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Abstract 

Traceability analysis is crucial to the development of web-centric systems, particularly those with 
frequent system changes, fine-grained evolution and maintenance, and high level of requirements 
uncertainty. A trace model at the level of the web system architecture is presented in this paper to 
address the specific challenges of developing web-centric systems. The trace model separates the 
concerns of different stakeholders in the web development life cycle into viewpoints; and classifies 
each viewpoint into structure and behaviour. Tracing relationships are presented along two dimensions: 
within viewpoints; and among viewpoints. Examples of tracing relationships are presented using UML. 
This trace model is demonstrated through its application to the design of a commercial web project 
using a web-design process. The design artifacts in each activity are transformed based on the artifacts 
tracing relationship in the trace model. The model provides mechanisms for verification of consistency, 
completeness and coverage within each viewpoint and the connectedness across viewpoints.  

1. Introduction 
In software development, it is critical to identify and understand the relationships among the artifacts of 
the development process such as user needs, systems requirements, design, specifications, and codes 
(Palmer 1996). The degree to which each element in a software development product establishes its 
reason for existing and the degree to which a relationship can be established between two or more 
products of the development process are referred to as traceability (IEEE 1990). For example, each 
element in a bubble chart justifies its existence by referring to the requirement that it satisfies. 
Similarly, the degree to which the requirements and design of a given software component match 
describes the traceability between requirement and design. When there is a predecessor-successor or 
master-subordinate relationship between two artifacts of a development process, it is especially 
important to trace the relationship. Traceability is typically established with the use of a trace model. A 
trace model is defined as a semantic network in which nodes represent objects, stakeholders and 
resources among which traceability is established through links of different types and strengths 
(Ramesh et al. 2001). The ability to support traceability analysis of systems artifacts is crucial in 
systems development and maintenance. Traceability gives essential assistance in understanding the 
relationships within and across software requirements, design, and implementation. Tracing provides 
insights to quality, consistency, completeness, impact analysis, system evolution, and process 
improvement (Palmer 1996).   
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Most existing trace models are for conventional software systems and provide little insight on how to 
develop trace models for web-centric systems. Compared to conventional software systems, a web-
centric system typically has a tighter linkage between the business model and the technical 
architecture; uses technologies that change rapidly; faces high levels of client uncertainty with regard 
to their needs and also in terms of understanding whether a design will satisfy their needs; has high 
levels of change in requirements, project scope and focus, due largely to the continual evolution of the 
business model; and demands fine-grained evolution and maintenance with an ongoing process of 
content updating, editorial changes and interface tuning (Lowe et al. 2001). Web systems must cater for 
users of varied skill and capability (Murugesan 2000). Current web development efforts frequently 
bring together professionals from many varied backgrounds. These professionals have different 
expectations, experience and thus their contributions need to be interpreted in appropriate ways that 
can be understood by all project stakeholders (Powell et al. 1998; Burdman 1999). 

The objective of this paper is to present a trace model specifically designed for web-centric systems 
based on Web Application Architecture Framework (WAAF) (Kong et al. 2005). In the next sections, 
literature on existing trace models is reviewed and WAAF, which forms the foundation for the trace 
model, is summarized. Then, the trace model is presented and illustrated through the application to the 
design of a commercial web project. . 

2. Existing trace models 

Existing software trace models tends to concentrate on two different levels. One is on source code 
dependency at the program level. Various trace models were developed for testing, debugging, 
maintenance, code optimisation and computer security purposes (Podgurski et al. 1990; O'Neal et al. 
2001). Data and control dependency and program slicing are common tools for traceability analysis at 
this level (O'Neal et al. 2001). Example modelling approaches include feature location using 
dependence graphs (Chen et al. 2000), visual hierarchical approach using dependence graphs by 
grouping programs to extract and handle data & control dependences (Balmas 2004), and transient 
hypertext approach to provide support for C program maintainers (Koskinen et al. 2004).  

The other is on traceability relationships at the systems level. Research has focused on analysis of 
traceability between all work products or documents of the development processes (O'Neal et al. 2001). 
Example trace models include contribution structures that consider contributions, communication and 
cooperation amongst the stakeholders, roles and policies (Gotel 1996), actor dependency model (Yu 
1993), method-driven trace capture (Domges et al. 1998), extended traceability  (Haumer et al. 1998), 
and a trace model for system requirement change in embedded systems (von Knethen 2002).  

Some trace models cover the whole life cycle while others focus on traceability in specific areas or 
stages of the life cycle. For example, the V-model provides a trace model for system verification and 
validation at a meta-level (Sommerville 2001). Similarly, reference models for requirements 
traceability (Ramesh et al. 2001) and the PRIME framework (Pohl et al. 1999) concentrate on systems 
traceability. Commercial CASE tools have been developed to support system traceability such as 
DOORS (Telelogic 2005), CORE (Vitech Corporation 2005), RequisitePro and AnalystStudio  (IBM 
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2005). These existing trace models are based on architectures for conventional software systems. The 
differences between web-centric systems and conventional software systems means that these trace 
models do not specifically address web characteristics and thus cannot be readily applied to web-
centric systems.  

Two models that are worth mentioning are Open Distributed Processing – Reference Model (RM-ODP) 
(ISO/IEC 1996a, 1996b, 1998a, 1998b) and Model Driven Architecture (MDA) (OMG 2005a). 
Common to both models are the focus on presenting platform independent and platform specific 
technologies in separate models through high level of abstraction. For example, a system that comprise 
Microsoft .NET, SUN’s ONE and CORBA and other middleware technologies can be represented by a 
platform independent UML model and three platform-specific models (each for .NET, ONE and 
CORBA, respectively). The models describe the functionality and behaviour of distributed systems and 
can be used to trace concepts by correspondence. Detailed technical specification and the focus on 
technology limit the applicability of the two models to web projects, which typically have multi-skilled 
development teams, strong emphasis on user interface and driven by evolving business needs. 

