Computation of Incremental Inductances for Nonlinear Dynamic Analysis of a PM Claw Pole SMC Motor

Youguang Guo¹, Jianguo Zhu¹, Haiyan Lu² and Jianxun Jin³
¹Faculty of Engineering, University of Technology, Sydney, Australia
²Faculty of Information Engineering, University of Technology, Sydney, Australia
³Center of Applied Superconductivity, University of Electronic Science and Technology of China, China

Proper determination of winding inductances is a key factor for design and performance simulation of electrical machines. This paper presents the computation of the incremental inductances of a three-phase three-stack permanent magnet (PM) claw pole motor with soft magnetic composite (SMC) stator by using magnetic field finite element analysis in combination with energy and current perturbation technique. The magnetic saliencies due to both the motor's structure and magnetic saturation are included in the inductance profile. The theoretical computations are validated by the measurements on the motor prototype.

Key Words: Incremental inductance, Soft magnetic composite (SMC) material, Permanent magnet (PM) claw pole motor, Finite element analysis, Nonlinear dynamic performance.

1. Introduction

Effective and accurate determination of winding inductances is a crucial factor for design and optimization of high performance motors. This is especially true for newly-developed electrical machines with new materials and new topologies because the conventional approaches, based on equivalent magnetic circuit, empirical formulae or previous experiences, cannot provide correct computation. An example is a three-phase three-stack permanent magnet (PM) claw motor employing soft magnetic composite (SMC) stator [1]. By taking advantage of the unique properties of SMC [2], such as the magnetic isotropy, the magnet was chosen both axially and circumferentially longer than the claw pole to increase the specific torque. The magnetic flux in the motor path is really complex and three-dimensional (3D).

In such a 3D flux machine, numerical techniques such as finite element analysis (FEA) should be performed for proper determination of the magnetic field distribution. This paper presents the computation of winding inductances of the PM claw pole SMC motor by employing 3D magnetic field FEA in combination with a modified incremental energy method (MIEM) [3].

Secant (apparent) inductance, which is defined as the ratio of the winding flux linkage over winding current, is usually employed. However, this is not correct when the nonlinear characteristic of the magnetic core is considered in dynamic performance analysis [4]. For nonlinear analysis, the incremental (differential) inductances should be used. In this paper, the incremental inductance profile of the claw pole motor is computed by using the MIEM. The effects of both structural and magnetic saturation saliencies are included in the inductance profile, enabling the nonlinear dynamic performance analysis of the motor [5].

2. Incremental Inductances

2.1 Definition of incremental inductance

Generally, the dynamic performance of a motor can be analyzed by the following equations:

$$u_j = R_j i_j + \frac{d\lambda_j}{dt}, j=1,2,...,m$$

where m is the number of phases, u_j, R_j, i_j and λ_j are the applied voltage, resistance, current and flux linkage of the j-th phase winding, respectively. Due to the magnetic saturation, the flux linkage, contributed by both the stator currents and PMs, varies with stator currents and rotor position θ as

$$\lambda_j = \lambda_j(i_{PM}, i_1, i_2, ..., i_j, ..., i_m, \theta)$$
where i_{PM} is the equivalent current of PMs, which can be considered as a constant. By substituting (2) into (1), the voltage equation of the j-th phase winding can be rewritten using the chain rule as:

$$u_j = R_i j + \sum_{k=1}^{m} \frac{\partial \lambda_k}{\partial i_j} \frac{di_k}{dt} + \frac{\partial \lambda_k}{\partial \theta} \frac{d\theta}{dt}$$

$$= R_i j + \sum_{k=1}^{m} L_{jk} \frac{di_k}{dt} + e_j$$

where $L_{jk}=\frac{\partial \lambda_k}{\partial i_j}$ is the incremental inductance, and e_j is the rotational electromotive force (emf).

When the magnetic circuit is saturated, the motor performance should be analyzed with the incremental inductance, along the tangential line at the operating point of the flux-linkage versus current curve. The secant inductance, i.e. the slope of the linearized characteristic through the origin and the operating point, is not appropriate when dealing with an electrical machine with non-linear magnetic properties.

