Structural Parameter Design on Multilayer Conductors of HTS AC Transmission Cable by Means of Particle Swarm Optimization

Shuhong Wang¹, Jie Qiu¹, Zhen Zhao¹, Jian Guo Zhu² and Youguang Guo²
¹Faculty of Electrical Engineering, Xi’an Jiaotong University, China
²Faculty of Engineering, University of Technology, Sydney, Australia

For a High Temperature Superconducting (HTS) cable, a non-uniform AC current distribution among the multi-layer conductors gives rise to increased AC losses. To acquire uniform current distribution among the multilayer conductors, a constrained optimization model is constructed with continuous and discrete variables, such as the winding angle, radius and the winding direction of each layer. Under the constraints of the mechanical properties and critical current of the tape, the Particle Swarm Optimization (PSO) algorithm is employed to address the structural parameter optimization. A uniform current distribution among layers is realized by optimizing the structure parameters. PSO is proved to be a more powerful tool than Genetic Algorithm (GA) for structural parameter optimization.

Key Words: Current distribution, HTS cable, Particle swarm optimization.

1. Introduction

A High Temperature Superconducting (HTS) cable is an interesting part of HTS power application. For the large current transmission, a HTS cable has a multi-layer structure which consists of parallel connected tapes, twisted in each layer. Due to different inductance among layers, the currents flowing in the layers are not the same, as demonstrated by a number of experiments performed on cable conductors [1]. Hence, control of the current distribution among layers is an important issue for design and optimization of a HTS cable conductor because it is related to the current transmission capacity and power loss.

Usually, for an AC HTS cable, the inductive impedance is much greater than the joint resistance. Thus, the current distribution among layers is substantially determined by the inductive impedances of layers. The distribution of inductive impedances is dependent on the structural parameters of a cable conductor, such as the radius, winding pitch and winding direction of a layer, so the main method to obtain a uniform current distribution is to alternate the inductive impedances of layers by adjusting the structural parameters of the cable conductor. The validity of this method has been verified by many experimental results of current distribution.

By using the Particle Swarm Optimization (PSO) algorithm, a uniform current distribution is realized and demonstrated in this paper through adjusting the structure parameters of the conductor layers. Furthermore, comparison between PSO and Genetic Algorithm (GA) is conducted.

2. Calculation of Current Distribution in a Multilayer Conductor HTS Cable

2.1 Circuit model of a multilayer conductor

In long superconducting cables the self and mutual inductances between the layers determine the distribution of AC current [1]. The geometry of a 4-layer HTS cable conductor is illustrated in Fig. 1, and its equivalent circuit is shown in Fig. 2.

Fig. 1. Geometry of a 4-layer HTS cable conductor

Fig. 2. Equivalent circuit model of HTS cable conductor
In Fig. 2, \(r_i \) and \(L_i \) \((i=1,2,\ldots,n)\) are the resistance and self-inductance of the \(i \)-th layer, respectively, \(M_{ij} \) the mutual inductance between the \(i \)-th and \(j \)-th layers, and \(n \) the total number of layers.

2.2 Inductances of layers

According to [1], the self and mutual inductances per unit length can be obtained by

\[
L_i = \frac{\mu_0}{4\pi} \tan(\beta_i) + 2\ln\left(\frac{D}{R_i}\right) \tag{1}
\]

\[
M_{ij} = \frac{\mu_0}{2\pi} \frac{a_i a_j}{R_i + R_j} \tan(\beta_i) \tan(\beta_j) + \ln\left(\frac{D}{R_i}\right) \quad i \neq j \tag{2}
\]

where \(R_i \) and \(R_j \) \((R_i < R_j)\) are the radii of the \(i \)-th and \(j \)-th layers, respectively, \(\beta_i \) and \(\beta_j \) are the winding angles of the \(i \)-th and \(j \)-th layers, \(a_i \) and \(a_j \) are constants \((-1 \text{ or } +1)\) taking into account the relative winding directions of the \(i \)-th and \(j \)-th layers, and \(D \) the distance between the cable and the return lead.

2.3 Resistance of layers

The resistance of layers consists of two components, namely, the joint resistance \(r_{ij} \) and the equivalent non-linear resistance \(r_{ij}^e \). \(r_{ij}^e \) is constant while \(r_{ij} \) is determined by the V-I characteristics of the conductor layer.