Most trace models are based on an underlying architectural framework. The Zachman framework 
(Zachman 1987) is a widely acknowledged architecture framework to classify and integrate 
architectures into a comprehensive matrix based on a building metaphor. A key feature of an 
architecture framework is its ability to trace artifacts across the entire architecture. Stakeholders in a 
system process are multi-disciplined and have different preferences in using modelling approaches. An 
architecture framework is able to establish the traceability among the different artifacts that different 
stakeholders have produced. The Zachman Framework matches the entities, processes, locations, 
people, schedule, and purposes of the real world to the abstract bits in the computer, but is not able to 
accommodate the later development of open and modularised architectures of the web. Aspects such as 
reusable information and an emphasis on user interface, which are typical characteristics of web 
systems, have not been mapped into the building metaphor. 

The Web Application Architecture Framework (WAAF) (Kong et al. 2005) extends the Zachman 
framework to support web systems. WAAF provides traceability between the business models and 
technical architectures in a taxonomic way to address the characteristics of web systems – including 
tighter linkage between business models and technical architectures, high levels of requirements 
change, increased emphasis on user interfaces, and the stronger roles the design artifacts play in 
development. Based on WAAF, this paper presents a trace model at the system architecture level 
specifically designed to consider web characteristics. This trace model provides a theoretical 
foundation for autonomous web system code generation. 

3. Web application architecture framework (WAAF) 

A presentation of a whole system from the perspective of a related set of concerns is referred to as 
‘view’. A viewpoint establishes the conventions by which a view is created, depicted and analysed 
(IEEE 2000). The Web Application Architecture Framework (Kong et al. 2005) separates concerns of a 
web system into two dimensions. As shown in Table 1, the horizontal dimension (rows) is concerned 
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with the different viewpoints of the stakeholders in the development process. The viewpoints include 
viewpoints of planners, business owners, web system users, information architects, system architects, 
developers and testers. The vertical dimension (columns) classifies the architectures into four abstract 
categories, namely: structure (what); behaviour (how); location (where); and pattern. Each cell in the 
framework is a model, a description, or an architecture, as appropriate. The classification in columns of 
the WAAF Matrix is described in the following abstractions: 

Structure: The abstraction of the things comprising the system and their inter-relationship.  

Behaviour: The description of the functioning workflow process of the system.  

Location: The location map of the things of the system relative to others geometrically. 

Pattern: The reuse of real-world experience harvested from best practices for successful, rapid and 
cost-effective system development (Platt 2002). As existing patterns may not be classified into 
“structure, behaviour and location”, this column lists and describes patterns. 

Table 1 WAAF Matrix - Web Application Architecture Framework 
  Structure   

     (What)  
Behaviour 

(How) 
Location
(Where) 

Pattern

Planning 
Architecture 
(Planner’s  
Viewpoint) 

List of things 
important to the 
business 

List of 
processes the 
business 
performs 

List of business 
operation locations 

-

Business 
Architecture 
(Bus. Owner’s 
Viewpoint) 

e.g. Business 
Entity 
Relationship 
Model 

e.g. Business 
Process 
Model 

e.g. Business 
Entity Location 
Model 

e.g. Business Model 
Patterns  

User Interface  
Architecture 
(User’s Viewpoint) 

e.g. User 
Interface 
Structure Model 

e.g. User 
Interface 
Flow Model 

e.g. User Site Map 
Model 

e.g. Interface  
Templates, 
Navigation Patterns 

Info. Arch.
(Information 
Architect’s 
Viewpoint) 

e.g. Information 
Dictionary  

e.g.
Information 
Flow Model 

e.g. Information 
Node Location 
Model  

e.g. Information 
Scheme Patterns 

System Arch.  
(System Architect’s 
Viewpoint) 

e.g. System 
Functioning 
Module / Server 
Page Structure 

e.g.
Workflow 
Model of 
Module / 
Server Page 

e.g. Site Mapping 
of Modules Server 
Pages 

e.g. Design Patterns, 
Presentation styles 

Web Object 
Architecture  
(Developers’ 
Viewpoint) 

e.g. Physical 
Object 
Relationship  

e.g.
Algorithms in 
Source Code 

e.g. Network 
Deployment Model 

e.g. COTS,  
Components, Code 
Library  

Test Architecture 
(Tester’s 
Viewpoint) 

e.g. Test 
Configuration  

e.g. Test 
Procedure 

e.g. Test 
Deployment 

e.g. Templates, 
Standards of Test 
Documents  

Planning Architecture (PA, Planner's Viewpoint): concerned with issues important to the planning 
of the web system. Patterns are not typically relevant to this viewpoint.  
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Business Architecture (BA, Business Owner's Viewpoint): models the business structure, process, 
locations, and patterns of the web application system from the viewpoint of business owners.  

User Interface Architecture (UIA, User's Viewpoint): describes the components of the system, their 
roles and relationships as they are perceived by users of the web system. 

Information Architecture (IA, Information Architect's Viewpoint): classifies and constructs the 
structure, relationships, flows and location of information that are needed in the user interface 
viewpoint to connect the external and internal users to access the contents and the functionality of the 
web application. This viewpoint is independent from the implementation of the system.  

System Architecture (SA, System Architect's Viewpoint): this is for design elements, including 
structure, behaviour, location and pattern of the web application system. 

Web Object Architecture (WOA, Developer's Viewpoint): the system design is implemented into 
source code and other web objects. WOA describes the architecture of source code and other web 
objects from developer's viewpoint. Web objects are objects implemented in a web site.  

Test Architecture (TA, Tester's Viewpoint): includes the structure of test documents, test procedure, 
location model and patterns in different types of tests. 

For WAAF, each column has a unique model and each row presents a unique viewpoint. The 
framework does not imply the ordering of the viewpoints, nor is it necessary to provide explicit 
documented models for all cells. The model should support existing development paradigms. 

