SUMMATION OF RECIPROCALS WHICH INVOLVE PRODUCTS OF TERMS FROM GENERALIZED FIBONACCI SEQUENCES-PART II

R. S. Melham
Department of Mathematical Sciences, University of Technology
Sydney, PO Box 123, Broadway, NSW 2007 Australia
(Submitted May 1999)

1. INTRODUCTION

We consider the sequence $\left\{W_{n}\right\}$ defined, for all integers n, by

$$
\begin{equation*}
W_{n}=p W_{n-1}+W_{n-2}, W_{0}=a, W_{1}=b . \tag{1.1}
\end{equation*}
$$

Here a, b, and p are real numbers with $p \neq 0$. Write $\Delta=p^{2}+4$. Then it is known [3] that

$$
\begin{equation*}
W_{n}=\frac{A \alpha^{n}-B \beta^{n}}{\alpha-\beta} \tag{1.2}
\end{equation*}
$$

where $\alpha=(p+\sqrt{\Delta}) / 2, \beta=(p-\sqrt{\Delta}) / 2, A=b-a \beta$, and $B=b-a \alpha$. As in [3], we will put $e_{W}=A B=b^{2}-p a b-a^{2}$.

We define a companion sequence $\left\{\bar{W}_{n}\right\}$ of $\left\{W_{n}\right\}$ by

$$
\begin{equation*}
\bar{W}_{n}=A \alpha^{n}+B \beta^{n} . \tag{1.3}
\end{equation*}
$$

Aspects of this sequence have been treated, for example, in [2] and [4]
For $\left(W_{0}, W_{1}\right)=(0,1)$, we write $\left\{W_{n}\right\}=\left\{U_{n}\right\}$ and, for $\left(W_{0}, W_{1}\right)=(2, p)$, we write $\left\{W_{n}\right\}=\left\{V_{n}\right\}$. The sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are generalizations of the Fibonacci and Lucas sequences, respectively. From (1.2) and (1.3) we see that $\bar{U}_{n}=V_{n}$ and $\bar{V}_{n}=\Delta U_{n}$. Thus, it is clear that $e_{U}=1$ and $e_{V}=-\Delta=-(\alpha-\beta)^{2}$.

The purpose of this paper is to investigate the infinite sums

$$
\begin{equation*}
S_{k, m}=\sum_{n=1}^{\infty} \frac{\bar{W}_{k(n+m)}}{W_{k n} W_{k(n+m)} W_{k(n+2 m)}}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k, m}=\sum_{n=1}^{\infty} \frac{1}{W_{k n} W_{k(n+m)} W_{k(n+2 m)} W_{k(n+3 m)}}, \tag{1.5}
\end{equation*}
$$

where k and m are positive integers with k even. Indeed, $S_{k, m}$ and the alternating sum derived from $T_{k, m}$ have been studied in [5], where k and m were assumed to be odd positive integers. Both sums were expressed in terms of an infinite sum, and certain finite sums. Here, however, with the altered constraints on k and m, we express $S_{k, m}$ and $T_{k, m}$ in terms of finite sums only.

Now, if $p>0$, then $\alpha>1$ and $\alpha>|\beta|$, so that

$$
\begin{equation*}
W_{n} \cong \frac{A}{\alpha-\beta} \alpha^{n} \quad \text { and } \quad \bar{W}_{n} \cong A \alpha^{n} . \tag{1.6}
\end{equation*}
$$

On the other hand, if $p<0$, then $\beta<-1$ and $|\beta|>|\alpha|$, and so

$$
\begin{equation*}
W_{n} \cong \frac{-B}{\alpha-\beta} \beta^{n} \quad \text { and } \quad \bar{W}_{n} \cong B \mathcal{P}^{n} \tag{1.7}
\end{equation*}
$$

Hence, assuming that a and b are chosen so that no denominator vanishes, we see from the ratio test that $S_{k, m}$ and $T_{k, m}$ are absolutely convergent.

