
"© ACM 2017 This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
Australasian Computing Education Conference 31/Jan/2017-03/Feb/2017, {(24 Jan 2017)]
http://infotech.scu.edu.au/~ACE2017/index.html "

Performance and Consistency in Learning to Program

Alireza Ahadi and Raymond Lister
University of Technology, Sydney

Australia
alireza.ahadi@uts.edu.au

raymond.lister@uts.edu.au

Juho Leinonen and Arto Hellas
Department of Computer Science

University of Helsinki
Finland

juho.leinonen@helsinki.fi
arto.hellas@cs.helsinki.fi

ABSTRACT
Performance and consistency play a large role in learning.
Decreasing the effort that one invests into course work may
have short-term benefits such as reduced stress. However,
as courses progress, neglected work accumulates and may
cause challenges with learning the course content at hand.

In this work, we analyze students’ performance and con-
sistency with programming assignments in an introductory
programming course. We study how performance, when
measured through progress in course assignments, evolves
throughout the course, study weekly fluctuations in stu-
dents’ work consistency, and contrast this with students’
performance in the course final exam.

Our results indicate that whilst fluctuations in students’
weekly performance do not distinguish poor performing stu-
dents from well performing students with a high accuracy,
more accurate results can be achieved when focusing on the
performance of students on individual assignments which
could be used for identifying struggling students who are at
risk of dropping out of their studies.

Keywords
source code snapshot analysis; educational data mining; novice
programmers; programming performance and consistency

1. INTRODUCTION
Researchers have sought to determine whether factors such

as gender, age, high-school performance, ability to reason,
and the performance in various aptitude tests correlate with
the ability to create computer programs [6]. As many of
these factors are static and only rarely account for what the
students do while programming, studies that analyze the
learning process have started to emerge [11].

In these studies, researchers study features extracted from
programming process recordings at various granularity [1,5,
12, 24]. Process data has been collected also in other con-
texts, e.g. during in-class peer instruction [15]. With such
research, in the future, data analytics and support tools can
be regularly applied to provide instructors with greater in-
sight into what is actually occurring in the classroom, open-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ing up new opportunities for identifying individual student
needs, providing targeted activities to students at the ends
of the learner spectrum, and personalizing the learning pro-
cess [11].

In our work, we are interested in how students’ perfor-
mance evolves during the course and how their performance
and consistency contribute to the course outcomes. More
specifically, we study how students’ performance, measured
through correctness of snapshots taken from students’ pro-
gramming process during an introductory programming course,
evolves over time and analyze whether students consistently
perform on the same level. The analysis is based on observ-
ing students’ average performance, and seeks to determine
whether the weekly performance fluctuates due to some un-
observed variables. Furthermore, we also study students’
performance using non-parametric and parametric cluster-
ing approaches with the goal of detecting those students who
could benefit from a teaching intervention.

This article is organized as follows. In the next Section,
we discuss related work. In Section 3, we describe the re-
search questions and data, and in Section 4, we outline the
methodology and results. The results are further discussed
in Section 5 and drawn together in Section 6.

2. RELATED WORK
2.1 Predictors for Success

Traditional predictors for students’ success include past
academic performance [2], previous exposure to program-
ming [7], and demographic factors such as age and gen-
der [25]. In addition, variables such as students’ expecta-
tions for course and for their grade correlates with the final
course outcomes [16]. However, as pointed out by Watson
et al. [23], many of the traditional predictors such as de-
mographic factors are sensitive to the teaching context, and
generalize relatively poorly.

There are studies that indicate that there is no signifi-
cant correlation between gender and programming course
outcomes [3, 21, 25], as well as studies that indicate that
the gender may explain some of the introductory program-
ming course outcomes [2]. Similarly, when considering past
mathematics performance, some studies indicate no signifi-
cant correlation between programming course outcomes and
mathematics outcomes [23,25], while others have found ref-
erential correlations [19].

