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Modeling and Stochastic Optimization of Complete Coverage under
Uncertainties in Multi-Robot Base Placements

Mahdi Hassan, Dikai Liu and Gavin Paul

Abstract— Uncertainties in base placements of mobile, au-
tonomous industrial robots can cause incomplete coverage in
tasks such as grit-blasting and spray painting. Sensing and
localization errors can cause such uncertainties in robot base
placements. This paper addresses the problem of collaborative
complete coverage under uncertainties through appropriate
base placements of multiple mobile and autonomous industrial
robots while aiming to optimize the performance of the robot
team. A mathematical model for complete coverage under
uncertainties is proposed and then solved using a stochastic
multi-objective optimization algorithm. The approach aims to
concurrently find an optimal number and sequence of base
placements for each robot such that the robot team’s objectives
are optimized whilst uncertainties are accounted for. Several
case studies based on a real-world application using a real-
world object and a complex simulated object are provided
to demonstrate the effectiveness of the approach for different
conditions and scenarios, e.g. various levels of uncertainties, dif-
ferent numbers of robots, and robots with different capabilities.

I. INTRODUCTION

Uncertainties, if not accounted for appropriately, can result
in poor coverage and low efficiency when multiple mobile,
Autonomous Industrial Robots (AIRs) are deployed to per-
form tasks where the robots must operate on all surface areas
of a target object [1], e.g. in the grit-blasting and the spray
painting applications. The mobility of an AIR introduces
uncertainties due to sensing and localization errors, which in
turn invalidates assumptions about base position accuracy.
The magnitude of the errors depends on the quality of
the sensors and the localization algorithm implemented.
Nonetheless, the AIRs require the capacity to account for
uncertainties to enable them to operate in complex and
unstructured environments. The definition of AIR is the same
as Autonomous Industrial Mobile Manipulator (AIMM) [2].

A challenge in the deployment of multiple AIRs for
complete coverage tasks is to facilitate collaboration amongst
the AIRs. Specifically, the problem addressed in this paper is
to enable the AIRs to collaborate in a manner that will lead
to complete coverage of the target objects while accounting
for uncertainties in base placements of the AIRs.

The problem of automatic base placement is for each
AIR to determine the number and visiting sequence of a
set of base placements from which it will be operating on
the object. In doing so, the robot team’s objectives need to
be optimized while considering the relevant uncertainties.
The AIR team’s objectives are a set of shared objective
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functions that the AIRs collectively aim to optimize and are
task specific, e.g. for complete coverage tasks, maximizing
coverage and minimizing makespan are vital team objectives.

For certain environments or applications, it may be pos-
sible to reduce uncertainties to a negligible level, e.g. by
utilizing high quality sensors, and as such, negate the need to
consider uncertainties in the mathematical model. However,
this paper considers applications where the cost of utilizing
high quality sensors is prohibitive or achieving precise local-
ization is impractical due to the nature of the environment.

The research presented in this paper is an extension of the
approach in [3], which determined a single base placement
for each AIR assuming no uncertainties in base placements.
However, this paper proposes a new mathematical model that
considers large, complex objects where multiple base place-
ments for each AIR are needed. It accounts for uncertainties
in AIRs’ base placements through Monte Carlo Simulations.

The problem of finding an optimal base placement for a
single robot or a robotic manipulator has been addressed by
researchers for a number of environments and applications,
such as manufacturing environments [4], underwater environ-
ments [5], and applications where accurate operation of the
robot is necessary [6]. However, there is a growing interest
for multiple AIRs to operate in complex and unstructured en-
vironments, e.g. as the shift from mass production to custom
manufacturing takes place [2]. Thus, the problem becomes
increasingly complicated when AIRs need to each determine
several base placements under uncertain conditions.