2.2 Modified incremental energy method

In a PM motor, the magnetic field is dominated by the field produced by the PMs. Since the field and energy generated by the winding currents are considerably smaller than those generated by PMs, large computational errors may happen during the numerical field solution. This may be avoided by using the MIEM [3], which is developed based on the energy/current perturbation method [6]. Firstly, a nonlinear magnetic field FEA is conducted at the motor's normal operating state to find out the magnetic property of each element. The differential permeability of the elements can then be obtained according to the known B-H curve of the nonlinear magnetic material. Next, the motor is reconfigured to a linear system by assuming that each element is made of a linear material with the previously determined permeability and that the PM remanence is set to zero. Finally, a linear magnetic field FEA is performed to acquire the magnetic co-energy, W_c, at a specified winding current, i. The incremental self-inductance can then be calculated by

$$L_{inc} = \frac{2W_c}{i^2}$$

To consider the effect of magnetic saturation caused by both PMs and stator current, the first step of MIEM is to perform a nonlinear analysis with both the excitations.

3. Computation of Incremental Inductances of a PM Claw Pole SMC Motor

3.1 Motor prototype

To investigate the application potential of SMC in electrical machines, a three-phase PM claw pole SMC motor has been developed by the authors [1]. The three phases are stacked axially with a circumferential shift of 120° electrical to each other. The major dimensions and parameters include: 80 mm for the diameter of the inside stator, 1 mm for the main airgap length, 31 mm for the axial length of each stack, 75 turns for each winding, and 20 poles.

Considering the structural symmetry and the negligible magnetic coupling between stacks, only one pole region of one stack is required for the FEA solution, as illustrated in Fig. 1, where A is the SMC stator core, B the rotor PMs, C the mild steel rotor yoke, and D the steel shaft. Each phase has a single coil winding (not shown for clarity) around an SMC core, which is molded in two halves.

![Fig. 1. Motor structure and FEA solution region](image-url)

3.2 Computation of incremental inductances

Due to the variations of structure and magnetic saturation (the latter is mainly caused by rotor PMs), the winding inductance is a function of rotor position. At the normal operating state, the total winding flux is composed of the rotor flux produced by the PMs, as well as the stator flux produced by the stator current. Due to the stator flux, the magnetic core becomes more saturated at some parts and less saturated at other parts. Therefore, the winding inductance computation should also take into account the effect of the stator current.

When the motor operates in the steady state synchronous state, the stator flux, or the resulting flux of both the stator and rotor fluxes, leads or lags the rotor flux by a fixed spatial angle. Referred to the rotor, the stator current can be seen as a DC at a specified load. Therefore, the inductance pattern
versus various stator currents and rotor positions are very useful information for design and performance analysis of the motor under various control schemes. Here, the inductance is computed with various DC offsets, which emulate the effect of the stator current. The inductance pattern can then be used as a look-up table for simulating the motor performance under a particular control scheme and load [5].

Fig. 2 illustrates the computed self incremental inductances of one phase winding considering both structural and magnetic saturation saliencies, with the zero rotor position where the rotor PMs line up with the stator claw poles, as shown in Fig. 1. The curves with DC bias reflect the effect of the stator flux. The mutual inductances between phases can be considered as zero due to the almost independent magnetic circuit of one phase.

\[L_i = \sqrt{\frac{V_i}{I_i}^2 - R_i^2} + (2\pi f) \]

where \(f \) is the frequency, and \(R_i \) is the resistance of the phase winding. The inductance is measured with rotor positions from 0° to 360° electrical at 15° intervals, and bias current levels of 0 A, 2 A and 4 A, as shown in Fig. 4. For comparison, the computed inductances are re-plotted in the figure, revealing that they basically agree with the experimental ones. The error may be caused by the measuring current, which causes a small loop in the vicinity of the saturation point in the B-H curve. Another possible reason is the eddy current caused by the measuring current. Although the particles of SMC materials have been coated by a thin electrical insulation, the eddy current might be non-negligible due to the possible insulation damage during the high-pressure compaction process. Ideally, the measuring current should be as close to zero as possible but the reading error could be large.

A DC current is input into one phase winding for simulating the effect of stator flux and a small AC signal is superimposed upon the same phase for measuring the inductance. The AC voltage across the two terminals, \(V_i \), and the AC current following the winding, \(I_i \), are measured. The phase winding inductance can be calculated by

4. Dynamic Performance Analysis

The inductance profile, in combination with other key parameters such as back emf, cogging torque and core loss [1], the phase variable model can be built for the dynamic performance analysis of the PM motor under a brushless DC control scheme [8], [9], including (3) and the motion equations below:
\[T_{em} = e_j f_j + e_h b_h + e_k k \]

\[\frac{d\omega}{dt} = \frac{T_{em} - T_l - T_{cog} - \delta \omega}{J} \]

\[\frac{d\theta}{dt} = \omega \]

where \(T_{em} \) is the electromagnetic torque, \(\omega \) the rotor angular speed, \(T_l \) the load torque, \(T_{cog} \) the cogging torque, \(\delta \) the friction coefficient, and \(J \) the total inertia of the rotating parts.