Even the connection between introductory programming
course outcomes and past exposure to programming is con-
troversial. Whilst a number of studies have reported that
past programming experience helps when learning to pro-
gram [4,7,26], contradictory results also exist. For example,

Bergin and Reilly found that students with no previous pro-
gramming experience had a marginally higher mean overall
score in introductory programming [2]. Watson et al. [23]
also found that while students with past programming ex-
perience had significantly higher overall course points than
those with no previous programming experience, program-
ming experience in years had a weak but statistically in-
significant negative correlation with course points.

A more recent approach to identifying students who may
or may not succeed is related to the use of data that is
recorded from the environment in which the students are
learning to program. We focus on such studies next.

2.2 Work Patterns and Effort
In-class behavior has been explored by Porter et al. [15]

who observed that the proportion of correct clicker answers
early in a course was strongly correlated with final course
outcomes. Similarly, interaction with web-based program-
ming environments has been studied [18]; Spacco et al. no-
ticed statistically significant but weak relationships between
the final exam score and students’ effort.

Sequential captures of programming states have been used
to analyze students’ working patterns [11]. Jadud found a
high correlation with the course exam score and the stu-
dents’ ability to create and fix errors [12], and observed that
the less errors a student makes, and the better she solves
them, the higher her grade tends to be [12].

The approach proposed by Jadud has been extended by
Watson et al. [24] to include the amount of time that stu-
dents spend on programming assignments [24]. More re-
cently, a similar approach that analyzes subsequent source
code snapshots was also proposed by Carter et al. [5], who
analyzed the errors that students encounter in more detail.

Programming states have been used to elicit finer infor-
mation from the programming process. For example, Vi-
havainen et al. [22] analyzed the approaches that novices
take when building their very first computer programs. They
observed four distinctive patterns, which were related to
typing the program in a linear fashion, copy-pasting code
from elsewhere, using auto-complete features from the pro-
gramming environment, and using programming environ-
ment shortcuts. Similar work was conducted by Heinonen et
al. [8], who analyzed problem solving patterns of two pop-
ulations in an introductory programming course; those who
failed and those who passed. In the study, Heinonen et al.
noticed that a number of the students who failed had a pro-
gramming by incident -approach, where they sought a solu-
tion through a seemingly random process – a behavior that
has also observed in the past (see e.g. [17]).

One stream of research merges snapshots into states, and
analyzes students’ progress through those states. Piech et
al. [14] clustered students’ approaches to solving a few pro-
gramming tasks, and found that the solution patterns are
indicative of course midterm scores. Similarly, Hosseini et
al. [9] analyzed how students’ progress towards correct solu-
tions in a course, and noticed that some students were more
inclined to build their code step by step from scratch, while
others started from larger quantities of code, and progressed
towards a solution through reducing and altering the code.

Students have also been grouped based on features de-
scribing how they work on programming assignments (lines
changed, added, removed, and so on), followed by an evalu-
ation of how these features change over a number of assign-
ments [27]. Overall, students in different groups may differ

in the way how they benefit from help [27].
Our research is closely related to the work by Worsley et

al. [27] and Hosseini et al. [9]. However, whilst both have
focused more on change sizes and other similar metrics, our
focus is on changes in correctness of code. We also evaluate
new methodologies and visualizations for the task at hand,
and study the students’ performance across a course instead
of over a smaller set of assignments.

3. RESEARCH DESIGN
3.1 Research Questions

Our research questions are as follows:

• RQ1: How does students’ performance evolve dur-
ing a programming course?

• RQ2: How does the performance change across
course weeks? That is, how consistently do stu-
dents’ perform during the course.

• RQ3: To what extent can students’ consistency be
used to predict students’ course outcomes?

With research question one, we aim to both validate pre-
vious results by Spacco et al. [18] in a new context, and to
extend the work by analyzing students’ performance changes
from week to week. These changes are discussed in the light
of the content taught in the course. With research question
number two, we seek to determine whether working consis-
tency – i.e. does student perform similarly over the course
– affects course outcomes, and with the third research ques-
tion, we revisit multiple works where authors have sought to
determine those at risk of failing the introductory program-
ming course.