Literature exists that addresses the problem of complete
coverage under uncertainty. For example, in the work by
Bretl and Hutchinson [7] the uncertainty in mobile robot’s
position and velocity is taken into account and an approach
for guaranteed coverage is proposed. However, due to over-
coverage a longer path is generated. Galceran and Carreras
[8], account for uncertainty in the position of an Autonomous
Underwater Vehicle (AUV) that is surveying/inspecting the
seabed using a two stage approach: (1) off-line planning
where the complete coverage path of the AUV is calculated,
and (2) periodic real-time re-planning based on the sensed
environment. Unlike robots that are continuously in motion
(such as AUVs), for the problem under consideration the
base of the mobile AIRs is stationary during the task
execution. This provides the industrial robot, affixed with
a high-powered end-effector tool, the stability required to
robustly perform a precise, complete coverage task (e.g. in
grit-blasting and spray painting). Hence, in this work, the
considered uncertainties are related to the base placements
of the mobile AIRs.



In brief, the overall approach presented in this paper
considers the following: (1) appropriate discretization of the
search space, (2) a mathematical model that aims at achieving
complete coverage while optimizing the AIR team’s objec-
tives under uncertainties in base placements, and (3) solving
the mathematical model using a multi-objective stochastic
optimization algorithm. The main contribution of the paper
is the proposed mathematical model. The approach is tested
by conducting both simulated and real-world grit-blasting
experiments using multiple AIRs and complex objects.

The rest of the paper is organized as follows. Section II
defines the problem being addressed. Section III provides
the methodology to the proposed approach. The details of
the experiments and results are presented in Section IV.
Section V provides discussions on results and limitations,
and concluding remarks are stated in Section VI.

II. PROBLEM DEFINITION
An example of a large and complex object is shown in

Fig. 1. Assume that the complete coverage task of spray
painting needs to be carried out on the object using the two
AIRs shown. That is, the two AIRs, which are equipped with
spray painting nozzles, are required to collectively operate
on all accessible surfaces of the objects by following the
paths created on the surfaces. In order to achieve complete
coverage, it is clear that each AIR is required to operate from
multiple base placements. It is assumed that the base of the
AIRs is fixed during the spray painting operation so as to
achieve stability for precise and uniform coverage.

In order for the AIRs to operate autonomously, they
need the capacity to self-monitor, and be aware of the
surrounding environments including other AIRs. Each AIR
starts by performing exploration and mapping of its local
environment [9]. Then, the AIRs will communicate and share
the information they have collected so as to create a map of
the environment. The AIRs are also expected to have shared
information on their capacity, initial position, etc. In this
work, it is assumed that the map is given and all AIRs have
access to the shared relevant information. This information
is then used by each AIR to find the base placements and
the visiting sequence such that the AIR team collectively
achieves complete coverage of the object. The final stage of
AIRs’ operation is to execute the task (e.g. spray painting in
Fig. 1) by considering a collision-free motion planning [10].

The problem of finding multiple base placements for each
AIR to perform the task of complete coverage involves

AIR 1

AIR 2

Fig. 1: Two mobile AIRs spray painting a large object.

the AIRs collaboratively deciding on the following: (1) the
base placement of each AIR at each time step of the task
execution, and (2) the surface areas of the target objects that
will be covered by each AIR. When AIRs are deciding upon
these aspects, the uncertainties associated with the AIRs’
base placement, and the following team objectives needs to
be considered:
• Coverage of the objects must be complete or acceptable

(above a threshold).
• Makespan must be minimal.
• Collisions must be avoided by maintaining safe dis-

tances from the environment and also between the AIRs.
The uncertainties in base placements of the AIRs can be

due to various errors. Examples of the sources of uncertain-
ties are: (1) errors in the collected sensor data (e.g. due to
measurement inaccuracies and imprecision), and (2) localiza-
tion error (e.g. due to the limitations of the algorithm used
with respect to the available features from the environment).

The problem can thus be concisely stated as follows: given
probability distributions that represent the uncertainties in
the AIRs’ base placements, how would the AIRs select an
optimal number and sequence of base placements such that
complete coverage is achieved and the team’s objectives are
optimized.

III. METHODOLOGY

The proposed mathematical model is presented in the
context of a methodology for solving multi-AIR complete
coverage. An overview is first presented, followed by a
detailed explanation of the mathematical model, and finally
an approach to solving the model.

