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 Abstract-- The multiquadric radial basis function method 
(MQ RBF or, simply, MQ) developed recently is a truly 
meshless collocation method with global basis functions. It 
was introduced for solving many 1D and 2D PDEs, including 
linear and nonlinear problems. However, few works are found 
for electromagnetic PDEs, even for 3D problems. This paper 
presents an improved MQ collocation method for 3D 
electromagnetic problems. Numerical results show a 
considerable improvement in accuracy over the traditional 
MQ collocation method, although both methods are direct 
collocation method with exponential convergence. 
 

Index Terms— Multiquadric, meshless method, 3D problems. 

I. INTRODUCTION 

LECTROMAGNETIC problems in 3D domains are 
much more complex than that in lower dimensions due 

to its increment on the computational cost and difficulties in 
constructing the domain discretization. The FEM presents 
characteristics that permit to take into account different kind 
of materials and model geometrically complex domains. 
Howover, a good quality mesh procedure is needed in order 
to get much more accurate results. This procedure must 
correspondingly increase much of the computational cost, 
even for problems needed remeshing in moving geometry or 
shape optimization. 

Meshless methods, developed in the last decade, form a 
new class of numerical techniques of which the main 
objective is to overcome the limitations imposed by 
traditional mesh structured methods. This type of methods 
uses a set of nodes distributed in solving domain instead of 
traditional elements [1]. Meshless techniques are divided into 
two classes: those based on collocations and those based on 
weak forms. The first class is truly meshless method and does 
not require a mesh structure or a numerical integration 
procedure. It is insensitive to spatial dimension, considering 
only a cloud of nodes for the spatial discretization of both the 
solving domain and the boundary [2]. 

Radial basis function (RBF) method, as a truly meshless 
method for approximating the solutions of PDEs, has drawn 
much of the attention of many researchers in science and 
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engineering. In this class of truly RBF meshless methods, the 
multiquadric RBF (MQ) method is ranked the best based on 
its high accuracy, ease of implementation, good visual aspect, 
and low execution time and storage requirements [3,4]. MQ 
method is only dependent on spatial coordinates. This 
characteristic can easily treat 3D electromagnetic problems, 
even for static and quasi-static electromagnetic problems, 
including linear or nonlinear Laplace and Poisson problems. 

In this paper, an improved MQ method is proposed for 3D 
electromagnetic Laplace and Poisson problems. It is achieved 
by adding a set of nodes (which can lie inside or outside of 
the domain) adjacent to the boundary and, correspondingly, 
add an additional set of collocation equations obtained via 
collocation of the PDE on the boundary [5]. Numerical results 
show a considerable improvement in accuracy over the 
traditional MQ method, although both methods are direct 
collocation method with exponential convergence. 

II. MULTIQUADRIC COLLOCATION METHOD 
The multiquadric collocation method belongs to RBF type 

methods. Consider a set of nodes n
N Rxxx ∈,,, 21  (Fig.1).  

 
 
 
 
 
 
 
 
 
 
 

The RBF centered at jx is defined as 

n
jj c Rxxx ∈−≡ ),||(||)( ϕϕ , Nj ,,2,1 =               (1) 

where |||| jxx −  is the Euclidian norm. The RBF-MQ is 

2/12 )||(||)( cjj +−= xxxϕ                             (2) 

where c is a shape parameter, in 2D space, ),( yx=x and in 
3D space, ),,( zyx=x . Let nR⊂Ω , we consider a linear 
elliptic boundary value problem of the form 
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where Ω  is a bounded domain with the boundary Ω∂ , L is a 
linear elliptic partial differential operator, and B is a 
boundary operator. We use N  distinct nodes in and on the 
boundary of Ω , of which },1,{ Ij Nj =x are interior 
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nodes and },1,{ NNj Ij +=x are boundary points. We 

look for the approximate solution )(xhu  to (3) in the form 
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where ],,[ 1 Naa =a  are unknown coefficients to be 
determined, )(xjϕ is MQ RBF. Substituting )(xhu  into (3) 

and using collocation at the N  nodes, we can get the finite 
dimensional problem 
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This corresponds to the system of equations with a 
coefficient matrix, its matrix form and solution are 

[ ] 



=





g
faB

L
)(
)(

ϕ
ϕ                                   (6.a) 

[ ] 









=

−

g
f

B
La

1

)(
)(

ϕ
ϕ                                 (6.b) 

In (6), we have 
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MQ is only dependent on spatial coordinates, namely 
distributed nodes, it has no relationship with any mesh 
procedure, and this characteristic can make its procedures for 
solving PDE problems simple. 

III. IMPROVED MQ COLLOCATION METHOD 

A. Improved truly MQ collocation method 
The improved truly MQ collocation method is achieved by 

adding a set of nodes (which can lie inside or outside of the 
domain) adjacent to the boundary and, correspondingly, adds 
and additional set of collocation equations obtained via 
collocation of the PDE on the boundary. Due to this change, 
the nodes in the domain and on the boundary are regarded as 
interior nodes, and the nodes outside of the domain are 
regarded as boundary nodes.  