3.2 Context and Data
The data for the study comes from a six-week Java in-

troductory programming course organized at university of
Helsinki during Spring 2014. One of the authors of this ar-
ticle is responsible for organizing the course under study. In
the course, half of the grade comes from completing pro-
gramming assignments, and the rest of the grade comes
from a written exam, where students are expected to answer
both essay questions as well as programming questions. The
course has a set limit for the pass rate: at least half of the
overall points as well as half of the exam points need to be
attained to pass, and the highest grade is attained with over
90% of course points.

The course was based on a blended online textbook, had
a single two-hour lecture, and tens of hours of weekly sup-
port in open labs. The course provides students a view to
both procedural and object-oriented programming. Course
assignments start easy and small, helping students to first fo-
cus on individual constructs before they are combined with
others. After the students have become familiar with the
basic tools and commands, variables and conditional state-
ments are introduced, followed by looping. Students start
constructing their own methods during the second week in
the course, and start working with lists during the week
three. Principles of object-oriented programming are intro-
duced during the latter parts of the third week of the course,
and students start building their own objects during the
fourth week. Overall, during the course, the students slowly
proceed towards more complex assignments and topics.

For the purposes of this study, students were asked to
install a software component that records source code snap-

shots with metadata on assignment-specific correctness. Over-
all, 89 students agreed to provide their data for the purposes
of our study.
3.3 Measuring Performance and Consistency

Throughout this work, students’ performance and consis-
tency is measured through their progress and work on the
course assignments. For each assignment in the course, there
are automatic unit tests, which are used to both support the
students as they work on the assignment, and to provide in-
formation on the degree of correctness on the assignment.
As the students work on the assignments, data is gathered
for analysis. Finally, at the end of the course, the students
take an exam. In this work, when seeking to predict course
outcomes, we focus on predicting the outcomes of the exam.

Students’ average performance in an assignment means
the average correctness of snapshots that have been recorded
when the students have either saved, run, tested, or submit-
ted the code that they are working on. The average is cal-
culated for each assignment for all students who worked on
the assignment. Average performance provides a measure
of the degree to which students’ struggled on an assignment
and indicates overall performance throughout the course.

Students’ consistency is measured through whether they
perform on the same level throughout the course. More
specifically, for each week, we place students’ into weekly
performance quantiles and measure whether they perform
on the same level (i.e. stay in the same quantile), or whether
their performance level fluctuates (i.e. changes over the
weeks). The consistency is used both as a way to measure
the weekly struggle as well as the effort that the student in-
vests into the assignment at a specific state; if a student is
always in the upper quantile, most of the effort is invested
in complete or nearly complete assignments.

4. METHODOLOGY AND RESULTS
4.1 Students’ Performance over the Course

First, we performed statistical analysis on the assignment
correctness data gathered from the students’ programming
process. Average performance (Figure 1) was in focus to
analyze how students’ performance evolves during the pro-
gramming course.

A first order (i.e. linear) regression analysis of students’
performance throughout the course shows that average per-
formance declines throughout the course. Second order re-
gression shows that the average performance of students in-
creases until the middle of the course, and then declines
towards the end.

Overall, students performance decreases throughout the
course. This observation is partially explainable by the
incremental nature of programming. Students proceed to-
wards more complex assignments and topics and new con-
tent is added continuously. At the same time, the results
show that the peak average performance is reached at the
middle of the course when students start to work on object-
oriented programming.

4.2 Students’ Performance over Course Weeks
After analyzing the overall trend, we study whether stu-

dents perform consistently throughout the course, or whether
their performance varies. This analysis was performed using
weekly average performance quantiles.

In Figure 2, students are placed into four categories based
on their average performance throughout each week. If the
average performance of a student during the whole week was

Figure 1: First order and second order regression
plot of the mean of performance per exercise.

over 75%, she was in the high-performing quantile (green in
Fig. 2), whilst if the student’s average performance was less
than or equal to 25%, she was in the low-performing quantile
(red in Fig. 2). As the semester progresses, there is a no-
ticeable decline in the number of students who belong to the
high-performing quantile. At the end of the course, nearly
50% of the students are in the lowest performing quantile,
and only a very small number of students remained in the
high-performing quantile.

