
1

A Web System Trace Model and Its Application to Web Design

Xiaoying Kong, Li Liu* and David Lowe
Faculty of Engineering, University of Technology, Sydney, P.O. Box 123 Broadway Sydney, NSW

2007, Australia
* Faculty of Engineering, The University of Sydney, NSW 2006, Australia

Email: xiaoying.kong@uts.edu.au, l.liu@staff.usyd.edu.au, david.lowe@uts.edu.au

Abstract

Traceability analysis is crucial to the development of web-centric systems, particularly those with
frequent system changes, fine-grained evolution and maintenance, and high level of requirements
uncertainty. A trace model at the level of the web system architecture is presented in this paper to
address the specific challenges of developing web-centric systems. The trace model separates the
concerns of different stakeholders in the web development life cycle into viewpoints; and classifies
each viewpoint into structure and behaviour. Tracing relationships are presented along two dimensions:
within viewpoints; and among viewpoints. Examples of tracing relationships are presented using UML.
This trace model is demonstrated through its application to the design of a commercial web project
using a web-design process. The design artifacts in each activity are transformed based on the artifacts
tracing relationship in the trace model. The model provides mechanisms for verification of consistency,
completeness and coverage within each viewpoint and the connectedness across viewpoints.

1. Introduction
In software development, it is critical to identify and understand the relationships among the artifacts of
the development process such as user needs, systems requirements, design, specifications, and codes
(Palmer 1996). The degree to which each element in a software development product establishes its
reason for existing and the degree to which a relationship can be established between two or more
products of the development process are referred to as traceability (IEEE 1990). For example, each
element in a bubble chart justifies its existence by referring to the requirement that it satisfies.
Similarly, the degree to which the requirements and design of a given software component match
describes the traceability between requirement and design. When there is a predecessor-successor or
master-subordinate relationship between two artifacts of a development process, it is especially
important to trace the relationship. Traceability is typically established with the use of a trace model. A
trace model is defined as a semantic network in which nodes represent objects, stakeholders and
resources among which traceability is established through links of different types and strengths
(Ramesh et al. 2001). The ability to support traceability analysis of systems artifacts is crucial in
systems development and maintenance. Traceability gives essential assistance in understanding the
relationships within and across software requirements, design, and implementation. Tracing provides
insights to quality, consistency, completeness, impact analysis, system evolution, and process
improvement (Palmer 1996).

2

Most existing trace models are for conventional software systems and provide little insight on how to
develop trace models for web-centric systems. Compared to conventional software systems, a web-
centric system typically has a tighter linkage between the business model and the technical
architecture; uses technologies that change rapidly; faces high levels of client uncertainty with regard
to their needs and also in terms of understanding whether a design will satisfy their needs; has high
levels of change in requirements, project scope and focus, due largely to the continual evolution of the
business model; and demands fine-grained evolution and maintenance with an ongoing process of
content updating, editorial changes and interface tuning (Lowe et al. 2001). Web systems must cater for
users of varied skill and capability (Murugesan 2000). Current web development efforts frequently
bring together professionals from many varied backgrounds. These professionals have different
expectations, experience and thus their contributions need to be interpreted in appropriate ways that
can be understood by all project stakeholders (Powell et al. 1998; Burdman 1999).

The objective of this paper is to present a trace model specifically designed for web-centric systems
based on Web Application Architecture Framework (WAAF) (Kong et al. 2005). In the next sections,
literature on existing trace models is reviewed and WAAF, which forms the foundation for the trace
model, is summarized. Then, the trace model is presented and illustrated through the application to the
design of a commercial web project. .

2. Existing trace models

Existing software trace models tends to concentrate on two different levels. One is on source code
dependency at the program level. Various trace models were developed for testing, debugging,
maintenance, code optimisation and computer security purposes (Podgurski et al. 1990; O'Neal et al.
2001). Data and control dependency and program slicing are common tools for traceability analysis at
this level (O'Neal et al. 2001). Example modelling approaches include feature location using
dependence graphs (Chen et al. 2000), visual hierarchical approach using dependence graphs by
grouping programs to extract and handle data & control dependences (Balmas 2004), and transient
hypertext approach to provide support for C program maintainers (Koskinen et al. 2004).

The other is on traceability relationships at the systems level. Research has focused on analysis of
traceability between all work products or documents of the development processes (O'Neal et al. 2001).
Example trace models include contribution structures that consider contributions, communication and
cooperation amongst the stakeholders, roles and policies (Gotel 1996), actor dependency model (Yu
1993), method-driven trace capture (Domges et al. 1998), extended traceability (Haumer et al. 1998),
and a trace model for system requirement change in embedded systems (von Knethen 2002).

Some trace models cover the whole life cycle while others focus on traceability in specific areas or
stages of the life cycle. For example, the V-model provides a trace model for system verification and
validation at a meta-level (Sommerville 2001). Similarly, reference models for requirements
traceability (Ramesh et al. 2001) and the PRIME framework (Pohl et al. 1999) concentrate on systems
traceability. Commercial CASE tools have been developed to support system traceability such as
DOORS (Telelogic 2005), CORE (Vitech Corporation 2005), RequisitePro and AnalystStudio (IBM

3

2005). These existing trace models are based on architectures for conventional software systems. The
differences between web-centric systems and conventional software systems means that these trace
models do not specifically address web characteristics and thus cannot be readily applied to web-
centric systems.

Two models that are worth mentioning are Open Distributed Processing – Reference Model (RM-ODP)
(ISO/IEC 1996a, 1996b, 1998a, 1998b) and Model Driven Architecture (MDA) (OMG 2005a).
Common to both models are the focus on presenting platform independent and platform specific
technologies in separate models through high level of abstraction. For example, a system that comprise
Microsoft .NET, SUN’s ONE and CORBA and other middleware technologies can be represented by a
platform independent UML model and three platform-specific models (each for .NET, ONE and
CORBA, respectively). The models describe the functionality and behaviour of distributed systems and
can be used to trace concepts by correspondence. Detailed technical specification and the focus on
technology limit the applicability of the two models to web projects, which typically have multi-skilled
development teams, strong emphasis on user interface and driven by evolving business needs.

Most trace models are based on an underlying architectural framework. The Zachman framework
(Zachman 1987) is a widely acknowledged architecture framework to classify and integrate
architectures into a comprehensive matrix based on a building metaphor. A key feature of an
architecture framework is its ability to trace artifacts across the entire architecture. Stakeholders in a
system process are multi-disciplined and have different preferences in using modelling approaches. An
architecture framework is able to establish the traceability among the different artifacts that different
stakeholders have produced. The Zachman Framework matches the entities, processes, locations,
people, schedule, and purposes of the real world to the abstract bits in the computer, but is not able to
accommodate the later development of open and modularised architectures of the web. Aspects such as
reusable information and an emphasis on user interface, which are typical characteristics of web
systems, have not been mapped into the building metaphor.