2.4 Circuit matrix equation

For the low-current region, the effect of \(r_{ij}^e \) can be neglected and the circuit matrix equation can be simplified as a frequency-domain matrix equation.%

\[
\begin{bmatrix}
L_{ij} + \frac{r_{ij}}{j\omega} & M_{ij} & & & -1 \frac{1}{j\omega} \\
M_{ij} & L_{ij} + \frac{r_{ij}}{j\omega} & \cdots & M_{ij} & -1 \frac{1}{j\omega} \\
& & \ddots & & \vdots \\
M_{ij} & \cdots & \cdots & L_{ij} + \frac{r_{ij}}{j\omega} & -1 \frac{1}{j\omega} \\
-1 \frac{1}{j\omega} & \cdots & \cdots & -1 \frac{1}{j\omega} & \bar{U}
\end{bmatrix}
\begin{bmatrix}
i_1 \\
i_2 \\
\vdots \\
i_n \\
0
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
\]

where \(\bar{U} \) is the voltage drop across each layer, and \(\omega \) angular frequency.

When the current is increased to the vicinity of the critical current of the superconducting tape, considering the nonlinear resistance \(r_{ij}^e \), a time-domain nonlinear circuit matrix equation should be deduced and applied.

3. Optimization Model

3.1 Objective function

According to (1) and (2), the self- and mutual-inductance of a conductor layer are correlated with the winding angle \(\beta \), the winding direction \(\alpha \) and the radius \(R \) of the layer. These parameters are chosen as the design variables, which can be expressed as a vector:

\[
\mathbf{x} = [\beta_1, \alpha_1, R_1, \beta_2, \alpha_2, R_2, \ldots, \beta_n, \alpha_n, R_n]
\]

Then the objective function of optimization is derived to find a solution for uniform current distribution in the HTS cable conductor layers.

\[
\min f(\mathbf{x}) = \sum_{i=1}^{n} \left(I_{iR}(\mathbf{x}) - I_{iR}(\mathbf{x}) \right) + \sum_{i=1}^{n} \left(I_{iX}(\mathbf{x}) - I_{iX}(\mathbf{x}) \right) \tag{4}
\]

where \(I_{iR}(\mathbf{x}) \) and \(I_{iX}(\mathbf{x}) \) are the real and imaginary components of current \(I_{i}(\mathbf{x}) \) in the \(i \)-th layer, which is obtained from (3). The current distribution among layers should become more uniform when \(f(\mathbf{x}) \) approaches the minimum.

3.2 Constraints

A. Constraints of the mechanical properties

Considering the mechanical properties of a tape, the optimum program should satisfy the following two conditions: the tensile strain of tape must be less than the critical tensile strain; and the bending strain must be less than the critical bending strain [2].

\[
\begin{align*}
\beta_i - \arcsin\left(\frac{2e_{cb}}{t}\right)^{1/2} & \leq 0 \\
\beta_i - \arcsin\left(\frac{e_{cb} + e_{ct} - e_{ct}}{e_{ct}}\right)^{1/2} & \geq 0 \\
\end{align*}
\tag{5}
\]

where \(e_{cb} \) and \(e_{ct} \) are the critical bending and tensile strains of a tape at 77 K, \(e_p \) is the winding pitch thermal shrinkage, \(e_{ct} \) the thermal shrinkage of tape, \(e_r \) the radial thermal shrinkage of the former, and \(t \) the thickness of tape.

B. Constraints of radii

\[
\begin{align*}
R_i - \frac{D_{max}}{2} - \left(t_i + \frac{t_f}{2}\right) & \geq 0 \\
R_i - \frac{D_{min}}{2} - \left(t_i + t_f\right) & \geq 0 \\
\end{align*}
\tag{6}
\]

where \(D_{min} \) and \(D_{max} \) are used to limit the inner and outer diameters of the cable conductors, and \(t_f \) is the thickness of the dielectric between layers.

C. Constraints of critical current

These constraints are used to restrict the currents in layers below their critical currents.

\[
I_i < N_i I_{k,k,k,k} \quad i = 1, 2, \ldots, n \tag{7}
\]

where \(N_i \) is the number of tapes wound on the \(i \)-th layer, \(I_i \) the mean of critical currents of HTS tapes in the cable, \(k_1, k_2, \) and \(k_3 \) the deterioration factors of the
critical current considering the magnetic field and temperature, manufacturing, and thermal cycles, respectively, and k_i the safety margin of design. k_i can be derived from the interpolation surface of critical current - applied magnetic field - applied temperature.

4. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by Kennedy and Eberhart in 1995 [3]. PSO was inspired by the social behavior of birds flocking and fish schooling. Like other evolutionary computation (EC) techniques, PSO is also initialized with a population of random solution and searches for the optima by updating generations. However, PSO does not seem to have an analogous mechanism (e.g. crossover and mutation operator) in traditional EC algorithm. In PSO, each potential solution called a ‘particle’, flies in the problem search hyperspace looking for the optimal position. As time passes, a particle adjusts its position according to its own ‘experience’, as well as the experience of neighboring particles.