Figure 2: Frequency of students in different quan-
tiles per week in the course.

We then set out to analyze the extent to which a stu-
dent’s performance during one week indicates performance
during the next week. To visualize this, a state transition
diagram for the student’s performance transition from one
week to the next week was constructed. These transitions
are calculated using the previous weekly performance quan-
tiles, where a student’s average performance in all weekly
assignments could fall in one of the four quantiles.

When analyzing the transitions (Figure 3), the majority
of students show neither progression or retrogression. That
is, a large part of the students perform somewhat consis-
tently between any two weeks of the course. At the same
time, early in the course, majority of the students fell either
into the upper quantile or the lower quantile, whilst at the
end of the course, majority of the participants had a low
performance average.

Figure 3: State transition diagram of students’ per-
formance throughout the course.

4.3 Consistency and Course Outcomes
Using students’ consistency to predict course outcomes is

performed in two parts. We first use the consistency over
the weeks for the course outcome prediction, and then, in
the next subsection, we delve into assignment-specific per-
formance and course outcomes.

The analysis was performed using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) clustering [20], which is
a technique for dimensionality reduction suitable for high-
dimension datasets. For the analysis, three separate datasets
were used. The first dataset contained student’s average per-
formance per week, the second dataset contained student’s
weekly performance quantiles, and the third contained stu-
dent’s state transitions between performance quantiles.

For each dataset, an analysis of a limited range of weeks
was performed to evaluate whether the clustering method
could be used as an early indicator of performance, as well
as to identify weeks where students’ performance varied the
most. Kullback-Leibler divergence was used as a measure for
the difference between the clustering outcome and the course
outcome for each dataset. Values of the analysis are sum-
marized in Table 1. Here, the consistency dataset (dataset
3) has entries only in the rows with more data as transitions
between any two weeks did not yield meaningful results.

Table 1: t-SNE Kullback-Leibler divergences of
three different datasets.

period dataset 1 dataset 2 dataset 3

Weeks one and two 0.25 0.36 NA
Weeks two and three 0.27 0.36 NA
Weeks three and four 0.2 0.25 NA
Weeks four and five 0.23 0.29 NA
Weeks five and six 0.18 0.28 NA
Weeks one to three 0.25 0.33 0.38
Weeks two to four 0.24 0.35 0.35
Weeks three to five 0.26 0.24 0.34
Weeks four to six 0.28 0.25 0.35

The Kullback-Leibler divergence of the student’s state
transition data (dataset 3) is higher when compared to both
weekly performance (dataset 1) and weekly quantiles (dataset
2). That is, the average weekly performance performs bet-
ter as an indicator of final exam result than the transitions
between the performance quantiles.

The result of t-SNE clustering on students’ average per-
formance per week is shown in Figure 4 – here, we have used
the data from weeks four, five and six with Kullback-Leibler

divergence 0.28. T-SNE does not require an initial value for
the number of desired clusters, that is, it is a non-parametric
approach. One of the major benefits of non-parametric mod-
els is that the parameters are determined by the data, not
the chosen model.

As could be seen in Figure 4, t-SNE was able to cluster
students based on their performance into meaningful clusters
– few indicating mostly passing students, one with mostly
dropouts, and one with mixed data. The labels in the figure
depict those students who pass the subject (Y), those who
failed the subject (N), and those who drop out from the
course (Z).

Figure 4: t-SNE based visualization of students final
course outcomes using data from weeks four, five
and six of students’ average performance.

4.4 Assignment-specific Performance and
Course Outcomes

Thus far, students were clustered based on their weekly
performance. We observed that performance fluctuations
between weeks is not as indicative of performance in the fi-
nal exam as the average weekly performance. We now move
from analyzing weekly performance to analyzing assignment-
specific performance and its relationship with course out-
comes. As the number of assignments is high, dimensionality
reduction over the assignments using principal component
analysis (PCA) [10] was performed.

