. The observed 
change in dipole moment upon electronic excitation was actually 
determined to be low and therefore not clearly supportive of this 
conclusion. The possible role of CT states in the non-
photochemical quenching process is of interest [90-92] and a 
recent detailed temperature-dependent fluorescence study [93] has 
brought the involvement of such states into focus. 

 
Fig. 5   The principle cofactors in the structure of LHC-II [94] from 

spinach, showing A-type (red) and B-type (blue) pigments. 
 
Calculations of site energies and excitonic couplings have 

been performed for LHC-II [95, 96] as well as for the homologous 
minor antenna complex CP29 [97]. These were based on the 
known crystal structures [94, 98, 99] and refined to fit 
experimental spectra [97, 100].  Overall, the calculations 
confirmed earlier assignments of red-shifted chlorophylls [101, 
102] and led to calculated energy transfer rates providing a 
structure-based interpretation of pump-probe spectra [96, 101, 
103-105].  Also, information from mutagenesis experiments and 
difference spectra [106-108] helped to evaluate the site energies 
[95, 97]. 

An interesting problem is the inclusion of intramolecular 
vibrational modes into exciton modelling calculations. One 
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possibility is to explicitly include a few of those modes into the 
exciton Hamiltonian as effective intramolecular vibrational modes, 
and to describe the coupling of these modes to the remaining 
vibrational degrees of freedom using perturbation  theory  [109-
111].  Because of the small Franck-Condon factors involved, the 
effective exciton coupling involving excited vibronic transitions is 
small and hence one may expect dynamic localization effects due 
to their coupling to protein vibrations.  Such dynamic localization 
effects, however, are neglected in the “effective mode” models 
described above.  An implicit treatment of these effects was 
suggested [103] by allowing exciton delocalization to occur only 
between 0-0 transitions. Full quantum dynamics simulations are 
required to judge the validity of such a treatment..  Transfer rate 
predictions are very dependent on the model and level of kinetic 
theory utilised. Results can differ by an order of magnitude [103].  
Excitation transfer rates from the Chl-b to Chl-a bands have been 
recently investigated using quantum dynamics for two different 
parameter sets of LHC-II, demonstrating the need for improved 
models to identify transient bottleneck states [112].  A 
sophisticated incorporation of CT bands is also required. 

One particularly interesting feature of this system is that 
under strong-light conditions the protein PsbS, the crystal 
structure of which has recently been determined, binds to LHC-II 
so as to regulate state energies [113].  A CT state is believed to be 
lowered in energy, so as to become an energy sink and thus 
facilitate internal conversion into the ground state. This results in 
excited state quenching. Understanding the details of how this 
occurs is an important step towards understanding the general 
properties of low-energy states in photosynthesis.  

 
Fig. 6 The PSIIcc dimer as viewed from above the membrane.  The 

protein components have been removed in lhs PSIIcc for clarity. 
Pigments thought associated with low-energy states are marked 

with arrows. Adapted from ref. [114]. 
 
3.4.  Photosystem-II core complex (PSIIcc) 

 
PSIIcc, for which principal components are shown in Fig. 6, 

is particularly important. It is only this enzyme which enables 
oxygen evolution [12] and is thus a major target for the 
development of an artificial biomimic water splitting catalyst.  A 
remarkable observation [87, 115] is that direct excitation of a 
broad band near 705 nm, extending to 730 nm at cryogenic 
temperatures, leads to primary charge separation despite the 
transition being at much lower energy than the lowest optical 
transition assigned to the reaction center (PSII-RC) believed to be 
the portal for solar energy conversion.  This low energy state does 
not hole-burn [87, 88], meaning it is associated with a large 
density of vibrational states either from the presence of a dark 
underlying state (say a CT state) or perhaps because there is 
extremely fast intramolecular vibrational relaxation in the 
absorbing state. 

Oxygen evolution from plant leaves has been seen [115] 
using CW laser excitation with wavelengths as long as 780 nm. 
This work was interpreted as arising from thermal activation of 
P680 via excitation of (unidentified) low energy antenna pigments. 
Long wavelength-induced charge separation was seen to occur 

[116] at room temperature following high-powered pulsed laser 
excitation extending as far as 800 nm. 