Suppose that the search space is D-dimensional, and then each particle is treated as a point in a D-dimensional space. The i-th particle of the swarm is represented as a D-dimensional vector, $X_i(t) = (X_{i,1}(t), X_{i,2}(t), \ldots, X_{i,D}(t))$. The velocity (position change) of this particle can be represented by another D-dimensional vector, $V_i(t) = (V_{i,1}(t), V_{i,2}(t), \ldots, V_{i,D}(t))$. The i-th particle also maintains a memory of its previous best position, $p_{best, i} = (p_{best, i,1}, p_{best, i,2}, \ldots, p_{best, i,D})$.

At each iterative step, the g_{best} is designated as the index of the best particle in the swarm. Subsequently, the swarm is manipulated according to the following two equations [4]:

$$V_{i,d}(t) = wV_{i,d}(t-1) + c_1r_1(p_{best, i,d} - X_{i,d}(t-1))/\Delta t + c_2r_2(g_{best, i,d} - X_{i,d}(t-1))/\Delta t$$

$$X_{i,d}(t) = X_{i,d}(t-1) + V_{i,d}(t) \times \Delta t$$

where Δt is the iteration increment, and w is the inertia weight.

Equation (8) is used to update the particle’s new velocity according to its previous velocity and to the distances of its current position from both its own best historical position and its neighbors’ best position at every iterative step. Then the particle flies toward a new position according to (9).

5. Structural Parameters Optimization Using PSO

The structural optimum design of a HTS cable is that a series of advanced parameters can be obtained within kinds of constraints, and thus the current distribution becomes as uniform as possible with these parameters. Here, a 4-layer superconducting cable conductor is optimized by PSO. The parameters are given as: $c_1=2$, $c_2=2$. The adaptive inertia weight w is defined as

$$w = (w_{start} - w_{end}) \frac{g_{sec}}{g_{sec} + \text{end}} + w_{end}$$

where the constant C is chosen as 0.899, and g_{sec} is the current number of evolution iteration. The start value of inertia $w_{start}=1.43$, and the end value $w_{end}=0.1$. The inertia weight decreases from w_{start} to w_{end}. It can facilitate an initial global exploration and dynamically investigate the refined solution.

Table 1 shows the structural parameters before and after optimization.

<table>
<thead>
<tr>
<th>Layer</th>
<th>a_i^0</th>
<th>b_i^0</th>
<th>R_i^0 (mm)</th>
<th>a_i^*</th>
<th>b_i^*</th>
<th>R_i^* (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>27.0°</td>
<td>20.50</td>
<td>+1</td>
<td>43.2°</td>
<td>20.00</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>27.0°</td>
<td>21.00</td>
<td>+1</td>
<td>24.6°</td>
<td>20.35</td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>27.0°</td>
<td>21.50</td>
<td>-1</td>
<td>26.8°</td>
<td>21.34</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>27.0°</td>
<td>22.00</td>
<td>-1</td>
<td>43.0°</td>
<td>21.87</td>
</tr>
</tbody>
</table>

A represents before optimization, * represents after optimization.

Fig. 3 and Fig. 4 are obtained based on the data in Table 1. From these figures, it can be seen that the currents before optimization differ greatly in the amplitude and phase angle, but the optimized currents become uniform. Especially, as the peak of total cable current is pushed up to 1000 A, the equivalent resistances of layer increase as the outer layer current increases to the vicinity of the critical current, the waveforms of currents before optimization are distorted. However, the waveforms of the optimized currents remain sinusoidal.

Calculating the AC losses with the method described in [5], the AC losses before optimization are greater than the losses after optimization. Fig. 5 illustrates the comparison of AC losses.
6. Comparison between PSO and GA

The following conditions are assumed to compare the performance of PSO and GA. In one evolution operating, the maximum number of generation is set as 5000. And a total of 50 evolutions are conducted for populations of 10, 20 and 40 particles respectively. The fitness function, \(F_{\text{norm}} \), is defined as the average of the best fitness function value of 50 evolutions in the same generation. The performance results are shown in Fig. 6, plotting \(F_{\text{norm}} \) against the generation. With reference to the results from Fig. 6, GA performs better than PSO when the population is 10. As the population size reaches 20 and 40, GA might lead a premature convergence to a sub-optimal point due to selection and crossover of GA. PSO may converge to a global optimal result.

