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1. INTRODUCTION

In [2], it was shown that

(1.1)

and, using the same approach, it can be shown that
ec (_1)"-1 <Xl 1L = 1-L------:~
n=1 F" n=1F~+1F,,+2 .

(1.2)

Let m be a positive integer, and define the sums
<Xl 1

S(I, ... ,m)=LF.F. ,..F. ,m~l,
n=1 n n+1 n+m

(1.3)

and
_ <Xl (_1)"-1

T(I, ... , m)- L F.F. ...F. ,m ~ 1.
n=1 n n+1 n+m

(1.4)

In [1] (see equations 20, 21, and 22), Brousseau proved that

5 3TO, 2) = 12-2"S(I,2, 3, 4),

97 40
S(l, 2, 3,4) = 2640 +oT(l, 2, 3, 4,5, 6),

(1.5)

(1.6)

and
589 273

T(I, 2, 3, 4, 5, 6) = 1900080 29 SO, 2, 3, 4, 5,6, 7,8). (1.7)

As an application, he computed the value of the sum r;=1 J.. to twenty-five decimal places ..
Our aim in this paper is to establish explicit formulas that extend (1.5)-(1.7). Specifically, we

obtain formulas

T(I, ... , m) ='1+'2S(I, ... , m, m+ 1, m+2), m ~ 1, (1.8)

and

S(l, ... , m) ='3 +'4T(l, ... , m, m+ 1,m+2), m ~ 1, (1.9)

where the rj are rational numbers that depend on m. Among other things, Carlitz [3] attacked the
same problem with the use of generating functions and Fibonomial coefficients. Here we provide
an alternative and more transparent approach, with the use of only simple identities that involve
the Fibonacci numbers.
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2. PRELIMINARY RESULTS

We require the following results:
<lO I
L-=I'n=I F"F,,+ 2 '

(2.1)

ec ( It-IL - = -I + 2T(l);
n=1F~+2
eo I II FF. F. =-4+S(I,2);
n=J n n+1 n+3

(2.2)

(2.3)

f (-It-J =l.
n=1F"F,,+1F,,+3 4 '

ec I (-It-J (_I)m +F
LFF. F. F. = 2 + F. mS(l,2, ... ,m), m~l;
n=1 n n+J'" n+m-J n+m+J F; ... F ",F'm+J m+J

<lO (-It-I __ (-It (_I)nJ-J+FL 2 + F m T(l,2, ... ,m), m~l;n=JF"F,,+J ... F,,+m-IF n+m+J F; ... FmFm+J m+l

(2.4)

(2.5)

(2.6)

F,,+mF,,+m+2 - F~+m+J
= (-I)III-IFm+IFn+m+JFn+m+2 +[1 + (_I)m Fm+2] Fn+mF,,+m+2 - (-ly-IFm+2;

(2.7)

F,,+mF,,+m+2 + F"F,,+m+J
= (-I)mFm+IF,,+m+JF,,+m+2 +[1 + (-I)m-JFm+2]F,,+mF,,+m+2 + (- It-IFm+2·

(2.8)

Formulas (2.1)-(2.3) can be obtained from [I]. More precisely: (2.1) occurs as (4); (2.2)
follows if we use (3) to evaluate

00 I
I-n=1F"F,,+k

for k = I and k = 2; and (2.3) is the first entry in Table Ill. Formula (2.4) follows from (2.4) in
[4]. Again, turning to [4], we see that identity (3.3) therein and its counterpart for Tyield (2.5)
and (2.6) for m ~ 3. We can verify the validity of (2.5) and (2.6) for m = I and 2 by simply
substituting these values and comparing the outcomes with (2.1)-(2.4). Finally, (2.7) and (2.8)
can be established with the use of the Binet form for F".

3. THE RESULTS

Our results are contained in the theorem that follows.

Theorem: Let m ~ I be an integer. Then

S(I ) - I [(_1)11I-1Fm+2- F;m+3 J
, ... ,m - (I (_I)m-I_L) F. ... F -Fm+JFm+2T(I, ... ,m+2),

+ m+J I m+2

]',(1)- I [(-I)III-IFm+2+ F;m+3 F. F S( )]
, ... ,m - (I + (_I)m-J + Lm+J) F; ... Fm+2 - m+1 m+2 1, ... ,m+2 .

(3.1)

(3.2)

60 [FEB.



ON SOME RECIPROCAL SUMS OF BROUSSEAU: AN ALTERNATIVE APPROACH TO THAT OF CARLITZ

Proof: Let m ~ I be an integer. Then, due to telescoping, we have

(3.3)

Alternatively, with the use of (2.7), this sum can be written as

f F:t+mF:t+m+2 - F:tF:t+m+1
n=1 F:t ... F:t+m+2

= f (-1)m-IFm+IF:t+m+IF:t+m+2 +[1 + (-I)mFm+2lF:t+mF:t+m+2 _(-1)n-1Fm+2
n=1 F:t ... F:t+m+2

(3.4)

= (-I)m-1Fm+IS(l, ... ,m)+[I+(-I)m Fm+2lI F ...F 1 F -Fm+2 T(I, ... , m+2).
n=1 n n+m-I n+m+l

Finally, after using (2.5) to substitute for
ao 1
LFF ..·F F 'n=1 n n+1 n+m-I n+m+1

we equate the right sides of (3.3) and (3.4), and then solve for S(l, ..., m) to obtain (3.1). In the
course of the algebraic manipulations, we make use of the well-known identities L; = F:t-I + F:t+1,
F:t2 +n.= F2n+I' and F:t-lF:t+l - Fn2 = (-It·

Since the proof of (3.2) is similar, we merely give an outline. To begin, we have

I(-It-I( 1 + 1 )= I. (3.5)
n=1 F:t ... F:t+m-IF:t+m+1 F:t+l ... F',.+mF',.+m+2 Fj ... FmF m+2

Next, we write the left side of(3.5) as

I(_1)n-l (F',.+mF',.+m+2 + F',.F',.+m+l).
n=l F',. ... F',.+m+2 (3.6)

Finally, we make use of (2.8) and (2.6), and then solve for T(I, ... , m). This completes the proof
of the theorem. 0

Ifwe substitute m = 4 into (3.1), we obtain (1.6). Likewise, if we substitute m = 2 and m = 6
into (3.2), we obtain (1.5) and (1.7), respectively.

4. CONCLUDING COMMENTS

Our results (3.1) and (3.2) do not produce (1.1) and (1.2), which, as stated in the Introduc-
tion, can be arrived at independently. Interestingly, due to our alternative approach, our main
results are more simply stated than the corresponding results in [3]. See, for example, (5.8) in
[3]. Incidentally, there is a typographical error in the last formula on page 464, where -1 should
be replaced by t·

Finally, we refer the interested reader to the recent paper [5], where Rabinowitz discusses
algorithmic aspects of certain finite reciprocal sums.
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