Whilst performing PCA on the assignment data, we also
performed k-means clustering [13] to identify a meaningful
amount of groups into which the data could be split into.
Upon analysis of the k-means clustering results over k be-
tween 1 and 10, we observe that the projection of our data
could be best explained in a two-dimensional space with
two principal components. We then used those two princi-
pal components to divide the students into two groups. As
a result, 78% of students who failed or dropped the subject
are placed into the correct cluster.

The same analysis was then performed on three datasets
similar to the previously used datasets: (a) the quartile of
each student’s performance on each exercise; (b) the state
transition data based on the score of each exercise where the
student’s performance from one week to the next week could
be either progress, retrogress or no change; and (c) the state
transition data based on the quartile of the obtained score
of the student per exercise where the student’s performance
from one week to the week after could be either progress,
retrogress or no change.

When performing clustering on the three datasets, we ob-
served that the used k-means clustering does not show a

good separation of successful and unsuccessful students. The
result of our analysis suggests that at-risk students could
best be predicted by the scores or quantile of exercises (i.e.
datasets a and b, being able to correctly identify 78.72%
and 76.60% of the at-risk students respectively), compared
to the quartile state of student’s performance or performance
transition between exercises. However, the predictive infor-
mation stored in state transitions seem to be more effective
in identifying students who perform well in the final exam of
the course (identifying 66.67% of well-performing students
correctly).

5. DISCUSSION
5.1 Overall performance in the course

Overall, in line with previous studies, we observed that
students’ performance decreases during the course. This is
in line with both the general knowledge in introductory pro-
gramming as well as the literature where students’ perfor-
mance in online programming environment has been ana-
lyzed [18]. However, when contrasting our results to those
in [18], students in our context are working in a traditional
programming environment, and the majority of the course
assignments expect that the students implement more than
a single function – thus, generalizing the previous results to
a new context.

Upon analysis of the average performance, in Fig. 1, we
observed through second order regression that the perfor-
mance first increases, and then decreases. We observe that
students in the course perform reasonably well until the in-
troduction of object-oriented programming, after which the
assignments become more complex.

Overall, course topics build on each other, and learning
each new topic depends on whether the student understands
the previous topic to a sufficient detail. If a student struggles
on a topic in the course and fails to grasp it, he or she will
likely struggle with upcoming topics as well. Second, as pro-
gramming courses progress, it is typical that the complexity
of the programming assignments increases.

5.2 Changes in performance
When analyzing the students performance transitions in

the course, we observe that for the majority of the students,
the performance stays nearly the same. When analyzing
performance through quantiles, nearly none of the students
perform at a level where their solutions would, on average
be over 75% correct. What we likely also observe here is
that as the course progresses, students become less likely
to tinker with their solutions after they have finished the
solution, leading to a smaller amount of snapshots in states
with high correctness.

At the same time, as the assignments are more complex,
starting an assignment becomes more challenging, and ap-
proaching a correct solution takes more steps than before.
This means that as students struggle, they perform worse in
the light of our metric. At the same time, struggling does
not necessarily indicate poor learning, only that the assign-
ments are more challenging.

We observe that fluctuations in average performance does
not transfer well to fluctuations in course performance. Our
results are in line with those in [27], indicating that the
student’s performance does not drastically change during
the semester.

5.3 Clustering and at-risk students
When comparing the clustering results to the results pre-

viously presented in the literature, the outcomes are mediocre,
and we do not observe a good distinction between the stu-
dents who perform well and those who do not. Recent stud-
ies that have focused on selecting features that best deter-
mine students who are at risk of dropping out have reported
high correlations. For example, a recent result from [1] re-
ported MCC = 0.78, when using only the first week of data
in a course and seeking to predict whether students fall un-
der or over the class median, a significantly better result
than that from our study. At the same time, the data, fea-
tures and methodology was different to ours.