The Web Application Architecture Framework (WAAF) (Kong et al. 2005) extends the Zachman
framework to support web systems. WAAF provides traceability between the business models and
technical architectures in a taxonomic way to address the characteristics of web systems – including
tighter linkage between business models and technical architectures, high levels of requirements
change, increased emphasis on user interfaces, and the stronger roles the design artifacts play in
development. Based on WAAF, this paper presents a trace model at the system architecture level
specifically designed to consider web characteristics. This trace model provides a theoretical
foundation for autonomous web system code generation.

3. Web application architecture framework (WAAF)

A presentation of a whole system from the perspective of a related set of concerns is referred to as
‘view’. A viewpoint establishes the conventions by which a view is created, depicted and analysed
(IEEE 2000). The Web Application Architecture Framework (Kong et al. 2005) separates concerns of a
web system into two dimensions. As shown in Table 1, the horizontal dimension (rows) is concerned

4

with the different viewpoints of the stakeholders in the development process. The viewpoints include
viewpoints of planners, business owners, web system users, information architects, system architects,
developers and testers. The vertical dimension (columns) classifies the architectures into four abstract
categories, namely: structure (what); behaviour (how); location (where); and pattern. Each cell in the
framework is a model, a description, or an architecture, as appropriate. The classification in columns of
the WAAF Matrix is described in the following abstractions:

Structure: The abstraction of the things comprising the system and their inter-relationship.

Behaviour: The description of the functioning workflow process of the system.

Location: The location map of the things of the system relative to others geometrically.

Pattern: The reuse of real-world experience harvested from best practices for successful, rapid and
cost-effective system development (Platt 2002). As existing patterns may not be classified into
“structure, behaviour and location”, this column lists and describes patterns.

Table 1 WAAF Matrix - Web Application Architecture Framework
 Structure

 (What)
Behaviour

(How)
Location
(Where)

Pattern

Planning
Architecture
(Planner’s
Viewpoint)

List of things
important to the
business

List of
processes the
business
performs

List of business
operation locations

-

Business
Architecture
(Bus. Owner’s
Viewpoint)

e.g. Business
Entity
Relationship
Model

e.g. Business
Process
Model

e.g. Business
Entity Location
Model

e.g. Business Model
Patterns

User Interface
Architecture
(User’s Viewpoint)

e.g. User
Interface
Structure Model

e.g. User
Interface
Flow Model

e.g. User Site Map
Model

e.g. Interface
Templates,
Navigation Patterns

Info. Arch.
(Information
Architect’s
Viewpoint)

e.g. Information
Dictionary

e.g.
Information
Flow Model

e.g. Information
Node Location
Model

e.g. Information
Scheme Patterns

System Arch.
(System Architect’s
Viewpoint)

e.g. System
Functioning
Module / Server
Page Structure

e.g.
Workflow
Model of
Module /
Server Page

e.g. Site Mapping
of Modules Server
Pages

e.g. Design Patterns,
Presentation styles

Web Object
Architecture
(Developers’
Viewpoint)

e.g. Physical
Object
Relationship

e.g.
Algorithms in
Source Code

e.g. Network
Deployment Model

e.g. COTS,
Components, Code
Library

Test Architecture
(Tester’s
Viewpoint)

e.g. Test
Configuration

e.g. Test
Procedure

e.g. Test
Deployment

e.g. Templates,
Standards of Test
Documents

Planning Architecture (PA, Planner's Viewpoint): concerned with issues important to the planning
of the web system. Patterns are not typically relevant to this viewpoint.

5

Business Architecture (BA, Business Owner's Viewpoint): models the business structure, process,
locations, and patterns of the web application system from the viewpoint of business owners.

User Interface Architecture (UIA, User's Viewpoint): describes the components of the system, their
roles and relationships as they are perceived by users of the web system.

Information Architecture (IA, Information Architect's Viewpoint): classifies and constructs the
structure, relationships, flows and location of information that are needed in the user interface
viewpoint to connect the external and internal users to access the contents and the functionality of the
web application. This viewpoint is independent from the implementation of the system.

System Architecture (SA, System Architect's Viewpoint): this is for design elements, including
structure, behaviour, location and pattern of the web application system.

Web Object Architecture (WOA, Developer's Viewpoint): the system design is implemented into
source code and other web objects. WOA describes the architecture of source code and other web
objects from developer's viewpoint. Web objects are objects implemented in a web site.

Test Architecture (TA, Tester's Viewpoint): includes the structure of test documents, test procedure,
location model and patterns in different types of tests.

For WAAF, each column has a unique model and each row presents a unique viewpoint. The
framework does not imply the ordering of the viewpoints, nor is it necessary to provide explicit
documented models for all cells. The model should support existing development paradigms.

4. WAAF-Trace, a web system trace model
The web system trace model WAAF-Trace in this paper is developed along the two dimensions in the
WAAF framework. The relationships of the architectural elements are established within each
viewpoint for a particular stakeholder (columns) and between different viewpoints of different
stakeholders (rows) of the WAAF matrix. Below, the trace relationships along each of the two
dimensions are presented using UML 2.0 notations (OMG 2005b).
A WAFF viewpoint can be modelled as a package. An abstraction is a sub-package within the package
of viewpoint. Tracing relationships among packages are described by stereotyped dependencies. Figure
1 illustrated the tracing relationship between two packages. In this example, elements in client package
Cell (IA-Behaviour) derives elements from supplier package Cell (UIA-Behaviour).

Figure 1. Example of tracing relationship model using UML stereotyped dependency.

The stereotyped dependency types used in our tracing model are described in Table 2.

Cell(UIA- Behaviour) Cell(IA- Behaviour)

<<derive>>

supplier package client package

6

Table 2. Stereotyped dependency types
Specific stereotype Description
<<cluster - generate>> Elements in supplier package are clustered and then elements of

client package are generated from the clustered supplier elements.
<<define>> Elements in suppler package are defined in client package.
<<derive>> Client package is derived from supplier package.
<<generate>> Elements in supplier package are generated from elements in client

package.
<<model>> Elements listed in supplier package are abstracted into models in

client package.
<<present>> Elements in supplier package are presented in user interfaces in

package ‘User Interface Architecture’.
<<realize>> Models in supplier package are realized in client package.
<<refine>> Models in supplier package are further refined to a more detailed

level in the client package.
<<refine – model>> Elements in supplier package are refined to a more detailed level

and abstracted into models in the client package.
<<refine – specify>> Elements in supplier package are refined to a more detailed level

and the interrelationships are specified in the client package.
<<satisfy>> Elements in the client package are used to satisfy the needs of

elements in the supplier package.
<<specify>> Elements or relationships that are listed in the supplier package are

specified in the client package.
<<transfer>> Behaviour models in the supplier package are transferred into the

client package.
<<validate>> Elements in the supplier package are validated by elements in the

client package.
<<verify>> Elements in the supplier package are verified by elements in the

client packages.

The entire trace model for a web system is an integration of the tracing relationships along two
orthogonal dimensions, namely abstract and viewpoint. In the sections below, tracing using the
WAAF-Trace model is described.

