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Abstract— Organizational belivel decision-making, such as 

planning of land-use, transportation and water resource, all may 
involve uncertain factors. The parameters shown in a bileved 
programming model, either in the objective functions or 
constraints, are thus often imprecise, which is called fuzzy 
parameter bilevel programming (FPBLP) problem. Following our 
previous work [1, 2]. This study first proposes a model of FPBLP. 
It then gives the definition of solution for FPBLP problem. Based 
on the definition of solution and related theorems, this study 
develops a fuzzy number based Kuhn-Tucher approach to solve 
the proposed FPBLP problem. Finally, an example further 
illustrates the power of the fuzzy number based Kuhn-Tucher 
approach. 
 

Index Terms— Linear bilevel programming, Kuhn-Tucker 
approach, Fuzzy set, Optimization. 
 

I. INTRODUCTION 
HE bilevel programming (BLP) problem, introduced by 
Von Stackelberg [3] in the context of unbalanced 

economic markets, is a hierarchical optimization problem 
where a subset of the variables is constrained to be a solution 
of a given optimization problem parameterized by the 
remaining variables [4, 5]. In a BLP problem, each decision 
maker (leader or follower) tries to optimize his/her own 
objective function with partially or without considering the 
objective of the other level, but the decision of each level 
affects the objective optimization of the other level [6]. 

The vast majority of research on bilevel programming has 
centered on the linear version of the problem. There have been 
nearly two dozen algorithms [5, 7-10] proposed for solving 
linear BLP problems since the field caught the attention of 
researchers in the mid-1970s [11-19]. Although linear BLP 
theory and technology have applied with remarkable success in 
different domains [20-22], its theoretical foundation remains to 
a large extent unsatisfactory and incomplete. Existing bilevel 
programming solving approaches mainly suppose the situation 
in which the objective functions and constraints are 
characterized with precise parameters. Therefore, the 
parameters are required to be fixed at some values in an 
experimental and/or subjective manner through the experts’ 
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understanding of the nature of the parameters in the problem-
formulation process. It has been observed that, in most real-
world situations, particularly in critical resource planning, the 
possible values of these parameters are often only imprecisely 
or ambiguously known to the experts, such as planning of 
land-use, transportation and water resource. It results in a 
difficulty to use parameters in the objective functions or 
constraints of a bilevel programming model. With this 
observation, it would be certainly more appropriate to interpret 
the experts’ understanding of the parameters as fuzzy 
numerical data which can be represented by means of fuzzy 
sets of the real line known as fuzzy set theory [23]. A bilevel 
programming problem in which the parameters either in 
objective function or in constrains is called fuzzy parameter 
bilevel programming (FPBLP) problem in the study. 

The FPBLP problem was first researched by Sakawa et al. 
in 2000 [24]. Sakawa et al. formulates bilevel programming 
problems with fuzzy parameters from the perspective of 
experts’ imprecision and proposes a fuzzy programming 
method for fuzzy bilevel programming problems. However, 
Sakawa’s work is mainly based on the definition of solution 
for bilevel programming proposed by Bard [5, 15]. One 
deficiency of Bard’s  linear BLP theory is that it could not well 
solve a linear bilevel programming problem when the upper-
level constraint functions are of arbitrary linear form. Our 
recent research work has extended Bard’s theory of bilevel 
programming by proposing a new definition of solution for 
linear bilevel programming which can overcome the arbitrary 
linear form problem indicated above [1]. We then proposed an 
extended Kuhn-Tucher approach, based on our definition of 
solution, for solving linear bilevel problems [2]. 

This study will follow our previous research results shown 
in [1, 2] and aims at solving a FPBLP problem by transferring 
it into a non-fuzzy bilevel programming problem. This paper 
first proposes a model of FPBLP problem which have an 
extension of the existing bilevel programming model in 
fuzziness of parameters. It then gives a definition of the 
optimal solution for the FPBLP problem. Based on the 
definition and related theorems, this study develops a fuzzy 
number based Kuhn-Tucher approach to solve the proposed 
FPBLP problems. As this paper only deals with linear bilevel 
problem, so bilevel programming means linear bilevel 
programming in the paper. 