4. WAAF-Trace, a web system trace model 
The web system trace model WAAF-Trace in this paper is developed along the two dimensions in the 
WAAF framework. The relationships of the architectural elements are established within each 
viewpoint for a particular stakeholder (columns) and between different viewpoints of different 
stakeholders (rows) of the WAAF matrix. Below, the trace relationships along each of the two 
dimensions are presented using UML 2.0 notations (OMG 2005b).  
A WAFF viewpoint can be modelled as a package. An abstraction is a sub-package within the package 
of viewpoint. Tracing relationships among packages are described by stereotyped dependencies. Figure 
1 illustrated the tracing relationship between two packages. In this example, elements in client package 
Cell (IA-Behaviour) derives elements from supplier package Cell (UIA-Behaviour). 

Figure 1. Example of tracing relationship model using UML stereotyped dependency. 

The stereotyped dependency types used in our tracing model are described in Table 2. 

Cell(UIA- Behaviour) Cell(IA- Behaviour) 

<<derive>>

supplier package client package
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Table 2. Stereotyped dependency types   
Specific stereotype Description  
<<cluster - generate>> Elements in supplier package are clustered and then elements of 

client package are generated from the clustered supplier elements.  
<<define>> Elements in suppler package are defined in client package. 
<<derive>> Client package is derived from supplier package.  
<<generate>> Elements in supplier package are generated from elements in client 

package.
<<model>> Elements listed in supplier package are abstracted into models in 

client package. 
<<present>> Elements in supplier package are presented in user interfaces in 

package ‘User Interface Architecture’.   
<<realize>> Models in supplier package are realized in client package. 
<<refine>> Models in supplier package are further refined to a more detailed 

level in the client package. 
<<refine – model>> Elements in supplier package are refined to a more detailed level 

and abstracted into models in the client package. 
<<refine – specify>> Elements in supplier package are refined to a more detailed level 

and the interrelationships are specified in the client package.  
<<satisfy>> Elements in the client package are used to satisfy the needs of 

elements in the supplier package. 
<<specify>> Elements or relationships that are listed in the supplier package are 

specified in the client package.  
<<transfer>> Behaviour models in the supplier package are transferred into the 

client package. 
<<validate>> Elements in the supplier package are validated by elements in the 

client package. 
<<verify>> Elements in the supplier package are verified by elements in the 

client packages. 

The entire trace model for a web system is an integration of the tracing relationships along two 
orthogonal dimensions, namely abstract and viewpoint. In the sections below, tracing using the 
WAAF-Trace model is described.  

4.1 Trace model within viewpoints – column dimension
Each row in the WAAF Matrix presents a unique viewpoint. Each viewpoint describes an entire model 
for a stakeholder. The traceability within a viewpoint can be modelled among the abstractions of 
structure, behaviour, location and pattern. For simplicity, the illustrations below only model the 
traceability between structure and behaviour. 

The following trace relationships exist within a viewpoint dimension:  
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The behaviour model describes the functioning workflow process of the system from a 
stakeholder’s viewpoint. The workflow process models the interactions of the entities
comprising the system. The entities in the behaviour model are described and their 
relationships are modelled in the structure model.

An example of the trace relationship is demonstrated in Figure 2. The example is based on the 
commercial web application of an Australian company that specializes in matching investors to 
entrepreneurs seeking investment capital. For confidentiality reasons, we use a fictitious name for 
the company “XYZ-Match”. The stakeholders of “XYZ-Match” adopted agile modelling 
approaches in their development lifecycle. Models in different stakeholders’ viewpoints are 
presented in different modelling “languages”. For example, structure models are described by 
entity-relation diagrams. Behaviour models are flow charts, user interface flow diagrams, 
information flow diagrams and server page flow diagrams.  
(Note: In the following XYZ-match models, entities in each viewpoint are drawn in a box. Entity types are represented by 
<<>>. Entity names are listed under the entity types.) 

Figure 2 shows the structure model and the behaviour model of a User Interface (UI) viewpoint. In the 
behaviour model, a workflow of an entrepreneur matching business proposal to Venture Capital (VC) 
firm investment requirements is modelled as a UI diagram in Figure 2(b). The UI diagram shows the 
navigation flow of the user interfaces “Entrepreneur_home”, “edit_entrepreneur_details”,
“submit_biz_proposal”, “Match_VCFirm_Entrepreneur_Form”, “List_of_VCFirms”, and 
“VCFirm_details”.    These user interfaces in Cell(UI-Behaviour) and their interrelationships are 
modelled as an entity-relation diagram in Cell(UI-Structure) in Figure 2(a). 

<<User Interface>>
Match_VCFirm_Entrepreneur_Form

<<User Interface>>
Entrepreneur_Home

<<User Interface>>
Edit_Entrepreneur_Details

<<User Interface>>
SubmitBizProposal

<<User Interface>>
VCFirm_Details

<<User Interface>>
List_of_VCFirms

Use (1,*)

Link to (1,1)

Link to (1,1)

Link to (1,1)

Match (1,*)

Is result of  (1,1)

Use (1,1)

<<UI - Structure>>

<<UI - Behaviour>>

<<User Interface>>
Entrepreneur_Home

<<User Interface>>
Edit_Entrepreneur_Details

<<User Interface>>
Match_VCFirm_Entrepreneur_Form

<<User Interface>>
SubmitBizProposal

<<User Interface>>
VCFirm_Details

<<User Interface>>
List_of_VCFirms

(a)                                                                                                        (b)

Figure 2. User Interface viewpoints  
(a) example of Cell(UI-Structure) (b) example of Cell(UI–Behaviour)



8

4.2 Trace model between viewpoints – row dimension  
 In the WAAF Matrix, PA and BA are business architectures and UIA, IA, SA, WOA and TA are web 
system architectures. Not all parts of the business architectures in an organisation will be transferred 
into web system architectures. Only relevant structures, behaviours and locations in the Business 
Architecture (i.e. those parts which relate to the web system) will be traced into software architectures. 

