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Abstract 

There is growing use of discrete choice experiments (DCEs) to investigate preferences 

for products and programs and for the attributes that make up such products and 

programs.  However, a fundamental issue overlooked in the interpretation of many 

choice experiments is that attribute parameters estimated from DCE response data are 

confounded with the underlying subjective scale of the utilities, and strictly speaking 

cannot be interpreted as the relative ‘weight’ or ‘impact’ of the attributes, as is 

frequently done in the health economics literature.  As such, relative attribute impact 

cannot be compared using attribute parameter size and significance.  Instead, to 

investigate the relative impact of each attribute requires commensurable measurement 

units; that is, a common, comparable, scale. We present and demonstrate empirically a 

menu of five methods that allow such comparisons: 1) partial log likelihood analysis; 

2) the marginal rate of substitution for non-linear models; 3) Hicksian welfare 

measures; 4) probability analysis; and 5) best worst attribute scaling.  We discuss the 

advantages and disadvantages of each method and suggest circumstances in which 

each is appropriate.   
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1. Introduction  

A common objective of discrete choice experiments (DCEs) is to compare the relative 

impact of attributes of the product or program under investigation.  For example, is 

test accuracy relatively more important to patients than time spent waiting for results 

when choosing diagnostic tests?  Most studies compare relative impacts of attributes 

by comparing the size and significance of estimated parameters for attributes of 

interest.  Unfortunately, these parameters are not directly comparable because the 

attribute parameter estimates in discrete choice models are confounded with the 

underlying subjective utility scale. That is, parameter estimates combine the relative 

impact or importance of an attribute and the utility scale values associated with its 

levels.  Thus, utility estimates for attribute levels cannot be interpreted as indicating 

relative importance of an attribute. 

 

In particular, the estimated utility of each attribute level is measured on an interval 

scale, but the origins and units of each attribute’s utility scale differ.  Apart from 

obvious differences in underlying physical attribute units like price in dollars, time in 

minutes/hours etc, qualitative attributes have no physical referents.  For example, 

attribute levels for ‘provider of care’ might be nurse, doctor, etc.  Thus, distances 

between the levels of different attributes need not have the same meaning.  So, utility 

scale locations, or utility differences between levels of different attributes, generally 

do not have equal scale units.  One can equate the origins of each scale, but not the 

scale units; hence, direct comparisons of ranges of utility estimates are meaningless 

without transforming them in a theoretically acceptable way, or modifying a choice 

experiment.  Put simply, one cannot determine whether the magnitudes of the 

parameter estimates for an attribute’s levels, and hence the resulting range of 
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parameter estimates for these levels, is due to the ‘impact’ of that attribute or the 

position of each attribute level on the underlying utility scale.  To assess relative 

attribute impacts one needs to measure each on a common, comparable, scale.   

 

The purpose of this paper is to focus attention on the confound between attribute 

impact and attribute level scale utilities in DCEs, and to outline and discuss five ways 

to compare relative attribute impacts: 1) partial log likelihood analysis; 2) marginal 

rates of substitution (MRS); 3) Hicksian welfare measures; 4) probability analysis; 

and 5) best worst attribute scaling (BWAS).  The first four methods deal with the 

issue of relative attribute impact within a traditional DCE.  We demonstrate these in 

an empirical application, which to our knowledge is the first health-related DCE to 

include two-way attribute interactions in a non-linear indirect utility function (IUF).  

The BWAS method is a modified DCE. 

 

The rest of the paper is organised as follows.  The next section discusses the 

theoretical background for the confound between attribute impact and level scale.  

Section 3 outlines a menu of five methods to investigate the relative impact of 

attributes that are illustrated in two empirical applications in Section 4.  Section 5 

discusses advantages and disadvantages of each method and circumstances in which 

each may be appropriate.  Section 6 concludes.  

 

2.  Confound between attribute impact and scale 

Attribute parameters estimated in choice experiments combine the impact of an 

attribute and the underlying latent utility scale on which its levels are measured. This 

“confound” of impact and scale has long been recognised in utility theory and 
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psychology (Anderson, 1970; Keeney & Raiffa, 1976; Louviere, 1988b; Lynch, 1985), 

but is less widely recognised by those who apply conjoint elicitation procedures (see 

McIntosh & Louviere (2002) for an exception). The following issues relate to the 

confound: 

1. The importance or “impact” of an attribute on an individual’s choice may a) be 

constant across the range of an attribute, implying it is independent of the 

levels, or b) vary systematically with the attribute levels. Anderson (1970, 

1982) discusses the distinctions and a more general treatment of the concept of 

attribute weight is in Shanteau (1980). Notions of attribute weight are 

widespread, associated with many ad hoc schemes in everyday life where 

people use “weighting schemes” to compute overall indices like 

“attractiveness” or “utility” for sets of attributes, like restaurant quality ratings. 

2. The attribute level scales discussed in this paper differ from the more 

commonly known concept of “scale factors” in the discrete choice literature.  

All utility scale parameter estimates in choice-based random utility models are 

confounded with a scale factor that is inversely related to the variance of the 

error term (Train, 2003), and can differ in each data source. To avoid 

confusion we refer to the latter as the “variance scale factor” and we term the 

scale under discussion in this paper as “level scale”. 