Following the introduction, Section 2 reviews related 
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definitions, theorem and properties of fuzzy number, linear 
BLP solution and an extended Kuhn-Tucher approach for 
solving linear BLP problems. A definition of solution and a 
fuzzy number based Kuhn-Tucher approach for solving 
FPBLP problems are presented in Section 3. A numeral 
example is shown in Section 4 for illustrating the proposed 
fuzzy number based Kuhn-Tucher approach. Conclusion and 
further study are discussed in Section 5. 

II. PRELIMINARIES 

A. Fuzzy Numbers 
In this section, we present some basic concepts, definitions 

and theorems that are to be used in the subsequent sections. 
The work presented in this section can also be found from our 
recent paper in [25]. 

Let R be the set of all real numbers, Rn be n-dimensional 
Euclidean space, and x = (x1, x2, …, xn)T, y = (y1, y2, …, yn)T ∈ 
Rn be any two vectors, where xi, yi ∈ R, i = 1,2, …, n and T  
denotes the transpose of the vector. Then we denote the inner 
product of x and y by ., yx  For any two vectors x, y ∈ Rn, we 

write yx >  iff ;,,2,1, niyx ii =∀>  yx > iff yx > and yx ≠ ; x > y 

iff  xi > yi, ∀ i = 1,2, …, n. 
Definition 2.1 A fuzzy number a~  is defined as a fuzzy set 

on R, whose membership function 
a~µ satisfies the following 

conditions: 
1. 

a~µ  is a mapping from R to the closed interval [0, 1]; 

2. it is normal, i.e., there exists x ∈ R such that ( ) 1~ =xaµ ; 

3. for any λ ∈ (0, 1],  aλ = {x; a~µ (x) ≥ λ} is a closed 
interval, denoted by ],[ RL aa λλ

. 
Let F(R) be the set of all fuzzy numbers. By the 

decomposition theorem of fuzzy set, we have 
,],[~

]1,0[

∈

=
λ

λλλ RL aaa  (2.1) 

for every a~ ∈ F(R). 
Let )(* RF  be the set of all finite fuzzy numbers on R. 
Theorem 2.1 Let a~  be a fuzzy set on R, then a~ ∈ F(R) if 

and only if 
a~µ satisfies 
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where L(x) is the right-continuous monotone increasing 
function, 0 < L(x) < 1 and 0)(lim =−∞→ xLx

, R(x) is the left-

continuous monotone decreasing function, 0 < R(x) < 1 and 

0)(lim =∞→ xRx
. 

Corollary 2.1 For every )(~ RFa ∈ and λ1, λ2 ∈ [0, 1], if 

,21 λλ <  then .
12 λλ aa ⊂  

Definition 2.2 For any )(
~

,~ RFba ∈ and ,0 R∈< λ  the sum of 

ba ~and~  and the scalar product of λ and a~ are defined by the 

membership functions 
)},(),({minsup)( ~~~~ vut bavutba µµµ

+=+
=  (2.2) 

)},(),({minsup)( ~~~~ vut
bavutba

µµµ
−=−

=  (2.2) 

).(sup)( ~~ ut a
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a µµ
λ

λ
=

=  (2.3) 

Theorem 2.2 For any )(~,~ RFba ∈ and ,0 R∈< α  
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Definition 2.3 Let .,,2,1),(~ niRFai =∈  We define 
)~,,~,~(~

21 naaaa =  
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∧
=
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where x = (x1, x2, …, xn)T ∈ Rn, and a~ is called an n-
dimensional fuzzy number on Rn. If ,,,2,1),(~ * niRFai =∈  a~ is 
called an n-dimensional finite fuzzy number on Rn. 

Let )( nRF and F*(Rn) be the set of all n-dimensional fuzzy 
numbers and the set of all n-dimensional finite fuzzy numbers 
on Rn respectively. 