A. Overview of the Approach

An approach to Stochastic Optimization of Multiple Base
Placements (Stochastic-OMBP) for each AIR, given the map
of the environment, is proposed in this paper (shown in
Algorithm 1), with a particular focus on the mathematical
modeling. The Stochastic-OMBP first considers discretizing
the search space (line 1) to reduce the computation time and
complexity, which is acceptable in many industrial applica-
tions if a near-optimal solution is achieved. An example of
the discretization is shown in Fig. 2. It can be seen that
the density of the discrete base placements for each AIR is
different, meaning that the AIRs’ capacity (e.g. workspace
size) is different, as the density is made to correspond to the
capacity of the AIR.

The next step of the Stochastic-OMBP is to select a subset
of discrete base placements for each AIR (line 2), called the
Favored Base Placements (FBPs). FBPs are predicted to be
superior in terms of both coverage and collision avoidance.
A strategy for determining the FBPs is explained in [3].

Once the FBPs are determined, the proposed mathematical
model is solved using a multi-objective stochastic optimiza-
tion (line 3), which is based on modifications of existing
hybrid multi-objective algorithms. The hybrid algorithm uses
Genetic Algorithm (GA) and Simulated Annealing (SA)
algorithm and will be elaborated upon in Section III-C. Since



Algorithm 1 Stochastic-OMBP.
1: For each AIR, create ηi discrete base placements around the

target objects where i is the AIR index
2: Find favored base placements (FBPs)
3: Perform multi-objective optimization using hybrid GA-SA
4: Select the appropriate/best solution, Z∗ from the Pareto front
5: if a threshold is not met then
6: Perform further discritization around desirable FBPs
7: goto line 3
8: end if
9: return solution Z∗ for execution

multi-objective optimization is considered, then the output of
the optimization is the Pareto front (a set of Pareto-optimal
solutions) from which a final solution is selected [3] (line 4).
After running the optimization, if a threshold (e.g. minimum
coverage) is not reached (line 5), then finer discretization can
be iteratively generated (line 6 and 7).

B. Mathematical Modeling

1) Design Variables: Let Bi = {bi1,bi2, . . . ,biηi} be
a set of discrete base placements, and (BFBP)i =
{βi1,βi2, . . . ,βi(nF )i} ⊆ Bi be the FBPs for the ith AIR where
i= 1,2, . . . ,n. In the case when the rotation of the base about
the z-axis effects the coverage performance of the AIR, then
each FBP can also be discretized into a number of rotations,
and the rotation, θz that results in the best coverage can
be selected. Thus, each FBP can be defined as the x,y,z
position and the θz rotation. The design variables are Zi j ∈
{0,1, . . . ,(nF)i}, j = 1,2, . . . ,(nb)i, (nb)i ≤ (nF)i, meaning
that the jth base placement of the ith AIR is one of the
(nF)i FBPs where (nb)i is an approximation of the number
of FBPs to be visited by the ith AIR. Approximation of (nb)i
can be made by considering the size of the object and its
surface areas. The greater the uncertainty in approximating
(nb)i, the larger its value. Zi j = 0 means that the ith AIR will
skip to the next, ( j+1)th base placement decided by Zi j+1.

2) Design Objectives:
a) Design Objective 1 (Maximal Coverage): For each

AIR a set of targets, Oi are uniformly generated on all
surfaces of the objects (e.g. the blue disks on the surfaces of
the object shown in Fig. 2), with spacing and radius size that
is chosen based on the capacity of the corresponding AIR
[3]. At the jth base placement of the ith AIR, a subset of
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Fig. 2: Discrete base placements of two different AIRs, and
target representations of the object.

targets, Oi j = {oi j1,oi j2, . . . ,oi jno}⊆Oi are located within the
workspace of the AIR. Let Ói j ⊆Oi j be the reachable targets
by the AIR at the jth base placement, and let Õi j ⊆ Ói j be
the uncovered reachable targets (targets not yet covered by
any AIR). Therefore, a path for the AIR to cover Õi j can be
generated [1] by appropriately connecting the center points
of the targets. In order for a target, oi jr ∈Oi j to be counted as
reachable by the ith AIR, an AIR pose qi jr needs to be found
that reaches the target oi jr with an appropriate end-effector
position and orientation.