4.1 Trace model within viewpoints – column dimension
Each row in the WAAF Matrix presents a unique viewpoint. Each viewpoint describes an entire model
for a stakeholder. The traceability within a viewpoint can be modelled among the abstractions of
structure, behaviour, location and pattern. For simplicity, the illustrations below only model the
traceability between structure and behaviour.

The following trace relationships exist within a viewpoint dimension:

7

The behaviour model describes the functioning workflow process of the system from a
stakeholder’s viewpoint. The workflow process models the interactions of the entities
comprising the system. The entities in the behaviour model are described and their
relationships are modelled in the structure model.

An example of the trace relationship is demonstrated in Figure 2. The example is based on the
commercial web application of an Australian company that specializes in matching investors to
entrepreneurs seeking investment capital. For confidentiality reasons, we use a fictitious name for
the company “XYZ-Match”. The stakeholders of “XYZ-Match” adopted agile modelling
approaches in their development lifecycle. Models in different stakeholders’ viewpoints are
presented in different modelling “languages”. For example, structure models are described by
entity-relation diagrams. Behaviour models are flow charts, user interface flow diagrams,
information flow diagrams and server page flow diagrams.
(Note: In the following XYZ-match models, entities in each viewpoint are drawn in a box. Entity types are represented by
<<>>. Entity names are listed under the entity types.)

Figure 2 shows the structure model and the behaviour model of a User Interface (UI) viewpoint. In the
behaviour model, a workflow of an entrepreneur matching business proposal to Venture Capital (VC)
firm investment requirements is modelled as a UI diagram in Figure 2(b). The UI diagram shows the
navigation flow of the user interfaces “Entrepreneur_home”, “edit_entrepreneur_details”,
“submit_biz_proposal”, “Match_VCFirm_Entrepreneur_Form”, “List_of_VCFirms”, and
“VCFirm_details”. These user interfaces in Cell(UI-Behaviour) and their interrelationships are
modelled as an entity-relation diagram in Cell(UI-Structure) in Figure 2(a).

<<User Interface>>
Match_VCFirm_Entrepreneur_Form

<<User Interface>>
Entrepreneur_Home

<<User Interface>>
Edit_Entrepreneur_Details

<<User Interface>>
SubmitBizProposal

<<User Interface>>
VCFirm_Details

<<User Interface>>
List_of_VCFirms

Use (1,*)

Link to (1,1)

Link to (1,1)

Link to (1,1)

Match (1,*)

Is result of (1,1)

Use (1,1)

<<UI - Structure>>

<<UI - Behaviour>>

<<User Interface>>
Entrepreneur_Home

<<User Interface>>
Edit_Entrepreneur_Details

<<User Interface>>
Match_VCFirm_Entrepreneur_Form

<<User Interface>>
SubmitBizProposal

<<User Interface>>
VCFirm_Details

<<User Interface>>
List_of_VCFirms

(a) (b)

Figure 2. User Interface viewpoints
(a) example of Cell(UI-Structure) (b) example of Cell(UI–Behaviour)

8

4.2 Trace model between viewpoints – row dimension
 In the WAAF Matrix, PA and BA are business architectures and UIA, IA, SA, WOA and TA are web
system architectures. Not all parts of the business architectures in an organisation will be transferred
into web system architectures. Only relevant structures, behaviours and locations in the Business
Architecture (i.e. those parts which relate to the web system) will be traced into software architectures.

Design artifacts play a significant role in web development (Lowe et al. 2003) and could lead to
necessary changes in the business architecture. Artifacts in technical architectures and business
architecture are mapped into each other. WAAF allows forward and backward tracing among
viewpoints. Using the existing order in the WAAF Matrix, the tracing relationships between each two
viewpoints can be modelled as follows:

4.2.1 Planning Architecture (PA) & Business Architecture (BA)

The tracing relationship of PA and BA is illustrated in Figure 3.

• Cell (BA-Structure) in the Business Architecture refines and specifies the relationships among
the business entities that are listed in Cell (PA-Structure) of the Planning Architecture.

• Cell (BA-Behaviour) in the BA models the business processes listed in the PA in Cell (PA-
Behaviour). One business process in PA could be refined into a number of business processes in
BA.

Planning Architecture (PA)

Cell (PA - Behaviour)Cell (PA - Structure)

Business Architecture (BA)

Cell (BA - Behaviour)Cell (BA - Structure)

<<refine-specify>> <<refine-model>>

Figure 3. Tracing relationship of PA and BA

This tracing relationship is demonstrated using an example of XYZ-Match.

In Cell (PA-Structure), the following 3 systems/entities that are important to the business model are
listed:

• XYZ-Match web system

9

• Venture capital directory
• XYZ-Match members

In Cell (BA-Structure), these systems/entities are refined to 6 major business entities: XYZ-Match,
venture capital directory, member, investor, entrepreneur and business proposal. The relationships of
the major business entities are specified in an entity-relation diagram in Figure 4.

Figure 4. Business structure of XYZ-Match

In Cell (PA-Behaviour), the 2 major processes of XYZ-Match are listed:

XYZ-Match web system provides venture capital directory.
Members use XYZ-Match system for venture capital matching.

In Cell (BA-Behaviour), these 2 major processes can be further refined into the following 4 major
business processes:

Users register in “XYZ-Match” to become a “member”.
“Investors” provide venture capital information in “Venture capital directory”.
“Entrepreneurs” search for venture capital.
“Entrepreneurs” and “investors” match in “XYZ-Match” web system.

Each process is modeled in Cell (BA-Behaviour) using dynamic diagrams such as flow chart, activity
diagram, etc. Business process models in Cell (BA-Behaviour) can be refined further if necessary.

4.2.2 Business Architecture (BA) & User Interface Architecture (UIA)

10

Web system users interact via a web interfaces with business entities that are relevant to the web
system. Web components in the BA are mapped into web interfaces as users’ views. Views of users in
the UIA are technology independent. As shown in Figure 5, the tracing relationships are as follows:

• Cell (UIA-Behaviour) in the UIA transfers the business processes models in Cell (BA-
Behaviour) to user interface flow models.

• Cell (UIA-Structure) in the UIA presents the user interfaces and their relationships for web-
system-relevant business entities described in Cell (BA-Structure) in the Business Architecture.

User Interface Architecture (UIA)

Cell (UIA - Behaviour)
Cell (UIA - Structure)

Business Architecture (BA)

Cell (BA - Behaviour)
Cell (BA - Structure)

<<present>> <<transfer>>

Figure 5. Trace model between BA and UIA

Figure 6 shows a business flow model in Cell (BA-Behaviour), drawn in a flow chart. In Cell (UIA-
Behaviour), this business flow is transferred into a User Interface diagram as illustrated in Figure 2(b).
In the User Interface diagram, each user interface is traced to each activity step in the business flow
diagram. For example, “Match_VCFirm_Entrepreneur_Form” in the User Interface diagram in Figure
2(b) is the user interface for the activity step “Search VC firms” in the business flow model in Figure 6.

11

Log in
Entrepreneur

Home

What is your
task?