Design artifacts play a significant role in web development (Lowe et al. 2003) and could lead to 
necessary changes in the business architecture. Artifacts in technical architectures and business 
architecture are mapped into each other. WAAF allows forward and backward tracing among 
viewpoints. Using the existing order in the WAAF Matrix, the tracing relationships between each two 
viewpoints can be modelled as follows: 

4.2.1 Planning Architecture (PA) & Business Architecture (BA) 

The tracing relationship of PA and BA is illustrated in Figure 3. 

• Cell (BA-Structure) in the Business Architecture refines and specifies the relationships among 
the business entities that are listed in Cell (PA-Structure) of the Planning Architecture.  

• Cell (BA-Behaviour) in the BA models the business processes listed in the PA in Cell (PA-
Behaviour). One business process in PA could be refined into a number of business processes in 
BA.

Planning Architecture (PA)

Cell (PA - Behaviour)Cell (PA - Structure)

Business Architecture (BA)

Cell (BA - Behaviour)Cell (BA - Structure)

<<refine-specify>> <<refine-model>>

Figure 3. Tracing relationship of PA and BA 

This tracing relationship is demonstrated using an example of XYZ-Match.  

In Cell (PA-Structure), the following 3 systems/entities that are important to the business model are 
listed:

• XYZ-Match web system  
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• Venture  capital directory 
• XYZ-Match members  

In Cell (BA-Structure), these systems/entities are refined to 6 major business entities: XYZ-Match, 
venture capital directory, member, investor, entrepreneur and business proposal. The relationships of 
the major business entities are specified in an entity-relation diagram in Figure 4. 

Figure 4. Business structure of XYZ-Match 

In Cell (PA-Behaviour), the 2 major processes of XYZ-Match are listed: 

XYZ-Match web system provides venture capital directory.  
Members use XYZ-Match system for venture capital matching. 

In Cell (BA-Behaviour), these 2 major processes can be further refined into the following 4 major 
business processes: 

Users register in “XYZ-Match” to become a “member”.  
“Investors” provide venture capital information in “Venture capital directory”. 
“Entrepreneurs” search for venture capital.  
“Entrepreneurs” and “investors” match in “XYZ-Match” web system. 

Each process is modeled in Cell (BA-Behaviour) using dynamic diagrams such as flow chart, activity 
diagram, etc. Business process models in Cell (BA-Behaviour) can be refined further if necessary. 

4.2.2 Business Architecture (BA) & User Interface Architecture (UIA) 
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Web system users interact via a web interfaces with business entities that are relevant to the web 
system. Web components in the BA are mapped into web interfaces as users’ views. Views of users in 
the UIA are technology independent. As shown in Figure 5, the tracing relationships are as follows: 

• Cell (UIA-Behaviour) in the UIA transfers the business processes models in Cell (BA-
Behaviour) to user interface flow models. 

• Cell (UIA-Structure) in the UIA presents the user interfaces and their relationships for web-
system-relevant business entities described in Cell (BA-Structure) in the Business Architecture. 

User Interface Architecture (UIA)

Cell (UIA - Behaviour)
Cell (UIA - Structure)

Business Architecture (BA)

Cell (BA - Behaviour)
Cell (BA - Structure)

<<present>> <<transfer>>

Figure 5. Trace model between BA and UIA 

Figure 6 shows a business flow model in Cell (BA-Behaviour), drawn in a flow chart. In Cell (UIA-
Behaviour), this business flow is transferred into a User Interface diagram as illustrated in Figure 2(b). 
In the User Interface diagram, each user interface is traced to each activity step in the business flow 
diagram. For example, “Match_VCFirm_Entrepreneur_Form” in the User Interface diagram in Figure 
2(b) is the user interface for the activity step “Search VC firms” in the business flow model in Figure 6. 
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Log in
Entrepreneur

Home

What is your
task?

Search VC
firms

System
displays list
of VC firms

System
displays VC
firm details

Submit
business
proposal

Edit
entrepreneur

details

Search VC firm
information

Edit entrepreneur
 information

Submit business
 proposal

       

Figure 6. Example of a business flow model in Cell(BA-Behaviour)

Figure 2(a), in turn, presents the user interfaces that described in Cell(BA-Structure).

4.2.3 User Interface Architecture (UIA) & Information Architecture (IA) 

Information relating to the handling and support of User Interface is modelled under User Interface 
Architecture.

• Cell (IA-Structure) in the IA structures, organises and labels the information that needed to be 
presented to the user interfaces in Cell (UIA-Structure) in the User Interface Architecture. This 
information depends-on and satisfies the need of user interfaces in UIA. 

• Cell (IA-Behaviour) in the IA derives the user interface flows in Cell (UIA-Behaviour) of UIA 
into information flows to model the information creation, exchange, process and consumption 
that support the user interface flows. 

Figure 7 shows the relationships between the IA and the UIA. 

<<satisfy>> <<derive>>Information Architecture (IA)

Cell (IA - Structure)

User Interface Architecture (UIA)

Cell (IA - Behaviour)

Cell (UIA - Behaviour)Cell (UIA - Structure)

Figure 7. Trace model between IA and UIA
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Figure 8(a) is an information structure for organizing and labelling the information for the user 
interfaces in Figure 2(a). In the information structure, information entities “business proposal”, 
“entrepreneur details”, “user details”, “entrepreneur task”, “VC firm list”, and “VC firm details” are 
described. These information entities are needed for user interfaces shown in Figure 2(a). Within each 
information entity, information labels are listed. Each information entity is retrieved from an 
information resource as shown in Figure 8(a). The dash line, which starts from an information entity 
and ends to an information resource, shows the information retrieval relationship. For example, 
information entity “VC firm details” is retrieved from information source “VC Directory”. Information 
entity “business proposal” is retrieved from “Entrepreneurs”. 