As an example, simulation is conducted to investigate if the motor can reach the required steady-state speed of 1800 rpm with the rated torque of 2.65 Nm, when the applied voltage of the inverter is 165 VDC, and the simulated results are shown in Figs. 5 and 6. It is found that the performance requirements can be met.

The inductance, in combination with other key parameters, enables the dynamic performance of the PM motor under different control schemes. Furthermore, the inductance pattern, which can be obtained by computation and/or experiment, can provide a method to determine the initial rotor position of surface mounted PM motors under sensorless control schemes.

5. Conclusion

This paper presents the computation of the incremental inductances of a PM claw pole SMC motor. To consider the effect of both structural and magnetic saturation saliencies, the inductance is computed with different rotor positions and bias DC currents. The computation of inductances has been verified by the experiments on the motor prototype.

The inductance, in combination with other key parameters, enables the dynamic performance of the PM motor under different control schemes. Furthermore, the inductance pattern, which can be obtained by computation and/or experiment, can provide a method to determine the initial rotor position of surface mounted PM motors under sensorless control schemes.

References

Received: 20 July 2006/Revised: 31 January 2007
Volume 15 Number 3 September 2007
Contents

Special Issue of the Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM06)

· Preface
 Jianguo Zhu, Junwei Lu, Sotoshi Yamada
 Yoon-Mi Park, Jung-Yub Lee, Sehoon Hwang, Hyun-Kyo Jung, Young-Seek Chung, Hyeong-Seok Kim
 Norio Takahashi, Daisuke Miyagi, Ryouhei Usui, Masayoshi Nakaoka, Masanori Nakano
 Man Nie, Hui Zhang, Haixia Xia, Shiyou Yang, Junwei Lu, Guanzheng Ni
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Göran Nord, Koki Kanno

217

· Analysis of Printed Circuit Boards based on Electromagnetic Topology
 Yoon-Mi Park, Jung-Yub Lee, Sehoon Hwang, Hyun-Kyo Jung, Young-Seek Chung, Hyeong-Seok Kim
 Norio Takahashi, Daisuke Miyagi, Ryouhei Usui, Masayoshi Nakaoka, Masanori Nakano
 Man Nie, Hui Zhang, Haixia Xia, Shiyou Yang, Junwei Lu, Guanzheng Ni
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Göran Nord, Koki Kanno

218

· Measurement of Deterioration of Magnetic Properties due to Shrink Fitting
 Norio Takahashi, Daisuke Miyagi, Ryouhei Usui, Masayoshi Nakaoka, Masanori Nakano
 Man Nie, Hui Zhang, Haixia Xia, Shiyou Yang, Junwei Lu, Guanzheng Ni
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Göran Nord, Koki Kanno

222

· An Improved Evolutionary Algorithm Applied to Multi-Objective Inverse Problems
 Hui Zhang, Haixia Xia, Shiyou Yang, Junwei Lu, Guanzheng Ni
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Göran Nord, Koki Kanno

226

· 3-D Finite Element Loss Analysis of Squirrel-Cage Induction Motor Using SMC
 Tatsuya Masuda, Yoshihiro Kawase, Tadashi Yamaguchi, Toshinori Okouchi, Hiroshi Ohno, Göran Nord, Koki Kanno

230

· Magnetic Sensing Device Based on a Side-polished Long Period Fiber Grating Coated with Thin Iron Film
 Wen-Fung Liu, Chuen-Lin Tien, Hong-Wei Chen, Shan-Wen Lin, Chang-Chou Huang
 D. Spackman, D. Kacprzak, J. Sykulski
 Masataka Abe, Eiji Matsumoto, Shiro Biwa

234

· Magnetic Interference in Multi-Pickup Monorail Inductively Coupled Power Transfer Systems
 Masataka Abe, Eiji Matsumoto, Shiro Biwa
 D. Spackman, D. Kacprzak, J. Sykulski

238

· Surface Defects Evaluation by 2-Axis MFL Testing
 Masataka Abe, Eiji Matsumoto, Shiro Biwa
 D. Spackman, D. Kacprzak, J. Sykulski