3. Attribute impacts are NOT the same as attribute level scales. A level scale 

value is the estimated position of an attribute level on an underlying latent 

dimension like “utility”. Many psychologists and social scientists (eg, 

Fishbein & Ajzen (1975)) try to measure weights and scale level values 

independently, combining them via some integration rule or function, but such 

measures must satisfy mathematical operators to be valid. 
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Consider a doctors appointment described by three attributes (appointment length, 

choice of doctor, location).  Suppose one uses a weighted averaging rule to combine 

the attributes into an overall utility index for appointments such that each attribute is 

assigned a weight that multiplies the scale values associated with each attribute level, 

with the resulting products summed into an index.  For such a rule to be 

mathematically meaningful, each weight must be measured on a ratio scale. In the 

case of a weighted averaging model, one might have the following expression for an 

index that is a function of the three attributes: 

 

( ) locscdrwlenwdrscdrwlensclenwU _*__1_*__*_ −−++=   (1) 

 

where ,  and  are weights associated with length of consultation and  

choice of doctor, with the weight for location implied by the restriction that the 

weights sum to 1; ,  and  are scale values for each attribute 

defined as follows: 

lenw _ drw _

sc _ len drsc _ locsc _

 

levellenlensc lenlen _*_ βα +=  

leveldrdrsc drdr _*_ βα +=  

levelloclocsc locloc _*_ βα +=  

 

Allowing each attribute to have two levels, there are eight (23) possible appointments.  

If the scale values and weights have the values in Table 1, we can substitute them into 

equation (1) to obtain the (hypothetical) total appointment utilities in Table 2.   

 

Table 1 
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Table 2 

 

This appointment example involves known weights and level scales associated with 

each attribute.  However, if we estimate these utilities from DCE data, we only 

recover a constant term (equal to 0.68, representing the utility of an appointment 

defined by the lowest level of each attribute) and a utility difference in the two levels 

of each attribute: 0.14 for length (calculated as 0.2-0.06); 0.03 for choice of doctor; 

and 0.15 for location. Such analysis does not separate the weights and level scale 

values, which is true in general for all conjoint elicitation procedures.  

 

An important consequence of the weight-scale confound is that the “effect” (or lack 

thereof) of an attribute across its levels can be due to a large (small) weight relative to 

other attributes, or due to large (small) differences in scale values associated with the 

levels, or some combination of both. In fact, this applied to our artificial appointments 

example. The ‘large’ utility difference between the two levels for appointment length 

and location arise for different reasons. The first is due to a relatively large scale 

difference whilst the second is due to a relatively large weight. One cannot determine 

which case applies in a DCE without additional information. Because attribute 

impacts and level scales are confounded, inter-dimensional utility comparisons 

combine these two effects.  To investigate the relative impact of an attribute in a 

traditional DCE, further analysis must be undertaken to place attributes on a common, 

comparable scale; alternatively, a modified choice experiment can be implemented.  

Both strategies are explored in Section 3.   
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Further, weight/scale confounds pose issues for generalising choice models because 

results may be “level dependent”. That is, effects estimated from a DCE depend on 

levels varied, and different sets/ranges of levels may yield different results (e.g. see 

Louviere & Islam (2004); Ohler, Le, Louviere, & Swait (2000); Ryan & Wordsworth, 

(2000)).  So, strictly speaking, conclusions about attribute effects should be qualified 

to be “relative”, not absolute, with stronger conclusions reserved for results that 

generalise across different levels and subsets of attributes. 

 

3.  Methods to investigate relative impact of attributes 

We outline five methods that place attributes on common and commensurable scales.   

 

Partial log likelihood 

One way to compare the relative ‘impacts’ of product/program attributes is to 

investigate the explanatory power of each attribute (or attribute level) by calculating 

how much each attribute contributes to the overall log likelihood of a choice model 

(Crouch & Louviere, 2004).  This involves systematically re-estimating a choice 

model, omitting each attribute one at a time and recording the associated log 

likelihood.  The contribution of each attribute is the difference between the full and 

reduced model log likelihoods.  That is, the difference in model log likelihoods for an 

attribute (with all its levels) in and out of a model.  Thus, attributes that are more 

‘important’ in explaining choices will contribute more to the total log likelihood, as 

indicated by their partial log likelihoods.  This approach is analogous to calculating 

partial r-squares for each attribute in traditional rating and ranking tasks in conjoint 

analysis (Louviere, 1988a).  It also is related to statistical tests for the additional 
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explanatory power of variables included/excluded from choice models (a model 

selection problem). 

 

This method requires that the data for the analysis be orthogonal because if the data 

are multi-colinear, the impact of a removed attribute can be associated with another 

attribute, which would understate the importance of the removed attribute.  

Orthogonal experimental designs are necessary but not sufficient to ensure an 

orthogonal data set; if a design is blocked into versions, the versions must have equal 

sample sizes.  If version sample sizes are unequal, one must re-weight the versions to 

ensure orthogonality.   

 
 
Marginal rates of substitution 

Often, marginal rates of substitution (MRS) are used to measure the rate at which 

individuals trade off one attribute for another (Gyrd-Hansen & Søgaard, 2001; Ryan, 

1999; Scott, 2001).  Following standard consumer theory, the MRS are calculated by 

partially differentiating an IUF with respect to the first attribute and then with respect 

to the second attribute, then calculating the ratio: 
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where V is an IUF estimated from a DCE and  and  are attributes of the 

good/service.  The numerator (denominator) is interpreted as the marginal utility of 

attribute 1 (2).  If time or price is used as the numeraire, the denominator denotes the 

1X 2X
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marginal disutility of time or price; if price is used, we refer to the calculation as the 

‘implicit price’ of each attribute. 

 

On the face of it, this suggests that MRS calculated from DCEs measure the relative 

impact of attributes because they put the effect of each attribute on a common scale.  

