

On Perfect Totient Numbers

Douglas E. Iannucci
University of the Virgin Islands
St Thomas, VI 00802
USA
diannuc@uvi.edu
Deng Moujie
Science and Engineering College
Hainan University
Haikou City 570228
P. R. China
هmj2002chotmail.com
Graeme L. Cohen
University of Technology, Sydney
PO Box 123, Broadway
NSW 2007
Australia
Graeme.Cohen@uts.edu.au

Abstract

Let $n>2$ be a positive integer and let ϕ denote Euler's totient function. Define $\phi^{1}(n)=\phi(n)$ and $\phi^{k}(n)=\phi\left(\phi^{k-1}(n)\right)$ for all integers $k \geq 2$. Define the arithmetic function S by $S(n)=\phi(n)+\phi^{2}(n)+\cdots+\phi^{c}(n)+1$, where $\phi^{c}(n)=2$. We say n is a perfect totient number if $S(n)=n$. We give a list of known perfect totient numbers, and we give sufficient conditions for the existence of further perfect totient numbers.

1 Introduction

Let $n>2$ be a positive integer and let ϕ denote Euler's totient function. Define $\phi^{1}(n)=\phi(n)$ and $\phi^{k}(n)=\phi\left(\phi^{k-1}(n)\right)$ for all integers $k \geq 2$. Shapiro (1) defines the class number $C(n)$ of
n by that integer c such that $\phi^{c}(n)=2$. Define the arithmetic function S by

$$
S(n)=\phi(n)+\phi^{2}(n)+\cdots+\phi^{c}(n)+1
$$

where $c=C(n)$. Note that $\phi^{c+1}(n)=1$. We say that n is a perfect totient number (or PTN for short) if $S(n)=n$.

Since $\phi(n)$ is even if $\phi(n)>1$, it follows that all PTNs are odd. It is easy to show that 3^{k} is a PTN for all positive integers k. In Table 1 the 30 PTNs less than $5 \cdot 10^{9}$ which are not powers of 3 are given.

In addition to the PTNs given in Table 1, nine more were found by applying a result of Venkataraman [5]: If $p=2^{2} 3^{b}+1$ is prime then $3 p$ is a PTN. A search of $b \leq 5000$, beyond those giving entries in Table 1, turned up the following nine values for which $p=2^{2} 3^{b}+1$ is prime (and therefore $3 p$ is a PTN): $b=39,201,249,885,1005,1254,1635,3306,3522$. The PTN which corresponds to $b=3522$ has 1682 digits. Primality was verified with either UBASIC or Mathematica, by applying Lehmer's converse of Fermat's Theorem (Theorem 4.3 in Riesel [3]).

$$
\begin{aligned}
15 & =3 \cdot 5 \\
39 & =3 \cdot 13 \\
111 & =3 \cdot 37 \\
183 & =3 \cdot 61 \\
255 & =3 \cdot 5 \cdot 17 \\
327 & =3 \cdot 109 \\
363 & =3 \cdot 11^{2} \\
471 & =3 \cdot 157 \\
2199 & =3 \cdot 733 \\
3063 & =3 \cdot 1021 \\
4359 & =3 \cdot 1453 \\
4375 & =5^{4} \cdot 7 \\
5571 & =3^{2} \cdot 619 \\
8751 & =3 \cdot 2917 \\
15723 & =3^{2} \cdot 1747
\end{aligned}
$$