Proposition 2.1 For every aRFa n ~),(~ ∈ is normal. 
Proposition 2.2 For every ),(~ nRFa ∈ the λ-section of a~ is 

an n-dimensional closed rectangular region for any ]1,0[∈λ . 
Proposition 2.3 For every )(~ nRFa ∈ and λ1, λ2 ∈[0,1], if 

,21 λλ < then .
12 λλ aa ⊂  

Definition 2.4 For any n-dimensional fuzzy numbers 
),(

~
,~ nRFba ∈ we define 
1. ba ~~   iff  L

i
L

i ba λλ >  and ];1,0(,,,2,1, ∈=> λλλ niba R
i

R
i   

2. ba ~~   iff  L
i

L
i ba λλ >  and ];1,0(,,,2,1, ∈=> λλλ niba R

i
R

i   

3. ba ~~  iff  L
i

L
i ba λλ >  and  ].1,0(,,,2,1, ∈=> λλλ niba R

i
R

i   
We call the binary relations   ,  and  a fuzzy max order, a 

strict fuzzy max order and a strong fuzzy max order, 
respectively. 

 

B. The Extended Kuhn-Tucker Approach for Linear Bilevel 
Programming 

Let write a linear programming (LP) as follows. 
cxxf =)(min  

subject to bAx <  

0>x , 

where c  is an n-dimensional row vector, b  an m-
dimensional column vector, A  an nm ×  matrix with nm ≤ , and 

nRx ∈ . 
Let mR∈λ  and nR∈µ  be the dual variables associated with 

constraints bAx >  and 0≥x , respectively. Bard [5] gave the 
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following proposition. 
Proposition 2.4 [5] A necessary and sufficient condition 

that )( *x  solves above LP is that there exist (row) vectors *λ , 
*µ  such that ),,( *** µλx  solves: 

cA −=− µλ  
0>− bAx  

0)( =− bAxλ  
0=xµ  

0,0,0 >>> µλx  

For nRXx ⊂∈ , mRYy ⊂∈ , 1: RYXF →× , and 
1: RYXf →× , a linear BLP problem is given by Bard [4]: 

ydxcyxF
Xx 11),(min +=

∈
 (2.5a) 

subject to 
111 byBxA <+  (2.5b) 

ydxcyxf
Yy 22),(min +=

∈
 (2.5c) 

subject to 
222 byBxA <+  (2.5d) 

where 1c , nRc ∈2
, 1d , mRd ∈2

, pRb ∈1
, qRb ∈2

, npRA ×∈1
, 

mpRB ×∈1
, nqRA ×∈2

, mqRB ×∈2
. 

Definition 2.5 [1] 
(a) Constraint region of the linear BLP problem: 

},,,:),{( 222111 byBxAbyBxAYyXxyxS <+<+∈∈=  

(b) Feasible set for the follower for each fixed Xx ∈ : 
},,:{)( 222111 byBxAbyBxAYyXxXS <+<+∈∃∈=  

(c) Projection of S  onto the leader’s decision space: 
},,:{)( 222111 byBxAbyBxAYyXxXS <+<+∈∃∈=  

(d) Follower’s rational reaction set for )(XSx ∈ : 
)]}(ˆ:)ˆ,(min[arg:{)( xSyyxfyYyxP ∈∈∈=  

where  
)}(ˆ),ˆ,(),(:)({)](ˆ:)ˆ,(min[arg xSyyxfyxfxSyxSyyxf ∈<∈=∈  

(e) Inducible region: 
)}(,),(:),{( xPySyxyxIR ∈∈=  

Definition 2.6 [1] ),( ** yx  is said to be a complete optimal 
solution, if  and only if there exists Syx ∈),( **  such that 

),(),( ** yxFyxF < and ),(),( ** yxfyxf < for all Syx ∈),( . 

However, in general, such a complete optimal solution that 
simultaneously minimizes both the leader’ and follower’s 
objective functions does not always exist. Instead of a 
complete optimal solution, a new solution concept, called 
Pareto optimality, is introduced in linear BLP. 

Definition 2.7 [1] ),( ** yx  is said to be a Pareto optimal 
solution, if and only if there does not exist Syx ∈),(  such that 

),(),( ** yxFyxF < , ),(),( ** yxfyxf <  and ),(),( ** yxFyxF ≠  or 

),(),( ** yxfyxf ≠ . 
Definition 2.8 A topological space is compact if every open 

cover of the entire space has a finite subcover. For example, 
],[ ba  is compact in R (the Heine-Borel theorem) [26]. 

To ensure that (2.5) has a Pareto optimal solution, Bard 
gave the following assumption. 