2. PRELIMINARY RESULTS

We require the following, in which k and m are taken to be integers with k even.

$$
\begin{gather*}
\frac{\beta^{k n}}{W_{k n}}-\frac{\beta^{k(n+m)}}{W_{k(n+m)}}=\frac{A U_{k m}}{W_{k n} W_{k(n+m)}} \tag{2.1}\\
W_{k(n+m)} W_{k(n+2 m)}-W_{k n} W_{k(n+3 m)}=e_{W} U_{k m} U_{2 k m} \tag{2.2}\\
W_{n+k}-W_{n-k}=\bar{W}_{n} U_{k} \tag{2.3}\\
B \beta^{n}=W_{n+1}-\alpha W_{n} \tag{2.4}
\end{gather*}
$$

Identities (2.1) and (2.2) are readily proved with the use of (1.2) and (1.3). Identity (2.3) is a special case of (75) in [2], while (2.4) can be obtained from (3.2) in [1].

We will also make use of the following lemma.
Lemma 1: Let k and m be positive integers with k even. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{W_{k n} W_{k(n+m)}}=\frac{1}{e_{W} U_{k m}}\left[\sum_{n=1}^{m} \frac{W_{k n+1}}{W_{k n}}-m \alpha\right] \tag{2.5}
\end{equation*}
$$

Proof: If we sum both sides of (2.1), we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{W_{k n} W_{k(n+m)}}=\frac{1}{A U_{k m}} \sum_{n=1}^{m} \frac{\beta^{k n}}{W_{k n}}
$$

and (2.5) follows from (2.4) and the fact that $e_{W}=A B$.
In fact, under the hypotheses of Lemma 1, Theorem 2^{\prime} of [1] yields

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{W_{k n} W_{k(n+m)}}=\frac{1}{e_{W} U_{k} U_{k m}}\left[\sum_{n=1}^{m} \frac{W_{k(n+1)}}{W_{k n}}-m \alpha^{k}\right] \tag{2.6}
\end{equation*}
$$

To see that (2.6) reduces to (2.5), we use the identities $\alpha^{k}=U_{k} \alpha+U_{k-1}$ and $W_{k(n+1)}=U_{k} W_{k n+1}+$ $U_{k-1} W_{k n}$. From the first of these, which is easily proved by induction, we obtain the second if we first note that $\alpha^{k n+k}=U_{k} \alpha^{k n+1}+U_{k-1} \alpha^{k n}$, and write down the corresponding result involving β.

3. THE MAIN RESULTS

Our main results can now be given in two theorems.
Theorem 1: Let k and m be positive integers with k even. Then

$$
\begin{equation*}
S_{k, m}=\frac{1}{U_{k m}} \sum_{n=1}^{m} \frac{1}{W_{k n} W_{k(n+m)}} \tag{3.1}
\end{equation*}
$$

Proof: Consider the expression

$$
\begin{equation*}
\frac{\beta^{k n}}{W_{k n}}-\frac{\beta^{k(n+m)}}{W_{k(n+m)}}+\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}} . \tag{3.2}
\end{equation*}
$$

Using (2.1), we can write this as

$$
\begin{equation*}
\frac{A U_{k m}}{W_{k n} W_{k(n+m)}}+\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}} \tag{3.3}
\end{equation*}
$$

or as

$$
\begin{equation*}
\frac{\beta^{k n}}{W_{k n}}-\left[\frac{\beta^{k(n+m)}}{W_{k(n+m)}}-\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}}\right]=\frac{\beta^{k n}}{W_{k n}}-\frac{A U_{k m}}{W_{k(n+m)} W_{k(n+2 m)}} . \tag{3.4}
\end{equation*}
$$

Now

$$
\begin{align*}
\frac{A U_{k m}}{W_{k n} W_{k(n+m)}}-\frac{A U_{k m}}{W_{k(n+m)} W_{k(n+2 m)}} & =\frac{A U_{k m}}{W_{k(n+m)}}\left[\frac{1}{W_{k n}}-\frac{1}{W_{k(n+2 m)}}\right] \\
& =\frac{A U_{k m}}{W_{k(n+m)}}\left[\frac{W_{k(n+2 m)}-W_{k n}}{W_{k n} W_{k(n+2 m)}}\right] \tag{3.5}\\
& =\frac{A U_{k m}^{2} \bar{W}_{k(n+m)}}{W_{k n} W_{k(n+m)} W_{k(n+2 m)}}, \text { by (2.3). }
\end{align*}
$$