Broad, low temperature emission peaking at 780 nm has 
been seen to arise from direct, low-power CW excitation into the 
lowest-energy state in PSIIcc in both plants and cyanobacteria. 
This result appears to be initially at odds with the room 
temperature data, which points to absorption at wavelengths as 
long as 800 nm, as it would imply a significant negative Stokes 
shift [13]. Further work, preferably using low powered CW 
excitation, is called for. An unusual emission band near 760 nm 
has also been observed in PSII of lichens and desert algae but its 
origin is at present unknown [117-119].   

There is no consensus yet about the kinetics and detailed 
mechanism of primary charge separation in PSII-RC. It seems to 
be clear now that electron transfer can start at the chlorophyll 
ChlD1 [9, 120-122] as well as from the special pair PD1/PD2, as is 
seen in bacterial RCs.  Whereas from femtosecond VIS-pump/IR-
probe experiments, a time constant of 600-800 fs was extracted for 
reduction of the pheophytin PheoD1 by ChlD1, VIS-pump/VIS-
probe experiments revealed a 3 ps time constant for this process.  
Taking into account a 30 % equilibrium population of ChlD1 at T = 
300 K [51], these time constants correspond to intrinsic time 
constants of 200-250 fs and 1 ps, respectively. It may be that 
multiple charge separation channels are active simultaneously 
[120, 123, 124].   

An even faster intrinsic time constant of 100 fs was inferred 
from structure-based modelling of light-harvesting and trapping of 
excitation energy in PSIIcc [51].  These fast rates involved raise 
the question about the mechanism of primary charge separation.  
Most likely, the usual assumption of non-adiabatic electron 
transfer theory that vibrational relaxation is fast, is not valid and 
more advanced theories have to be applied [125]. 

There has also been a long-standing debate as to the rate of 
energy transfer from the antenna to the RC in PSIIcc [51, 126-128] 
and, thereby, about the kinetic bottleneck of the light-
harvesting/charge transfer reactions. Structure-based modelling 
[51, 127] suggests that the bottleneck is the transfer from the 
CP43 and CP47 subunits to the RC, taking about 50 ps.  There are, 
however, also different interpretations of kinetic data, that suggest 
that instead exciton equilibration in PSIIcc is ultrafast (1.5 ps) 
[121, 129] and that the dominant time constant of 40-60 ps 
observed in the fluorescence decay is due to reversible electron 
transfer reactions.  Indeed, time-resolved fluorescence data of 
PSIIcc could be modelled by both approaches [130].  
Experimentally, slow excitation transfer rates from CP43 and 
CP47 to the RC at low temperatures were first identified and 
measured [131, 132] using hole-burning techniques. Femtosecond 
techniques at room temperature were later applied [128] and direct 
evidence for the slow exciton transfer times was obtained recently 
from femtosecond VIS-pump/IR probe experiments on oriented 
single crystals of PSIIcc [133]. 

Another unexplained observation is that in liposomes the 
minor antenna is not required as a conduit for energy transfer from 
the major antenna to the core [134].  These systems exhibit a low-
energy F730 band that could be related to bands observed in 
systems containing minor antennae. Experimental verification that 
the signal does not arise simply from the sample preparation 
procedure is required. 

An analysis of the products arising the charge separation 
induced via excitation of low energy CT states is an alternative 
approach to addressing the nature of these states. In PSII 
membranes charge separation induced by 750 nm laser flashing at 
5 K revealed complete preference of the TyrZ

ox formation and 
discrimination of the Cytb559/ChlZ/Car donating pathway if 
compared to the 532 nm flash excitation [135].  These results have 
been interpreted to suggest that the CT band, excited by far red 
light could ultimately involve the production of a ChlD1-PD1 ion 
pair [135]. 