242

· Numerical Simulation of Cluster Formation in Vibration Shear Flows of ER Suspensions
 Masataka Abe, Eiji Matsumoto, Shiro Biwa
 D. Spackman, D. Kacprzak, J. Sykulski

246

· Dynamic Analysis and Experiment on Magnetic Fluid Acceleration Sensor
 Masataka Abe, Eiji Matsumoto, Shiro Biwa
 D. Spackman, D. Kacprzak, J. Sykulski

250

· Computation of Incremental Inductances for Nonlinear Dynamic Analysis of a PM Claw Pole SMC Motor
 Youguang Guo, Jianguo Zhu, Haiyan Lu, Jianxun Jin

254
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of a Magnetic Separator for Biomaterials Labelled by the Magnetic Beads</td>
<td>Wataru Maeda, Sotoshi Yamada, Masayoshi Iwahara</td>
<td>258</td>
</tr>
<tr>
<td>A New Scheme of Determining Effective Constitutive Parameters for Composite Media</td>
<td>Wei Bing, Ge Debiao, Shen Ning</td>
<td>262</td>
</tr>
<tr>
<td>Development of High-Density Electrical Machines</td>
<td>Masato Enokizono, Takashi Todaka, Atsushi Ikariga, Hiroyasu Shimoji</td>
<td>266</td>
</tr>
<tr>
<td>Magnetization and Magnetostriiction Curves of Fe-Ni Alloys under Stress</td>
<td>K. Y. Yun, K. Nakata, S. Biwa, E. Matsumoto</td>
<td>270</td>
</tr>
<tr>
<td>The Impact of Bias Voltage on the Performance of a P.I.N. Diode Loaded Smart Antenna</td>
<td>E. Palantei, D. V. Thiel</td>
<td>274</td>
</tr>
<tr>
<td>Utilization of SV-GMR Sensor for Detection Conductive Microbead with Helmholtz Coil Exciter Based on Eddy Current Testing</td>
<td>Teerasak Somsak, Komkrit Chomsuwan, Shotoshi Yamada, Masayoshi Iwahara</td>
<td>278</td>
</tr>
<tr>
<td>Analytical Model and Reduction Methods for Cogging Torque in Permanent Magnet Brushless DC Motor through Various Harmonic Controlling Methods</td>
<td>Jianhui Hu, Jibin Zou, Yongping Lu, Yanbin Liu</td>
<td>282</td>
</tr>
<tr>
<td>Development of Rope Tester for Detection of Wire Damage</td>
<td>Yutaka Hiram, Yoichi Kamakura, Hiroyuki Wakiwaka, Ken Kaneko</td>
<td>286</td>
</tr>
<tr>
<td>Structural Parameter Design on Multilayer Conductors of HTS AC Transmission Cable by Means of Particle Swarm Optimization</td>
<td>Shuhong Wang, Jie Qiu, Zhen Zhao, Jian Guo Zhu, Youguang Guo</td>
<td>290</td>
</tr>
<tr>
<td>3-D Magnetic Field Analysis of PM Motors Taking into Account Demagnetization by Temperature</td>
<td>Tadashi Yamaguchi, Yoshihiro Kawase, Masashi Watanabe, Naotaka Toida, Kazuya Nakamura, Eri Fukushima</td>
<td>294</td>
</tr>
<tr>
<td>Smart Mobile Terminal Antennas For Wireless Communications and Computing</td>
<td>Junwei Lu, David Ireland, Min Shi</td>
<td>298</td>
</tr>
<tr>
<td>High-Speed PCB Inspection System Based on ECT Technique With Multi SV-GMR Sensor</td>
<td>Komkrit Chomsuwan, Sotoshi Yamada, Masayoshi Iwahara</td>
<td>302</td>
</tr>
<tr>
<td>Fiber Bragg Grating Coated with Thin Ferric Film for Magnetic Field Sensing</td>
<td>Chuen-Lin Tien, Shan-Wen Lin, Hong-Wei Chen, Wen-Fung Liu, Chang-Chou Hwang</td>
<td>306</td>
</tr>
<tr>
<td>Analysis and Design of Bearingless Motor with Rectifier Circuit Coil Rotor</td>
<td>Li Chen, Koichi Oka, Hironobu Aratani</td>
<td>310</td>
</tr>
<tr>
<td>Structural and Saturation Saliencies in Permanent Magnet Synchronous Motors</td>
<td>Ying Yan, Jian Guo Zhu</td>
<td>314</td>
</tr>
<tr>
<td>Review Papers</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cooking Appliances Using High-Frequency Heating</td>
<td>Hideyuki KIMURA</td>
<td>318 (102)</td>
</tr>
<tr>
<td>Analytical Model of Magnetic Reluctance in Plane Solid Iron Cores</td>
<td>Satoru FUKATA</td>
<td>325 (109)</td>
</tr>
<tr>
<td>An H∞ DIA Control with Periodic Disturbance and Its Evaluation on Rotational Property by Magnetic Bearings</td>
<td>Hiroki SETO, Toru NAMERIKAWA</td>
<td>333 (117)</td>
</tr>
<tr>
<td>Numerical Simulations of Production Process of MAGIC Abrasive (Effect of Volume Fraction of Spherical Particles on Distribution of Particles)</td>
<td>Yasushi IDO, Takaami INAGAKI, Noritsugu UMEHARA</td>
<td>341 (125)</td>
</tr>
</tbody>
</table>

