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Abstract 

The Au7Cu5Al4  electron phase transforms displacively from an L21 parent to a nominally body-

centred tetragonal martensite with c/a<1. The compound is of interest because it has the potential to 

serve as an 18 carat shape memory alloy in jewellery. Analysis of its X-ray diffraction spectra 

indicates that the martensite is modulated by a [110]/[ 101 ]  transverse shear wave, showing that it 

belongs, strictly speaking, to the generic B19 structure type. The martensite is also twinned, and the 

probable twinning structure is explored. A )6,9(15R  stacking sequence is deduced, which for reasons 

of the L21 ordering inherited from the parent phase, must be doubled to produce a notional 

)6,9,6,9(30R  martensite that properly repeats. However, although the measured X-ray diffraction 

spectra can be substantially explained by the structures derived, the martensite probably also has 

additional, higher-order lattice modulations. 
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1. Introduction 

The reversible displacive transformation in certain 18 carat Au-Cu-Al alloys has inspired their 

application in jewellery, although details of the associated crystal structures and phase transformations 

were not originally known [1]. Later it was shown that the addition of 5.8 wt.% Al to face-centred 

cubic (Au,Cu) causes the structure at elevated temperatures to become body-centered cubic, with 

lattice parameter a0.608 nm and electron-to-atom ratio e/a of 1.48 [2]. This ternary  electron 

compound has the approximate stoichiometry Au7Cu5Al4. It normally has strong B2 ordering, but 

ageing at between 100 and 200°C causes the development of a variable amount of L21 ordering. Only 

in this latter state does it undergo a martensitic transformation to a nominally body-centred tetragonal 

(bct) martensite with a 16 atom unit cell and lattice parameters of  a0.630 nm and c0.596 nm [3,4]. 

The martensite has c/a<1, which is an unusual situation since many martensites formed from body- 

centred cubic (bcc) parents are approximately close-packed with hexagonal, orthorhombic or 

monoclinic crystal structures, while most of the comparatively rare bct martensites that have been 

recorded have c/a>1 [4]. The few example of bct martensites with c/a<1 known to the authors are 

formed from La2AgIn, Ni2MnGa, AuMn  and NiMn parent phases.  

 

This paper addresses the structure of the Au7Cu5Al4 martensite, and shows that its atoms are slightly 

displaced (‘modulated’ or ‘distorted’) from their nominal body-centred tetragonal lattice positions. The  

nature of the lattice modulation necessary to explain its X-ray diffraction (XRD) spectrum and fine-

scale microstructure are explored. 
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2. Experimental 

 

The procedures used to manufacture the alloy samples, characterise the phase transformations, 

measure the XRD spectra, and determine the lattice occupancies of the parent phase have been 

described elsewhere [2-4]. In brief, the samples were made by melting in a muffle furnace, and were 

then subjected to heat treatments of various kinds, with the results of the heat treatments being 

determined using optical metallography, acoustic emission and X-ray diffraction.  The XRD spectra 

shown here were obtained with Mo k radiation. 

 

Modulation of the lattice of the martensite was investigated with the aid of a computer program that 

ran within the Crystallographica


 Pascal workspace. The program first constructed a unit cell with up 

to 250 atoms and the desired occupancies, which were presumed to be inherited from the parent phase, 

and then modulated it in terms of atomic position according to user dictates. The resulting structures 

were then used to calculate XRD spectra, and these were compared to the experimental spectra.  

 

3. Mechanism of tetragonal martensite formation 

3.1 The bcc to tetragonal transformation 

It is known that the martensitic transformation of a bcc electron phase is driven by the increasing 

geometric instability of its lattice as the temperature decreases, and in particular by its tendency to 

achieve a more negative free energy by collapsing to a denser packing arrangement [4,5]. This is 

abetted in bcc parent lattices by their intrinsic geometric susceptibility to shear of the    011110 -

type [6,7]. This instability may also manifest in the form of a  011110  phonon soft mode. In the 

most ideal case, a shear strain applied in the ]011[  direction along a (110) plane, accompanied by a 
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lattice contraction in the perpendicular direction, will produce a fcc lattice from a bcc one [7]. Many of 

the copper-based martensite structures are readily explained as being the result of such shear; however, 

the actual structure produced contains a high density of regular stacking faults [7]. Although nominally 

fcc, these faulted structures are more generally described as orthorhombic or monoclinic, depending on 

how they are indexed.   