$$
36759=3 \cdot 12253
$$

$$
46791=3^{3} \cdot 1733
$$

$$
65535=3 \cdot 5 \cdot 17 \cdot 257
$$

$$
140103=3^{3} \cdot 5189
$$

$$
208191=3 \cdot 29 \cdot 239
$$

$$
441027=3^{2} \cdot 49003
$$

$$
4190263=7 \cdot 11 \cdot 54419
$$

$$
9056583=3^{3} \cdot 335429
$$

$$
57395631=3 \cdot 19131877
$$

$$
172186887=3 \cdot 57395629
$$

$$
236923383=3 \cdot 1427 \cdot 55343
$$

$$
918330183=3^{3} \cdot 34012229
$$

$$
3932935775=5^{2} \cdot 29 \cdot 5424739
$$

$$
4294967295=3 \cdot 5 \cdot 17 \cdot 255 \cdot 65537
$$

$$
4764161215=5 \cdot 11 \cdot 86621113
$$

Table 1: PTNs less than $5 \cdot 10^{9}$ (except powers of 3).
The study of PTNs was initiated by Perez Cacho [2] when he proved that $3 p$, for an odd prime p, is a PTN if and only if $p=4 n+1$, where n is a PTN. Note that Venkataraman's result, mentioned above, follows as a corollary. Mohan and Suryanarayana [1] proved that $3 p$, for an odd prime p, is not a PTN if $p \equiv 3(\bmod 4)$. Thus PTNs of the form $3 p$ have been completely characterized.

Applying Perez Cacho's result gives the following as the only known chains of PTNs, apart from the nine examples of length 2 mentioned earlier: $3 \rightarrow 39 \rightarrow 471,3^{2} \rightarrow 111,15 \rightarrow$
$183 \rightarrow 2199,3^{3} \rightarrow 327,255 \rightarrow 3063 \rightarrow 36759,363 \rightarrow 4359,3^{6} \rightarrow 8751,3^{14} \rightarrow 57395631$, $3^{15} \rightarrow 172186887$.

The purpose of this paper is to investigate PTNs of the form $3^{k} p$, for $k \geq 2$ and p prime.
As an aside we note a curious result: the fact that $\phi(n) \leq n / 2$ when n is even easily implies that $\phi(n)>n / 2$ when n is a PTN.

2 Sufficient Conditions for PTNs

Mohan and Suryanarayana found sufficient conditions on an odd prime p for $3^{2} p$ and $3^{3} p$ to be PTNs, given in their paper as Theorem 5 and Theorem 6. In particular, let be a nonnegative integer. Then, respectively, if $q=2^{5} 3^{b}+1$ and $p=2 \cdot 3^{2} q+1$ are both prime then $3^{2} p$ is a PTN, and if $q=2^{4} 3^{b}+1$ and $p=2^{2} q+1$ are both prime then $3^{3} p$ is a PTN. There is one known example of their Theorem 5, that being the PTN $15723=3^{2} 1747$ which occurs when $b=1$. Their Theorem 6 has three known examples: the PTNs $46791=3^{3} 1733$ $(b=3), 140103=3^{3} 5189(b=4)$, and $918330183=3^{3} \cdot 34012229(b=12)$. The values $b \leq 5000$ (for both theorems) were tested, but no further examples were found.

Let p be an odd prime. We have found four further sufficient conditions on p for $3^{2} p$ to be a PTN (three of which are given in the following Theorem), and two sufficient conditions for $3^{3} p$ to be a PTN.

Theorem 1 Let b be a nonnegative integer. If r, q, and p, as given, are all prime then $3^{2} p$ is a PTN:

1. $r=2^{4} 3^{b}+1, q=2 \cdot 3 r+1$, and $p=2 \cdot 3 q+1$;
2. $r=2 \cdot 3^{b}+1, q=2^{3} r+1$, and $p=2 q+1$;
3. $r=2^{2} 3^{b}+1, q=2^{3} 3 r+1$, and $p=2 q+1$.

Proof: (Part 1) We have $3^{2} p=2^{6} 3^{b+4}+387$ by direct substitution. Also,

$$
\begin{aligned}
S\left(3^{2} p\right) & =2^{2} 3^{2} q+2^{3} 3^{2} r+2^{7} 3^{b+1}+2^{7} 3^{b}+\cdots+2^{7}+2^{6}+\cdots+1 \\
& =2^{7}\left(3^{b+3}+\cdots+3+1\right)+451 \\
& =2^{6} 3^{b+4}+387
\end{aligned}
$$

The proofs of Parts 2 and 3 are similar.
In Part 1, when $b=0$, we have $r=17, q=103$, and $p=619$, giving the PTN 5571. There are no more examples for $b \leq 3000$. In Parts 2 and 3, no examples occur for $b \leq 3000$.

Theorem 2 Let be a nonnegative integer. If $q=2^{3} 3^{b}+1$ and $p=2 q+1$ are both prime, then $3^{2} p$ is a PTN.