PSIIcc has been often studied computationally. These studies 
have been based on X-ray structures of varying precision and 
based on results from samples utilising varying workups.  A 
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structure-based computation of chlorophyll site energies has so far 
only been performed for the CP43 core antenna subunit [136, 137] 
in the framework of a combined quantum chemical/electrostatic 
approach [138]  using crystal structures of dimeric PSIIcc from 
Thermosynechococcus vulcanus [139, 140] and 
Thermosynechococcus elongatus [141] as well as for PSII-RC in a 
quantum chemical approach [142].  Work is in progress to extend 
these studies to CP47 and to also include information from the 
most recent refined crystal structure of T. elongatus [143].  
Meanwhile, simulations of optical spectra and excitation energy 
transfer in PSIIcc have to rely on fitted site energies [9, 10, 51, 52, 
144, 145].  In this context, circularly polarized luminescence (CPL) 
has emerged recently as a powerful tool to identify red-shifted 
chlorophyll states [146].  This assumes that isolated CP43 and 
CP47 sub-unit samples studied represent intact complexes, and not 
a mixture of intact/destabilized proteins.  Experimentally 
measured spectral densities for each PPC would also greatly assist 
modelling as they affect fitted site energies [32]. 

Moreover, some analyses ignore CT states and also the 
possibility of strong coupling to vibrations, although such effects 
have been studied also in other contexts [147, 148].  
Computational and experimental studies of mutagenesis of PSIIcc 
peripheral low-energy states have also been performed, focusing 
on their role in photo-protection [118, 119, 149].  What is required 
is a uniform high-level approach considering all system properties.  
In addition, often only isolated protein complexes are studied, 
species possibly far from their native environment inside 
membrane or cells. 

The purity and/or ‘intactness’ of isolated complexes may be 
one reason that optical spectra of CP43, CP47 and PSIIcc reported 
in the literature have varied [150, 151].  This naturally leads to 
questions regarding the relevance of pigment site-energies etc. 
subsequently deduced via the modelling of data.   

The CP47 peripheral antenna protein is indeed more difficult 
to separate from the parent PSIIcc than the CP43 antenna [152]. 
This fact most likely contributes to optical spectra of CP47 in 
particular having varied so significantly over the years. This in 
turn has led to disagreement as to which spectra represent CP47 
complexes which more closely mimic CP47 as present in the 
parent PSIIcc [146, 150].  There has been little agreement 
regarding the important question as to which Chl’s contribute (see 
Fig. 6) to the lowest energy exciton state(s) in CP47 [51, 52, 150].  
Recent CPL data [114] address this question. 

The differences between various CP47 samples, may be 
partly attributable to the presence or absence of the minor psbH 
protein. This protein subunit can indeed be lost during the 
isolation procedure. The parent PSIIcc is more likely to retain the 
psbH protein, but even in this case, one cannot assume  that the 
psbH protein interacts with the (isolated) CP47 Chls in the same 
way as it does in PSIIcc’s.  The sharing of samples and protocols 
between labs and workers may be a way to resolve problems 
associated the inherent variability, vulnerability and complexity of 
photosynthetic samples. 

 
3.5  Bacterial Light-Harvesting Complex 1 (LH1) 

 
While this system, whose structure and key function is 

highlighted in Fig. 7, is thought to be generally well understood, 
several purple bacteria display low-energy absorption at 909 nm 
[153, 154], 915 nm [155], and 963 nm [156] at room temperature. 
Stark spectra revealed a significant CT character of these states 
[157].  Among these, the LH1 Qy (915 nm) from 
Thermochromatium tepidum has been demonstrated to be 
regulated by Ca2+ ions [158], and the first interpretations are just 
appearing [157].  Interestingly, these excitations lead to primary 
charge separation yet appear to demand unprecedented uphill 
energy transfer (the observed fluorescence lifetime is 5 ns at 4 K).  
It is possible that there is an alternate, as yet unknown mechanism 
that leads to charge separation.  Sumi [159] suggested that charge 
separation in the RC can occur directly from the low energy LH1 
states in a superexchange-type mechanism, where the low energy 