 

However, shear on a single    011110 -type system cannot readily account for the formation of a 

tetragonal martensite. This deficiency is remedied in the well-known phenomenological theory of 

martensite crystallography (PTMC) which can account for a tetragonal martensite using a combination 

of lattice deformation and macroscopic shape deformation. However, in yet another approach to the 

same problem, an approximately tetragonal martensite can also be obtained from two shears, as in the 

double shear mechanism of Bowles, Barret and Guttman,  proposed 1950 [8]. In this mechanism, shear 

took place sequentially along two    011110 systems, eg. first along   110101  to produce a 

monoclinic structure and then along   011110  to produce a triclinic crystal that it is very nearly 

tetragonal. Extending this principle, a perfectly tetragonal martensite, in this case with c/a<1, can be 

conceptually produced from a cubic parent by the simultaneous application of four independent 

   011110 -type shears, provided that the principle of linear superposition can be applied. (In terms 

of this principle, which is valid for Hookean elastic solids, the waves, shear or otherwise, can travel 

through the solid quite independently of one another). The superposition of the shears will produce, by 

vector addition, a net displacement of atomic co-ordinates that gives the product structure, without the 

need to invoke an irrational shear system (Figure 1). If all four shear systems operate simultaneously, 

and if the value of the shear strain () of each is equal, then the vector sum of all the displacement 

components is as given in Table 1. It is evident that the z displacement is of opposite sign and twice 

the magnitude of the x or y displacements. Once divided in each case by the starting cubic lattice 

parameter, these become the lattice dilation/contraction strains, x, y, and z=-2x, a condition which 
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has been shown [9] to produce a habit plane between parent and martensite that is close to {011} and a 

minimal change in the volume of the unit cell.   

 

Application of a x of 2% to the cubic parent phase of Au7Cu5Al4 , which has a unit cell of ao=0.616 

nm, will produce a martensite unit cell with a=b=0.628 nm, c=0.591 nm. Further adjustment to the 

measured values [4] of a=b=0.630 nm, c=0.594 nm in the actual crystal (corresponding to x= 2.27% 

and z= -3.57%) could conceivably take place in the lattice by thermally-induced relaxation, or the 

deviation could be the result of some additional faulting or modulation in the structure. 

 

It is recognised that the PTMC and the ‘two-’ and ‘four-shear’ mechanisms are not completely 

compatible. In particular, the latter do not require, in principle, an interface between parent and 

product phases, whereas the reaility is that the transformation takes place by means of the movement 

of a well-defined interface between parent and product. Furthermore, there is the complication of 

retaining a common plane (the ‘habit plane’) between parent and product phases during the 

transformation. If the four-shear mechanism operates at all, it can only be in the immediate vicinity of 

the habit plane. However, one advantage of the ‘four-shear’ explanation is that it invokes the known 

lattive vibration modes to explain the atomic displacements, whereas the PTMC is silent on this issue. 

 

Irrespective of its mechanism of formation, the normal, n,  to the habit plane of the tetragonal 

martensite can be calculated from the values of x and z, using the formula [9] 
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where 11=x and 33=z. The result for the nominal values of x=2.0% and z=4.0% is the expected 

(0 1 1) habit plane. However, substitution of the measured values of x and z for this transformation 
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give a normal vector with co-ordinates (0, 0.600, 0.797). This corresponds to a (0 3 4) habit plane, the 

normal of which makes an angle of close to 8 to the normal to the (0 1 1) habit plane. 