However, the estimated common scale depends on the functional form of the IUF 

estimated.  With linearly additive “main effects only models” traditionally estimated 

from DCEs in health economics, MRS provide the same ordering of relative attribute 

impact as comparing the size and significance of the raw attribute coefficients.  That 

is, until recently DCEs reported in the health economics literature have estimated 

linearly additive, main effects only IUFs of the form: 

 

nnj XXXV βββ +++= ...2211        (3) 

 

In this case the MRS between two attributes is simply the ratio of the two attribute 

estimates, and the relative ‘impact’ is determined solely by the estimates.  However, 

utility need not be linearly additive, in which case the MRS may be useful for 

measuring relative attribute impact as it will not simply depend on the size and 

significance of the estimates.  For example, in the first empirical illustration in this 

paper we estimate a non linear IUF of the form: 
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Equation (4) includes all main effects and all two-way attribute interactions for 

attributes  to .  It is important to note that in such cases the MRS is not simply 

the ratio of two attribute parameter estimates because each attribute enters the utility 

function linearly and multiplicatively.  For example, to calculate the marginal utility 

of  we partially differentiate equation (4) with respect to , including both the 

main effect of  and terms where  is interacted with other attributes.  In fact, as 

discussed in Section 4, besides including all two-way attribute interactions described 

in equation (4), our empirical illustration also includes a non linear functional form 

for one main effect in the form of a quadratic term, which also must be taken into 

account when calculating MRS.  Given attributes can have positive and negative 

impacts on utility and it is the size of the impact rather than the direction that is of 

interest; we use the absolute value of the MRS.  

1X nX

1X

1X 1X

1X

 

Hicksian Welfare Measures 

The method of calculating Hicksian compensating variation (CV) in discrete choice 

random utility models is due to Small & Rosen (1981) and Williams (1971) and was 

introduced to the health economics literature to calculate welfare measures from 

DCEs by Lancsar (2002) and Lancsar & Savage (2004).  In addition to calculating 

welfare measures for entire products/programs, the CV method can be used to 

measure relative impacts of each attribute (or level) in a common monetary metric by 

calculating willingness to pay or accept compensation for changes in a given attribute.  

Both forms of welfare measures are calculated using the utility estimates and attribute 

levels in the following expression: 
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where λ  is the marginal utility of income;  and  are the value of the IUF for 

each choice option 

0
jV 1

jV

j  before and after the policy change, respectively; and J  is the 

number of options in the choice set.   

 

The Hicksian CV essentially values the change in expected utility due to a change in 

the attribute(s) by weighting this change by the constant marginal utility of income 

(implications of using varying compared to constant marginal utility of income have 

been investigated in health economics by Lancsar & Donaldson (2004, 2005), and are 

due to Karlstrom (2000); McFadden (1999).  This approach takes account of the 

uncertainty in the model about which alternative respondents will choose and/or 

whether respondents substitute between alternatives following a change in the 

desirability of one or more of the choice alternatives.  Thus, the monetary values are 

calculated taking account of the probability that each alternative will be chosen by the 

average respondent.   

 

For example, consider a choice between treatments A, B and C.  If a policy change to 

be valued is an improvement in treatment A, the CV calculates willingness to pay 

(WTP) associated with this improvement taking account of the probability with which 

A is chosen before and after the policy change as the improvement could induce 

people who previously chose B and C to substitute to A.  The clearest way to see the 

impact of the probability of choosing each alternative on the resulting WTP is if no 
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one chooses A before or after the improvement the welfare gain associated with the 

improvement must be zero.   

 

In addition to valuing changes in entire products/programs, one also can define the 

monetary equivalent associated with each level using the CV approach.  We 

demonstrate this in the empirical application reported below by calculating the CV for 

a move from a base case where all attributes are set to their mean values (in the case 

of effects coding this will be zero (Louviere, Hensher, & Swait, 2000) and the IUF 

contains only alternative specific constants (ASCs)) to a case where the IUF includes 

ASCs plus each attribute level included one-at-a-time.  The CV approach involves 

calculation of willingness to pay or accept, so we use the absolute value to estimate 

the size instead of the direction of the impact. 

 

Probability analysis 

Another way to measure the relative impact of each attribute (or level) is to calculate 

the probability of choosing an alternative given a particular attribute (level).  The 

probability that respondents will choose each alternative in a choice set is now starting 

to be calculated in health economics (Hall, Kenny, King, Louviere, Viney, & Yeoh, 

2002), and we show how this can be extended to measure relative attribute impacts. 

 

In the context of a conditional logit model, the probability with which each alternative 

in the choice set is chosen is:  

 

∑
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where 1iπ  is the probability that alternative 1 is chosen from a choice set containing J 

alternatives, V1 is the estimated utility associated with alternative 1, Vj is the utility 

associated with each of the J alternatives in the choice set.  If instead a non-closed 

form model is used like multinomial-probit or mixed logit, one would need to 

simulate the choice probabilities to approximate the integration over choice 

situations/respondents. 

 

Predicted probabilities are used to predict market shares in marketing applications.  In 

health economics the obvious analogy is to predict uptake or choice shares for the 

sample that provided the data.  To predict beyond the sample requires recalibration of 

the experimental results if market data are available.  Equation (6) also can be used to 

measure relative attribute impacts by first calculating the probability of choosing each 

alternative in a base case where all attributes are set to their mean values.  As noted 

above, in the case of effects coding, the IUF contains only ASCs that represent the 

underlying preference for each alternative when all attributes are at zero.  The 

probability of choosing a particular alternative based on its ASC plus the attribute (or 

level) of interest then can be calculated.  Next, the percent change in the probability of 

choosing a particular alternative is calculated to measure the effect of each attribute 

over and above the base case.  Systematically repeating this procedure over all 

attributes produces an implied ordering of the relative impact of each attribute with 

respect to its impact on the probability of choosing a particular alternative.   

 

Best worst attribute scaling 
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BWAS involves a different choice task and was first used by Finn & Louviere (1992); 

it is sometimes called “maximum difference scaling” (Cohen, 2003; Cohen & Neira, 

2003; Szeinback, Barnes, McGhan, Murawski, & Corey, 1999).   It was introduced to 

health care by McIntosh & Louviere (2002), and the underlying theoretical properties 

were formally proven by Marley & Louviere (2005), and illustrated in health care by 

Flynn, Louviere, Peters, & Coast (in press).  Respondents in BWAS tasks are 

presented with a series of experimentally designed alternatives one at a time and are 

asked to pick the best and worst attribute on offer in each alternative, based on the 

combination of levels that describe a particular alternative.  Thus, in BWAS tasks 

choices are made within, rather than between alternatives.  In a design with K 

attributes where Lk represents the number of levels of attribute k, the total number of 

best-worst pairs available to be chosen (when order does matter) is 2 , 

and is K(K-1) for any given alternative described by a combination of attribute levels.  