One of the reasons for the lack of performance in the
clustering is that distinguishing between those students who
pass and those who fail is not trivial. There is a clear sep-
aration between clusters of students who are far from the
fail/pass -border, while the course outcome for a student
who receives 49/100 (i.e. a fail in our system) and a student
who receives 50/100 (i.e. a pass in our system) is large in
terms of grading, there is very little difference in how they
fared in the course and in the exam.

5.4 Limitations of the study
Our study has several limitations. First, the sample size

in our dataset was only 89, which is relatively small for clus-
tering and PCA. Second, the exam results come from a pen-
and-paper exam, which does not fully reflect the activities
that students perform during the course. It is possible that
students handle programming tasks well, but are, for ex-
ample, not able to properly explain what they are doing
using pen and paper. On the other hand, students may get
lower course marks because they are not able to complete
the more complex assignments, but that does not necessar-
ily mean that a student did not learn the topic and would
not be able to do well in an exam.

Third, when analyzing performance transitions, we lim-
ited our work to quartiles. It is possible that better results
would have been achieved with different settings such as a
different interval for the quartiles.

Finally, we do not know if students do their best on the
assignments as it is possible that some students only seek to
pass the course. For example, some students with previous
programming experience had low average performance but
were able to do well in the exam. Additional details should
be incorporated to the clustering to take such students into
account.

6. CONCLUSIONS
In this work we analyzed students performance and consis-

tency in an introductory programming course. For the anal-
ysis, we used sequential source code snapshots that described
students progress with the programming assignments. We
investigated course-level changes in students’ performance,
analyzed whether the performance varied over different weeks,
and evaluated clustering to identify students at risk.

Overall, to answer research question one, ”How does stu-
dents’ performance evolve during a programming course?”,
we observe that students’ performance declines throughout
the course. This result is in line with previous studies (see
e.g. [18]), and is explainable through the incremental nature
of programming. To proceed in a course, the student has to
learn the topics from the previous week.

Whilst the overall performance declined over the course,

at the same time, we observe that the majority of the stu-
dents have a constant performance from week to week. That
is, to answer the research question two, ”How does the per-
formance change across course weeks?”, the performance
mostly stays the same. This means that the majority of
the students perform similarly throughout the course, and
that the overall decline in the course performance is likely
explainable by the increasing complexity of the course as-
signments – a topic for future study.

When evaluating this performance as a predictor of fi-
nal course outcomes, we noticed that fluctuation in course
performance across weeks is a relatively poor metric for fi-
nal course performance. The most accurate clustering was
achieved using average performance. To answer the research
question three, ”To what extent can students’ performance
be used to identify those that may drop out from a course?”,
we posit that one could use the clusters built from average
performance. However, at the same time, one should seek
to verify that there is a sufficient number of study samples,
and that the measured outcome depicts the students’ work-
ing process.

7. REFERENCES
[1] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.

Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings of the
Eleventh Annual International Conference on International
Computing Education Research, ICER ’15, pages 121–130,
New York, NY, USA, 2015. ACM.

[2] S. Bergin and R. Reilly. Programming: factors that
influence success. ACM SIGCSE Bulletin, 37(1):411–415,
2005.

[3] P. Byrne and G. Lyons. The effect of student attributes on
success in programming. In ACM SIGCSE Bulletin,
volume 33, pages 49–52. ACM, 2001.

[4] B. Cantwell Wilson and S. Shrock. Contributing to success
in an introductory computer science course: a study of
twelve factors. In ACM SIGCSE Bulletin, volume 33, pages
184–188. ACM, 2001.

[5] A. S. Carter, C. D. Hundhausen, and O. Adesope. The
normalized programming state model: Predicting student
performance in computing courses based on programming
behavior. In Proceedings of the Eleventh Annual
International Conference on International Computing
Education Research, ICER ’15, pages 141–150, New York,
NY, USA, 2015. ACM.

[6] G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Comm. of the ACM,
32(11):1322–1327, 1989.

[7] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bulletin, 32(3):25–28,
2000.