 

The X-ray diffraction spectrum calculated for a perfectly tetragonal martensite is compared in Figure 2 

to some measured examples for this martensite. In general, there are small extra peaks on the 

experimental martensite spectra. There were, in general, four prominent sets of extra peaks, denoted 

‘a’ to ‘d’ on the Figure. It has been shown previously that these extra peaks may be reproduced if the 

tetragonal symmetry of the martensite is reduced by either modifying the lattice occupancies or by 

arbitrarily displacing certain of the atoms from their nominal positions [4]. However, the measured 

martensite spectra were produced with a phase transformation that exhibited strong first-order 

characteristics [3]. Therefore, a change in occupancy of the lattice sites during the transformation can 

be eliminated, leaving positional modulation of the atoms as the probable cause.   

 

3.2 The case for modulation 

Modulation by a single shear wave 

The  011110  phonon soft mode mentioned previously is often prominent in B2 structures as the 

temperature of transformation to martensite is approached from above. However, it is important to note 

that other lattice instabilities or combinations of lattice instabilities can operate prior to or during a 

martensite transformation. Also, the soft mode phenomenon is not necessarily directly correlated with 

martensitic transformation, and the presence of a vibrational soft mode does not guarantee that a 

martensitic transformation will take place [5], nor are all martensitic transformations necessarily 

driven by solely by soft mode phenomena [10]. Nevertheless, much of the atomic movement necessary 

to produce, for example, a B19 martensite from a B2 parent, is very neatly explained as being the 

result of the application of a [11 0]/[ 101 ] shear wave (the first term refers to the direction of 

propagation k  and the second to the polarization e  of the transverse displacement wave) with a 
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wavelength of a2 , where a  is the unit cell dimension of the parent B2 phase [11] (Figure 3). Of 

course, some homogenous dilation and/or contraction of the lattice may also be required. The concept 

of a soft mode shear wave therefore has some utility, at least in a pedagogic context,  in explaining the 

formation of hexagonal martensites from bcc parents. 

 

The net effect of the application of the hypothetical shear wave is that the new atomic positions are 

related to the old in two of the three lattice directions by a sinusoidal mathematical expression. In the 

case of the B19 structure of AuCd, for example, it can be seen from Figure 3 that  

  

 iAk 2sin.           (2) 

 

where i is the fractional distance (varying from 0 to 1) along the B2 z-face diagonal (eventually the 

aB19-axis) of the atom to be modulated, and k is the displacement from the nominal position in the 

cB19-direction. The resulting crystal structure can therefore justly be considered to be a ‘modulated’ 

derivative of the original cubic parent structure, that is, its atomic positions are displaced from the 

nominal starting lattice positions by some periodic oscillation.  

 

If the parent has B2 ordering, then the modulated and parent structures can be shown to be both 

members of the set of diverse close-packed B19 crystal structures. This follows because the basis 

vectors of the generic B19 crystal structure are [12] 

  

B1 =  ¼aX + x1cZ 

B2 = -¼aX - x1cZ 

B3 =  ¼aX + ½bY + x2cZ 

B4 = -¼aX - ½bY - x2cZ         (3) 
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where X, Y and Z are the principle axes, a, b and c are the B19 lattice parameters and x1 and x2 are 

parameters that control the modulation of the atoms. Vectors B1 and B2 apply to the first element (eg. 

Cd) and B3 and B4 to the second (eg. Au). Substitution of unit axes into the expressions generates the 

atomic positions of the four atoms in the conventional representation of the B19 unit cell. 

 

The usefulness of this generic structure can be seen by noting that, if a=b=c, x1=0.25, x2=x1+0.5, and 

there is only one kind of element, then the structure is A1 (fcc). If a=c, x1=0.25, and x2=x1+0.5, then 

the structure is L10. If 
3

2

3
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element then the structure is hexagonal close packed [12]. If a=c and 2
b

a
then the structure is B2, 

or if there is only one kind of element, A2. Finally, it can be shown that the strongly modulated B19 

structure of AuCd, for example, may be obtained from a B2 parent, by allowing ac, 2
b

a
and 

increasing x1 to 0.31 [12]. 

 

Higher order modulation 

In general, it seems that the structures of many martensites are modulated to a greater or lesser extent. 