Theoretically, the pair of attribute levels chosen maximises the difference in the 

underlying attribute level utilities in that alternative.  The BWAS model assumes that 

the relative choice probability of a given pair is proportional to the distance between 

the two attribute levels on the latent utility scale.  So, BWAS is a difference model 

where one estimates utilities relative to a single attribute level instead of relative to an 

entire alternative (or the sample mean).  Thus  attribute levels are estimated 

relative to a remaining (base) level, placing the attribute levels on a common scale 

instead of the  in a traditional DCE.   
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Estimating all attribute levels on a common scale allows BWAS to calculate mean 

utilities (again, on a common scale) that measure average attribute impacts.  If effects 

coding is used, partial utility measures for attribute levels are simply deviations in 

utility from an attribute’s impact and sum to zero. If dummy variables are used, 

attribute impacts are calculated by taking averages of the level estimates. Thus, 

BWAS estimates relative impacts of each attribute placing them on a common scale, 

which overcomes the inability to estimate impacts directly in traditional DCE model 

estimates. 

 

4. Empirical applications 

This section presents two empirical studies.  The first demonstrates the first four 

methods outlined above in the context of a choice experiment and the second 

illustrates BWAS.  

 

4.1 Empirical application one 

4.1.1 Data 

We demonstrate the first four methods using data from a choice experiment designed 

to investigate preferences of a sample of 64 people drawn from the general public in 

Calgary, Alberta, Canada, for treatment of cardiac arrest occurring in a public place.  

Treatment options were described by the five attributes in Table 3.  A D-optimal 

design was used to construct 512 scenarios using the Burgess and Street approach 

(Burgess & Street, 2004; Street, Burgess, & Louviere, 2005). The experiment was 

blocked into 32 versions of 16 choice sets by randomly assigning choice sets to 

versions without replacement.  Each version was viewed by an equal number of 

respondents, ensuring an orthogonal dataset, as discussed earlier.  The design (and 
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resulting dataset) allowed independent estimation of all main effects and all two-way 

attribute interactions, thereby allowing us to undertake partial log likelihood analysis 

and to estimate non-linear multiplicative IUFs.  Some health related DCEs included 

interactions between single attributes and socio demographic characteristics, but to 

our knowledge this is the first DCE in health to include attribute-by-attribute 

interactions.   

 

Table 3 

 

Each choice set contained four treatment options.  The first was the status quo 

treatment for cardiac arrest occurring in a public place; namely waiting for an 

ambulance to arrive.  The three other treatment options described ‘public access 

defibrillation’ options (labelled PAD A, B and C); that is, having automated external 

defibrillators available in public places that can be used to restart the heart while 

waiting for an ambulance to arrive.   

 

In each choice set respondents were asked to choose: 1) the best treatment; 2) the 

worst treatment; and 3) the best of the remaining 2 options.  A standard first choice 

discrete choice model was estimated using the most preferred alternative per choice 

set as the dependent variable.   

 

4.1.2 Results 

We initially estimated a discrete choice model (DCM) with main effects only.  All 

attributes were effects coded to visualise the results by plotting the estimated 

coefficients against the attribute levels to infer possible more parsimonious reduced 
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form utility expressions.  These results suggested that the effects of the survival levels 

were non-linear.  Hence, we re-estimated a model specifying survival using linear and 

quadratic effects.  We mean-centered the eight level price attribute (which equates the 

mean with the intercept), and effects coded the other attributes.  We then included all 

2-way attribute interactions in the IUF.  Estimation results for the main effects only 

(Model 1) and main effects plus all 2-way attribute interactions (Model 2) are in Table 

4.  

 

Table 4 

 

All main effects are statistically significant at the 1 percent level, except for location 

of care in both Models 1 and 2.  Model 2 results suggest that few interactions are 

significant; the interaction of survival with each of: provider, from of payment, and 

library location are statistically significant.  Model 2 results were used to illustrate the 

first four ways methods outlined in Section 3. 

 

Partial log likelihood analysis 

The results of the partial log likelihood analysis for Model 2 are presented in Table 5.  

We estimated 25 models in which we systematically included/removed each attribute 

level.  Log likelihood values associated with each model are in column 2.  For each 

attribute level, the change in log likelihood is in column 3, the relative effect is 

calculated as the percent change in log likelihood in column 4, the cumulative effect is 

in column 5 and the implied ordering of attribute level ‘impacts’ is in column 6.   

 

Table 5 
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Not surprisingly, attributes with relatively large ‘impacts’ also are significantly 

different from zero.  Interestingly, location is not ‘impactful’ individually, as it has a 

negligible impact on the log likelihood, but it is relatively ‘impactful’ when interacted 

with survival, which has the seventh largest impact on the log likelihood, highlighting 

the importance of testing interactions. 

 

Survival accounted for 78 percent of the log likelihood; price, provider and form of 

payment collectively added another 14 percent.  Adding interaction terms increased 

the log likelihood marginally.  Variables that are not significant are included in the 

analysis because the lack of significance is taken into account in estimating partial log 

likelihoods.  However, we exclude these attributes from further examination of 

relative impacts because the results suggest that they do not differ from zero.   

 

Marginal rates of substitution 

MRS between price and other attributes are in Table 6.   