Figure 8(b) is an information flow diagram derived from Figure 2(b). This diagram shows the flow of 
information process that supports the user interface flow in Figure 2(b). 

<<information>>
entrepreneur task
------------------------

Labels:
- ID of task
- description of task

<<information>>
business proposal

----------------------------------
Labels:
- ID of proposal
- ID of entrepreneur details
- ID of contact person
- investment amount sought
- financing stage
- estimated sales 3 years time
- management team
- detailed description
- business plan

<<information>>
VC firm list

-------------------------
Labels:

- ID of firm
- name of firm
- location
- description of service

<<information>>
VC firm details

---------------------------------------------
Labels:

- ID of firm
- name of firm
- location
- description of service
- investment preference
- fees for VC seekers
- total fund available for investment
- project selection criteria

<<information>>
entrepreneur details

----------------------------------
Labels:
- ID of entrepreneur details
- ID of contact person
- financing stage
- current annual sales range
- previous round of financing

<<information>>
user details

-------------------------
Labels:
- ID of contact person
- user log in ID
- user log in password
- user name
- user address
- user email
- user URL

VC DirectoryEntrepreneurs

(a)
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<<information>>
business
proposal

<<information>>
VC firm details

<<information>>
VC firm list

<<information>>
entrepreneur

details

WebSystem
Database

edit entrepreneur
details

log in and select
entrepreneur tasks

<<information>>
entrepreneur

details
(updated)

<<information>>
entrepreneur

task

upload and submit
business proposal

search VC firms

: Entrepreneur XYZ-Match
Web System

Information Process

<<Information>>

Legend

information flow direction

Information Process

Information entity

Database
information repository

view VC firm
information

information retrieval

(b) 

Figure 8. (a) An example of information structure. (b) An example of information flow diagram 
in Cell (IA-behaviour) derived from user interface diagram   

4.2.4 System Architecture (SA), & Information Architecture (IA) & UIA 

The inputs of the System Architecture are from UIA and IA. 

• Cell (SA-Structure): User interfaces in Cell (UIA- Structure) are clustered into modules and 
refined into sub modules in Cell (SA-Structure). Within submodules, server pages (source code) 
are included to realise the user interfaces in Cell (UIA- Structure) and generate the information 
(or content) that are described in Cell (IA- Structure).   

• Cell (SA-Behaviour) in the SA realises the process in information flows in Cell (UIA – 
behaviour) to server page flows. Server page flows generate the user interfaces in user interface 
flow diagrams in Cell (UIA-Behaviour) and the information (content) in the information flows 
in Cell (IA-Behaviour).
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generate

<<cluster-generate>> <<generate>>

<<generate>>

Cell (SA - Structure)

System Architecture (SA)

Cell (SA - Behaviour)

Information Architecture (IA)

Cell (IA - Structure)

User Interface Architecture (UIA)

Cell (IA - Behaviour)

Cell (UIA - Behaviour)Cell (UIA - Structure)

Figure 9. Trace model for SA to UIA and IA 

As shown in Figure 9, user interfaces in Cell(UIA-Structure) that are related to investors and 
entrepreneurs are clustered into module “VC Directory” and “Investment Opportunities” in Cell(SA-
Structure) respectively. Within “Investment Opportunities” module, a number of submodules are 
defined. Submodule “entrepreneurs submit business proposals” includes a set of server pages to realise 
the user interfaces for business proposal submission, and to generate information entities “business 
proposal”, “entrepreneur details”, and “user details” which are described in information structure in 
Figure 8(a). Three server pages “GetInfo_EntrepreneurDetails.cfm”, 
“Edit_EntrepreneurDetaislForm.cfm”, and “UpdateInfo_EntrepreneurDetails.cfm” are used to generate 
the information entity “entrepreneur details” in Figure 8(a) and the user interface 
“edit_entrepreneur_details” in Figure 2(b).  

Figure 10 shows an example of the trace relationship among the server page flow diagram in Cell (SA-
Behaviour), the user interface diagram in Cell (UI-behaviour), and the information flow diagram in 
Cell (IA-Behaviour). The sequence of server pages “GetInfo_EntrepreneurDetails.cfm”, 
“Edit_EntrepreneurDetaislForm.cfm”, and “UpdateInfo_EntrepreneurDetails.cfm” are defined to 
generate the user interface flow and the information process flow for editing entrepreneur details.  
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<<Server Page>>
GetInfo_EntrepreneurDetails.cfm

<<Server Page>>
Edit_EntrepreneurDetaislForm.cfm

<<Server Page>>
UpdateInfo_EntrepreneurDetails.cfm

Entrepreneurs

<<information>>
entrepreneur details

<<information>>
entrepreneur details

(updated)

<<User Interface>>
Edit_Entrepreneur_Details

generate user interface

 retrieve information

update information

User Interface Flow Information Flow Server Page Flow

Figure 10. Example of the trace relationship among Cell (SA-Behaviour), Cell (UI-behaviour), and 
Cell (IA-behaviour).

4.2.5 Web Object Architecture (WOA) & System Architecture (SA)  

The System Architecture is implemented into a Web Object Architecture. 

• Cell (WOA-Structure) defines the input/output data or information for server pages (or source 
code) that are listed in Cell (SA-Structure). The relationships of web objects that will be used in 
source code are specified. The database scheme to store contents used in server pages (or source 
code) is defined in Cell (WOA-Structure). 

• Cell (WOA-Behaviour) refines the server page flow in Cell (SA-Behaviour) into detailed 
algorithms in each server page. 