The aim of this objective is to minimize missed-coverage
(areas not covered by any AIR). Due to the stochastic nature
of the problem, the objective is formulated to minimize the
expected value, i.e. :

min
Z

f1(Z) = E[ fc(Z,Ξz)] (1)

where Z is a set containing all the design variables, and
each element in the set Ξz, i.e. (Ξz)i j ∈ Ξz, is dependent
on a design variable Zi j and represents the uncertainties in
the FBP, βi(Zi j). Hence, (Ξz)i j ∈ Ξz is designed as a random
vector with a multivariate normal distribution,

(Ξz)i j ∼N
(
βi(Zi j),Σi

)
, (2)

describing the x,y,z position errors and the θz orientation
error associated with βi(Zi j). The orientation error can be
discarded for an AIR that has a full 360◦ revlolute joint
at its base. Similarly, the position error along the z-axis can
be discarded for an AIR that can’t move its base vertically.
The function to calculate missed-coverage is expressed as:

fc(Z,Ξz) = 1−
n

∑
i=1

(nb)i

∑
j=1

S f (Zi j,ξi j)

ST
i

(3)

where ST
i is the number of targets in Oi, and S f (Zi j,ξi j) cal-

culates the number of uncovered reachable targets Õi j based
on the design variable Zi j and an independent observation
ξi j of (Ξz)i j ∈ Ξz.

Since the problem is stochastic, then an estimation of
f1(Z) (in Eq. 1) can be found by using a number of inde-
pendent simulations (i.e. Monte Carlo Simulations). For each
(Ξz)i j ∈ Ξz, K observations (ξ 1

i j,ξ
2
i j, . . . ,ξ

K
i j ) are generated.

Let (Ξz)
k be a set containing the kth observation from each

(Ξz)i j ∈ Ξz. An estimate of f1(Z) is obtained using the
sample average:

f̄1(Z) =
1
K

K

∑
k=1

fc

(
Z,(Ξz)

k
)

(4)

where the observations to be taken from Ξz of Eq. 3 are the
same observations as in (Ξz)

k.

Note that the targets located in the overlapped areas, i.e.
areas that more than one AIR can reach, are only counted
once. The overlapped areas can be allocated to an AIR based
on a “first come, first served” strategy or based on the area
partitioning and allocation method presented in [11].



b) Design Objective 2 (Minimal Makespan): Another
important objective is to minimize the makespan (i.e. the
overall completion time of the task). The objective is formu-
lated to minimize the expected value, i.e. :

min
Z

f2(Z) = E[ ft(Z,Ξz)] (5)

where

ft(Z,Ξz) = max{t1(Z,Ξz), t2(Z,Ξz), . . . , tn(Z,Ξz)} , (6)

and the finish time of the ith AIR,

ti(Z,Ξz) =

(
(nb)i

∑
j=1

S f (Zi j,ξi j)
di

vi

)
+(nb)i(tsetup)i (7)

where di is the distance between the center points of two
adjacent targets that are on a path of the ith AIR, vi is the
speed that the end-effector of the ith AIR moves relative to a
path, and (tsetup)i is the set-up time associated with switching
off and on equipment/tools as the ith AIR navigates from one
base placement to the next. Similar to f1(Z), an estimation
of f2(Z) can be made using the sample average:

f̄2(Z) =
1
K

K

∑
k=1

ft
(

Z,(Ξz)
k
)
. (8)

3) Design Constraint (Distance Between Any Two AIRs):
At any time t of the task execution, the distance between
any two AIRs must be greater than a threshold, δ so as
to avoid collisions between AIRs and to allow each AIR’s
manipulator to maneuver more freely within its workspace.
The below constraint needs to be met:

‖βAIRi(t)−βAIR j́
(t)‖− (ei + e j́)> δ (9)

∀i, j́ : i = 1,2, . . . ,n, j́ = 1,2, . . . ,n, i 6= j́ where βAIRi(t) and
βAIR j́

(t) are the base placements from which the ith and the
j́th AIRs are operating at time t, respectively. ei and e j́ are
the maximum anticipated errors in base placements of the
ith and j́th AIRs, respectively, which can be, for example,
based on the limits of the 99.7% confidence interval (3σ ) of
the normal distributions representing the uncertainties.

Recall that FBPs are the base placements that are a safe
distance away from objects, hence a second constraint is not
needed to keep a safe distance between any AIR and the
objects in the environment.