 

Table 6 

 

When calculating MRS we took account of the non-linear IUF.  By way of example, 

the attribute ‘chance of survival’ was decomposed into a linear and a quadratic term in 

the estimated IUF, and the interaction of these terms with ‘provider of care’, ‘form of 

payment’ and ‘Library location’ also were significant.  Thus, the MRS between price 

and survival is no longer a ratio of estimated main effects parameters.  Instead, it is 
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obtained by partially differentiating the IUF with respect to survival and then with 

respect to price and setting survival to one percent to give: 

 

P

liblinSflinSprlinSquadSlinS
PSMRS

β
βββββ ________

,

*2 ++++
=    (7) 

 

where Pβ , linS _β  and, quadS _β  are the price estimate, the linear survival estimate 

and the quadratic survival estimate, respectively, and prlinS __β , flinS __β , and 

lib_linS _β  are estimates of the interaction of survival with provider, form of payment 

and library location, respectively. 

 

Hicksian Welfare Measures 

The results of the welfare analysis using equation (5) are in Table 7.  The welfare 

measures were calculated taking into account the non-linear, multiplicative nature of 

the estimated IUF.  That is, the Vs  in equation (5) include significant main effects, 

two-way attribute interaction terms and non-linear effects.   

 

Table 7 

 

Probability analysis 

Results of the probability analysis are in Table 8 where predicted probabilities include 

both main effects and interactions.   Predicted probabilities for the base case across 

the four alternatives are in row 3.  The percent change in the probability from the base 

case to the case including each attribute one at a time are in columns 6 to 9, and the 

implied order of attribute ‘impact’ is in column 10.   
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Table 8 

 

Comparison of the relative impact of attributes  

The results of the four methods used to measure relative attribute impacts are 

summarised in Table 9.  

 

Table 9 

 

The chance of survival attribute was consistently ordered the most ‘impactful’ across 

all methods, with location consistently the least.  In contrast, relative impacts of 

attributes provider and form of payment were less consistent across methods.  This 

may reflect the view that individuals have fully formed preferences about the 

attributes they do and do not like but there is less certainty in preferences for attributes 

in between.  In fact, the MRS between price and provider and price and form of 

payment differ by only $1 and were similar in the welfare analysis.  

 

4.2 Empirical application two  

BWAS uses a different choice task from DCEs, so we illustrate it using a second 

example.  We conducted a simulation study to estimate relative attribute impacts and 

utility level estimates. A second aim was to compare these estimates with their true 

values (which are known in a simulation study) in terms of R-squared values in 

ordinary least squares regressions. However, we note that all choice model estimates 

are perfectly confounded with the unobservable random utility variance scale factor; 

hence, the BWAS estimates are a linear function of their true values.   
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4.2.1 Data 

Five thousand Monte Carlo BWAS simulations were performed using the paired 

method of analysis (Flynn et al., in press). Six attributes were simulated, three with 

two levels and three with four. All were qualitative/categorical although one of the 

two-level attributes can be conceptualised as a price variable defined by constant plus 

slope parameter with no loss of generality.  To illustrate the ability of BWAS to 

estimate impact and utility level estimates, the systematic components of utilities were 

chosen such that: 

• Three attributes (attributes C, D and E) had similar weights but very different 

attribute level scale values or distances between levels (an attribute with two 

levels with almost identical utilities, one with two different levels and one with 

four very different levels); 

• Two attributes (B and C) had similar level scale values but very different 

weights; 

• One attribute (F) had the largest range of scale values but was not the most 

valued attribute overall; 

• One attribute (B) had the largest impact but comparatively small level scale 

values. 

 

To add random utility components, we drew from an Extreme Value Type I (gumbel) 

distribution (with mean adjusted to be zero). The experiment was conducted once with 

a small variance scale factor (0.25, equivalent to an EV1 beta parameter of four) and 

once with a relatively large one (1, equivalent to an EV1 beta parameter of one). 

Exploratory work suggested that variance scale factors within this range are sufficient 
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to ensure that choices made are neither dominated by the systematic utility nor so 

random so as to make parameter estimates insignificantly different from zero.  

 

We simulated 150 people in each of the 5000 simulations. In a traditional DCE, 

utilities of three levels can be estimated for each of the four-level attributes, with one 

level estimated for each two-level attribute.  In BWAS four parameters can be 

estimated for a four level attribute (either a utility parameter for each level if dummy 

variables are used, or a utility parameter for three levels plus an overall attribute 

impact, or mean utility if effects codes are used).  We used the second approach 

because the attribute utility impacts can be read directly from regression output, rather 

than calculating it as the mean of the attribute level estimates. Therefore, since 18-

1=17 utility parameters can be estimated, five attribute impacts (6-1) and 12 level 

scale values (3+3+3+1+1+1) utilities were estimated using effects codes with the 

impact of attribute A and the lowest level of every attribute omitted. The natural log 

of the choice frequency for each unique best-worst pair is the dependent variable. 

Weighted least squares (WLS) with weights given by the choice frequencies (adjusted 

for the unbalanced design as detailed in (Flynn et al., in press) was used to estimate 

the model parameters. 

 

4.2.2 Results 

True and estimated systematic impacts and level scales and attribute rankings are in 

Table 10.  True utilities (impacts and levels) are in columns 2 and 3, whilst ranking of 

attribute impacts is in column 4. Columns 5 and 6, and 8 and 9 contain the estimated 

attribute impact and partial utility measure for the levels, for each variance scale. For 

each attribute the lowest level was omitted from the regression model and its utility 
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was calculated by multiplying the sum of the other level scale utilities by minus one. 

This illustrates the benefit of effects coding in BWAS, namely it provides estimates 

that are naturally mean centred (in this case around the attribute impact).  The 

percentage of simulations for which each attribute was correctly ranked is in columns 

7 and 10.  

 

Table 10 

 

Previous applications have obtained good results for sample sizes less than 100 (Coast, 

Salisbury, de Berker, Noble, Horrocks, Peters et al., 2006; Szeinbach, Barnes, 

McGhan, Murawski, & Corey, 1999), and exploratory work suggested that sample 

sizes of 150 and above were usually sufficient to guarantee that sampling variation 

was small enough to be consistent with the properties of BWAS. Table 10 shows that 

it performed well in the presence of both small and large variances in random utility 

components. As might be expected, it was attributes with similar impacts that were 

sometimes incorrectly ranked. Nevertheless the incorrect rankings were almost always 

only for adjacent ranks: the third largest attribute was rarely ranked fifth or vice versa. 