The trace model between WOA and SA are illustrated in Figure 11. 
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refine

Cell (SA - Structure)

System Architecture (SA)

define

Cell (WOA - Structure)

Web Object Architecture (WOA)

Cell (SA - Behaviour)

Cell (WOA -
Behaviour)

Figure 11. Trace model between System Architecture and Web Object Architecture 

Figure 12(a) provides an example of Cell (WOA-Structure). The input and output of server page 
‘GetInfo_EntrepreneurDetails.cfm’ are defined. Server page ‘GetInfo_EntrepreneurDetails.cfm’ is 
listed in Cell (SA-Structure). The server page flow of Cell (SA-Behaviour) in Figure 10 is refined into 
the algorithm as illustrated in Figure 12(b). Here, we only provide one illustrative algorithm for the 
server page ‘GetInfo_EntrepreneurDetails.cfm’. 

Cell(WOA-Structure)

<<Server Page>> 
GetInfo_EntrepreneurDetails.cfm 
---------------------------------------- 
Input:  
‘Current_entrepreneur_ID’ 

Output: ‘Information_of_current_entrepreneur’:  
- financing stage 
- current annual sales range 
- previous round of financing 
- user name  
- user address  
- user email  
- user URL

Cell(WOA-Behaviour)

<<Server Page>> Algorithm 
GetInfo_EntrepreneurDetails.cfm 
---------------------------------------- 

Select ‘Information_of_current_entrepreneur’;
From information resource ‘Entrepreneur’; 
Where Entrepreneur_ID  is Current_entrepreneur_ID; 
Display ‘Information_of_current_entrepreneur’  
     in user interface ‘Edit_Entrepreneur_Detailsform.htm’. 

(a) (b) 
Figure 12. Example of (a) Cell(WOA-Structure) and (b) Cell(WOA-Behaviour)   

4.2.6 Test Architecture (TA) & all other architectures  

Testing includes verification and validation of the artefacts produced in the rows above the TA 
viewpoint in the WAAF Matrix, and seeking the weak points of the artifacts produced from Web 
Object Architecture. The traceability from the Test Architecture should therefore relate to all other 
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viewpoints to verify the satisfaction of the system against aspects such as the business architecture, 
information architecture, and web object architecture. 

• Cell (TA-Structure) defines the test documents such as the test plan, items under test, test 
design, test case, test data, test procedure, test incident report and test summary report to verify
the planning, business architecture, user interface architecture, information architecture, system 
design architecture and web object architecture respectively. 

• Cell (TA-Behaviour) defines the procedures or flows to verify and validate the above 
viewpoints. 

Figure 13 shows how the TA traces to other architectures. 

<<verify>>

Cell (TA - Structure)

Testing Architecture (TA)

Cell (TA - Behaviour)

User Interface
Architecture (UIA)

Planning Architecture
(PA)

BusinessArchitecture
(BA)

Information
Architecture (IA)

Web Object Architecture
(WOA)

System
Architecture (SA)

<<verify>>

<<verify>>

<<verify>>

<<verify>>

<<validate>>

<<verify>>

<<verify>>

<<verify>>

<<verify>>

<<validate>>

<<verify>>

Figure 13. Trace model from TA to PA, BA, UIA, IA, SA and WOA 

4.3 Summary of the WAAF-Trace model 

• In the column dimension (abstractions), the WAAF-Trace model provides a tool for verification 
of consistency within each viewpoint. For example, the structure model lists entities that are 
needed for a stakeholder’s viewpoint. The behaviour model describes the interaction of these 
entities. The trace relationship between the structure model and the behaviour model
determines the completeness and coverage of entities from the structure model to the behaviour
model.   
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• The row dimension (viewpoint) provides a tracing mechanism to verify the needs (or 
requirements) of each viewpoint inherited from other viewpoints. 

• The multi-dimensional tracing within and among viewpoints provides a tool for impact analysis 
of web systems that have characteristics such as fine-grained evolution, maintenance and with a 
high level of requirements, project scope and focus change. 

To further demonstrate how the WAAF-Trace model can be applied, we apply it to the design process 
of a commercial web site in the next section.  

5. WAAF-Design, a design method based on the WAAF-Trace model 

In this section, the application of WAAF-Trace model is demonstrated through step-by-step design of a 
commercial web project. The design process also used a design-process called WAAF-Design. Below, 
the designed process is briefly introduced first. Then, the application of the trace model to the designed 
process is described.  

5.1 Background 

Over the last decade numerous approaches to web system design have emerged. Early approaches 
evolved from Entity-Relationship modelling in the Hypertext community including structured analysis 
and design in the information domain, and object-oriented analysis design. RMM (Isakowitz 1995) 
provides a structured design methodology for hypermedia applications. Its focus is on modelling the 
underlying content, the user viewpoints on this content, and the navigational structures that interlink 
the content. OOHDM (Schwabe 1998) is a similar approach based on object-oriented software 
modelling, though somewhat richer in terms of the information representations. Other similar design 
methods include EORM (Lange 1994) and work by Lee (1997).  WSDM (Troyer et al. 1997) attempts 
to take these approaches one step further, by beginning more explicitly from user requirements. In 
general, these techniques were either developed explicitly for modelling information in the context of 
the Web, or simply adapted from conventional software domain to the Web domain. More recently, 
work on WebML has begun to amalgamate these concepts into a rich modelling language for 
describing Web applications.  The focus of WebML is very much on content modelling rather than 
describing the functionality that is a key element of most current commercial Web systems. One of the 
few approaches that attempt to integrate content representation with functionality is (Takahashi et al. 
1997).