C. Multi-objective Stochastic Optimization

In order to solve and test the proposed mathematical
model, a suitable multi-objective optimization is required.
The multi-objective stochastic optimization used is based on
hybrid GA-SA approach. It is inspired by the works in [12],
[13] and [14], however certain modifications are made so as
to appropriately address the problem under consideration.

The reason for the use of the hybrid GA-SA is to benefit
from the advantages of both the GA and the SA, e.g. to
benefit from combining the following properties: (1) SA is
“one of the fastest and universal probabilistic local proce-
dures” [12]; (2) for complex models, SA has been shown

[14] to be ideally suited for stochastic optimization, and in
fact even for non-stochastic models, artificially adding noise
improves the performance of SA; (3) GA can create a large
number of diverse solutions when creating a population at
each generation; and (4) selecting a neighbor solution in SA
doesn’t guarantee a better solution, however each generation
in GA has a higher likelihood of producing better results
than its preceding generation.

Algorithm 2 outlines the procedure of the implemented
hybrid multi-objective GA-SA for stochastic optimization.
Note that the parameters are defined at the top of the
algorithm, some comments are added within the algorithm,
and explanations of the key lines in the algorithm are
provided below. The algorithm takes advantage of utilizing
the multinomial probability mass function [13] where an
objective is randomly selected to become active in each
iteration (i.e. by randomly selecting the value of í in line
12), and the varying sample size [14] where the number of
observations, K gradually increases proportional to the GA
iteration number, l (i.e. line 6).

To better suit the target problem, Algorithm 2 is de-
signed with certain differences to the algorithms used in
the aforementioned literature. Instead of a single objective

Algorithm 2 Hybrid multi-objective GA-SA
Input: Objective 1 & 2 initial temperatures: T1,T2, Cooling ratios:

α1,α2, Initial population: P0, Fitness values for P0: F(P0),
Population Size: NPop, No. of generations: NGen, Max. no. of
observations: Kmax, No. of constant temperature loops: NConst

Output: Pareto-Optimal Solutions (POS)
1: for l = 1 to NGen do
2: for m = 1 to NPop do
3: for nc = 1 to NConst do
4: ḿí← random{1,2, . . . ,NPop}, for í = 1,2, ḿ1 6= ḿ2
5: ρl,m← GenerateChild

(
ρl−1,ḿ1 ∈ Pl−1, ρl−1,ḿ2 ∈ Pl−1

)
6: K← ceil

(
l.Kmax/NGen

)
7: ξ 1

i j,ξ
2
i j, . . . ,ξ

K
i j ← GenerateObservations

(
(Ξz)i j

)
, ∀i, j

8: F(ρl,m)← [ f̄1(ρl,m), f̄2(ρl,m)] %based on Eqs. 4 & 8
where Z = ρl,m

9: if F(ρl,m)� F(ρl−1,ḿ1) or F(ρl,m)� F(ρl−1,ḿ2) then
10: Pl ← Pl ∪ρl,m %add to Pl if ρl,m dominates a parent
11: goto line 18
12: else if random(0,1)< exp

(
−
(

f̄í(ρl,m)− f̄í(ρl−1,ḿí
)
)
/Tí

)
where í = random{1,2} then

13: Pl ← Pl ∪ρl,m
14: goto line 18
15: else if nc = NConst then %if no solution was added to Pl
16: Pl ← Pl ∪ρl−1,ḿí

%accept a parent as a solution
17: end if
18: end for
19: end for
20: [Pl ,POS]← Update-NSGA-II(Pl ,Pl−1,POS)
21: T1← α1T1, T2← α2T2
22: end for
23: return POS
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Fig. 3: (a) Set-up of the experiment, (b) Point cloud of the vehicle, (c) Target representation, (d) A solution selected from
the Pareto front.