We still consider a set of nodes n
N Rxxx ∈,,, 21   for the 

above linear elliptic boundary value problem in (3), in which 
},1,{ Ij Nj =x and },1,{ BIj NNj +=x are interior 

and boundary nodes respectively, },1,{ NNj Bj +=x  are 

nodes adjacent to the boundary (Fig.2). We look for the 
approximate solution )(xhu  to (3)  
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where ],,[ 1 Naa =a  are unknown coefficients to be 
determined, )(xjϕ is MQ RBF. Substituting )(xhu  into (3) 

and using collocation at the N  nodes, we can get  
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This corresponds to the system of equations with a 
coefficient matrix. Its matrix form and solution are the same 
to (6), but the elements of the matrix become to 
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        (10.b) 

 
 
 
 
 
 
 
 
 
 
 
 

B. Improved MQ collocation method with polynomial basis 
In improved MQ collocation method, the approximate 

solution )(~ xuh  to (3) can be rewritten as 

∑∑
==

+=
m

k
kk

N

j
jjh pbaxu

11
)()()(~ xxϕ                     (11) 

Where ],,[ 1 Naa =a and ],,[ 1 mbb =b  are unknown 
coefficients to be determined, )(xjϕ and )(xkp are MQ RBF 
and polynomials respectively. The following constraint 
condition should also be satisfied in order to get unique 
solution: 
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Substituting (11) and (12) into the linear elliptic boundary 
value problem described as (3), we also can get the finite 
dimensional problem as  
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Fig.2 Domain and fictitious boundary nodes diagram 
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Combining (13) with (12), the matrix form of (6) can 
be rewritten as  
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For RBF-MQ in 3D Cartesian coordinate, we have 
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222 )()()( jjjj zzyyxxr −+−+−=            (16.b) 

2/122 )(

)(

crj

jj

+

−
=

∂

∂ ζζ
ζ

ϕ x
 , zyx ,,=ζ                   (16.b) 

 2/322

22
2

)(

32
)(

cr

cr

j

j
j

+

+
=∇ xϕ                                     (16.e) 

IV. NUMERICAL EXAMPLES 
In order to evaluate the effectivity and accuracy of the 

proposed method, a 3D problem with analytical solution is 
analyzed here. Suppose a cubical box (scale size 0.1=L ) 
with perfect conduct wall as shown in Fig.3, its up wall does 
not connect with the other five walls. The boundary condition 
is 1=V to the up wall and 0=V to others. This problem is an 
excellent benchmark because it not only has analytical 
solution but also has strong variation of the electrostatic 
potential in the four up corners. 

To solve this problem with the proposed method, nearly 
uniform nodes are distributed in the solving domain and the 

outer boundary. Fig.4 is a cross section of the nodes 
distribution for the benchmark problem at 6.0=y , there are 
the same number of nodes distributed outside of the boundary 
to those distributed on the real boundary. 

To compare the numerical results between the improved 
MQ collocation method and the MQ collocation method, the 
contour lines solved by above two methods with the same 
shape parameter c are plotted on the xz plane at 6.0=y and 
shown in Fig.5 and Fig.6. It indicates that the improved MQ 
collocation method gets more accuracy over the traditional 
MQ method, even to solutions near to the boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Potential contours at y=0.6 by improved MQ collocation method 

Fig.3 The electrostatic cubical box  

0.1=V

0=Vx
yz

0.1=L

Fig.4 The cross section of the nodes distribution 
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In order to illustrate more qualities of MQ collocation 
method as a truly meshless method, a comparison on the 
accuracy between mesh method, such as Finite Element 
Method (FEM), and the meshless method, as the proposed 
MQ collocation method, is carried on by error analysis with 
equation as follows 
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Where N is the total number of nodes for solution, u~ and 
u are the numerical solution and the analytical solution 
respectively. Fig.7 shows the relative norm error while 
refining the nodes distribution. It indicates that MQ 

collocation methods are much more accurate than FEM 
within the same node scale h , namely, it can get the same 
level accuracy with fewer nodes or bigger scale h , and it is 
more economical than mesh method as FEM. 

Comparison between Fig.5 and Fig.6 shows that the 
improved MQ collocation method gains more accuracy than 
the traditional MQ collocation method with the same shape 
parameter c . However, we do not know which is superior to 
another in the proposed two improved MQ collocation 
method, in which one is a truly MQ collocation method and 
another is MQ collocation method by combining with 
polynomials, and we also do not know the advantages held by 
the improved MQ collocation method over the traditional MQ 
collocation method in details. Here we induce a comparison 
with the relative error limit between these MQ collocation 
methods as  

uuuEr −= ~                                 (18) 
Where u~ and u are the numerical solution and the analytical 
solution respectively. Fig.8 shows this comparative result, 
improved MQ collocation method A represents the truly MQ 
collocation method and improved MQ collocation method B 
the MQ collocation method by combining with polynomials. 
We can see the traditional MQ collocation method will result 
in greater relative error near to the boundary than that resulted 
by the improved MQ collocation method. However, the MQ 
collocation method by combining with polynomials does not 
appears to obviously improve the accuracy for the truly MQ 
collocation method, although it both increase the complexity 
of the system matrix and the solving CPU time. This also 
indicates that the truly MQ collocation method is more 
economical than the MQ collocation method by combining 
with polynomials in the same cases. 

V. CONCLUSIONS 
An improved MQ collocation method has been proposed in 

this paper for 3D electromagnetic problems. The idea of this 
method is to add an additional set of nodes adjacent to the 
boundary and, correspondingly, an additional set of 
collocation equations obtains via collocation of the PED 
boundary. Results showed that the use of this improved MQ 
collocation strategy is more accurate than the traditional MQ 
collocation method and it can obtain the same level accuracy 
with fewer nodes than mesh method, such as FEM. This 
method, as a truly meshless method, has very large potential 
for the solution of much more complex 3D problems. 
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Fig.8 Comparison on relative error limit between MQ methods 

Fig.7 Relative norm error while refining the nodes distribution 
 

Fig.4 Eddy 
current 

distribution of 
the metal column 

at t=0.5s 
x  


	I. INTRODUCTION
	II. Multiquadric Collocation Method
	III. Improved MQ Collocation Method
	A. Improved truly MQ collocation method
	B. Improved MQ collocation method with polynomial basis

	IV. Numerical Examples
	V. CONCLUSIONS
	References