 

In terms of recovering the true utilities, there is generally good agreement between 

true and estimated values (after taking into account the effects of the variance scale 

factor on the estimated values). The mean R-squared value from a regression of the 

estimates on true utilities was 96 percent for a variance scale of 1 and 98 percent for a 

variance scale of 0.25.  

 

5. Discussion 
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We outlined and illustrated five ways to measure relative attribute impacts in stated 

preference studies.  Some of these methods, or variations of them, have been used in 

the health economics literature, although not for the purpose of this paper.  Some, 

such as the Hicksian CV and BWAS, only recently were introduced to health 

economics, (see Lancsar & Savage (2004) for the former and Flynn et al. (in press); 

McIntosh & Louviere (2002) for the latter).  Others, such as probability analysis and 

MRS elicited from non-linear models are variations of methods currently used in 

health economics, while partial log likelihood analysis is novel to the literature. 

 

The comparison in Table 9 highlights that orderings of relative attribute impacts were 

similar across methods.  Although the method that is most appropriate to investigate 

the issue of relative attribute impact in part will depend on study objectives, each has 

advantages and disadvantages.  If one includes interactions and a continuous attribute 

in a DCE, the MRS between a continuous attribute as numeraire and all other 

attributes provides a way to measure relative attribute impacts.  However, as 

illustrated, calculations are more complex for non-linear and/or non-additive IUFs.  

Of course, one also may want to measure the relative impact of the attribute used as 

the common base (such as price or time), which cannot be done using MRS.  Further, 

if only main effects are included in DCEs, MRS will provide the same order of impact 

as the raw attribute coefficients, suggesting that one may wish to consider another 

way to measure relative impact.   

 

Hicksian CV provides a viable alternative to measure the relative impact of numeraire 

attributes like price/time because the marginal utility of income can be used to convert 

the impact of other attributes into monetary terms, rather than using one of the 
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attributes.  One might wish to consider this approach in cases where calculating 

welfare measures is a study objective independent of investigating relative impact.  

 

Probability analysis is another way to measure relative attribute impacts.  This 

approach also can be used to predict uptake (e.g. of a new screening program) or 

demand (e.g. for a new medication), which is relevant in many policy and commercial 

settings. However, as noted above, predicting market shares beyond a DCE sample 

requires recalibration with market data. 

 

If one only wishes to measure overall attribute effects relative to one another, and 

there is no interest in policy measures like MRS, CV or uptake, the partial log 

likelihood approach provides a way to do this.  The appeal of this approach lies in the 

fact that it does not require one attribute to be used as a common base, nor any 

attributes be quantitative.  It also measures the impact of each attribute across its 

levels in a simple and intuitive way by estimating the relative contribution of each 

level to the explanatory power of the model. 

 

Each of the four methods illustrated in the first empirical application involve 

straightforward additional analyses using the results of a standard DCE.  They do not 

require a different experiment to be designed.  Each puts the attributes (levels) on a 

common and therefore comparable scale, thereby facilitating statements about relative 

impacts of attributes of a good/service.  They also provide information of interest over 

and above a comparison of relative impact.   

 
If one is interested not only in placing attributes on a common scale but also in 

defining that scale, BWAS is appropriate.  The simulation experiment illustrated how 

  25 



BWAS allows direct estimation of relative attribute impacts in addition to partial 

utility estimates for attribute levels if effects codes are used.  Simulation results 

suggest that random utility components must be large for BWAS to rank attributes 

incorrectly and even then attribute impact magnitudes and relative orderings are rarely 

affected. Furthermore, the relationship between estimated impacts and scales and true 

values remained strongly linear even when error components were large.  

 

Decomposition of impact and scales is useful to investigate the effects of respondent-

level covariates on utilities.  For example, by understanding whether observed 

differences in utility between men and women are due to differences in attribute 

impacts or scale values, policy-makers can better tailor services to suit individuals; 

that is, policies to improve attribute levels among a target patient group may differ in 

scope/practicality from those to improve perceived attribute impacts.  BWAS may be 

useful in taking such policies further by estimating respondent-level utilities.  Greater 

individualisation of care necessitates better understanding of how much patients value 

attributes generally and how they value changes in the levels presented and BWAS 

provides a way to do this.  

 

However, BWAS may necessitate designing a different or separate experiment.  Due 

to the nature of the study in Section 4.1, we could not incorporate a BWAS task in the 

DCE, but it is possible to do so. Nevertheless, there are issues around combining 

BWAS and DCE data. For example, task differences imply that random components 

should differ in both size and nature (different variance scale factors), and such issues 

should be the subject of future research.  Also, if one uses an independent BWAS task, 
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it may not be possible to estimate some policy relevant measures such as welfare 

measures and predicted choices. 

 

The use of independent BWAS designs also may have implications for statistical 

efficiency.  Recent research suggests that multinomial logit efficiency is maximised 

when the number of attribute differences between alternatives is maximised in generic 

experiments (labelled designs can be handled within the existing theory by insuring 

that all 2-way interactions with the labels can be estimated) (Burgess & Street, 2004; 

Street et al., 2005).  Presently, the efficiency of BWAS designs is unknown, and so 

further research is needed on this topic.  That said, it may be that unfamiliarity with 

choosing between alternatives in some areas of healthcare may imply that BWAS 

tasks are less cognitively demanding than traditional DCE tasks, potentially leading to 

smaller random utility components and more precise utility estimates. 

 

We showed how a BWAS task enables us to estimate an attribute's impact and its 

levels on the same scale. Attribute impact is related to the concept of attribute 

importance explored in Section 2, and current research into the theoretical properties 

of BWAS aims to set out necessary and sufficient conditions for the two to be 

equivalent. 