[8] K. Heinonen, K. Hirvikoski, M. Luukkainen, and
A. Vihavainen. Using codebrowser to seek differences
between novice programmers. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 229–234, New York, NY,
USA, 2014. ACM.

[9] R. Hosseini, A. Vihavainen, and P. Brusilovsky. Exploring
problem solving paths in a Java programming course. In
Proceedings of the 25th Workshop of the Psychology of
Programming Interest Group, 2014.

[10] H. Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of educational
psychology, 24(6):417, 1933.

[11] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, M. A. Rubio, J. Sheard, B. Skupas,
J. Spacco, C. Szabo, and D. Toll. Educational data mining

and learning analytics in programming: Literature review
and case studies. In Proceedings of the 2015 ITiCSE on
Working Group Reports, ITICSE-WGR ’15, pages 41–63,
New York, NY, USA, 2015. ACM.

[12] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73–84, New York, NY, USA,
2006. ACM.

[13] J. MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA.,
1967.

[14] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages 153–160,
New York, NY, USA, 2012. ACM.

[15] L. Porter, D. Zingaro, and R. Lister. Predicting student
success using fine grain clicker data. In Proceedings of the
tenth annual conference on International computing
education research, pages 51–58. ACM, 2014.

[16] N. Rountree, J. Rountree, and A. Robins. Predictors of
success and failure in a cs1 course. ACM SIGCSE Bulletin,
34(4):121–124, 2002.

[17] J. Spacco. Marmoset: a programming project assignment
framework to improve the feedback cycle for students,
faculty and researchers. PhD thesis, 2006.

[18] J. Spacco, P. Denny, B. Richards, D. Babcock,
D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise data. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, SIGCSE ’15, pages 18–23,
New York, NY, USA, 2015. ACM.

[19] M. V. Stein. Mathematical preparation as a basis for
success in CS-II. Journal of Computing Sciences in
Colleges, 17(4):28–38, 2002.

[20] L. Van der Maaten and G. Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research,
9(2579-2605):85, 2008.

[21] P. R. Ventura Jr. Identifying predictors of success for an
objects-first CS1. 2005.

[22] A. Vihavainen, J. Helminen, and P. Ihantola. How novices
tackle their first lines of code in an ide: analysis of
programming session traces. In Proceedings of the 14th Koli
Calling International Conference on Computing Education
Research, pages 109–116. ACM, 2014.

[23] C. Watson, F. W. Li, and J. L. Godwin. No tests required:
Comparing traditional and dynamic predictors of
programming success. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 469–474, New York, NY, USA, 2014.
ACM.

[24] C. Watson, F. W. B. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior. In
Proceedings of the 2013 IEEE 13th International
Conference on Advanced Learning Technologies, ICALT
’13, pages 319–323, Washington, DC, USA, 2013. IEEE
Computer Society.

[25] L. H. Werth. Predicting student performance in a beginning
computer science class, volume 18. ACM, 1986.

[26] S. Wiedenbeck, D. Labelle, and V. N. Kain. Factors
affecting course outcomes in introductory programming. In
16th Annual Workshop of the Psychology of Programming
Interest Group, pages 97–109, 2004.

[27] M. Worsley and P. Blikstein. Programming pathways: A
technique for analyzing novice programmers’ learning
trajectories. In Artificial intelligence in education, pages
844–847. Springer, 2013.

	1 Introduction
	2 Related Work
	2.1 Predictors for Success
	2.2 Work Patterns and Effort

	3 Research Design
	3.1 Research Questions
	3.2 Context and Data
	3.3 Measuring Performance and Consistency

	4 Methodology and Results
	4.1 Students' Performance over the Course
	4.2 Students' Performance over Course Weeks
	4.3 Consistency and Course Outcomes
	4.4 Assignment-specific Performance and Course Outcomes

	5 Discussion
	5.1 Overall performance in the course
	5.2 Changes in performance
	5.3 Clustering and at-risk students
	5.4 Limitations of the study

	6 Conclusions
	7 References