Search VC
firms

System
displays list
of VC firms

System
displays VC
firm details

Submit
business
proposal

Edit
entrepreneur

details

Search VC firm
information

Edit entrepreneur
 information

Submit business
 proposal

Figure 6. Example of a business flow model in Cell(BA-Behaviour)

Figure 2(a), in turn, presents the user interfaces that described in Cell(BA-Structure).

4.2.3 User Interface Architecture (UIA) & Information Architecture (IA)

Information relating to the handling and support of User Interface is modelled under User Interface
Architecture.

• Cell (IA-Structure) in the IA structures, organises and labels the information that needed to be
presented to the user interfaces in Cell (UIA-Structure) in the User Interface Architecture. This
information depends-on and satisfies the need of user interfaces in UIA.

• Cell (IA-Behaviour) in the IA derives the user interface flows in Cell (UIA-Behaviour) of UIA
into information flows to model the information creation, exchange, process and consumption
that support the user interface flows.

Figure 7 shows the relationships between the IA and the UIA.

<<satisfy>> <<derive>>Information Architecture (IA)

Cell (IA - Structure)

User Interface Architecture (UIA)

Cell (IA - Behaviour)

Cell (UIA - Behaviour)Cell (UIA - Structure)

Figure 7. Trace model between IA and UIA

12

Figure 8(a) is an information structure for organizing and labelling the information for the user
interfaces in Figure 2(a). In the information structure, information entities “business proposal”,
“entrepreneur details”, “user details”, “entrepreneur task”, “VC firm list”, and “VC firm details” are
described. These information entities are needed for user interfaces shown in Figure 2(a). Within each
information entity, information labels are listed. Each information entity is retrieved from an
information resource as shown in Figure 8(a). The dash line, which starts from an information entity
and ends to an information resource, shows the information retrieval relationship. For example,
information entity “VC firm details” is retrieved from information source “VC Directory”. Information
entity “business proposal” is retrieved from “Entrepreneurs”.

Figure 8(b) is an information flow diagram derived from Figure 2(b). This diagram shows the flow of
information process that supports the user interface flow in Figure 2(b).

<<information>>
entrepreneur task

Labels:
- ID of task
- description of task

<<information>>
business proposal

Labels:
- ID of proposal
- ID of entrepreneur details
- ID of contact person
- investment amount sought
- financing stage
- estimated sales 3 years time
- management team
- detailed description
- business plan

<<information>>
VC firm list

Labels:

- ID of firm
- name of firm
- location
- description of service

<<information>>
VC firm details

Labels:

- ID of firm
- name of firm
- location
- description of service
- investment preference
- fees for VC seekers
- total fund available for investment
- project selection criteria

<<information>>
entrepreneur details

Labels:
- ID of entrepreneur details
- ID of contact person
- financing stage
- current annual sales range
- previous round of financing

<<information>>
user details

Labels:
- ID of contact person
- user log in ID
- user log in password
- user name
- user address
- user email
- user URL

VC DirectoryEntrepreneurs

(a)

13

<<information>>
business
proposal

<<information>>
VC firm details

<<information>>
VC firm list

<<information>>
entrepreneur

details

WebSystem
Database

edit entrepreneur
details

log in and select
entrepreneur tasks

<<information>>
entrepreneur

details
(updated)

<<information>>
entrepreneur

task

upload and submit
business proposal

search VC firms

: Entrepreneur XYZ-Match
Web System

Information Process

<<Information>>

Legend

information flow direction

Information Process

Information entity

Database
information repository

view VC firm
information

information retrieval

(b)

Figure 8. (a) An example of information structure. (b) An example of information flow diagram
in Cell (IA-behaviour) derived from user interface diagram

4.2.4 System Architecture (SA), & Information Architecture (IA) & UIA

The inputs of the System Architecture are from UIA and IA.

• Cell (SA-Structure): User interfaces in Cell (UIA- Structure) are clustered into modules and
refined into sub modules in Cell (SA-Structure). Within submodules, server pages (source code)
are included to realise the user interfaces in Cell (UIA- Structure) and generate the information
(or content) that are described in Cell (IA- Structure).

• Cell (SA-Behaviour) in the SA realises the process in information flows in Cell (UIA –
behaviour) to server page flows. Server page flows generate the user interfaces in user interface
flow diagrams in Cell (UIA-Behaviour) and the information (content) in the information flows
in Cell (IA-Behaviour).

14

generate

<<cluster-generate>> <<generate>>

<<generate>>

Cell (SA - Structure)

System Architecture (SA)

Cell (SA - Behaviour)

Information Architecture (IA)

Cell (IA - Structure)

User Interface Architecture (UIA)

Cell (IA - Behaviour)

Cell (UIA - Behaviour)Cell (UIA - Structure)

Figure 9. Trace model for SA to UIA and IA

As shown in Figure 9, user interfaces in Cell(UIA-Structure) that are related to investors and
entrepreneurs are clustered into module “VC Directory” and “Investment Opportunities” in Cell(SA-
Structure) respectively. Within “Investment Opportunities” module, a number of submodules are
defined. Submodule “entrepreneurs submit business proposals” includes a set of server pages to realise
the user interfaces for business proposal submission, and to generate information entities “business
proposal”, “entrepreneur details”, and “user details” which are described in information structure in
Figure 8(a). Three server pages “GetInfo_EntrepreneurDetails.cfm”,
“Edit_EntrepreneurDetaislForm.cfm”, and “UpdateInfo_EntrepreneurDetails.cfm” are used to generate
the information entity “entrepreneur details” in Figure 8(a) and the user interface
“edit_entrepreneur_details” in Figure 2(b).

Figure 10 shows an example of the trace relationship among the server page flow diagram in Cell (SA-
Behaviour), the user interface diagram in Cell (UI-behaviour), and the information flow diagram in
Cell (IA-Behaviour). The sequence of server pages “GetInfo_EntrepreneurDetails.cfm”,
“Edit_EntrepreneurDetaislForm.cfm”, and “UpdateInfo_EntrepreneurDetails.cfm” are defined to
generate the user interface flow and the information process flow for editing entrepreneur details.

15

<<Server Page>>
GetInfo_EntrepreneurDetails.cfm

<<Server Page>>
Edit_EntrepreneurDetaislForm.cfm

<<Server Page>>
UpdateInfo_EntrepreneurDetails.cfm

Entrepreneurs

<<information>>
entrepreneur details

<<information>>
entrepreneur details

(updated)

<<User Interface>>
Edit_Entrepreneur_Details

generate user interface

 retrieve information

update information

User Interface Flow Information Flow Server Page Flow

Figure 10. Example of the trace relationship among Cell (SA-Behaviour), Cell (UI-behaviour), and
Cell (IA-behaviour).

4.2.5 Web Object Architecture (WOA) & System Architecture (SA)

The System Architecture is implemented into a Web Object Architecture.

• Cell (WOA-Structure) defines the input/output data or information for server pages (or source
code) that are listed in Cell (SA-Structure). The relationships of web objects that will be used in
source code are specified. The database scheme to store contents used in server pages (or source
code) is defined in Cell (WOA-Structure).