GA, a controlled elitist NSGA-II [15], which is a multi-
objective non-dominated sorting genetic algorithm, is used.
An advantage of NSGA-II is that unlike the diversification
strategy used in [12], the diversity in Algorithm 2 is achieved
through NSGA-II itself [15] (i.e. when updating the current
population in line 20). Additionally, since NSGA-II is a
multi-objective optimization algorithm, then Pareto-Optimal
Solutions (POS) can be obtained (line 23) and a solution
can then be conveniently selected for the target application.
However, POS need to be updated (line 20) after each
generation. Termination criteria is also decided by NSGA-II
rather than SA, e.g. if the maximum number of generations,
NGen is reached, or if a threshold on the average change
in POS over certain number of generations is met. As a
result, since SA doesn’t terminate the algorithm, then there is
the convenience of each objective having its own annealing
scheme (line 21), and hence unlike in [12], there is no
need for normalizing the objectives in order to have a single
temperature applied to the equation used in line 12.

Note that in each generation, a population is created by
iteratively generating children (line 5) through crossover and
mutation operators, but only accepting those that dominate
their parents (lines 9 to 11) or satisfy the acceptance criteria
used by SA (lines 12 to 14). If the mutation operator is used
to generate a child, ρl,m then only one of the input parents
(ρl−1,ḿ1 or ρl−1,ḿ2 ) will be used, and consequently only the
used parent will be checked for dominance (i.e. in line 9).

IV. EXPERIMENTS

Six case studies are conducted using a real-world object
(Fig. 3(a)) and a complex simulated object (Fig. 4(a)), and
the purpose is to test and compare the Stochastic-OMBP
for different scenarios and conditions. The AIRs used in the
case studies comprise of a RGBD camera affixed to the end-
effector of a 6DOF Schunk industrial robot mounted on a
mobile Neobotix MP700 base. Computation is carried out
on a PC with 2.8GHz Intel Xeon E5-2680, however since
the code is single-thread then only one core of the CPU
is used. The gamultiob j function from the Matlab R2013a
optimization toolbox, which is based on NSGA-II, was used.
Parameters are set as default, however modifications were
made to accommodate for the hybrid GA-SA approach.

The AIRs are tasked with the grit-blasting operation [3]
and they mimic the cleaning of the external metal surfaces of
a vehicle in a real-world environment (Fig. 3) and a complex

simulated object (Fig. 1). As was mentioned in Section III-
A, exploration and mapping [9] result in a point cloud (Figs.
3(b)) and a target representation (Figs. 3(c)). Further details
are presented in [9].

Certain main parameters are the same for the AIRs:
(1) targets are 0.04m in radius and each has an approx.
30% overlap with a neighboring target, (2) discrete base
placements are generated with 0.35m spacing, (3) the set-up
time (tsetup)i in Eq. 7 is chosen to be a conservative value
of 10mins, (4) δ in Eq. 9 is set to 1m, and (5) in Eq. 2, the
covariance Σi = Σ for all i where Σ is a 2×2 identity matrix
(I2) multiplied by σ2 = 0.01m2. Note that the first joint of the
AIRs which rotates about the z-axis is a full 360◦ revolute
joint, and the base of the AIRs can’t move vertically.

Note that at each base placement, the aim is to find the
reachable targets rather than planning a trajectory for the AIR
which requires separate planner during the task execution
(i.e. after running the Stochastic-OMBP). An independent
lookup table approach [3] was used to generate AIR poses
for each target representing the object.

A. Case Study 1: Two AIRs Grit-blasting Vehicle’s Surfaces

The Stochastic-OMBP is carried out for the real-world
scenario shown in Fig. 3(a). 3270 targets represent the
surfaces of the vehicle as shown in Fig. 3(c). The end-effector
speed, vi in Eq. 7 is set to 0.056m/s for both AIRs. Fig. 3(d)
shows a solution chosen from the Pareto front. The selection
strategy for choosing a solution from the Pareto front is
similar to that explained in [3]. In the figure, 179 discrete
base placements are shown from which 87 are the FBPs. The
red filled circles (base placements) are poor performing in
terms of surface coverage and the blue crossed circles have
high likelihood of collision with the object. The filled black
circles are based on the chosen solution where the notation
Ri:Bj represents the jth base placement of the ith AIR.

Based on the chosen solution, on average, 94.8% of the
accessible targets can be covered with a makespan of 3183
seconds. The difference in completion time of the two AIRs
is less than 3%, meaning that a near-optimal makespan has
been achieved since the AIRs will be expected to complete
the task at approximately the same time. It was found that
a solution with coverage greater than 99% can be achieved
using the model, however this results in a significantly larger
makespan. In the case when a slightly larger threshold for
coverage is needed (e.g. 97%), then at least one AIR will



TABLE I: Multi-objective hybrid GA-SA vs. NSGA-II.