special pair excited state acts as a bridge. This issue is important 
as a similar situation may exist in other systems and hence LH1 
may prove to be a significant stepping-stone.  A crystal structure 
for LH1 has been determined at 3.0 Å [160] and a much higher-
resolution structure is now being developed.  This will allow a 
complete spectroscopic analysis.  Detailed exciton dynamics, 
determined as a function of concentration are known [161].  The 
role of strong exciton-phonon coupling like in LH2 is clearly 
critical [70, 162], as is the coupling of the LH1 states with the RC 
states [6, 163] that need further experimental characterization and 
computational modelling.  An interesting model system for the 
study of exciton-vibrational motion is the B820 subunit of LH1, 
which contains just two alpha helices that each bind on 
bacteriochlorophyll a pigment. This system has been very useful 
in the development of lineshape theory [33] and in the extraction 
of an exciton-vibrational Hamiltonian from 2DES [164]. 

 
Fig. 7   The principle components and function of LH1, including the 

special-pair from its reaction centre from Tch. tepidum  [160]. 
 
We note that the circular dichroism (CD) spectrum of LH1 

from Thermochromatium tepidum is unusual [157, 165]. This has 
been interpreted as involving (unidentified) low-energy states [166, 
167].  Qy is non-conservative, displaying a single dominant 
negative CD band. The shape of the CD spectrum of this antenna 
is different to the CD spectra from several other LH1/LH2 
antennae [168, 169] as these show almost conservative Qy CD 
bands. A significant experimental program is required to 
investigate this further. We note that using the appropriate sample 
technologies, it is possible to measure very reliable, well-resolved 
CD spectra at low temperatures, avoiding artefacts associated with 
the birefringence of frozen samples [170].  Theoretical 
calculations of CT states, and their implications for CD 
spectroscopy, are challenging questions for future work.  
Carotenoid states could be involved as well as bacteriochlorophyll 
states and these should also be considered. A recent paper [171] 
has investigated remarkable uphill energy transfer from LH1 to 
the RC in Thermochromatium tepidum and Rhodobacter 
sphaeroides. 

 
3.6 Carotenoids and phycobilisomes 

 
Besides chlorophyllides, a number of other chromophores 

are important in photosynthesis and provide an alternative means 
of addressing the same fundamental issues concerning the nature 
of low-energy excited states.  Considering such systems is also 
important as it enhances the bridge to artificial photosynthetic 
devices.  The ultrafast spectroscopy of carotenoids, like the 
examples shown in Fig. 8 has been recently reviewed [172].  In 
particular, detailed fs dynamics has been measured for energy 
transfer between intramolecular CT states in carotenoids, as well 
as the rates of excitation transfer from these species to Chl-a Qx 
and Qy bands [173-182].   
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Fig. 8   Examples of carotenoids. 

 
Also of interest is data from unusual organisms such as 

brown algae and diatoms.  A significant advantage in studying 
processes in carotenoids is that their chemistry can be readily 
modified and the effects of such changes on spectra measured [7, 
183-189], providing a range of detailed data to compare with 
theoretical predictions.  By contrast to macrocyclic ring systems 
such as chlorophylls where conformational changes have at most 
only a minor effect, the chromophores often used in artificial 
devices have additional (classical) nuclear degrees of freedom that 
can control spectroscopy and kinetics.  The carotenoids display 
such a property, exhibiting excited-state isomerization [190-193],  
This type of process has been extensively studied computationally 
and much is known about how to do the calculations to get 
accurate answers and experimental interpretations [194, 195]. 

In addition to excited state isomerization [190-193], 
carotenoid ground state isomers have recently gained renewed 
attention [196-198].  The relationship between low-lying exited 
states and ground state isomers is straight forward: S*, an excited 
state species found in longer chain carotenoids, was suggested to 
serve as a precursor for triplet states for carotenoids in light 
harvesting systems [199], even though this relation was 
challenged recently [200].  Within the so-called inhomogeneous 
ground state model, first discussed by van Grondelle and co-
workers [201], S* is interpreted as the lowest lying excited state of 
a local minimum in the ground state surface, S0*.  The main 
excited state absorptive feature is associated with S1, the lowest 
lying excited state of the ground state’s global minimum geometry, 
S0. 