Assumption 2.1 

(a) S  is nonempty and compact. 
(b) For decisions taken by the leader, the follower has some 

rooms to respond; i.e, φ≠)(xP . 
(c) )(xP  is a point-to-point map. 

To ensure that (2.5) is well posed we assume that S  is 
nonempty and compact, and that )(xP  is a point-to-point map. 
The rational reaction set )(xP  defines the response while the 
inducible region IR  represents the set over which the leader 
may optimize his objective. Thus in terms of the above 
notations, the linear BLP problem can be written as 

}),(:),(min{ IRyxyxF ∈  (2.6) 
We also present the following theorem to characterize the 

condition under which there is a Pareto optimal solution for a 
linear BLP problem. 

Theorem 2.3 [1] If S is nonempty and compact, there exists 
a Pareto optimal solution for a linear BLP problem 

Theorem 2.4 [2] [Extended Kuhn-Tucher Theorem] A 
necessary and sufficient condition that ),( ** yx  solves the 

linear BLP problem (2.5) is that there exist (row) vectors *u , 
*v and *w  such that ),,,,( ***** wvuyx  solves: 

ydxcyxF 11),(min +=  (2.7a) 
subject to 

111 byBxA ≤+  (2.7b) 

222 byBxA ≤+  (2.7c) 

221 dwvBuB −=−+  (2.7d) 
0)()( 222111 =+−−+−− wyyBxAbvyBxAbu  (2.7e) 

0,0,0,0,0 ≥≥≥≥≥ wvuyx  (2.7f) 
 

III. FUZZY PARAMETER LINEAR BILEVEL PROGRAMMING 
PROBLEM 

Consider the following fuzzy parameter linear bilevel 
programming (FPBLP) problem: 

For nRXx ⊂∈ , mRYy ⊂∈ , )(: * RFYXF →× , and 
)(: * RFYXf →× , 

ydxcyxF
Xx 11

~~),(min +=
∈

 (3.1a) 

subject to 
111

~~~ byBxA +  (3.1b) 

ydxcyxf
Yy 22

~~),(min +=
∈

 (3.1c) 

subject to 
222

~~~ byBxA +  (3.5d) 

where )(~,~ *
21

nRFcc ∈ , )(~,~ *
21

mRFdd ∈ , )(~ *
1

pRFb ∈ , 

)(~ *
2

qRFb ∈ , ( ) ,~~
1 npijaA

×
= ),(~ * RFaij ∈ ( ) ),(~,~~ *

1 RFbbB ijmpij ∈=
×

 

( ) ),(~,~~ *
2 RFeeA ijnqij ∈=

×
( ) )(~,~~ *

2 RFssB ijmqij ∈=
×

. 

Associated with the FPBLP problem, we now consider the 
following linear multi-objective multi-follower bilevel 
programming (LMMBLP) problem: 

For nRXx ⊂∈ , mRYy ⊂∈ , )(: * RFYXF →× , and 
)(: * RFYXf →× , 
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( )
( ) ]1,0[,),(min

]1,0[,),(min

11

11

∈+=

∈+=

∈

∈

λ

λ

λλλ

λλλ

ydxcyxF

ydxcyxF
RRR

Xx

LLL

Xx  (3.2a) 

subject to ]1,0[,, 111111 ∈<+<+ λλλλλλλ
RRRLLL byBxAbyBxA  (3.2b) 

( )

( ) ]1,0[,),(min

]1,0[,),(min

22

22

∈+=

∈+=

∈

∈

λ

λ

λλλ

λλλ

ydxcyxf

ydxcyxf
RRR

Yy

LLL

Yy  (3.2c) 

subject to ]1,0[,, 222222 ∈<+<+ λλλλλλλ
RRRLLL byBxAbyBxA  (3.5d) 

where RL cc λλ 11 , , nRL Rcc ∈λλ 22 , , RL dd λλ 11 , , mRL Rdd ∈λλ 22 , , 
pRL Rbb ∈λλ 11 , , qRL Rbb ∈λλ 22 , , ( ) ( ) ,, 11

npR
ij

RL
ij

L RaAaA ×∈==
λλλλ

 

( ) ( ) ,, 11
mpR

ij
RL

ij
L RbBbB ×∈==

λλλλ
nqR × , ( ) ( ) ., 22

mqR
ij

RL
ij

L RsBsB ×∈==
λλλλ

 

Theorem 3.1 Let ),( ** yx  be the solution of the LMMBLP 
problem (3.2). Then it is also a solution of the FPBLP 
problem defined by (3.1). 