Coverage SD Makespan SD
Hybrid
GA-SA

92.82 % 0.0057 3167 sec 30.79

NSGA-II 89.81 % 0.0189 3176 sec 101.01

need to visit an additional base placement, which results in
the makespan being significantly increased since the value
of (tsetup)i is chosen to be conservative (10mins).

B. Case Study 2: Checking Solution Convergence

To ensure that the hybrid stochastic optimization algorithm
used is robust and suitable for solving the proposed model,
Case Study 1 was repeated 10 times and for each run the
best solution from the Pareto front was selected. For each
of the 10 solutions, the sample average for each of the two
design objective was calculated (i.e. based on Eqs. 4 and 8)
by considering 100 observations. Then, the average of the 10
solutions was calculated. The results are shown in the middle
row of Table I. Each of the 10 solutions is a near-optimal
solution and the low standard deviation (SD) in Table I shows
that the Pareto front converges upon optimal solutions.

C. Case Study 3: Comparing Hybrid GA-SA with NSGA-II

To further demonstrate that the hybrid GA-SA algorithm is
suitable, the proposed mathematical model was solved (for
Case Study 1) using NSGA-II alone (i.e. without incorpo-
rating simulated annealing). The same default settings were
used for the gamultiob j function of the Matlab optimization
toolbox. Once again, similar to the previous case study where
the hybrid GA-SA was used, the optimization was repeated
10 times and the average of the 10 solutions was calculated.
100 observations were considered in each solution. The
results are shown in the Table I. It can be seen that the
solutions obtained using the hybrid GA-SA algorithm are
better than using NSGA-II alone. For both algorithms, on
average, the optimization terminates at 105 GA iterations.
Note that analyzing sensitivity, convergence rate and tuning
optimization parameters is outside the scope of this paper.

D. Case Study 4: Testing for Various Levels of Uncertainties

To examine the extent to which uncertainties in base
placements effects the results, a solution, Z∗ is tested for
different uncertainties, i.e. for different values of Σ (Σ =
I2σ2) in Eq. 2, as shown in Table II. The solution, Z∗

is obtained while not accounting for uncertainties in the
proposed mathematical model. Z∗ has an exceptional perfor-
mance for the scenario discussed in the first case study (94%

TABLE II: Testing for different values of Σ = I2σ2 (for the
scenario where 2 AIRs are grit-blasting a vehicle).

σ2=0.01 σ2=0.02 σ2=0.03
For solution
Z∗

Coverage (%) 91.25 88.60 86.16
Makespan(sec) 3131 3116 3108

Incorporating
uncertainties

Coverage (%) 92.82 91.75 89.66
Makespan(sec) 3167 3107 3105

All base placements
=FBPs

R2:B1

R1:B1

R1:B2

R2:B2

R3:B1

= 
=Solutions

(a) (b)

Fig. 4: (a) 3 AIRs grit-blasting a complex object, (b) A
solution selected from the Pareto front.

coverage, and 3126 seconds makespan), however this is only
true for the condition where there are no uncertainties in base
placements. The solution Z∗ was tested for different levels of
uncertainties and as shown in Table II, as the uncertainties
in base placements of the AIRs increase, the result of Z∗

worsens. Hence, by accounting for uncertainties as per the
proposed Stochastic-OMBP approach, other solutions can be
found that will have better performance, as shown in Table
II. Note that as per previous case studies, the solutions are
calculated based on 100 observations.

E. Case Study 5: Three AIRs with Different Capabilities
Grit-blasting a Complex Object

This case study is constructed to test the Stochastic-OMBP
for a complex structure shown in Fig. 4(a), and for an
increased number of AIRs (3 AIRs) that have different ca-
pabilities in terms of end-effector speed, i.e. v1 = 0.056m/s,
v2 = 0.05m/s, and v3 = 0.04m/s. In this case study, the
acceptable threshold of coverage is set very high (99%). The
object is 3×1×0.8 meters in size. The workspace size of the
AIRs is the same, meaning that the discrete base placements
shown in Fig. 4(b) are the same for all AIRs. 66 of the 135
discrete base placements are the FBPs.