• Cell (WOA-Behaviour) refines the server page flow in Cell (SA-Behaviour) into detailed
algorithms in each server page.

The trace model between WOA and SA are illustrated in Figure 11.

16

refine

Cell (SA - Structure)

System Architecture (SA)

define

Cell (WOA - Structure)

Web Object Architecture (WOA)

Cell (SA - Behaviour)

Cell (WOA -
Behaviour)

Figure 11. Trace model between System Architecture and Web Object Architecture

Figure 12(a) provides an example of Cell (WOA-Structure). The input and output of server page
‘GetInfo_EntrepreneurDetails.cfm’ are defined. Server page ‘GetInfo_EntrepreneurDetails.cfm’ is
listed in Cell (SA-Structure). The server page flow of Cell (SA-Behaviour) in Figure 10 is refined into
the algorithm as illustrated in Figure 12(b). Here, we only provide one illustrative algorithm for the
server page ‘GetInfo_EntrepreneurDetails.cfm’.

Cell(WOA-Structure)

<<Server Page>>
GetInfo_EntrepreneurDetails.cfm
--
Input:
‘Current_entrepreneur_ID’

Output: ‘Information_of_current_entrepreneur’:
- financing stage
- current annual sales range
- previous round of financing
- user name
- user address
- user email
- user URL

Cell(WOA-Behaviour)

<<Server Page>> Algorithm
GetInfo_EntrepreneurDetails.cfm
--

Select ‘Information_of_current_entrepreneur’;
From information resource ‘Entrepreneur’;
Where Entrepreneur_ID is Current_entrepreneur_ID;
Display ‘Information_of_current_entrepreneur’
 in user interface ‘Edit_Entrepreneur_Detailsform.htm’.

(a) (b)
Figure 12. Example of (a) Cell(WOA-Structure) and (b) Cell(WOA-Behaviour)

4.2.6 Test Architecture (TA) & all other architectures

Testing includes verification and validation of the artefacts produced in the rows above the TA
viewpoint in the WAAF Matrix, and seeking the weak points of the artifacts produced from Web
Object Architecture. The traceability from the Test Architecture should therefore relate to all other

17

viewpoints to verify the satisfaction of the system against aspects such as the business architecture,
information architecture, and web object architecture.

• Cell (TA-Structure) defines the test documents such as the test plan, items under test, test
design, test case, test data, test procedure, test incident report and test summary report to verify
the planning, business architecture, user interface architecture, information architecture, system
design architecture and web object architecture respectively.

• Cell (TA-Behaviour) defines the procedures or flows to verify and validate the above
viewpoints.

Figure 13 shows how the TA traces to other architectures.

<<verify>>

Cell (TA - Structure)

Testing Architecture (TA)

Cell (TA - Behaviour)

User Interface
Architecture (UIA)

Planning Architecture
(PA)

BusinessArchitecture
(BA)

Information
Architecture (IA)

Web Object Architecture
(WOA)

System
Architecture (SA)

<<verify>>

<<verify>>

<<verify>>

<<verify>>

<<validate>>

<<verify>>

<<verify>>

<<verify>>

<<verify>>

<<validate>>

<<verify>>

Figure 13. Trace model from TA to PA, BA, UIA, IA, SA and WOA

4.3 Summary of the WAAF-Trace model

• In the column dimension (abstractions), the WAAF-Trace model provides a tool for verification
of consistency within each viewpoint. For example, the structure model lists entities that are
needed for a stakeholder’s viewpoint. The behaviour model describes the interaction of these
entities. The trace relationship between the structure model and the behaviour model
determines the completeness and coverage of entities from the structure model to the behaviour
model.

18

• The row dimension (viewpoint) provides a tracing mechanism to verify the needs (or
requirements) of each viewpoint inherited from other viewpoints.

• The multi-dimensional tracing within and among viewpoints provides a tool for impact analysis
of web systems that have characteristics such as fine-grained evolution, maintenance and with a
high level of requirements, project scope and focus change.

To further demonstrate how the WAAF-Trace model can be applied, we apply it to the design process
of a commercial web site in the next section.

5. WAAF-Design, a design method based on the WAAF-Trace model

In this section, the application of WAAF-Trace model is demonstrated through step-by-step design of a
commercial web project. The design process also used a design-process called WAAF-Design. Below,
the designed process is briefly introduced first. Then, the application of the trace model to the designed
process is described.

5.1 Background

Over the last decade numerous approaches to web system design have emerged. Early approaches
evolved from Entity-Relationship modelling in the Hypertext community including structured analysis
and design in the information domain, and object-oriented analysis design. RMM (Isakowitz 1995)
provides a structured design methodology for hypermedia applications. Its focus is on modelling the
underlying content, the user viewpoints on this content, and the navigational structures that interlink
the content. OOHDM (Schwabe 1998) is a similar approach based on object-oriented software
modelling, though somewhat richer in terms of the information representations. Other similar design
methods include EORM (Lange 1994) and work by Lee (1997). WSDM (Troyer et al. 1997) attempts
to take these approaches one step further, by beginning more explicitly from user requirements. In
general, these techniques were either developed explicitly for modelling information in the context of
the Web, or simply adapted from conventional software domain to the Web domain. More recently,
work on WebML has begun to amalgamate these concepts into a rich modelling language for
describing Web applications. The focus of WebML is very much on content modelling rather than
describing the functionality that is a key element of most current commercial Web systems. One of the
few approaches that attempt to integrate content representation with functionality is (Takahashi et al.
1997).

Research results have shown that in commercial web development, clients’ understanding of their
needs evolve as a system evolves and thus design artefacts play a crucial role in the development of the
clients’ understanding (Lowe 2003). A typical web development process includes a prototyping phase.
User interfaces (UI) are prototyped before the system design commences (Peters et al. 2002; Lowe et
al. 2003; Fusebox 2005). Agile development methodologies, which are very popular in the Web
development community, emphasize the value of communication between the clients and the
developers. Web system prototyping is commonly adopted as a vehicle for such communications. Web
systems place a strong emphasis on user interface. Significant input is made into the “look and feel” of
a web site. Usability is of paramount importance and there is considerable artistic input into page

19

appearance. Fusebox (Peters et al. 2002; Lowe et al. 2003; Fusebox 2005) suggests that a user is not
concerned with any part of the web system apart from the front end. What happens behind the front-
end is of no direct concern to the users. The basic requirement for the back end is to support all the
functionalities initially mocked up in the front end “prototype”.

The existing web design approaches such as RMM, OOHDM and WebML run counter to the emphasis
on user interface the and prototyping from the common web development processes. The user
interfaces of their presentation design are typically derived from the design.

The trace model WAAF-Trace provides a streamlined design approach to address the commercial web
development practice. Here we apply the WAAF-Trace to a new web design method, called “WAAF-
Design”. This design method addresses the design process by placing system design after the user
interface prototyping. The system design artifacts are derived from the user interface prototype.
WAAF-Design imposes the traceability of WAAF-Trace to a modified version of Flip (Peters et al.
2002; Fusebox 2005).