But from (3.2)-(3.4), we then have

$$
2\left[\frac{\beta^{k n}}{W_{k n}}-\frac{\beta^{k(n+m)}}{W_{k(n+m)}}+\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}}\right]=\frac{\beta^{k n}}{W_{k n}}+\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}}+\frac{A U_{k m}^{2} \bar{W}_{k(n+m)}}{W_{k n} W_{k(n+m)} W_{k(n+2 m)}},
$$

so that

$$
\begin{equation*}
\frac{A U_{k m}^{2} \bar{W}_{k(n+m)}}{W_{k n} W_{k(n+m)} W_{k(n+2 m)}}=\left[\frac{\beta^{k n}}{W_{k n}}-\frac{\beta^{k(n+m)}}{W_{k(n+m)}}\right]-\left[\frac{\beta^{k(n+m)}}{W_{k(n+m)}}-\frac{\beta^{k(n+2 m)}}{W_{k(n+2 m)}}\right] . \tag{3.6}
\end{equation*}
$$

Finally, summing both sides of (3.6), we obtain

$$
A U_{k m}^{2} S_{k, m}=\sum_{n=1}^{m} \frac{\beta^{k n}}{W_{k n}}-\sum_{n=1}^{m} \frac{\beta^{k(n+m)}}{W_{k(n+m)}},
$$

and (3.1) follows from (2.1).
If we put $W_{n}=F_{n}$ and $W_{n}=L_{n}$, and take $k=2$ and $m=1$, (3.1) becomes, respectively,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{L_{2 n+2}}{F_{2 n} F_{2 n+2} F_{2 n+4}}=\frac{1}{3}, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{F_{2 n+2}}{L_{2 n} L_{2 n+2} L_{2 n+4}}=\frac{1}{105} . \tag{3.8}
\end{equation*}
$$

Theorem 2: Let k and m be positive integers with k even. Then

$$
\begin{equation*}
e_{W} U_{k m} U_{2 k m} T_{k, m}=\frac{1}{e_{W}}\left[\frac{1}{U_{3 k m}} \sum_{n=1}^{3 m} \frac{W_{k n+1}}{W_{k n}}-\frac{1}{U_{k m}} \sum_{n=1}^{m} \frac{W_{k n+1}}{W_{k n}}\right]+\sum_{n=1}^{m} \frac{1}{W_{k n} W_{k(n+m)}}+\frac{m \alpha}{e_{W}}\left[\frac{1}{U_{k m}}-\frac{3}{U_{3 k m}}\right] . \tag{3.9}
\end{equation*}
$$

Proof: From (2.2), we see that

$$
\frac{e_{W} U_{k m} U_{2 k m}}{W_{k n} W_{k(n+m)} W_{k(n+2 m)} W_{k(n+3 m)}}=\frac{1}{W_{k n} W_{k(n+3 m)}}-\frac{1}{W_{k(n+m)} W_{k(n+2 m)}} .
$$

Summing both sides we obtain, with the aid of (2.5),

$$
e_{W} U_{k m} U_{2 k m} T_{k, m}=\frac{1}{e_{W} U_{3 k m}}\left[\sum_{n=1}^{3 m} \frac{W_{k n+1}}{W_{k n}}-3 m \alpha\right]-\left[\frac{1}{e_{W} U_{k m}}\left[\sum_{n=1}^{m} \frac{W_{k n+1}}{W_{k n}}-m \alpha\right]-\sum_{n=1}^{m} \frac{1}{W_{k n} W_{k(n+m)}}\right]
$$

which is (3.9).
If we put $W_{n}=F_{n}$ and $W_{n}=L_{n}$, and take $k=2$ and $m=1$, (3.9) becomes, respectively,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{F_{2 n} F_{2 n+2} F_{2 n+4} F_{2 n+6}}=\frac{60 \sqrt{5}-133}{576}, \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{L_{2 n} L_{2 n+2} L_{2 n+4} L_{2 n+6}}=\frac{9 \sqrt{5}-20}{2160} \tag{3.11}
\end{equation*}
$$

REFERENCES

1. R. André-Jeannin. "Summation of Reciprocals in Certain Second-Order Recurring Sequences." The Fibonacci Quarterly 35.1 (1997):68-74.
2. G. E. Bergum \& V. E. Hoggatt, Jr. "Sums and Products for Recurring Sequences." The Fibonacci Quarterly 13.2 (1975):115-20.
3. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.3 (1965): 161-76.
4. C. T. Long. "Some Binomial Fibonacci Identities." In Applications of Fibonacci Numbers 3: 241-54. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1990.
5. R. S. Melham. "Summation of Reciprocals Which Involve Products of Terms from Generalized Fibonacci Sequences." The Fibonacci Quarterly 38.4 (2000):294-98.