 

Respondents make repeated choices in DCEs and BWAS, resulting in panel data.  A 

limitation of our study is that the models reported in Table 4 do not take the potential 

for correlation among the error terms arising from the panel nature of the data into 

account.  If the errors are correlated, this will impact the standard errors and 

asymptotic t-ratios as well as partial log likelihoods and probability results.  Of course, 
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the way DCEs are implemented, including types of tasks and task instructions impacts 

these correlations.  Furthermore, one can take steps to minimise these correlations, 

such as administering only one choice set per person, but increasing the sample that 

receives the DCE.  This also can be addressed by including random intercepts or 

estimating more complex models that allow error correlations, such as random 

coefficients models.  However, such models require behavioural assumptions that 

may not hold in practice (Louviere, Street, Carson, Ainslie, Deshazo, Cameron et al.; 

2002).  An alternative approach that also can be considered is to develop ways to 

model single individuals, which avoids correlated errors across individuals (Louviere, 

Burgess, Street, & Marley, 2004).   

 

Future research is required on appropriate ways to capture respondent heterogeneity 

within the BWAS framework.  This might include random effects models, but discrete 

distributions of parameters implied by clustering, mixture and archetypal taxonomic 

methods that have been used in previous BWAS studies suggest that models for 

discrete parameter distributions also may be appropriate.  Finally, research is 

underway that explores the use of BWAS to estimate individual-level parameters. 

 

6. Conclusion 

We discussed the fact that despite common practice, relative attribute impacts in 

DCEs cannot be inferred directly from parameter estimates due to confounds between 

the attribute impacts and utility scales on which attribute levels are positioned.  We 

presented a menu of five methods that can be used to compare relative attribute 

impacts: partial log likelihood analysis; MRS in the context of non linear models; 

Hicksian welfare measures; probability analysis; and BWAS.  The first four methods 
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deal with issues of relative attribute impact in traditional DCEs by placing the effects 

on common and comparable scales.  The fifth method, BWAS, uses a modified choice 

task to investigate relative impacts by decomposing an attribute’s impact and scale.  

 

We also illustrated estimation of a non linear IUF that included all two-way attribute 

interactions, which we believe is the first use of this type of IUF in the health 

economics literature.  We also demonstrated how to derive MRS from such a non 

linear utility specification.   

 

Finally, we discussed when it may be appropriate to use each of the five methods.  

Each has certain advantages, so choice of method in part will depend on other study 

objectives.  Indeed, the methods should not be seen as mutually exclusive, but instead 

it is likely that there are many circumstances in which it would be advantageous to use 

a combination of methods.     
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Table 1: Scale value parameters and weights for attributes 

Attribute Scale value for each attribute is alpha + 
appropriate beta 

Weights 

 α  β low β high  
Appointment 
length 

0.1 0.2 0.9 Weight_len: 
0.2 

Doctor 0.5 0.4 0.5 Weight_dr: 
0.3 

Location 0.3 0.4 0.7 Weight_loc: 
0.5 
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Table 2: Utilities of attribute levels and appointments 

 Attribute levels Scale Scale* weights 
Total 
Utility 

Appointment Lng dr loc αlen + βlen αdr + βdr αloc + βloc Length Doctor Location  
1 0 0 0 0.3 0.9 0.7 0.06 0.27 0.35 0.68 
2 1 0 0 1 0.9 0.7 0.2 0.27 0.35 0.82 
3 0 1 0 0.3 1 0.7 0.06 0.3 0.35 0.71 
4 0 0 1 0.3 0.9 1 0.06 0.27 0.5 0.83 
5 1 1 0 1 1 0.7 0.2 0.3 0.35 0.85 
6 1 0 1 1 0.9 1 0.2 0.27 0.5 0.97 
7 0 1 1 0.3 1 1 0.06 0.3 0.5 0.86 
8 1 1 1 1 1 1 0.2 0.3 0.5 1 
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Table 3: Attributes and levels 
Attributes Levels 
Chance of survival with treatment 
  

• 6 out of 100 
• 9 out of 100 
• 12 out of 100 
• 15 out of 100 

Provider of care 
 

• Trained responder  
• Non-trained responder  

Location of treatment 
 

• Shopping mall 
• Gym or other sports centre 
• Senior centre  
• Public library 

Price • $170  
• $200 
• $230 
• $260 
• $290 
• $320 
• $350 
• $380 

Form of payment • Direct out of pocket 
payment (OPP) 

• A one off increase in 
taxation  

 
 
 

  35 



Table 4: DCM results  

 
Model 1: DCM, main effects 
only (MNL) 

Model 2: DCM, main effects + 
all 2-way interactions (MNL) 

Attribute Coefficient 
Standard 
Error Coefficient 

Standard 
Error 

Main effects     
Out of pocket 
payment (OPP) 0.1563*** 0.0438 0.2113*** 0.0557 
Tax payment -0.1563  -0.2113  
Non-trained 
provider  -0.1798*** 0.0448 -0.2142*** 0.0556 
Trained provider 0.1798  0.2142  
Location_shopping 
mall 0.0132 0.0989 0.0242 0.1132 
Location_library 0.0002 0.0988 -0.1028 0.1210 
Location_gym 0.0095 0.0992 0.0582 0.1113 
Location_senior 
centre -0.0229  0.0205  
Survival_linear 0.3929*** 0.0289 0.4210*** 0.0325 
Survival_quadratic -0.0517*** 0.0145 -0.058*** 0.0156 
Price -0.0037*** 0.0008 -0.0035*** 0.0009 
Interactions     
Survival_linear x 
price   -0.0002 0.0004 
Survival_quadratic 
x price   -0.00002 0.0002 
Price x OPP   -0.0004 0.0007 
Price x non-trained 
provider   -0.0003 0.0007 
Survival_linear x 
OPP   -0.0578** 0.0281 
Survival_quadratic 
x OPP  

 
0.0067 0.0132 

Survival_linear x 
non-trained 
provider  

 