The FLiP process consists of a number of steps: Personas and goals; Wireframe; Prototype or Front-
end development; Architecting; Fusecoding; Unit testing; Application Integration; Deployment.
“Personas and goals” identify web application users and their goals. “Wireframe” models the proposed
actions that will be performed by the application. A “prototype” of FLiP is a clickable model of the
finished application with no backend behind it. In prototyping step, what the client expects from the
application is revealed. Once the prototype is finished, the application architects construct the
application design in step “Architecting”. The architects identify fuseactions and organize them into
circuits. Each fuseaction behaviour is broken down into a set of fuses (code), the architects write a
Fusedoc and a test harness for each fuse. In step “Fusecoding”, the coders write the fuses according to
its Fusedoc. As each fuse is coded, it is unit tested against its test harness in step “Unit testing”. The
architects integrate completed fuses into the final application in “Application Integration” step. The
prototype is gradually transformed into a working application based on daily builds. The final product
is deployed from the testing server or the staging server to the production server in step “Deployment”
(Fusebox 2005). FLiP is platform dependent process and therefore is not a methodology for all types of
web development. In addition, developers also need tools such as “DevNotes” for prototyping and
“Mind Mapping” or “Fuseminder” for site construction, to support the development. Nevertheless, the
most visible deficiency in FLiP is its lack of modelling methodology comparing with other common
design methodologies. As software development continue to grow in complexity, and developers are
used to work at high levels of abstraction to cope with this complexity, modeling software is – and will
continue to be – a key aid to developers to work at high levels of abstraction (Cernosek 2004). Without
an explicit modelling method, it will be difficult to trace artifacts throughout the development process.

The WAAF-Design method aims to enhance the modelling and architecting ability and design
traceability to the commercial web design process. It focuses on the design phase of the web
development life cycle since this a major point of departure from conventional software development.
The methodology is platform-independent and does not require any particular tools. The process
includes the following steps: Analysis; Prototype; Information Modelling; Architecting;
Implementation and Deployment. The “Analysis” step is equivalent to “Personas and goals, and
Wireframe” in FLiP. “Implementation and Deployment” corresponds to “Fusecoding, Unit testing,

20

Application Integration and Deployment” in FLiP. The modification of the process from FLiP is in the
following 3 steps: Prototype; Information Modelling and Architecting. In Web system design, “content
is the King of the web” (Lowe et al. 2003). Accordingly, information modelling is a treated as a critical
step in the design process. It could be iteratively applied until a satisfactory outcome has been
achieved. The design method is discussed in detail in the following section.

Table 3. Development process

Process FLiP process Modified Process
Personas & goals;
Wireframe;

Analysis

Prototype;
Architecting;

Prototyping;
Information
modelling;
System
architecting;

Step

Fusecoding;
Unit testing;
Application
integration;
Deployment

Implementation
and
deployment

5.2 WAAF-Design Methodology

The key steps of the WAAF-Design development process are presented in Table 3 in contrast with the
FLiP process. The focus of this design methodology is the design stage including 3 steps: prototyping;
information modelling; and system architecting.

The development is an iterative process. The transformation of the development artifacts is based on
the trace relationship of the WAAF-Trace model. The artifacts of the design are initially transformed
from the analysis step. At “analysis” step, the analysts and the client explore the business process for
the web application being built. Potential application users and their goals are identified. Tasks to
achieve the goals are discovered. Tasks are clustered to scenarios through their semantic cohesions.
The artifacts of this step include list and relationship of the user groups and their goals; list of the tasks
and the description of their flows; list of the scenarios. The artifacts of analysis step are then
transformed into design activities. The design artifacts will be transformed into implementation step.

Figure 14 illustrates the activities and associated artifacts in the 3 steps of the design process. Each
step is discussed below.

21

UI

UI UI

UI

UI

UI

UIUI

UIUI

Info
Info

Info

Info

Info

Info Info

Info

Info

process

process

process

process

UI

UI UI

UI

Info

Code

Code

Code

Code

Code

User Interface
Structure

User Interface
Behavior

Information Behavior

System
Architecture
Behavior

System
Architecture
Structure

Information Structure

InfoInfo

User
Interface

Prototyping

Information
Modeling

System
Architecting

module

module

module

module
sub

module

sub
module

sub
module

Code

Code

Code

Code

Code

Code

applica
tion

sub
module

sub
module

Code

Code

Code

Code

Code

Figure 14. Activities and artifacts of design steps

5.2.1 Prototyping Step

A prototype is a full-scale front-end model of a web application. It is web users’ viewpoint.
Prototyping step formulizes the front-end presentation of what need to be built. We consider the
structure and behaviour dimension of the front-end model at prototyping step. The structure cell and
behaviour cell of the User Interface Architecture in WAAF matrix are applied as two basic components
for prototyping.

The behaviour of the prototype models the user navigation path to access and operate the application.
The navigation paths are derived from the business process scenarios described in the analysis step.
The behaviour can be modelled using user interface flow diagram (Ambler 2004) which considers the
flow and state transition of user interfaces.

All the user interfaces on the navigation paths are collected in the prototype structure. The structure of
the prototype consists of the collection of the user interfaces in the entire application and the layout and
the content of each user interface.

To demonstrate the design method, we use examples of the web application of “XYZ-Match”. The
prototyping process is illustrated using a “capital solicitation” scenario of XYZ-match. In this scenario,
entrepreneurs submit business proposals and the XYZ-match approves the proposals. The whole
prototype behaviour of the application will include all the business process scenarios of XYZ-match
described in the analysis step.

The navigation paths of this scenario and the individual user interfaces to present these paths are
identified and modelled in a user interface flow diagram in Figure 15. In UI flow diagram, each UI is
represented using a box which only includes the name of the UI and exit points. The contents of each
UI are presented in the prototype structure, not considered in the prototype behaviour. Figure 16
shows the content on one page on the navigation path. The contents are what the user will see in the
final product.

22

<<UI>
Investment

Opportunities

<<UI>
Capital

Solicitation
Form-page1

<<UI>
Capital

Solicitation
Form-page 2.1

<<UI>
Capital

Solicitation
Form-page 2.2

<<UI>
Capital

Solicitation
Form-preview 1

<<UI>
Capital

Solicitation
Form-preview 2

<<UI>
Confirmation

<<UI>
content of email to

XYZ-Match
Business

Executives

<<UI>
Business

Executives
Log In

<<UI>
Capital

Solicitation
Approval Form

<<UI>
web email
template
- pending

<UI>
web email
template

- approved

<<UI>
web email
template
- reject

reject pending approve

<<UI>
Email sent

confirmation

send sendsend

log in

submitsubmit

next page next page
type 1 type 2

<<UI>
Investor Log In

Form

<<UI>
Investment

opportunity list

<<UI>
Investment
opportunity

content

log in

log in
failed

log in
failed

individual investment
opportunity link

back to list

home

mailto:
XYZ-Match

email alert "new
form submitted"

URL: log in to
approve new form

external
print

application

print
"confirmation

page:

external print
application

print

external
email

application

preview preview

Figure 15. User interface flow diagram

Figure 16. User interface structure

23

5.2.2 Information Modelling Step

Information is “the interpretation of data within a context set by a priori knowledge and the current
environment” (Lowe et al. 1999). In information modelling step, information architects model the
prototype into information architecture (IA). We consider two cells of WAAF Matrix information
structure and information behaviour as two basic components for information modelling.