However, this modulation will rarely be as simple or complete as in the case of the B19 AuCd given 

above. It has been claimed in some instances that this modulation is directly related to the soft mode 

lattice instability that was associated with their formation [11,13]. In a widely used scheme, various 

martensite structures are differentiated in terms of the number of basal planes corresponding to the 

wavelength of the modulation or repetition. For example, the martensite formed from Ni0.64Al0.36 may 

be denoted 7M (or 14M according to a different notation [14]) and it is formed by a modulation along 

the [110] cubic direction with an effective wavelength of seven times the basal plane spacing [15]. 

Other structures with five, twelve or fifteen layers of basal planes have also been reported [14]. 
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Of particular interest is that some investigators of the other tetragonal martensites have linked  ‘extra’ 

X-ray diffraction peaks, such as those shown in Figure 2,  to such positional modulations in the lattice. 

Webster et al. [16], for example, who found such extra peaks in spectrum of the low temperature form 

of Ni2MnGa, speculated that they were due to periodic stacking faults, lying perpendicular to the c-

axis direction of the bct lattice, and with a modulation of ‘at least four planes’. This point has been 

investigated in more detail by later workers, who have elucidated the nature of these modulations in 

this compound in some detail [14,17]. However, as mentioned, some of the ‘extra’ peaks can 

potentially be generated by making non-symmetrical changes to lattice site occupancies. The present 

authors also found that the introduction of regularly spaced anti-phase domain boundaries could result 

in the generation of these and other extra peaks. However, since no independent evidence of such site 

occupancy change or chemical modulation is so far known for this system, these lines of inquiry are 

not pursued further here, and it is considered more likely that in this case the atomic positions of the 

present Au7Cu5Al4 martensite were modulated, and that this might explain some or all of the ‘extra’ 

diffraction peaks. 

 

The  011110 displacement in Ni2MnGa produces a ‘roughly’ tetragonal martensite with 5M 

modulation (10M according to the notation used by Pons et al. [14]) parallel to the basal (001)M plane 

or former (110) plane [15,17]. It is actually a two step process with a 3M modulated martensite in-

between [15]. It appears that accurate description of the modulation may require more than just a 

single sinusoidal waveform, and for example in the case of Ni2MnGa the displacement of the 

successive (110) planes (or (220) planes if they are indexed on the same 16 atom unit cell as the 

parent Heusler phase) can be described  by a three-term sinusoidal expansion [17]: 
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where l is the displacement in the direction of the wave’s polarization of the atom at distance l along 

the direction of the wave’s propagation. A, B and C are coefficients to be determined by analysis of the 

experimental data. Obviously if the modulation is not 5M then a different denominator is required in 

the expression.  

 

Another important point is that these soft mode-driven (or, perhaps, merely associated) transformations 

need not be completely 1
st
 order in nature.  Shapiro [15] has pointed out that the soft mode 

phenomenon can explain the 2
nd

 order characteristics of many displacive transformations too. The soft 

mode or shear wave is coincident with the atomic displacement necessary to form the low temperature 

phase. The product phase forms when the vibration ‘freezes’. This may be the origin of the observation 

that martensitic transformations in Hume Rothery compounds are ‘weakly 1
st
 order’ [eg. 5, 11]. 

 

It is interesting that the ‘classic’ and rigorous application of the soft mode instability mechanism for 

martensite formation from a cubic parent phase, which would require that the (c11-c12)/2 shear modulus 

should reduce to a magnitude of zero at the Ms temperature, is said to be always correlated with a 

tetragonal transformation product [18]. If this observation is genuinely universal, then it implies that 

the present Au7Cu5Al4 parent phase should also be susceptible to the phenomenon of complete 

softening, unlike the case for nearly all other non-ferrous systems, such as NixAl1-x or other noble 

metal Hume-Rothery compounds,  in which only a relative reduction in (c11-c12)/2 occurs prior to 

transformation. However, there is reportedly not complete softening in Ni2MnGa eg. [15], this 

exception presumably disproving the rule.  
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4. Modulation of the Au7Cu5Al4 martensite lattice 