The results are shown in Fig. 4(b), which is based on a
solution chosen from the Pareto front. AIR 3 is assigned only
one base placement so as to minimize the overall completion
time of the task, since this AIR is the slowest AIR. On
average, the completion time of AIRs 1 to 3 is 2060, 2060,
and 1520 seconds, respectively. On average, the AIRs can
cover 99.4% of the 2279 targets representing the surfaces.

To check for convergence, the same procedure as in Case
Study 2 is performed. The average of the 10 solutions is
99.3% for coverage with a SD of 0.0032%, and 2109 seconds
for makespan with a SD of 94 seconds. On average, the
optimization terminates at 104 GA iterations.

F. Case Study 6: Testing for Various Levels of Uncertainties

The same procedure as in Case Study 4 is carried out
for the scenario discussed in Case Study 5. The results
are shown in Table III. Solution Z∗ is optimal with 100%
coverage and a makespan of 2708 seconds, however this is
only true for the condition where there are no uncertainties
in base placements. Solution Z∗ becomes unacceptable in



TABLE III: Testing for different values of Σ = I2σ2 (for the
scenario where 3 AIRs are grit-blasting a complex object).

σ2=0.01 σ2=0.02 σ2=0.03
For solution
Z∗

Coverage (%) 98.90 97.94 97.16
Makespan(sec) 2150 2163 2179

Incorporating
Uncertainties

Coverage (%) 99.26 99.49 99.23
Makespan(sec) 2109 2161 2325

meeting the 99% coverage threshold for all 3 levels of
uncertainties considered. By accounting for uncertainties, as
per the proposed model, acceptable solutions are found for
all 3 levels of uncertainties.

V. DISCUSSION

The case studies have verified the proposed approach,
however there are a number of limitations that require a
brief discussion. For the applications under consideration the
mobile base of the AIRs must be kept static during the task
execution, and when an AIR has completed its task at a
base placement, it moves to its next base placement using
an existing and simple path planner. However, in certain
foreseeable future applications it may be necessary for an
AIR’s base to move while the AIR is executing the task.
This would require additional parameters to be considered
during the planning stage. The computational complexity
of the algorithms has been found to be near linear as the
number of robots and targets increase, although it would be
interesting to verify this more thoroughly in the future.

A number of features were used with the aim of improving
the computation time, e.g. discretization of the search space
and the AIRs’ end-effector path, varying sample size in the
optimization algorithm, and the use of a lookup table to find
AIR poses. However, the main focus of this work has been
on testing the mathematical model for achieving optimal base
placements rather than improving time efficiency. Potential
efficiency improvements include: (1) using surface fitting to
estimate the fitness values for each observation, (2) allowing
the AIRs to start executing the task with a reasonable
solution, and if a better solution is found at a later stage,
then the current solution merges smoothly to the improved
solution at an appropriate time interval, (3) optimizing the
parameters used in the hybrid GA-SA algorithm, and (4)
designing a criteria for assessing the effectiveness of the
search space discretization method.

VI. CONCLUSION

Multiple mobile and autonomous industrial robots can be
deployed to carry out tasks such as grit-blasting and spray
painting. In this paper, an approach was presented with the
aim of maximizing the coverage of objects’ surfaces under
uncertainties of the robots’ base placements. The principal
behind the approach enables the robots to collaborate in
a manner that minimizes the effect of uncertainties on the
performance of the robots, while optimizing the robot team’s
objectives. A mathematical model has been developed to deal
with the stochastic nature of the problem and to achieve
complete coverage. The mathematical model is solved using

a stochastic optimization approach that considers hybrid
multi-objective GA-SA to optimize coverage and makespan.
The presented approach was tested using both simulated
and real-world experiments and verified by means of several
comparative studies using different scenarios and conditions.

As future work, computation time and complexity of the
approach can be studied in detail. Extending the approach to
be applied to more complicated scenarios with varying distri-
butions representing uncertainties in robots’ base placements
(e.g. in underwater environments) can also be investigated.
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