Information architects classify and construct the structure and the relationship of the information in
information structure. The information being modelled depends-on and satisfies the need in the UI
contents in the prototype.

For example, the information needed in the capital solicitation scenario of XYZ-match can be
categorized into user details, entrepreneur details, VC seeking criteria, publishing permission selection,
etc. Under the category “user details”, the information can be labelled as “user log in ID, user log in
password, user name, user address, user email, user URL” etc. (See Figure 17).

<<information>>
entrepreneur details

Labels:
- ID of entrepreneur details
- ID of contact person
- financing stage
- current annual sales range
- previous round of financing

<<information>>
user details

Labels:
- ID of contact person
- user log in ID
- user log in password
- user name
- user address
- user email
- user URL

Entrepreneurs

<<information>>
VC seeking criteria

Labels:
- Info-ID of VC seeking criteria
- criteria 1-5

<<information>>
publishing permission

selection

Labels:
- Info-ID of publishing
 permission selection
- Company Name permission
- Address permission
- Phone permission
- Email permission

Figure 17. Information structure

Information behaviour is modelled as information flow. Information architects derive the user interface
flow diagrams into information flow diagrams to model the information creation, exchange, process
and consumption that support the user interface flows. Information diagrams include information,
information source and destination, information flow direction, and information processing unit. Figure
18 is a part of an information flow diagram of the capital solicitation scenario derived from the user
interface flow in the prototyping behaviour model.

24

<<information>>
user profile

<<information>>
publishing
permission
selection

<<information>>
VC seeking

criteria

<<information>>
entrepreneur

profile

WebSystem
Database

Integrate VC seeking
information

Fill in Capital
Solicitation Form

<<information>>
entrepreneur

profile

<<information>>
VC seeking

criteria

<<information>>
publishing
permission
selection

Select
entrepreneur list

<<information>>
entrepreneur list

<<information>>
Investment
opportunity

View
Investment opportunity

: Entrepreneur XYZ-Match
Web System : Investor

Information Process

<<Information>>

Legend

information flow direction
Information Process

Database
information repositoryInformation entity

Figure 18. Information behaviour: information flow diagram

5.2.3 System Architecting Step

Once the information model is finished, the system architects begin “System Architecting” to construct
the web application design to modules and break down the modules into source code. Modelling
System Architecture Structure and System Architecture Behaviour are the major activities in this step.
In System Architecture Structure, system architects cluster the user interfaces into modules. If the
modules are complex, break down the modules into submodules. Within each module and submodule,
source code (or server pages) is included to realize the user interfaces in User Interface Structure and
to generate the information (or content) in the Information Structure. System Architecture Behaviour
specifies workflow or business logic within the modules and submodules. It realizes each process in the
information flow in the information behaviour through source code flow (or server page flow). Each
source code flow generates the user interface flow in the user interface behaviour and the information
flow in the information behaviour.

In the system architecting of XYZ-Match application, the modules are clustered by user groups:
investors, entrepreneurs, business executives and site administrator. User groups are identified in
analysis step. The system architecture structure is as Figure 19. For example, the module “Investment
opportunities” is broken down to submodules “investment opportunity listing”, “entrepreneurs submit
business proposals” and “Business executives’ approval”. The submodule “entrepreneurs submit
business proposals” includes a set of source code to generate the user interfaces and information that
modelled in the prototyping and information modelling steps. The flow of this set of source code is

25

modelled in the system architecture behaviour to realise the user interface flow and the information
flow for “entrepreneurs submit business proposals” scenario. The source code flow diagram is as
Figure 20. Detailed algorithms within each source code are not considered in the system architecting
step, they will be developed in the implementation step by coders.

Figure 19. System architecture structure

The artifacts of the design steps, “user interface structure”; “user interface behaviour”; “information
structure”; “information behaviour”; “system architecture structure” and “system architecture
behaviour” will be transformed into the implementation and deployment step.

26

<<UI>
Investment

Opportunities

<<UI>
Capital

Solicitation
Form-page1

<<UI>
Capital

Solicitation
Form-page 2.1

<<UI>
Capital

Solicitation
Form-page 2.2

<<UI>
Capital

Solicitation
Form-preview 1

<<UI>
Capital

Solicitation
Form-preview 2

<<UI>
Confirmation

<<UI>
content of email to

XYZ-Match
Business

Executives

if type 1, generate UI for type 1 preview

if "type 1", generate UI for form page 2.1

generate email alert "new form submitted"

<<information>>
user profile

<<information>>
publishing
permission
selection

<<information>>
VC seeking

criteria

<<information>>
entrepreneur

profile

WebSystem
Database

Fill in
Capital

Solicitation
Form

User Interface Flow Information Flow Server Page Flow

<<Server Page>>
CapitalForm1.cfm

generate form UI

<<Server Page>>
CapitalForm2.cfm

select type 1 or 2, click button "next page"

click link "Capital Solicitation Form"

<<Server Page>>
CapitalFormPreview.cfm

click "preview"

<<Server Page>>
CreateEntrepreneurInfo.cfm

click "submit"

click "submit"

<<Server Page>>
InsertEntrepreneurInfo2DB.cfm

create information "user profile"
create information "entrepreneur profile"

create information "VC seeking criteria"
create information "publishing permission selection"

<<Server Page>>
EmailAlert2BusinessExecutives.cfm

<<Server Page>>
Confirmation.cfm

generate confirmation UI of submitted form

if "type 2", generate UI for form page 2.2

if type 2, generate UI for type 2 preview

click
"preview"

Insert Entrepreneur Inforamtion to database

Figure 20. Server page flow diagram

6. Conclusions

In order to address the specific characteristics of web-centric systems, this paper presents a trace model
for web systems based on Web Application Architecture Framework (WAAF). The trace model has
two dimensions: within viewpoint; and amongst viewpoints. Within each viewpoint the artifacts that
belong to a stakeholder in the web system life cycle are traced between structure models and behaviour
models. Between each viewpoint the needs of different stakeholders are transmitted into other
viewpoints by tracing relationships among structures and behaviours.

Traceability is established through linking different artifacts of a development process. The focus of
the trace model presented in this paper is on identifying these links. The strength of tracing which
provides more accurate, quantitative descriptions of traceability needs to be investigated in future
studies.

27

The use of this trace model is demonstrated through its application in combination with
the WAFF-Design process to a commercial web project. The WAAF-Design method
focuses on 3 steps: prototyping, information modelling and system architecting. The design process
commences from prototyping. Back-end design activities such as “information modelling” and “system
architecting” support the front-end prototyping. Information modelling is made explicit by modelling
information structure and information flow. The design method guides the activities through the
artifacts modelling and transformation at each step. To cope with the system complexity, design
activities at each step are partitioned into structural design and behavioural design.