The inhomogeneous ground state model readily explains 
temperature dependent measurements, in which the relative ratio 
S1/S* increases at lower temperatures, i.e. S0* is frozen out and S0 
gain population, following Boltzmann’s statistics [202, 203].  
Besides these indications, it is a challenging experimental and 
theoretical task for the future to prove or disprove the 
inhomogeneous ground state model, given the practically identical 
absorption spectra of conformers S0 and S0*. 

Conformational change is important for the simplest light-
harvesting systems, the phycobilisomes, making these significant 
targets for research on low-energy excited states.  Fig. 9 shows a 
crystal structure that has been recently determined [204], inspired 
by reports that many aspects of plant photomorphogenesis are 
controlled by the phytochrome family of bilin-containing 
photoreceptors that detect red and far-red light by 
photointerconversion between a dark-adapted state and a 
photoactivated state via a photo-induced isomerization (“D-ring” 
rotation) [204].  Low-energy states are associated with these 
chemical processes, and their nature and influence needs to be 
determined. 

 
Fig. 9   The principle components in the structure of the 

phytochrome-B photosensory module from Arabidopsis thaliana 
[204]. Reproduced from E.S. Burgie, A.N. Bussell, J.M. Walker, K. 

Dubiel, R.D. Vierstra, Proc. Natl. Acad. Sci. U. S. A., 111 (2014) 
10179-10184, with permission of the National Academy of Sciences. 
 
 
3.7 The Fenna–Matthews–Olson (FMO) protein 
 

The FMO protein is a small trimeric PPC that mediates 
excitation energy transfer between the outer antenna system 
(chlorosome) and the RC complex in green sulfur bacteria. It has a 
relatively simple structure (Fig. 10) in that it only binds up to eight 
bacteriochlorophyll (BChl) a chromophores per monomer [205, 
206] and, therefore, is a suitable model system for experimental 
and theoretical research on PPCs.  Accordingly, it is one of the 
best studied PPCs [2, 3, 7, 8, 32, 86, 207-229]. 

Despite its apparent simplicity, it took a long time to arrive at a 
suitable set of site energies and excitonic couplings to describe the 
optical spectra of the FMO protein. A critical aspect was to find 
reasonable values for the excitonic couplings by taking into 
account dielectric screening of pigment-pigment interactions by 
the protein [207, 208, 230, 231].  Louwe et al. [207] treated, in 
addition to the site energies, the effective dipole strength, used to 
calculate excitonic couplings, as a fit parameter and arrived at a 
value of 29 D2, a value that is significantly smaller than earlier 
estimates of 50-70 D2 [207] (for details, see the references given 
in [207]). 

The lower dipole strength allowed them to find optimal site 
energies that resulted in a much-improved fit of optical spectra 
(linear and CD, triplet-minus-singlet difference spectra, and linear 
dichroism). A microscopic explanation for the small dipole 
strength was given by Adolphs and Renger [208] who developed a 
method, which is termed now Poisson-TrEsp, for the quantitative 
calculation of excitonic couplings. Whereas Louwe et al. [207] 
just dressed the exciton stick spectra with a Gaussian lineshape, 
Adolphs and Renger used a non-Markovian lineshape theory for 
the homogeneous spectrum and took into account static disorder in 
site energies by a Monte Carlo method.  Despite the different 
lineshape theories used, both fit approaches resulted in similar site 
energies, resulting in prediction of the orientation of the FMO 
protein relative to the photosynthetic membrane containing the RC 
complex [208].  This prediction was verified three years later by 
Blankenship and coworkers using chemical labeling and mass 
spectrometry [209].  
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Fig. 10   The relative positions of BChl a 1-8 in the FMO complex 

[205] from Chlorobaculum tepidum (3ENI). 
 