AMS Classification Numbers: 11B39, 11B37, 40A99

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION

TABLE OF CONTENTS

Some Basic Line-Sequential Properties of Polynomial Line-Sequences Jack Y. Lee 194
On the Factorization of Lucas Numbers Wayne L. McDaniel 206
On the Number of Maximal Independent Sets of Vertices In Star-Like Ladders Dragan Stevanović 211
Reciprocal Sums of Second-Order Recurrent Sequences Hong Hu, Zhi-Wei Sun, and Jian-Xin Liu 214
Remarks on the "Greedy Odd" Egyptian Fraction Algorithm Jukka Pihko 221
Using Lucas Sequences to Factor Large Integers Near Group Orders Zhenxiang Zhang 228
Rational Points in Cantor Sets Judit Nagy 238
Diophantine Triplets and the Pell Sequence M.N. Deshpande and Ezra Brown 242
An Algorithm for Determining $R(N)$ from the Subscripts of the Zeckendorf Representation of N David A. Englund 250
An Analysis of n-Riven Numbers H.G. Grundman 253
On the Representation of the Integers as a Difference of Nonconsecutive Triangular Numbers M.A. Nyblom 256
Author and Title Index 263
Summation of Reciprocals Which Involve Products of Terms from Generalized Fibonacci Sequences-Part II R.S. Melham 264
The Filbert Matrix Thomas M. Rtchardson 268
Algorithmic Determination of the Enumerator for Sums of
Three Triangular Numbers John A. Ewell 276
Identities and Congnuences Involving Higher-Order
Euler-Bernoulli Numbers and Polynomials Guodong Liu 279
New Problem Web Site 284
A New Recurrence Formula for Bernoulli Numbers Harunobu Momiyama 285
Brct ${ }^{3}$

PURPOSE ${ }^{\text {T }}$

*. The primary function of THIE FIBONACCI QUARTERLY is to serve as a focal point for widospread interest in the Fibonacci and related numbers, especially with respect to new results, research proposals, challenging problems, and innovative proofs of old ideas.

EDITORIAL POLCY

THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its readers, most of whom are university teachers and students. These articles should be lively and well motivated, with new ideas that develop enthusiasm for number sequences or the exploration of number facts. Illustrations and tables should be wisely used to clarify the ideas of the manuscript. Unanswered questions are encouraged, and a complete list of references is absolutely necessary.

SUBMITTING AN ARTICLE

Articles should be submitted using the format of articles in any current issues of THE FIBONACC? QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly readable, double spaced with wide margins and on only one side of the paper. The full name and address of the author must appear at the beginning of the paper directly under the title. Ilustrations should be carefully: drawn in India ink on separate sheets of bond paper or vellum, approximately twice the size they are to appear in print. Since the Fibonacci Association has adopted $\mathrm{F}_{1}=\mathrm{F}_{2}=1, \mathrm{~F}_{n}+r=\mathrm{F}_{n}+\mathrm{F}_{n}-1, \mathrm{n} \geq 2$ and $\mathrm{L}_{1}=1$, $\mathrm{L}_{2}=3, \mathrm{~L}_{+1}=\mathrm{L}+\mathrm{L}-1, \mathrm{n} \geq 2$ as the standard definitions for The Fibonacci and Lucas sequences, these definitions should not be a part of future papers. However, the notations must be used. One to three complete A.M.S. classification numbers must be given directly after references or on the bottom of the last page. Papers not satisfying all of these criteria will be returned. See the new worldwide web page at:
http://www.sdstate.edw/~wcsc/http/fibhome.html
for additional instructions.
Three copies of the manuscript should be submitted to: CURTIS COOPER, DEPARTMENT OF MATHEMATICSAND COMPUTER SCIENCE, CENTRALMISSOURI STATE UNIVERSTTY, WARRENSBURG, MO 64093-5045.
*. Authors are encouraged to keep a copy of their manuscripts for their own files as protection against loss. The editor will give immediate acknowledgment of all manuscripts received.
The journal will now accept articles via electronic services. However, electronic manuscripts must be submitted using the typesetting mathematical wordprocessor AMS-TeX. Submitting manuscripts using AMS-TeX will speed up the refereeing process. AMS-TeX can be downloaded from the internet via the homepage of the American Mathematical Society.