Research results have shown that in commercial web development, clients’ understanding of their 
needs evolve as a system evolves and thus design artefacts play a crucial role in the development of the 
clients’ understanding (Lowe 2003). A typical web development process includes a prototyping phase. 
User interfaces (UI) are prototyped before the system design commences (Peters et al. 2002; Lowe et 
al. 2003; Fusebox 2005). Agile development methodologies, which are very popular in the Web 
development community, emphasize the value of communication between the clients and the 
developers. Web system prototyping is commonly adopted as a vehicle for such communications. Web 
systems place a strong emphasis on user interface. Significant input is made into the “look and feel” of 
a web site. Usability is of paramount importance and there is considerable artistic input into page 
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appearance. Fusebox (Peters et al. 2002; Lowe et al. 2003; Fusebox 2005) suggests that a user is not 
concerned with any part of the web system apart from the front end. What happens behind the front-
end is of no direct concern to the users. The basic requirement for the back end is to support all the 
functionalities initially mocked up in the front end “prototype”.  

The existing web design approaches such as RMM, OOHDM and WebML run counter to the emphasis 
on user interface  the and prototyping from the common web development processes. The user 
interfaces of their presentation design are typically derived from the design.  

The trace model WAAF-Trace provides a streamlined design approach to address the commercial web 
development practice. Here we apply the WAAF-Trace to a new web design method, called “WAAF-
Design”. This design method addresses the design process by placing system design after the user 
interface prototyping. The system design artifacts are derived from the user interface prototype. 
WAAF-Design imposes the traceability of WAAF-Trace to a modified version of Flip (Peters et al. 
2002; Fusebox 2005). 

The FLiP process consists of a number of steps: Personas and goals; Wireframe; Prototype or Front-
end development; Architecting; Fusecoding; Unit testing; Application Integration; Deployment. 
“Personas and goals” identify web application users and their goals. “Wireframe” models the proposed 
actions that will be performed by the application. A “prototype” of FLiP is a clickable model of the 
finished application with no backend behind it. In prototyping step, what the client expects from the 
application is revealed. Once the prototype is finished, the application architects construct the 
application design in step “Architecting”. The architects identify fuseactions and organize them into 
circuits. Each fuseaction behaviour is broken down into a set of fuses (code), the architects write a 
Fusedoc and a test harness for each fuse. In step “Fusecoding”, the coders write the fuses according to 
its Fusedoc. As each fuse is coded, it is unit tested against its test harness in step “Unit testing”. The 
architects integrate completed fuses into the final application in “Application Integration” step. The 
prototype is gradually transformed into a working application based on daily builds. The final product 
is deployed from the testing server or the staging server to the production server in step “Deployment” 
(Fusebox 2005). FLiP is platform dependent process and therefore is not a methodology for all types of 
web development. In addition, developers also need tools such as “DevNotes” for prototyping and 
“Mind Mapping” or “Fuseminder” for site construction, to support the development. Nevertheless, the 
most visible deficiency in FLiP is its lack of modelling methodology comparing with other common 
design methodologies. As software development continue to grow in complexity, and developers are 
used to work at high levels of abstraction to cope with this complexity, modeling software is – and will 
continue to be – a key aid to developers to work at high levels of abstraction (Cernosek 2004). Without 
an explicit modelling method, it will be difficult to trace artifacts throughout the development process.  

The WAAF-Design method aims to enhance the modelling and architecting ability and design 
traceability to the commercial web design process. It focuses on the design phase of the web 
development life cycle since this a major point of departure from conventional software development. 
The methodology is platform-independent and does not require any particular tools. The process 
includes the following steps: Analysis; Prototype; Information Modelling; Architecting; 
Implementation and Deployment. The “Analysis” step is equivalent to “Personas and goals, and 
Wireframe” in FLiP. “Implementation and Deployment” corresponds to “Fusecoding, Unit testing, 
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Application Integration and Deployment” in FLiP. The modification of the process from FLiP is in the 
following 3 steps: Prototype; Information Modelling and Architecting.  In Web system design, “content 
is the King of the web” (Lowe et al. 2003). Accordingly, information modelling is a treated as a critical 
step in the design process. It could be iteratively applied until a satisfactory outcome has been 
achieved. The design method is discussed in detail in the following section. 

Table 3.  Development process 

Process FLiP process Modified Process 
Personas & goals; 
Wireframe; 

Analysis

Prototype; 
Architecting;

Prototyping; 
Information 
modelling; 
System 
architecting; 

Step

Fusecoding;
Unit testing; 
Application
integration;
Deployment 

Implementation  
and
deployment 

5.2 WAAF-Design Methodology

The key steps of the WAAF-Design development process are presented in Table 3 in contrast with the 
FLiP process. The focus of this design methodology is the design stage including 3 steps: prototyping; 
information modelling; and system architecting.  

The development is an iterative process. The transformation of the development artifacts is based on 
the trace relationship of the WAAF-Trace model. The artifacts of the design are initially transformed 
from the analysis step. At “analysis” step, the analysts and the client explore the business process for 
the web application being built. Potential application users and their goals are identified. Tasks to 
achieve the goals are discovered. Tasks are clustered to scenarios through their semantic cohesions. 
The artifacts of this step include list and relationship of the user groups and their goals; list of the tasks 
and the description of their flows; list of the scenarios. The artifacts of analysis step are then 
transformed into design activities. The design artifacts will be transformed into implementation step.  

Figure 14 illustrates the activities and associated artifacts in the 3 steps of the design process.  Each 
step is discussed below. 
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Figure 14. Activities and artifacts of design steps 

5.2.1 Prototyping Step 

A prototype is a full-scale front-end model of a web application. It is web users’ viewpoint. 
Prototyping step formulizes the front-end presentation of what need to be built. We consider the 
structure and behaviour dimension of the front-end model at prototyping step. The structure cell and 
behaviour cell of the User Interface Architecture in WAAF matrix are applied as two basic components 
for prototyping.  

The behaviour of the prototype models the user navigation path to access and operate the application. 
The navigation paths are derived from the business process scenarios described in the analysis step. 
The behaviour can be modelled using user interface flow diagram (Ambler 2004) which considers the 
flow and state transition of user interfaces.  

All the user interfaces on the navigation paths are collected in the prototype structure. The structure of 
the prototype consists of the collection of the user interfaces in the entire application and the layout and 
the content of each user interface.  