Theorem 3 Let b be a nonnegative integer. If $r=2^{2} 3^{b}+1, q=2^{4} r+1$, and $p=2^{2} q+1$ are all prime, then $3^{3} p$ is a PTN.

THEOREM 4 Let b be a nonnegative integer. If $s=2^{5} 3^{b}+1, r=2 \cdot 3^{2} s+1, q=2^{4} 3 r+1$, and $p=2^{2} q+1$ are all prime, then $3^{3} p$ is a PTN.

Direct proofs of Theorems 2-4 may be obtained as above. In Theorem 2, examples do not occur for $b \leq 5000$, and in Theorem 3, examples do not occur for $b \leq 3000$. In Theorem 4, when $b=1$, we have $s=97, r=1747, q=83857$, and $p=335429$, giving the PTN 9056583. There are no more examples for $b \leq 2000$.

3 PTNs of the form $3^{k} p$

In seeking examples of PTNs of the form $3^{k} p, k \geq 2$, we considered primes p and q such that $q=2^{a} 3^{b}+1$ and $p=2^{c} 3^{d} q+1$, where $a, c \geq 1$ and $b, d \geq 0$. Direct substitution gives

$$
3^{k} p=2^{a+c} 3^{b+d+k}+2^{c} 3^{d+k}+3^{k} .
$$

On the other hand, we have

$$
\begin{aligned}
S\left(3^{k} p\right)= & 2^{c+1} 3^{d+k-1} q+2^{a+c+1} 3^{b+d+k-2}+2^{a+c+1} 3^{b+d+k-3}+\cdots \\
& +2^{a+c+1}+\cdots+1 \\
= & 2^{c+1} 3^{d+k-1}+2^{a+c+1}\left(3^{b+d+k-1}+\cdots+3+1\right)+2^{a+c}+\cdots+1 \\
= & 2^{c+1} 3^{d+k-1}+2^{a+c} 3^{b+d+k}+2^{a+c}-1
\end{aligned}
$$

Assuming $3^{k} p$ is a PTN, we equate the above expressions for $3^{k} p$ and $S\left(3^{k} p\right)$ and simplify to obtain the diophantine equation

$$
\begin{equation*}
2^{c}\left(2^{a}-3^{d+k-1}\right)=3^{k}+1 \tag{1}
\end{equation*}
$$

Clearly, $a>1$ and $c=1$ or 2 for k even or odd, respectively.
When $k=2$, the right-hand side of (11) is 10 ; thus $c=1$ and the equation reduces to

$$
\begin{equation*}
2^{a}-3^{d+1}=5 \tag{2}
\end{equation*}
$$

Since $2^{a} \equiv 2(\bmod 3)$, we must have a odd. We have $a=3, d=0$ as one solution, and we have $a=5, d=2$ as another. If $a>5$ then $3^{d+1} \equiv 123(\bmod 128)$, which implies $d+1 \equiv 11$ $(\bmod 32)$. This in turn implies $3^{d+1} \equiv 7(\bmod 17)$, and thus $2^{a} \equiv 7+5 \equiv 12(\bmod 17)$, which is impossible. Thus the only solutions to (2) are given by $a=3, d=0$, and by $a=5$, $d=2$. Since also $c=1$, this statement includes both our Theorem 2 and Theorem 5 of Mohan and Suryanarayana [1].

When $k=3$, (II) reduces to

$$
\begin{equation*}
2^{a}-3^{d+2}=7 \tag{3}
\end{equation*}
$$

Clearly $a \geq 3$. Since $2^{a} \equiv 1(\bmod 3)$ and $3^{d+2} \equiv 1(\bmod 8)$, we must have a and d both even. Write $a=2 \alpha$ and $d=2 \delta$. Then (3) reduces to

$$
\begin{equation*}
\left(2^{\alpha}+3^{\delta+1}\right)\left(2^{\alpha}-3^{\delta+1}\right)=7 . \tag{4}
\end{equation*}
$$

Therefore $2^{\alpha}-3^{\delta+1}=1$ and $2^{\alpha}+3^{\delta+1}=7$, implying $\alpha=2, \delta=0$, which in turn implies $a=4, d=0$ as the only solution. Together with $c=2$, this includes the statement of Theorem 6 in Mohan and Suryanarayana [1].