 

4.1 Determination of the modulation wavelength 

To begin with, as with previous workers who investigated Ni2MnGa [16,17], the modulation was 

investigated using the tetragonal version of the 16 atom L21 unit cell of the parent phase. For this unit 

cell, a single sinusoidal modulation in the a-b (x-y) plane with a wavelength of three {220} planes 

(Figure 4) may be described by the generalised parametric equations 

 

    45cos.4cos.1 jxx   

    45sin.4cos.1 jyy  , and 

zz              (5) 

 

where x, y and z are the nominal positions on the tetragonal lattice, x, y and z are the positions after 

the application of the modulation waves, 1 is the amplitude of the modulation wave, and j is the 

fractional distance across the a-b plane of the 16 atom unit cell in the [110] direction.  

 

After allowing for modulations of other numbers of {220} planes, such as the 5M modulation reported 

for Ni2MnGa and NiAl, the parametric equations become (after simplification): 
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where M is the order of the modulation (3 for 3M modulation and 5 for 5M modulation, respectively 

equivalent to the 6M and 10M modulation of some other workers [14]).  
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Diffraction spectra were calculated for the present martensite using a 64 atom unit cell consisting of 4  

16 atom tI16 unit cells in 2x2x1 configuration. For reasons of symmetry, this allowed only 3M, 5M 

and 9M modulations to be tested, since the wavelength of the modulation had to divide into the z-face 

diagonal of the unit cell by an integer factor, and also for it to be some integer multiple of the 

wavelength of L21 atomic ordering in that direction. It was observed that the introduction of the 

modulations enabled all the observed extra peaks to be explained, but undesired, extra peaks were 

simultaneously introduced. In particular,  the 3M modulations reproduced the peaks at positions b, c 

and d in Figure 3, and the 5M modulation reproduced the peak at 0.237 nm (position e on Figure 4). 

However, the 9M modulation scheme consistently produced a peak at 0.250 nm (position f on Figure 

4), which was never observed on any experimental spectrum. The 5M scheme, however, had the 

deficiency of not producing peaks c and d, and not one of these three schemes produced a peak at 

position a. On balance, it was concluded that the 3M modulation system most generally simulated the 

measured spectra. However, it was clear that a few samples possessed spectra with features like those 

calculated for 5M modulation. These samples had in common the fact that they contained only 

between 4 and 5 wt.% Al (compared to the usual 5.8 wt% Al of most other samples). Further work is 

needed to verify this tentative correlation.  

 

It should be noted that a simple one-term sinusoidal  transverse wave may in practice be something of 

an over-simplification, and in some cases investigators invoked higher harmonics of the basic wave  

[17]. Similarly, there are other modulation wavelengths (eg. 4M, 6M, 7M etc) which the present 

authors have not yet attempted. Therefore, the possibility that the spectra can be better explained as 

being the outcome of something more complex than a  011110  shear wave with 3M or 5M 

modulation wavelengths remains unexplored. Nevertheless, since the 3M scheme was able to account 

for much of the observed detail in the diffraction spectra, it was selected for the next part of the 

exercise, which was to determine the modulation amplitude. 
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4.2 Determination of the 3M (B19) modulation amplitude 

It was shown earlier that the most general form of the B19 close-packed lattice requires five 

parameters for description of atomic positions. The parameters are a, b and c (the B19 lattice 

parameters), and x1 and x2, which control the displacement of the atoms off the unmodulated lattice 

positions. However, the present martensite is formed from an L21 parent rather than from a B2 one, so 

a full description of it requires a doubling of the B19 unit cell in the b direction, in order to account for 

the additional, ternary, atomic ordering. Furthermore, as a simplification, we have set x2=x1+0.5, a 

situation required by the geometry of the B19 unit cell [19]. The resulting atomic positions are listed in 

Table 2, and the generic unit cell is illustrated in Figure 5. The site occupancies are presumed to be the 

same as those previously estimated  for the parent phase [2] 

 