Nevertheless, not all details are known authoritatively, and a 
remaining challenge is the determination of accurate 
reorganization energies λ of the optical transitions of individual 
pigments.  So far, because of simplicity and lack of detailed 
information, it has been assumed that all pigments exhibit the 
same local reorganization energy.  From a fit of the temperature 
dependence of linear absorption [230, 231], Adolphs and Renger 
[208] estimated an average Huang Rhys factor of 0.5 for the local 
pigment excitations, which for their spectral density results in a 
reorganization energy of about 40 cm-1.  Reorganization energies 
in this range have been used in many theoretical treatments [210-
213].  Recent experimental [214, 232] and modeling data [32, 215, 
216] of the change in fluorescence line narrowing (∆FLN), Stokes 
shift, and low energy bleach in the nonresonant hole burned 
spectra provided evidence that the reorganization energies of the 
low energy pigments (most likely BChl a 3 and 4; vide supra) are 
significantly smaller (about 15 cm-1) than the average. This result 
indicates that not only the local transition energies (site energies) 
but also the local exciton-vibrational coupling is site dependent. It 
is a challenging task to unravel the differences and how they 
influence exciton relaxation.  As a result, published site energies 
[207, 208, 230, 231] may also need further refinement [233].  
Similar results are likely to apply also to other photosystems as 
well, indicating quite complex scenarios in which the treatment of 
subtle effects such as dielectric screening and detailed lineshape 
analysis can significantly affect outcomes. 

The FMO protein of Prosthecochloris aestuarii has also 
served as a test-bed for the development of combined quantum 
chemical/electrostatic methods for the structure-based 
computation of site energies [217-219].  It was shown that besides 
amino acid side chains, the backbone architecture of a PPC can 
have a crucial influence on site energies due to the dipoles of the 
peptide bonds. In the FMO protein of P. aestuarii, two α-helices 
were found to determine the lowest energy state at BChl a 3 [217].  
There seems to be a consensus now in the literature that indeed 
BChl a 3 has the lowest site energy (around 820 nm, see Table 2 
in [8]). 

However, controversy remains concerning the site energy of 
the more recently discovered BChl a 8, which is located at the side 
opposite to BChl a 3 [205]. Calculations based on the P. aestuarii 
structure found this pigment to have the highest site energy 
(around 790 nm) [219]. The origin of the blue shift is a 
conglomerate of negatively charged amino acid side chains. These 
results suggest that the direction of excitation energy flow in the 
FMO protein is defined by an energy funnel conforming to a well-
established paradigm. The assignment of a site energy of 790 nm 
to the eighth pigment was challenged by an analysis that combines 
chemical oxidation with the effects of different isolation 

procedures, suggesting that the site energy is around 805 nm [220, 
233]. 

 However, these studies were performed on the FMO protein 
of Chlorobaculum tepidum, which is known to have a different 
absorption spectrum [205]. The chemical environment of the 
eighth pigment has been suggested to be responsible for the 
spectral changes [205].  Structure-based computations have not 
yet addressed the differences between species. This remains a 
challenging task for the near future. Placing the site energy of 
BChl a 8 lower, as suggested for C. tepidum, has interesting 
implications for energy transfer. On one hand the lower site 
energy brings this pigment closer to resonance with the baseplate 
fluorescence Hence energy transfer from the baseplate to the FMO 
protein should be enhanced. On the other hand, local barriers in 
the FMO excitation energy landscape between BChl a 8 and BChl 
a 3 could slow down exciton relaxation in FMO.  A resolution of 
this issue is therefore important to the understanding of function 
of the low energy states in the FMO protein. 

Finally, we note that the FMO protein has also been used to test 
structure-based computational methods of calculating exciton-
vibrational coupling [105, 109, 221, 222] and corresponding 
structural and spectral simulations [223-225].  

The FMO protein was the first system studied by Fleming and 
coworkers in their pioneering work in 2D optical spectroscopy 
[210, 227].  This work greatly invigorated the field and attracted 
many scientists from other fields bringing to contribute their 
techniques and understandings. An example are non-perturbative 
methods for the treatment of the exciton-vibrational motion [7].   
A detailed picture of excited state structure and energy transfer of 
PPCs can be provided by 2D spectroscopy.  However, it is not 
always easy to extract the important information from the 
experimental data.  An important feature to be investigated further 
is the potential of 2D spectroscopy in characterizing the exciton-
vibrational Hamiltonian of PPCs.  The first attempts have been 
reported for the FMO protein [210, 226, 227], with recent 
applications also to PSII-RC [110, 234] and LH2 [235]. 