To demonstrate the design method, we use examples of the web application of “XYZ-Match”. The 
prototyping process is illustrated using a “capital solicitation” scenario of XYZ-match. In this scenario, 
entrepreneurs submit business proposals and the XYZ-match approves the proposals. The whole 
prototype behaviour of the application will include all the business process scenarios of XYZ-match 
described in the analysis step.  

The navigation paths of this scenario and the individual user interfaces to present these paths are 
identified and modelled in a user interface flow diagram in Figure 15. In UI flow diagram, each UI is 
represented using a box which only includes the name of the UI and exit points. The contents of each 
UI are presented in the prototype structure, not considered in the prototype behaviour.  Figure 16 
shows the content on one page on the navigation path. The contents are what the user will see in the 
final product. 
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Figure 15. User interface flow diagram 

Figure 16. User interface structure 
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5.2.2 Information Modelling Step 

Information is “the interpretation of data within a context set by a priori knowledge and the current 
environment” (Lowe et al. 1999). In information modelling step, information architects model the 
prototype into information architecture (IA). We consider two cells of WAAF Matrix information
structure and information behaviour as two basic components for information modelling. 

Information architects classify and construct the structure and the relationship of the information in 
information structure. The information being modelled depends-on and satisfies the need in the UI 
contents in the prototype.  

For example, the information needed in the capital solicitation scenario of XYZ-match can be 
categorized into user details, entrepreneur details, VC seeking criteria, publishing permission selection, 
etc. Under the category “user details”, the information can be labelled as “user log in ID, user log in 
password, user name, user address, user email, user URL” etc. (See Figure 17).  

<<information>>
entrepreneur details

----------------------------------
Labels:
- ID of entrepreneur details
- ID of contact person
- financing stage
- current annual sales range
- previous round of financing

<<information>>
user details

-------------------------
Labels:
- ID of contact person
- user log in ID
- user log in password
- user name
- user address
- user email
- user URL

Entrepreneurs

<<information>>
VC seeking criteria

--------------------------------
Labels:
- Info-ID of VC seeking criteria
- criteria 1-5

<<information>>
publishing permission

selection
--------------------------------

Labels:
- Info-ID of publishing
  permission selection
- Company Name permission
- Address permission
- Phone permission
- Email permission

Figure 17.  Information structure 

Information behaviour is modelled as information flow. Information architects derive the user interface 
flow diagrams into information flow diagrams to model the information creation, exchange, process 
and consumption that support the user interface flows. Information diagrams include information, 
information source and destination, information flow direction, and information processing unit. Figure 
18 is a part of an information flow diagram of the capital solicitation scenario derived from the user 
interface flow in the prototyping behaviour model. 
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Figure 18. Information behaviour: information flow diagram 

5.2.3 System Architecting Step 

Once the information model is finished, the system architects begin “System Architecting” to construct 
the web application design to modules and break down the modules into source code. Modelling 
System Architecture Structure and System Architecture Behaviour are the major activities in this step.  
In System Architecture Structure, system architects cluster the user interfaces into modules. If the 
modules are complex, break down the modules into submodules. Within each module and submodule, 
source code (or server pages) is included to realize the user interfaces in User Interface Structure and 
to generate the information (or content) in the Information Structure. System Architecture Behaviour 
specifies workflow or business logic within the modules and submodules. It realizes each process in the 
information flow in the information behaviour through source code flow (or server page flow). Each 
source code flow generates the user interface flow in the user interface behaviour and the information 
flow in the information behaviour.

In the system architecting of XYZ-Match application, the modules are clustered by user groups: 
investors, entrepreneurs, business executives and site administrator. User groups are identified in 
analysis step. The system architecture structure is as Figure 19. For example, the module “Investment 
opportunities” is broken down to submodules “investment opportunity listing”, “entrepreneurs submit 
business proposals” and “Business executives’ approval”. The submodule “entrepreneurs submit 
business proposals” includes a set of source code to generate the user interfaces and information that 
modelled in the prototyping and information modelling steps.  The flow of this set of source code is 
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modelled in the system architecture behaviour to realise the user interface flow and the information 
flow for “entrepreneurs submit business proposals” scenario. The source code flow diagram is as 
Figure 20. Detailed algorithms within each source code are not considered in the system architecting 
step, they will be developed in the implementation step by coders.  

Figure 19. System architecture structure 

The artifacts of the design steps, “user interface structure”; “user interface behaviour”; “information 
structure”; “information behaviour”; “system architecture structure” and “system architecture 
behaviour” will be transformed into the implementation and deployment step. 
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Figure 20. Server page flow diagram 

6. Conclusions 

In order to address the specific characteristics of web-centric systems, this paper presents a trace model 
for web systems based on Web Application Architecture Framework (WAAF). The trace model has 
two dimensions: within viewpoint; and amongst viewpoints. Within each viewpoint the artifacts that 
belong to a stakeholder in the web system life cycle are traced between structure models and behaviour 
models. Between each viewpoint the needs of different stakeholders are transmitted into other 
viewpoints by tracing relationships among structures and behaviours.  

Traceability is established through linking different artifacts of a development process. The focus of 
the trace model presented in this paper is on identifying these links. The strength of tracing which 
provides more accurate, quantitative descriptions of traceability needs to be investigated in future 
studies.
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The use of this trace model is demonstrated through its application in combination with 
the WAFF-Design process to a commercial web project. The WAAF-Design method 
focuses on 3 steps: prototyping, information modelling and system architecting. The design process 
commences from prototyping. Back-end design activities such as “information modelling” and “system 
architecting” support the front-end prototyping. Information modelling is made explicit by modelling 
information structure and information flow. The design method guides the activities through the 
artifacts modelling and transformation at each step. To cope with the system complexity, design 
activities at each step are partitioned into structural design and behavioural design.  
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