The a, b and c parameters of the new unit cell may be calculated from those of the 16 atom L21-

derived one by using the geometric relationships shown in Figure 3, which would give a=c=0.4455 

nm, and b=0.594 nm.  However, for greater accuracy, the analysis of the experimental XRD spectra 

was repeated,  this time in orthorhombic space, to produce a=0.4465 nm, b=0.594 nm and c=0.4435 

nm. The lattice positions and occupancy data shown in Table 2 were then combined with these 

dimensions, and x1 systematically varied to find the value of it that best fitted the observed average 

heights of peaks b, c and d. The results (Figure 6) indicated that the difference between the measured 

and calculated intensities of the peaks b, c and d is minimised at values of x1 that are respectively 

0.288, 0.290 and 0.301. Of course, these values should be the same, illustrating the limitations of our 

present experimental measurements. However, it can be stated that the value of x1 that best reproduces 

the experimental spectra is 0.293 ±0.05, which is sufficient to show that the martensite is modulated 

somewhat less than B19-AuCd. 
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5. Adaptive twinning 

 

It has been shown above that the martensite is not perfectly tetragonal, and that it is both modulated 

and very slightly orthorhombic. Nevertheless, from a geometric perspective, it is nominally tetragonal, 

sufficiently so, we believe, to allow the application of the existing literature on cubic-to-tetragonal 

transformations. For example, it has been shown that wedge-shaped laths occur in the present system, 

a point believed to be uniquely diagnostic of cubic-to-tetragonal martensites [4,20]. 

 

The displacive transformation from a cubic to a tetragonal phase (and vice versa on heating), or from 

one tetragonal variant to another, generates considerable strain in a macroscopic sample. However, 

opposing this, there is also a requirement in these systems that the parent and product phases have a 

coherent relationship across their mutual interfaces. The mismatch in lattice spacing between cubic and 

tetragonal phases is reduced by them sharing a habit plane, which is common to both lattices, and in 

some cases, by adaptive twinning or microtwinning of the martensite. The principles upon which the 

microtwinning in tetragonal structured martensites are based have been elegantly stated by  

Khachaturyan et al. [9]. They have shown how coherency can be achieved if the martensite forms 

twins at the scale of a few lattice planes per twin variant. At this scale the twins are almost like 

stacking faults or shuffles. These ‘adaptive martensites’ are likely to form if the surface energy of twin 

boundaries is relatively low while the lattice mismatch between cubic parent and tetragonal product is 

relatively high. The B19 AuCd martensite is known to be microtwinned, illustrating that, while not 

strictly tetragonal, it too is susceptible to these same considerations.   

 

In practice, adaptive martensite consists of a periodic alternation of two twin variants, of thickness d1 

and d2 respectively. For these very fine-scale twins, d1=m.atw and d2=n.atw, where m and n are integers, 

and atw is the interatomic spacing of the {110}B2 twinning planes. Of particular interest here is that 

Khachaturyan et al. showed that there are special values of m and n that provide the minimum 
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interface misfit for a given combination of parent and product phase lattice parameters. If the volume 

fraction of the variant with thickness d1  is , then it follows that  
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For invariant plane strain 

 

0



zx
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         (8) 

 

where x=y, and these lattice strains are as defined earlier.  

 

In the case of the present system, x=+2.27% and z=-3.57%, thereby indicating an  of 0.389 for the 

variant with thickness d1 or, quite equivalently, an  of 0.611 for the other variant. A wide range of m 

and n values can in principle meet the requirements of Equations (7) and (8). However, not all values 

of m and n generate simple two-variant stacking sequences that correctly repeat at the second twin 

boundary. Those that do are listed in Table 3 for m>=n, and these form the super-set out which the 

selection must be made in the present exercise. The notation used for these martensites follows 

Khachaturyan et al. [9]. The stacking sequences of two examples of two-variant adaptive martensite, 

and one multiple variant adaptive martensite are shown in Figure 7, together with the corresponding 

notation, to illustrate the system. All crystallographically valid structures must begin and end on the 

same type of stacking fault, which, for example, makes some stacking schemes, such as )2,3(5R , 

impossible in terms of this notation. The )2,3(5R  structure is however, simply a 5M modulated lattice 

which could perhaps be approximately represented by the notation )2,2(5
2

1

2

1
R . However, it is evident 
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that a valid two-variant 18R structure, for example, may form with the )9,9( , )6,12( or )3,15(  stacking 

schemes. 