We show next that there are no solutions of (11) when $k \geq 4$.
Suppose first that k is even, $k \geq 4$. Then $c=1$. Put $x=a+1$ and $y=d+k-1$ so that (1) may be given as

$$
\begin{equation*}
2^{x}-2 \cdot 3^{y}=3^{k}+1 \tag{5}
\end{equation*}
$$

where $x \geq 3, y \geq 3$. Then $2^{x} \equiv 1(\bmod 27)$, from which $x \equiv 0(\bmod 18)$. Since $2^{18} \equiv 1$ $(\bmod 19)$, we then have $-2 \cdot 3^{y} \equiv 3^{k}(\bmod 19)$, so that

$$
\left(\frac{3}{19}\right)^{y}=\left(\frac{-2 \cdot 3^{y}}{19}\right)=\left(\frac{3^{k}}{19}\right)=\left(\frac{3}{19}\right)^{k}
$$

where (\vdots) is a Legendre symbol. Also, from (5) $-2 \cdot 3^{y} \equiv 3^{k}+1 \equiv 2(\bmod 8)$, so y is odd. Then we have a contradiction since k is even, y is odd, and the Legendre symbol $(3 / 19)=-1$.

Suppose next that k is odd, $k \geq 5$. Then $c=2$. Put $x=a+2$ and $y=d+k-1$ so that (1]) becomes

$$
\begin{equation*}
2^{x}-4 \cdot 3^{y}=3^{k}+1 \tag{6}
\end{equation*}
$$

where $x \geq 4, y \geq 4$. There are two main cases to consider.
(a) If $k \equiv 1(\bmod 4)$, then $-4 \cdot 3^{y} \equiv 3^{k}+1 \equiv 4(\bmod 16)$, implying that y is odd. Also, as immediately above, $x \equiv 0(\bmod 18)$. Since $2^{18} \equiv 1(\bmod 7)$, then $-4 \cdot 3^{y} \equiv 3^{k}(\bmod 7)$, so $3^{y+1} \equiv 3^{k}(\bmod 7)$. This is impossible when $y+1$ is even and k is odd.
(b) If $k \equiv 3(\bmod 4)$, then $-4 \cdot 3^{y} \equiv 3^{k}+1 \equiv 12(\bmod 16)$, so y is even. Suppose first that $y \equiv 0(\bmod 4)$. Then $2^{x} \equiv 4 \cdot 3^{y}+3^{k}+1 \equiv 4+2+1 \equiv 2(\bmod 5)$. This implies that x is odd. But, from (6), $2^{x} \equiv 1(\bmod 3)$, so x is even. We have a contradiction.

The most difficult case to eliminate is when $k \equiv 3(\bmod 4)$ and $y \equiv 2(\bmod 4)$. Consideration of (6), modulo 5 , implies $2^{x} \equiv 4(\bmod 5)$, so $x \equiv 2(\bmod 4)$. From (6), we also have $2^{x} \equiv 1(\bmod 27)$, so $x \equiv 0(\bmod 18)$ and then, since $x \equiv 2(\bmod 4)$, we have $x \equiv 18$ $(\bmod 36)$. This then implies that $2^{x} \equiv-1(\bmod 13)$. Consideration of the nine possibilities that arise from (6), modulo 13 , taking $y \equiv 2,6$ or $10(\bmod 12)$ and $k \equiv 3,7$ or $11(\bmod 12)$ shows that in fact $y \equiv 2(\bmod 12)$ and $k \equiv 3(\bmod 12)$. Now consider a further nine cases of (6) , modulo 37 , taking $y \equiv 2,14$ or $26(\bmod 36)$ and $k \equiv 3,15$ or $27(\bmod 36)$. The only possibility is $y \equiv 2(\bmod 36)$ and $k \equiv 27(\bmod 36)$. But in that case, since $2^{18} \equiv 3^{36} \equiv 1$ $(\bmod 73)$, we find that $2^{x}-4 \cdot 3^{y} \equiv 1-4 \cdot 9 \equiv 38(\bmod 73)$ and $3^{k}+1 \equiv 27+1=28$ (mod 73). This contradicts (6).