From calculations of 2D spectra and comparison with 
experiments it has been suggested that the second strongest 
excitonic coupling in FMO (that between the 5th and 6th BChl a) 
should be reduced by 60 % compared to the value obtained in 
point-dipole approximation.  This prediction could not be verified 
by Poisson-TrEsp calculations, which go beyond the point-dipole 
approximation and include screening effects and local field 
corrections [208].  Hayes and Engel [226] used calculations of 2D 
spectra of the FMO protein of C. tepidum to refine the site 
energies.  A critical point in the Hayes and Engel approach is the 
assumption of an exponential screening law for the excitonic 
couplings that is not supported by Poisson-TrEsp calculations 
[208, 228].  It is at present not clear how much the inaccuracy of 
excitonic couplings and/or the shape of the spectral density [32] 
used in calculations influence the site energies inferred from 2D 
spectra.  

The trimeric nature of FMO implies the presence of three 
equivalent emitters. It has been argued that the 825 nm absorption 
band of the FMO trimer cannot be attributed to a single electronic 
transition [86, 229]. More calculations on the full FMO trimer are 
needed, taking into account uncorrelated exciton energy transfer. 
Importantly the resultant calculations need to be able to describe 
the full set of frequency and time-domain data. It is also important 
that different sets of measurements are taken with the same 
samples, so as to avoid the difficulties associated with sample 
variability. 

 
4. Conclusions 
 
We have presented a brief summary of recent advances made 

in the understanding of low-energy states in photosynthesis, 
stressing that these advances often pose more questions than 
resolve issues.  A concerted research effort is required to 
understand the properties of these states, both from the basic 
scientific perspective of the need to understand how natural 
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photosynthesis works, plus the commercial objectives of 
designing and understanding artificial photosynthetic, 
photovoltaic devices, and organic light-emitting diodes.  Many 
new experimental methods are now available for this including 
modern Stark spectroscopies [10, 42, 74-76, 157, 236, 237], MCD  
[12, 13, 27], ∆FLN [238], hole burning (HB) [239], single-
molecule spectroscopies [239, 240], two-dimensional time-
resolved spectroscopies (2DES) [2-4], a new temperature 
dependent circularly polarized luminescence technique that has 
only been applied to CP43, CP47 and PSII [114, 146] and may be 
particularly applicable to FMO and other systems. 

In addition, recent conceptual advances are available, such as 
the authoritative assignment of the visible absorption spectrum of 
chlorophyll-a, a subject of debate for 50 years, and indeed 
assignments for all the chlorophyllides [31].  Basic understanding 
has also been obtained of the nature of the lines seen in high-
resolution chlorophyllide absorption and emission spectra [241].  
Computational methods are available for improving X-ray 
structure coordinates [53, 242-245], simulating molecular and CT 
spectra in condensed phases [246-251] and taking into account the 
effects of exciton coupling [36, 138, 217, 218, 221].  Methods 
have also become available for using this data in both classical 
and quantum simulations of optical spectra, exciton dynamics and 
system function [7, 51, 52, 103, 188, 189, 252-257]. A more 
comprehensive relationship between HB/FLN single-molecule and 
2DES methodologies should further the application of high-
resolution frequency-domain spectroscopies in photosynthesis 
research [73, 238, 239, 258, 259]. 

In summary, what is needed is the application of a consistent 
set of both experimental and computational methods to all types of 
low-energy states in photosynthesis. This involves the 
communication of data and computational techniques as well as 
experimentalists having access to the same samples and 
experimental protocols. We feel that only this way will the general 
properties of all types of states be elucidated and their 
consequences identified. 
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We would like to dedicate this review to Fabrice Rappaport. 
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