Proof. The proof is obvious from Definition 2.4. 
Lemma 3.1 If there is ),( ** yx  such that ,** dycxdycx +>+  

*
0

*
000 ydxcydxc LLLL +>+  and ,*

0
*

000 ydxcydxc RRRR +>+  for any 

),( yx  and isosceles triangle fuzzy numbers c~  and ,~d  then 
,** ydxcydxc LLLL

λλλλ +>+  

,** ydxcydxc RRRR
λλλλ +>+  

for any )1,0(∈λ , where c and d are the centre of c~  and d~  
respectively. 

Proof. As λ-section of isosceles triangle fuzzy numbers c~  
and d~  are 

λλλ ccc LL +−= )1(0
 and λλλ ccc RR +−= )1(0

 

λλλ ddd LL +−= )1(0
 and λλλ ddd RR +−= )1(0

. 
Therefore, we have 

,

)()1)((
)()1)((

)1()1(

**

***
0

*
0

00

00

ydxc

dycxydxc
dycxydxc

ydydxcxcydxc

LL

LL

LL

LLLL

λλ

λλ

λλ
λλ

λλλλ

+=

++−+>

++−+=

+−++−=+
 

from ** dycxdycx +>+  and .*
0

*
000 ydxcydxc LLLL +>+ , we can 

prove ** ydxcydxc RRRR
λλλλ +>+  from similar reason. 

Theorem 3.2 For nRXx ⊂∈ , mRYy ⊂∈ , If all the fuzzy 
coefficients 

iijijijij cseba ~,~,~,~,~  and 
id~ have triangle membership 

functions of the FPBLP problem (3.1). 















<

<<
−

+−

<<
−
−

<

= ,

0

0

)(

0

0
0

0

0
0

0

0

~

tz

ztz
zz

zt

ztz
zz
zt

zt

t

R

R
R

R

L
L

L

L

zµ
 (3.3) 

where z~  denotes 
iijijijij cseba ~,~,~,~,~  and 

id~ and z are the centre 

of  z~ respectively. Then, it is the solution of the problem (3.1) 
that ),( ** yx ∈ mn RR ×  satisfying 

( ) ,),(min 11 ydxcyxF cXx
+=

∈
 

( )
( ) ,),(min

,),(min

01010

01010

ydxcyxF

ydxcyxF
RRR

Xx

LLL

Xx

+=

+=

∈

∈  (3.4a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.4b) 

,010101
RRR byBxA <+  

( ) ,),(min 22 ydxcyxf cYy
+=

∈

 

( )

( ) ,),(min

,),(min

0202

02020

ydxcyxf

ydxcyxf
RRR

Yy

LLL

Yy

+=

+=

∈

∈

λ

 (3.4c) 

subject to ,222 byBxA <+  

,020202
LLL byBxA <+  (3.4d) 

.020202
RRR byBxA <+  

Proof. From Lemma 3.1, if ),( ** yx  satisfies (3.4a) and 
(3.4c), then it satisfies (3.2a) and (3.2c). Then we need only 
prove, if ),( ** yx  satisfies (3.4b) and (3.4d), then it satisfies 
(3.2b) and (3.2d). In fact, for any ),1,0(∈λ  

),1(

and)1(

),1(

0111

0

0

λλ

λλ

λλ

λ

λ

λ

−+=

−+=

−+=

LL

L
ijij

L
ij

L
ijij

L
ij

bbb

bbb

aaa
 

we have 
***

1
*

1 )()( ybxayBxA L
ij

L
ij

LL

λλλλ +=+  

( ) ( ) *

0

*

0
)1()1( ybbxaa L

ijij
L

ijij λλλλ −++−+=  

( ) ( ) ( ) ( ) )1()1( *

0

**

0

* λλλλ −++−+= ybybxaxa L
ijij

L
ijij

 

( ) ( )( ) ( ) ( )( ) )1(*

0

*

0

** λλ −+++= ybxaybxa L
ij

L
ijijij

 

( ) ( )( )λλ −+++= 1*
01

*
01

*
1

*
1 yBxAyBxA LL  

,)1( 1011
LL bbb λλλ =−+<  

from (3.4b). Similarly, we can prove 
,1

*
1

*
1

RRR byBxA λλλ <+  

,2
*

2
*

2
LLL byBxA λλλ <+  

,2
*

2
*

2
RRR byBxA λλλ <+  

for any )1,0(∈λ  from (3.4b) and (3.4d). The proof is 
complete. 