Table 2 shows the elapsed times of PSO and GA under the same conditions as above. The determination of each particle is very simple than that of an individual of GA. Hence, the PSO computational time is shorter than that of GA.

References

Received: 20 July 2006/Revised: 31 January 2007
Contents

Special Issue of the Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM06)

· Preface
 Jianguo Zhu, Junwei Lu, Sotoshi Yamada
 217 (1)

· Analysis of Primed Circuit Boards based on Electromagnetic Topology
 Yoon-Mi Park, Jung-Yub Lee, Sehoon Hwang, Hyun-Kyo Jung, Young-Seek Chung, Hyeong-Seok Kim
 218 (2)

· Measurement of Deterioration of Magnetic Properties due to Shrink Fitting
 Norio Takahashi, Daisuke Miyagi, Ryouhei Usui, Masayoshi Nakaoka, Masanori Nakano
 222 (6)

· An Improved Evolutionary Algorithm Applied to Multi-Objective Inverse Problems
 Man Nie, Hui Zhang, Haixia Xia, Shiyou Yang, Junwei Lu, Guangzheng Ni
 226 (10)

· 3-D Finite Element Loss Analysis of Squirrel-Cage Induction Motor Using SMC
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Goran Nord, Koki Kanno
 230 (14)

· Magnetic Sensing Device Based on a Side-polished Long Period Fiber Grating Coated with Thin Iron Film
 Wen-Fung Liu, Chuen-Lin Tien, Hong-Wei Chen, Shan-Wen Lin, Chang-Chou Hwang
 234 (1)

· Magnetic Interference in Multi-Pickup Monorail Inductively Coupled Power Transfer Systems
 D. Spackman, D. Kacprzak, J. Sykulski
 238 (2)

· Surface Defects Evaluation by 2-Axis MFL Testing
 Masataka Abe, Eiji Matsumoto, Shiro Biwa
 242 (2)

· Numerical Simulation of Cluster Formation in Vibration Shear Flows of ER Suspensions
 Yasushi Ido, Hisao Fukami
 246 (3)

· Dynamic Analysis and Experiment on Magnetic Fluid Acceleration Sensor
 Wenrong Yang, Qingxin Yang, Changzai Fan, Xiaoguang Yang, Weili Yan
 250 (3)

· Computation of Incremental Inductances for NonLinear Dynamic Analysis of a PM Claw Pole SMC Motor
 Youguang Guo, Jianguo Zhu, Haiyan Lu, Jianxun Jin
 254 (6)
Development of a Magnetic Separator for Biomaterials Labelled by the Magnetic Beads

A New Scheme of Determining Effective Constitutive Parameters for Composite Media

Development of High-Density Electrical Machines

Magnetization and Magnetostriction Curves of Fe-Ni Alloys under Stress

The Impact of Bias Voltage on the Performance of a P.I.N. Diode Loaded Smart Antenna

Utilization of SV-GMR Sensor for Detection Conductive Microbead with Helmholtz Coil Exciter Based on Eddy Current Testing

Analytical Model and Reduction Methods for Cogging Torque in Permanent Magnet Brushless DC Motor through Various Harmonic Controlling Methods

Development of Rope Tester for Detection of Wire Damage

Structural Parameter Design on Multilayer Conductors of HTS AC Transmission Cable by Means of Particle Swarm Optimization

3-D Magnetic Field Analysis of PM Motors Taking into Account Demagnetization by Temperature

Smart Mobile Terminal Antennas For Wireless Communications and Computing

High-Speed PCB Inspection System Based on ECT Technique With Multi SV-GMR Sensor

Fiber Bragg Grating Coated with Thin Ferric Film for Magnetic Field Sensing

Analysis and Design of Bearingless Motor with Rectifier Circuit Coil Rotor

Structural and Saturation Saliencies in Permanent Magnet Synchronous Motors
Review Papers

- Cooking Appliances Using High-Frequency Heating
 Hideyuki KIMURA 318 (102)

Papers

- Analytical Model of Magnetic Reluctance in Plane Solid Iron Cores
 Satoru FUKATA 325 (109)

- An H_{∞} DIA Control with Periodic Disturbance and Its Evaluation on Rotational Property by Magnetic Bearings
 Hiroki SETO, Toru NAMERIKAWA 333 (117)

- Numerical Simulations of Production Process of MAGIC Abrasive (Effect of Volume Fraction of Spherical Particles on Distribution of Particles)
 Yasushi IDO, Takafumi INAGAKI, Noritsugu UMEHARA 341 (125)

Conference Reports

Conference Announcements

Academic Calendar

Report of the 17th General Assembly of JSAEM

Information for Authors