Conference Reports		348 (132)
Conference Announcements		349 (133)
Academic Calendar		352 (136)
Report of the 17th General Assembly of JSAEM		353 (137)
Information for Authors		357 (141)
日本 AEM 学会誌

JOURNAL OF THE JAPAN SOCIETY OF APPLIED ELECTROMAGNETICS AND MECHANICS

URL: http://wwwsoc.nii.ac.jp/jsaem/

Volume 15, Number 3, September 2007

主な内容

特集 Asia-Pacific Symposium on Applied Electromagnetics and Mechanics 2006 (APSAEM06)

- Preface
- Analysis of Printed Circuit Boards based on Electromagnetic Topology
- Measurement of Deterioration of Magnetic Properties due to Shrink Fitting
- An Improved Evolutionary Algorithm Applied to Multi-Objective Inverse Problems
- 3-D Finite Element Loss Analysis of Squirrel-Cage Induction Motor Using SMC
- Magnetic Sensing Device Based on a Side-polished Long Period Fiber Grating Coated with Thin Iron Film
- Magnetic Interference in Multi-Pickup Monorail Inductively Coupled Power Transfer Systems
- Surface Defects Evaluation by 2-Axis MFL Testing
- Numerical Simulation of Cluster Formation in Vibration Shear Flows of ER Suspensions
- Dynamic Analysis and Experiment on Magnetic Fluid Acceleration Sensor
- Computation of Incremental Inductances for Nonlinear Dynamic Analysis of a PM Claw Pole SMC Motor
- Development of a Magnetic Separator for Biomaterials Labelled by the Magnetic Beads
- A New Scheme of Determining Effective Constitutive Parameters for Composite Media
- Development of High-Density Electrical Machines
- Magnetization and Magnetostriiction Curves of Fe-Ni Alloys under Stress
- The Impact of Bias Voltage on the Performance of a P.I.N. Diode Detector

Smart Antenna

- Utilization of SV-GMR Sensor for Detection Conductive Microbead with Helmholtz Coil Exciter Based on Eddy Current Testing
- Analytical Model and Reduction Methods for Cogging Torque in Permanent Magnet Brushless DC Motor through Various Harmonic Controlling Methods
- Development of Rope Tester for Detection of Wire Damage
- Structural Parameter Design on Multilayer Conductors of HTS AC Transmission Cable by Means of Particle Swarm Optimization
- 3-D Magnetic Field Analysis of PM Motors Taking into Account Demagnetization by Temperature

Smart Mobile Terminal Antennas For Wireless Communications and Computing

- High-Speed PCB Inspection System Based on ECT Technique With Multi SV-GMR Sensor
- Fiber Bragg Grating Coated with Thin Ferric Film for Magnetic Field Sensing

- Analysis and Design of Bearingless Motor with Rectifier Circuit Coil Rotor
- Structural and Saturation Saliences in Permanent Magnet Synchronous Motors

解説
- 高周波加熱を利用した調理器具
- ソリッドステート加重の磁気吸着の解析モデル
- 周期的外乱を考慮したH∞ DIA 周辺と磁気異方性による回転性能の検証
- MAGIC 磁石製作過程の数値解析（球形粒子体積分布の粒径分布への影響）

e-mail: secretariat@jsaem.gr.jp

ISSN 0919-4452

〒 113-0033 東京都文京区本郷 5-30-15 (株) 養賢堂内 日本 AEM 学会事務局
Tel 03-3814-0915 Fax 03-3812-2615 定価 5000 円 印刷 4762 円