Theorem 3.3 [Extended Kuhn-Tucher Theorem] A 
necessary and sufficient condition that ),( ** yx  solves the 
FPBLP problem (3.1) with triangle fuzzy numbers is that there 
exist (row) vectors *u , *v and *w  such that ),,,,( ***** wvuyx  
solves: 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.5a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.5b) 

,010101
RRR byBxA <+  

,222 byBxA <+  

,020202
LLL byBxA <+  (3.5c) 

,020202
LLL byBxA <+  
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( )RL

RLRL

ddd

wBvBvBvBuBuBu

02022

0230222101301211

++−=

−+++++  (3.5d) 

( ) ( )
( )
( ) ( ) 0

)(

02020230202022

22210101013

01010121111

=+−−+−−

+−−−+−−

+−−+−−

wyyBxAbvyBxAbv

yBxAbvyBxAbu

yBxAbuyBxAbu

RRRLLL

RRR

LLL

(3.5e) 

0,0,0,0,0 ≥≥≥≥≥ wvuyx  (3.5f) 
Proof: (1) From Theorem 3.2, we know that we need only to 

solve the problem (3.4). In fact, to solve the problem (3.4), we 
can use the method of weighting [27] to this problem, such that 
it is the following problem: 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.6a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.6b) 

,010101
RRR byBxA <+  

( ) ydxcydxcydxcyxf RRLL

Yy 0202020222),(min +++++=
∈

 (3.6c) 

subject to  ,222 byBxA <+  

,020202
LLL byBxA <+  (3.6d) 

.020202
RRR byBxA <+  

Therefore, the linear BLP problem can be written as 
}),(:),(min{ IRyxyxF ∈  (3.7) 

Let us get an explicit expression of (3.7) and rewrite (3.7) as 
follows: 

),(min yxF  
subject to IRyx ∈),( . 

We have 
),(min yxF  

subject to Syx ∈),(  
)(xPy ∈  

by Definition 2.5(e). Then, we have 
),(min yxF  

subject to Syx ∈),(  
)](ˆ:)ˆ,(min[arg xSyyxfy ∈∈  

by Definition 2.5(d). We rewrite it as: 
),(min yxF  

subject to Syx ∈),(  
),(min yxf  

subject to )(xSy ∈ . 
We  have 

),(min yxF  
subject to Syx ∈),(  

),(min yxf
Yy∈

 

 subject to Syx ∈),( , 
by Definition 2.5(c). Consequently, we can have 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.8a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  

,010101
RRR byBxA <+  (3.8b) 

,222 byBxA <+  

,020202
LLL byBxA <+  

.020202
RRR byBxA <+  

( )

ydxcyd

xcydxcyxf

RRL

L

Yy

020202

0222),(min

++

+++=
∈  (3.8c) 

subject to  ,111 byBxA <+   

,010101
LLL byBxA <+  

,010101
RRR byBxA <+  (3.8d) 

,222 byBxA <+  

,020202
LLL byBxA <+   

.020202
RRR byBxA <+  

by Definition 2.5(a). 
This simple transformation has shown that solving the fuzzy 

linear BLP (3.1) is equivalent to solving (3.8). 
 
(2) Necessity is obvious from (3.8). 
 