 

This list of candidates may be culled by noting that TEM observations of this martensite have 

indicated that twins or ‘lattice fringes’ in the microstructure occur with an average individual width of 

between 7 and 10 (110)cubic planes [4], indicating that the adaptive structure (which would consist of 

pairs of twins) ought to have stacking height in the range 14R to 20R. From the ‘ideal’ volume fraction 

 of 0.611 and Equation (7) it is evident that a ratio of 
n

m of about 1.5 to 1.6 would provide optimum 

coherency with the lattice of the parent phase. The structures thus pinpointed are listed in Table 4, in 

which it is also evident that a )6,9(15R  martensite appears to offer the closest match. However, this 

does not properly reproduce the inherited L21 ordering across its extremities, and should actually be 

doubled to make a 30R martensite with fourfold )6,9,6,9( adaptive twinning, which does. 

 

6. Conclusions 

 

The martensite produced from the L21-ordered Au7Cu5Al4  electron compound parent phase may be 

described as a first approximation to be tetragonal, with c/a  0.94. It shares behavioural attributes 

with other cubic-to-tetragonal martensites, such as NixAl and Ni2MnGa. These attributes include 

forming wedge-shaped laths and adaptive twins, and modulated structures. However, detailed analysis 

shows that the present structure is approximately sinusoidally modulated on the 3M scheme, and it is 

therefore more accurately described as B19, with the unit cell doubled to account for the L21 ordering 

inherited from the parent phase. The amplitude of the modulation parameter x1 was estimated and 

found to be only about ~0.29 compared to the ~0.31 of Au-47 at.%Cd, a classic B19 martensite. Some 

evidence for 5M modulation in Al-lean compositions was found. In this respect the present martensite 

is probably akin to that in Ni2MnGa, which shows a diversity of structures depending on stoichiometry 
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and thermal processing. Finally, the probable nature of the adaptive microtwinning was explored, and 

it appears that a )6,9(15R  stacking would provide optimum mimimisation of strain across the habit 

plane. However, this does not correctly propagate the inherited L21 order, so a doubling of this 

stacking scheme to )6,9,6,9(30R is actually required for symmetrical reasons. It is very unlikely, 

however, that the martensite is perfectly stacked on this scheme, and it is therefore merely a 

convenient approximation of what is probably a less regular defect structure. 
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FIGURE CAPTIONS 

 

Figure 1. The four shear systems, which if applied simultaneously, will give a cubic-to-tetragonal 

phase transformation. The numbering system used in Table 1 is shown bottom right. 

 

Figure 2. Calculated X-ray spectrum of tetragonal martensite and examples of actual measured 

martensite spectra. 

 

Figure 3. Formation of B19 martensite from B2 parent by application of a [101]/[ 110 ] shear wave, a. 

top view, b, rotated view. The atomic displacements that transform the B2 lattice into the B19 lattice 

are omitted from the rotated view for clarity. 

 

Figure 4. Calculated X-ray diffraction spectra for various modulation schemes. 3M spectrum computed 

for 1=0.015 nm, 5M spectrum for 1=0.022 nm and 9M spectrum for 1=0.030 nm. Peaks at positions 

b, c, d and e may be found on selected experimental spectra. 

 

Figure 5. Doubly-extended B19 unit cell, as applied to the present martensite 

 

Figure 6. Error in height of peaks b, c and d on spectra calculated for various 3M modulation 

amplitudes, with respect to average peak height on five experimental spectra. 

 

Figure 7. Stacking sequences of common 9R martensite, and those of hypothetical )1,4(5R and 

)4,4(8R  martensites, given here to illustrate the notation used. Dashed lines indicate the position of 

notional stacking faults. 
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TABLES 

 

Table 1. Atomic displacements x,  y and z produced by four independent shear actions on atoms 1 

to 4 in Figure 1, and their vector addition. (The displacements of the unnumbered atoms lying on the 

lower face may be shown to be simply the reflection across the (002) plane of those on the upper face.) 