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION

Address all subscription correspondence, including notification of address change, to: PATTY SOLSAA, SUBSCRIPTIONS MANAGER, THE FIBONACCI ASSOCIATION, P.O. BOX 320, AURORA, SD 57002-0320. E-mail: solsaap@itctel.com.
Requests for reprint permission should be directed to the editor. However, general permission is granted to members of The Fibonacci Association for noncommercial reproduction of a limited quantity of individual articles (in whole or in part) provided complete reference is made to the source.

Annual domestic Fibonacci Association membership dues, which include a subscription to THE FIBONACCI QUARTERLY, are $\$ 40$ for Regular Membership, $\$ 50$ for Library, $\$ 50$ for Sustaining Membership, and $\$ 80$ for Institutional Membership; foreign rates, which are based on international mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBONACCI QUARTERLY is published each February, May, August and November.

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy format from BELL \& HOWELL INFORMATION \& LEARNING, 300 NORTH ZEEB ROAD, P.O. BOX 1346, ANN ARBOR, MI 48106-1346. Reprints can also be purchased from BELL \& HOWELLL at the same address.

דֹie Fibonacci Quarterly

Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) and Br. Alfred Brousseau (1907-1988)

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION DEVOTED TO THE STUDY OF INTEGERS WITH SPECIAL PROPERTIES

EDITOR

PROFESSOR CURTIS COOPER. Department of Mathematics and Computer Science, Central Missouri State University, Warrensburg, MO 64093-5045 e-mail: cnc8851@cmsu2.cmsu.edu

EDITORIAL BOARD

DAVID M. BRESSOUD, Macalester College, St. Paul, MN 55105-1899
JOHN BURKE, Gonzaga University, Spokane, WA 99258-0001
BART GODDARD, East Texas State University, Commerce, TX 75429-3011
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506-0001 HEIKO HARBORTH, Tech. Univ. Carolo Wilhelmina, Braunschweig, Germany A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia STEVE LIGH, Southeastern Louisiana University, Hammond, LA 70402
FLORIAN LUCA, Instituto de Mathematicas de la UNAM, Morelia, Michoacan, Mexico RICHARD MOLLIN, University of Calgary, Calgary T2N 1N4, Alberta, Canada GARY L. MULLEN, The Pennsylvania State University, University Park, PA 16802-6401
HARALD G. NIEDERREITER, National University of Singapore, Singapore 117543, Republic of Singapore SAMIH OBAID, San Jose State University, San Jose, CA 95 192-0103
ANDREAS PHILIPPOU, University of Patras, 26100 Patras, Greece
NEVILLE ROBBINS, San Francisco State University, San Francisco, CA 94132-1722
DONALD W. ROBINSON, Brigham Young University, Provo, UT 84602-6539
LAWRENCE SOMER, Catholic University of America, Washington, D.C. 20064-0001
M.N.S. SWAMY, Concordia University, Montreal H3G IM8, Quebec, Canada

ROBERT F. TICHY, Technical University, Graz, Austria
ANNE LUDINGTON YOUNG, Loyola College in Maryland, Baltimore, MD 21210-2699
BOARD OF DIRECTORS-THE FIBONACCI ASSOCIATION
G.L. ALEXANDERSON, Emeritus

Santa Clara University, Santa Clara, CA 95053-0001
CALVIN T. LONG, Emeritus
Northern Arizona University, Flagstaff, AZ 86011
FRED T. HOWARD, President
Wake Forest University, Winston-Salem, NC 27109
PETER G. ANDERSON, Treasurer
Rochester Institute of Technology, Rochester, NY 14623-5608
GERALD E. BERGUM
South Dakota State University, Brookings, SD 57007-1596
KARL DILCHER
Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
ANDREW GRANVILLE
University of Georgia, Athens, GA 30601-3024
HELEN GRUNDMAN
Bryn Mawr College, Bryn Mawr, PA 19101-2899
MARJORIE JOHNSON, Secretary
665 Fairlane Avenue, Santa Clara, CA 95051
CLARK KIMBERLING
University of Evansville, Evansville, IN 47722-0001
JEFF LAGARIAS
AT\&T Labs-Research, Florham Park, NJ 07932-0971
WILLIAM WEBB. Vice-President
Washington State University, Pullman, WA 99164-3113