(3) Sufficiency. If  ),( ** yx  is the optimal solution of (3.6), 

we need to show that there exist (row) vectors *
3

*
2

*
1 ,, uuu , 

*
3

*
2

*
1 ,, vvv and *w  such that )  ,,,,,,,,( **

3
*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx  to 
solve (3.5). Going one step farther, we only need to prove that 
there exist (row) vectors *

3
*
2

*
1 ,, uuu , *

3
*
2

*
1 ,, vvv and *w such that 

)  ,,,,,,,,( **
3

*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx  satisfy the follows 

)( 02022

0230222101301211

RL

RLRL

ddd

wBvBvBvBuBuBu

++−=

−+++++  (3.9a) 

0)( 1111 =−− yBxAbu  (3.9b) 
0)( 0101012 =−− yBxAbu LLL   (3.9c) 

0)( 0101013 =−− yBxAbu RRR   (3.9d) 

0)( 2221 =−− yBxAbv   (3.9e) 
0)( 0202022 =−− yBxAbv LLL   (3.9f) 

0)( 0202023 =−− yBxAbv RRR   (3.9g) 

0=wy ,  (3.9h) 
where pRuuu ∈321 ,, , qRvvv ∈321 ,,  , mRw ∈  and they are not 
negative variables. 
Because ),( ** yx  is the optimal solution of (3.6), we have 

IRyx ∈),( ** , 
by (3.7). Thus we have 

)( ** xPy ∈ , 
by Definition 2.5(e). *y  is the optimal solution to the 
following problem 

))(:),(min( ** xSyyxf ∈ ,  (3.10) 
by Definition 2.5(d). Rewrite (10) as follows 

),(min yxf  
subject to )(xSy ∈  

*xx = . 
From Definition 3.2(b), we have 

( ) ydxcydxcydxcyxf RRLL

Yy 0202020222),(min +++++=
∈

  (3.11a) 
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subject to  ,111 byBxA <+  (3.11b) 

,010101
LLL byBxA <+  (3.11c)  

,010101
RRR byBxA <+   (3.11d) 

,222 byBxA <+  (3.11e)  

,020202
LLL byBxA <+  (3.11f) 

.020202
RRR byBxA <+   (3.11g) 

*xx =  (3.11h) 
0>y  (3.11i) 

To simplify (3.11), we can have 
ydddyg RL )()(min 02022 ++=  (3.12a) 

subject to  ),( *
111 xAbyB −−>−  (3.12b) 

),( *
010101 xAbyB LLL −−>−  (3.11c) 

),( *
010101 xAbyB RRR −−>−  (3.12d) 

),( *
222 xAbyB −−>−   (3.12e) 

),( *
020202 xAbyB LLL −−>−  (3.12f) 

),( *
020202 xAbyB RRR −−>−  (3.12g) 

0>y .  (3.12h) 
Let we note 

.and,,

02

02

2

01

01

1

02

02

2

01

01

1

02

02

2

01

01

1



























=



























=



























=

R

L

R

L

R

L

R

L

R

L

R

L

b
b
b
b
b
b

b

A
A
A
A
A
A

A

B
B
B
B
B
B

B
 (3.13)  

We rewrite (3.12) by using (3.13) and we get 
ydddyg RL )()(min 02022 ++=   (3.14a) 

subject to )( *AxbBy −−>−  (3.14b) 

0>y .  (3.14c) 

Now we see that *y  is the optimal solution of (3.14) which is 
a LP problem. By Proposition 2, there exists vector ** , µλ , 
such that ),,( *** µλy  satisfy a system below 

)( 02022
RL dddB ++−=− µλ  (3.15a) 

0)( * >−+− AxbBy  (3.15b) 

0))(( * =−+− AxbByλ  (3.15c) 
0=yµ , (3.15d)  

where qpR 33 +∈λ  and mR∈µ .  
Let pRuuu ∈321 ,, , qRvvv ∈321 ,,  and mRw ∈  and define  

( )321321 ,,,,, vvvuuu=λ  

µ=w . 
Thus we have )  ,,,,,,,,( **

3
*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx that satisfy 
(3.9). Our proof is completed. 