 

 Atom 1 Atom 2 Atom 3 Atom 4 

  ]110[101   0,     0,     0 x,    0,   -z +x,  0,   -z 0,     0,     0 

  ]011[101  0,   -y,   -z 0,    -y,  -z 0,      0,     0 0,     0,     0 

  ]101[110  -x,   0,   -z 0,      0,     0 0,      0,      0 -x,  0,    -z 

  ]101[011  0,      0,     0 0,      0,     0 0,      y,   -z 0,     y,   -z 

Vector sum -x, -y, -2z +x, -y, -2z +x, +y, -2z -x, +y, -2z 

 

 

Table 2. Cartesian positions and lattice occupancies of sites in the 3M unit cell of the present 

martensite, derived by doubling of a generic B19 unit cell. 

 

Site Nature x y z Occupancy 

Au Cu Al 

1 Au-rich  ¼a  0  x1c 0.653 0.328 0.019 

2 Au-rich -¼a  0  -x1c 0.653 0.328 0.019 

3 Al-rich  ¼a ¼b  x2c 0.168 0.244 0.588 

4 Cu-rich -¼a ¼b -x2c 0.267 0.388 0.345 

5 Au-rich  ¼a ½b  x1c 0.653 0.328 0.019 

6 Au-rich -¼a ½b -x1c 0.653 0.328 0.019 

7 Cu-rich  ¼a ¾b  x2c 0.267 0.388 0.345 

8 Al-rich -¼a ¾b -x2c 0.168 0.244 0.588 
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Table 3. Valid two-variant microtwinned adaptive martensites formed from a disordered cubic parent. 

Only entries for m>=n are given, the entries for n<m may be derived by reflection. 

 

m n 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2R            

2  4R           

3   6R          

4 5R   8R         

5  7R   10R        

6   9R   12R       

7 8R   11R   14R      

8  10R   13R   16R     

9   12R   15R   18R    

10 11R   14R   17R   20R   

11  13R   16R   19R   22R  

12   15R   18R   21R   24R 

13 14R   17R   20R   23R   

14  16R   19R   22R   25R  

15   18R   21R   24R   27R 

16 17R   20R   23R   26R   

17  19R   22R   25R   28R  

 

 

Table 4. Short-list of martensite structures with approximately correct twin width and lattice misfit 

strain. 

 

Structure 
n

m  

)6,9(15R  1.50 

)7,10(17R  1.43 

)8,11(19R  1.38 

)7,13(20R  1.86 
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FIGURES 

 

 
Figure 1. The four shear systems, which if applied simultaneously, will give a cubic-to-tetragonal 

phase transformation. The numbering system used in Table 1 is shown bottom right. 
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Figure 2. Calculated X-ray spectrum of tetragonal martensite and examples of actual measured 

martensite spectra. 
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Figure 3. Formation of B19 martensite from B2 parent by application of a [101]/[ 110 ] shear wave, a. 

top view, b, rotated view. The atomic displacements that transform the B2 lattice into the B19 lattice 

are omitted from the rotated view for clarity. 
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Figure 4. Calculated X-ray diffraction spectra for various modulation schemes. 3M spectrum computed 

for 1=0.015 nm, 5M spectrum for 1=0.022 nm and 9M spectrum for 1=0.030 nm. Peaks at positions 

b, c, d and e may be found on selected experimental spectra. 

 

 
 

Figure 5. Doubly-extended B19 unit cell, as applied to the present martensite 
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Figure 6. Error in height of peaks b, c and d on spectra calculated for various 3M modulation 

amplitudes, with respect to average peak height on five experimental spectra. 
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Figure 7. Stacking sequences of common 9R martensite, and those of hypothetical )1,4(5R and 

)4,4(8R  martensites, given here to illustrate the notation used. Dashed lines indicate the position of 

notional stacking faults. 

    