References

Ambler, S. W. (2004). The Object Primer. 3rd Edition, Agile Model Driven Development with UML 2,
Cambridge University Press.

ATL http://www.eclipse.org/gmt/atl/ . Last accessed: 9 Nov. 2006
Balmas, F. (2004.). "Displaying dependence graphs: a hierarchical approach." Journal of software

maintenance and evolution: research and practices 16(3): 151-185.
Burdman, J. (1999). Collaborative Web Development: Strategies and Best Practices for Web Teams.

Boston, Addison-Wesley.
Cernosek G., N. E. (2004). "The value of modeling." The Rational Edge Nov. 2004
Chen, K., & Rajlich, V. (2000). Case Study of Feature Location Using Dependence Graph.

International Workshop on Program Comprehension.
Domges, R., Pohl, K., & Schreck, K. (1998). A Filter-Mechanism for method-Driven Trace Capture.

The 10th International Conference on Advanced Information System Engineering, Pisa, Italy.
Eclipse Foundation (2006). ALT Home page, http://www.eclipse.org/gmt/atl/ Last accessed: 11 Nov.

2006
Fusebox Lifecycle Process (2005). http://www.fusebox.org/. Last accessed: 9 Nov. 2006
Gotel, O. (1996). Contribution structures. London, England, Imperial College of Science, Technology,

and Medicine.
Haumer, P., Pohl, K., & Weidenhaupt, K.. (1998). "Requirements elicitation and validation with real

world scenes." IEEE Transactions on Software Engineering 24(12): 1036-1054.
IBM (2005). IBM Rational Software, http://www-306.ibm.com/software/rational/. Last accessed: 8

July 2005.
IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.
IEEE (2000). IEEE Recommended practice for architectural description of software-intensive systems.

Std 1471-2000
Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). "RMM: A Methodology for Structured

Hypermedia Design." Communications of the ACM 38: 34-44.
ISO/IEC (1996a). "Information technology -- Open Distributed Processing -- Reference Model:

Foundations -Part 2", ISO/IEC 10746-2:1996
ISO/IEC (1996b). "Information technology -- Open Distributed Processing -- Reference Model:

Architecture - Part 3", ISO/IEC 10746-3
ISO/IEC (1998a). "Information technology -- Open Distributed Processing -- Reference model:

Overview Part 1", ISO/IEC 10746-1:1998

28

ISO/IEC (1998b). Information technology -- Open Distributed Processing -- Reference Model:
Architectural semantics - Part 4, ISO/IEC 10746-4:1998

Kong, X., Liu, L., & Lowe, D. (2005). "Separation of concerns, a web application architecture
framework." Journal of digital information. Volume 6, Issue 2.

Koskinen, J., Salminen, A., & Paakki, J. (2004). "Hypertext support for the information needs of
software maintainers." Journal of software maintenance and evolution: research and practices
16(3): 187-215.

Lange, D. (1994). An Object-Oriented Design Method for Hypermedia Information Systems.
Proceedings of the Twenty Seventh Hawaii International Conference on System Sciences,
Maui, Hawaii.

Lee, S. C. (1997). A Structured Navigation Design Method For Intranets. Presented at Third Americas
Conference on Information Systems, Association for Information Systems (AIS), Indianapolis.

Lowe, D.& Hall, W. (1999). Hypermedia and the Web: An Engineering Approach. New York, John
Willey & Sons Ltd.

Lowe, D., & Eklund, J. (2003). "Client Needs and the Design Process in Web Projects." Journal of
Web Engineering 1(1): 23-36.

Lowe, D., & Henderson-Sellers, B. (2001). Impacts on the development process of differences between
web systems and conventional software systems. SSGRR 2001: International Conference on
Advances in Infrastructure for Electronic Business, Science, and Education on the Internet,
L'Aquila, Italy.

Murugesan, S. (2000). Web Engineering for Successful Web Application Development. Asia Pacific
Web Conference, AeIMS Research Centre, Xian, China.

Object Management Group (2005a), MOF QVT Final Adopted Specification, Object Management
Group, OMG doc. Ptc/05-11-01

Object Management Group (2005b). UML: http://www.uml.org/. Last accessed: 9 Nov. 2006
O'Neal, J. S., & Carver, D.L. (2001). Analyzing the impact of changing requirements. IEEE Int.

Conference on Software Maintenance.
Palmer, J. D. (1996.). Traceability. Software Requirements Engineering. T. M. Dorfman, R., IEEE

Computer Society: 266-276.
Peters, J. P., & Nat (2002). Fusebox: developing ColdFusion applications. Indianapolis, Ind,, New

Riders.
Platt, M. (2002). Microsoft Architecture Overview.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnea/html/eaarchover.asp?frame=true&hidetoc=true, Last accessed: 21 June, 2004.

Podgurski, A., & Clarke, L. (1990). "A formal model of program dependences and its implications for
software testing, debugging and maintenance." IEEE Transactions on Software Engineering
16(9): 965-979.

Pohl, K., Weidenhaupt, K., Domeges, R, Haumer, P., Jarke, M., & Klamma, R. (1999). "PRIME -
Toward Process-integrated Modeling Environments." ACM Transactions on Software
Engineering and Methodology 8(4): 343-410.

Powell, T. A., Jones,D.L., et al. (1998). Web Site Engineering: Beyond Web Page Design, Prentice
Hall.

QVT – Wikipedia http://en.wikipedia.org/wiki/QVT, Last accessed: 11 Nov. 2006
Ramesh, B., & Jarke, M. (2001). "Toward Reference Models for Requirements Traceability." IEEE

Transactions on Software Engineering 27(1): 58 - 93.

29

Schwabe, R., G. (1998). Developing Hypermedia Applications using OOHDM. Workshop on
Hypermedia Development Processes, Methods and Models (Hypertext'98), Pittsburgh, USA.

Sommerville, J. (2001). Software Engineering, Addison Wesley.
Takahashi K., & L., E. (1997). Analysis and Design of Web-based Information Systems. Presented at

7th International WWW Conference, Brisbane, Australia.
Telelogic (2005). Telelogic DOORS, http://www.telelogic.com/. Last accessed: 9 Nov. 2006
Troyer, O. D. & L., C. (1997). WSDM: A user-centered design method for Web sites. Presented at 7th

International WWW Web Conference, Brisbane, Australia.
Vitech Corporation (2005). CORE, http://www.vitechcorp.com/. Last accessed: 8 Feb. 2006
von Knethen, A. (2002). Change-Oriented Requirements Traceability. Support for Evolution of

Embedded Systems. Proceedings of International Conference on Software Maintenance.
Yu, E. (1993). Modeling Organizations for Information Systems Requirements Engineering. 1st IEEE

Symposium on Requirements Engineering, San Diego.
Zachman, J. A. (1987). "A Framework for Information Systems Architecture." IBM Systems Journal

26, (3).