Theorem 3.3 means that the most direct approach to solving 
(3.1) is to solve the equivalent mathematical program given in 
(3.5). One advantage that it offers is that it allows for a more 
robust model to be solved without introducing any new 
computational difficulties 

 

IV. AN ILLUSTRATIVE EXAMPLE 
Example 1 Consider the following FPBLP problem with 

1Rx ∈ , 1Ry ∈ , and }0{ ≥= xX , }0{ ≥= yY , 

yxyxF
Xx

2~1~),(min −=
∈

 (4.1a) 

subject to 4~3~1~ yx +−  (4.1b) 

yxyxf
Yy

1~1~),(min 1 +=
∈

 (4.1c) 

subject to 0~1~1~ yx −  (4.1d) 

0~1~1~ yx −−  (4.1e) 

where  











<
<<−
<<

<

= ,

20
212
10

00

)(
1~

t
tt
tt

t

tµ
 











<
<<−
<<−

<

= ,

30
323
211

10

)(
2~

t
tt
tt

t

tµ
  











<
<<−
<<−

<

= ,

40
434
322

20

)(
3~

t
tt
tt

t

tµ
 











<
<<−
<<−

<

= ,

50
545
433

30

)(
4~

t
tt
tt

t

tµ
  











<
<<−
<<−+

−<

= .

10
101
011

10

)(
0~

t
tt
tt

t

tµ
 

Step 1 The problem is transferred to the following 
LMMBLP problem by using Theorem 3.2 

( ) yxyxF cXx
21),(min −=

∈
 

( ) yxyxF L

Xx
30),(min 0 −=

∈
 

( ) yxyxF R

Xx
12),(min 0 −=

∈
 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
 ( ) yxyxf cYy

11),(min +=
∈

 

( ) yxyxf L

Yy
00),(min 0 +=

∈
 

( ) yxyxf R

Yy
22),(min

0
+=

∈
 

subject to 011 ≤− yx  
120 −≤− yx  

102 ≤− yx  
011 ≤−− yx  

000 ≤− yx  
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122 −≤−− yx  
Step 2. The problem is transferred to the following linear 

BLP problem by using method of weighting [27].  
yxyxF

Xx
63),(min −=

∈
 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
yxyxf

Yy
33),(min +=

∈

 

subject to 011 ≤− yx  
120 −≤− yx  

102 ≤− yx  
011 ≤−− yx  

122 −≤−− yx . 
100 ≤− yx  

Step 3 Solve this linear BLP problem 
yxyxF

Xx
63),(min −=

∈
 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
011 ≤− yx  

120 −≤− yx  
102 ≤− yx  

011 ≤−− yx  
122 −≤−− yx . 

100 ≤− yx  
30202423 10987654321 −=−−−−−−−++ uuuuuuuuuu  

0)221()(
)21()21()(

)45()223()314(

10987

654

321

=++++−++
+−++−++−

+−+−++−+

yuuyxuyxu
xuyuyxu

yuyxuyxu
 

0,,0,0,0 101 ≥≥≥≥ uuyx  . 
Step 4   The result is  

( ) 121),(min −=−=
∈

yxyxF cXx
 

( ) 5.130),(min 0 −=−=
∈

yxyxF L

Xx
 

( ) 5.012),(min 0 −=−=
∈

yxyxF R

Xx
 

and 
( ) 5.0),(min =

∈ cYy
yxf  

( ) 0),(min 0 =
∈

L

Yy
yxf  

( ) 1),(min 0 =
∈

R

Yy
yxf  

5.0,0 == yx  
Consequently, we have the solution of the problem (4.1) 

cyxyxF
Xx

~2~1~),(min =−=
∈

 

dyxyxf
Yy

~1~1~),(min 1 =+=
∈

 

and 
5.0,0 == yx , 

where 














≤−

−<≤−
−−

−<≤−
+

−<

= ,

5.00

5.01
5.0
5.0

15.1
5.0

5.1
5.10

)(~

t

tt

tt
t

tcµ
  














≤

<≤
−

<≤

<

= .

10

15.0
5.0

1

5.00
5.0

00

)(~

t

tt

tt
t

tdµ
 

 

V. CONCLUSION 
Following our previous research [1, 2], this paper proposes 

the definition of solution and related theorems of optimal 
solution for fuzzy parameter based linear bilevel programming. 
By using the proposed definition and theorems, this study 
develops a fuzzy number based Kuhn-Tucher approach to 
solve proposed FPBLP problem. A numeral example is shown 
to illustrate the proposed fuzzy number based Kuhn-Tucher 
approach. Further study will include the development of fuzzy 
parameter based multi-follower and multi-objective bilevel 
programming problems. 
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