We give this conclusion as:
Theorem 5 There are no PTNs of the form $3^{k} p, k \geq 4$, where $p=2^{c} 3^{d} q+1$ and $q=2^{a} 3^{b}+1$ are primes with $a, c \geq 1$ and $b, d \geq 0$.

We next considered another possibility: let $a, c, e \geq 1$ and $b, d, f \geq 0$ be integers. Suppose $r=2^{a} 3^{b}+1, q=2^{c} 3^{d} r+1$, and $p=2^{e} 3^{f} q+1$ are all prime, and let $n=3^{k} p$ for $k \geq 2$.

Substitution gives us

$$
n=2^{a+c+e} 3^{b+d+f+k}+2^{c+e} 3^{d+f+k}+2^{e} 3^{f+k}+3^{k},
$$

whereas substitution and calculation gives us

$$
S(n)=2^{c+e+3} 3^{d+f+k-2}+2^{e+1} 3^{f+k-1}+2^{a+c+e} 3^{b+d+f+k}+2^{a+c+e}-1 .
$$

Assuming n is a PTN, we equate the expressions for n and $S(n)$ and simplify to obtain the diophantine equation

$$
\begin{equation*}
2^{e}\left(2^{c}\left(2^{a}-3^{d+f+k-2}\right)-3^{f+k-1}\right)=3^{k}+1 . \tag{7}
\end{equation*}
$$

We found four solutions to (7), with $a, c, d, f \leq 20$ and $k \leq 10$. Notice that $e=1$ or 2 if k is even or odd respectively. Our first solution is given by $a=e=2, c=4, d=f=0$, and $k=3$. Note that this is Theorem 3. The second solution is given by $a=4, c=d=e=f=1$, and $k=2$. This is Part 1 of Theorem 1. The third solution is given by $a=e=1, c=3$, $d=f=0$, and $k=2$ (Part 2 of Theorem 1), and the fourth is given by $a=2, c=3$, $d=e=1, f=0$, and $k=2$ (Part 3 of Theorem 1).

Similarly, we also considered integers $a, c, e, g \geq 1, b, d, f, h \geq 0$, where all of $s=2^{a} 3^{b}+1$, $r=2^{c} 3^{d} s+1, q=2^{e} 3^{f} r+1$, and $p=2^{g} 3^{h} q+1$ are supposed prime. Then, as above, letting $n=3^{k} p$ for $k \geq 3$ and supposing $S(n)=n$ implies the diophantine equation

$$
2^{g}\left(2^{e}\left(2^{c}\left(2^{a}-3^{d+f+h+k-3}\right)-3^{f+h+k-2}\right)-3^{h+k-1}\right)=3^{k}+1 .
$$

We found several solutions, but only one of them produced any PTNs: $a=5, c=f=1$, $d=g=2, e=4, h=0$, and $k=3$. This is Theorem 4, which we have already seen produces one known PTN.

The question remains open as to whether or not any PTNs exist of the form $3^{k} p$ for $k \geq 4$.

References

[1] A. L. Mohan and D. Suryanarayana, "Perfect totient numbers", in: Number Theory (Proc. Third Matscience Conf., Mysore, 1981) Lect. Notes in Math. 938, Springer-Verlag, New York, 1982, pp. 101-105.
[2] L. Perez Cacho, Sobre la suma de indicadores de ordenes sucesivos, Revista Matematica Hispano-Americana 5.3 (1939), 45-50.
[3] H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd edition, Birkhäuser, Boston, 1994.
[4] H. Shapiro, An arithmetic function arising from the ϕ function, Amer. Math. Monthly 50 (1943), 18-30.
[5] T. Venkataraman, Perfect totient number, Math. Student 43 (1975), 178.

2000 Mathematics Subject Classification: Primary 11A25.
Keywords: totient, perfect totient number, class number, diophantine equation.

Received July 23 2003; revised version received October 2 2003. Published in Journal of Integer Sequences, December 182003.

Return to Journal of Integer Sequences home page.