0.0573** 0.0286 
Survival_quadratic 
x non-trained 
provider   

 

0.0122 0.0139 
OPP x non-trained 
provider  

 
-0.0470 0.0485 

Location_shopping 
mall x price  

 
0.0003 0.0012 

Location_library x 
price  

 
-0.0004 0.0013 

Location_gym x 
price  

 
0.0011 0.0012 

Survival_linear x 
location_shopping  

 
0.0034 0.0496 
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mall 
Survival_quadratic 
x 
location_shopping 
mall  

 

-0.0037* 0.0246 
Survival_linear x 
location_library  

 
0.1057 0.0564 

Survival_quadratic 
x location_library  

 
-0.0378 0.0265 

Survival_linear x 
location_gym  

 
-0.0404 0.0479 

Survival_quadratic 
x location_gym  

 
0.0126 0.0243 

Location_shopping 
mall x OPP  

 
-0.0033 0.0767 

Location_library x 
OPP  

 
-0.0103 0.0773 

Location_gym x 
OPP  

 
-0.0582 0.0762 

Location_shopping 
mall x non-trained 
provider  

  

0.0222 0.0780 
Location_library x 
non-trained 
provider 

  

0.0868 0.0784 
Location_gym x 
non-trained 
provider  

 

-0.0652 0.0784 
Constant_PADA -1.1160*** 0.1028 -1.1699*** 0.1059 
Constant_PADB -0.5614*** 0.0869 -0.6084*** 0.0904 
Constant_PADC -0.9755*** 0.0987 -1.0281*** 0.1017 
Log likelihood -1168.5779  -1155.4730  
McFadden R2 0.1125  0.1224  
*** significant at 1%, ** significant at 5%, * significant at 10% 
McFadden’s R2 is defined as 1 – (LL/LL0), where LL is the value of the (simulated) log-likelihood 
function evaluated at the estimated parameters while LL0 is the value of the log-likelihood function for 
a base model that only contains a non-random alternative-specific intercepts. 
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Table 5: Partial log likelihood analysis 
 
Attribute level 
excluded from the 
analysis 

 
Log likelihood 

 
Partial 
effect - 
change in 
log 
likelihood 

Relative 
Effect - % 
sum of 
change in 
log 
likelihood 

 
Cumulative %

 
Order of 
impact  

None (full model) -1155.47302     
Survival (linear 
+quadratic)* -1282.71212 -127.23910 0.78055 0.78055 

1 

Price* -1163.75144 -8.27842 0.05078 0.83133 2 
Non-trained provider* -1163.21902 -7.74600 0.04752 0.87885 3 
Out of pocket 
payment (OPP)* -1163.01186 -7.53884 0.04625 0.92510 

4 

Survival (linear + 
quadratic) x non-
trained provider* -1159.59524 -4.12222 0.02529 0.95038 

5 

Survival_linear x 
OPP* or 
Survival_quadratic x 
OPP -1157.86815 -2.39513 0.01469 0.96508 

6 

Surivival_linear x 
location_library* or  
Surivival_quadratic x 
location_library -1157.56435 -2.09133 0.01283 0.97791 

7 

Location_library x 
non-trained provider -1156.08407 -0.61105 0.00375 0.98165 

8 

OPP x non-trained 
provider -1155.94241 -0.46939 0.00288 0.98453 

9 

Location_library -1155.84212 -0.36910 0.00226 0.98680 10 
Location_gym x price -1155.84126 -0.36824 0.00226 0.98906 11 
Survival (linear + 
quadratic) x 
location_gym -1155.83660 -0.36358 0.00223 0.99129 

12 

Location_gym x non-
trained provider -1155.82044 -0.34742 0.00213 0.99342 

13 

Location_gym x out 
of pocket payment -1155.76398 -0.29096 0.00178 0.99520 

14 

Survival (linear + 
quadratic) x price  -1155.69114 -0.21812 0.00134 0.99654 

15 

Price x OPP  -1155.63761 -0.16459 0.00101 0.99755 16 
Location_gym -1155.60886 -0.13584 0.00083 0.99838 17 
Price x non-trained 
provider -1155.57682 -0.10380 0.00064 0.99902 

18 

Location_library x 
price -1155.52369 -0.05067 0.00031 0.99933 

19 

Location_shopping 
mall x non-trained 
provider -1155.51346 -0.04044 0.00025 0.99958 

20 
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Location_shopping 
mall x price -1155.49661 -0.02359 0.00014 0.99972 

21 

Location_shopping 
mall  -1155.49576 -0.02274 0.00014 0.99986 

22 

Survival (linear + 
quadratic) x shopping 
mall -1155.48535 -0.01233 0.00008 0.99994 

23 

Location_library x 
OPP -1155.48186 -0.00884 0.00005 0.99999 

24 

Location_shopping 
mall x OPP -1155.47397 -0.00095 0.00001 1.00000 

25 

* Significant in DCM 
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Table 6: Marginal rates of substitution 
Attribute  MRS

with P
Absolute value 

MRS 
Order of impact 

Chance of survival -116 116 1 
Non-trained provider 44 44 2 
Out of pocket payment -43 43 3 
Library -29 29 4 
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Table 7: Welfare measures 
Attribute CV a Absolute value Order of 

impact  
Chance of survival -80 80 1 
Non-trained provider -35 35 2 
Trained provider 23 23 5 
Tax 31 31 3 
Out of Pocket Payment -25 25 4 
Library -0.43 0.43 6 
a In Canadian dollars 
 
 



Table 8: Probability analysis 
Attribute Probability of choice   Percentage change in probability Order

ASC 
Wait for 
Ambulance PAD A PAD B PAD C 

Wait for 
Ambulance PAD A PAD B PAD C  

Baseline (ASCs only)a 0.45201 0.1403 0.246 0.16168        
Priceb              
Price =100 0.54003 0.11777 0.20649 0.13571 19.47% 16.06% 16.06% 16.06%  2
Chance of survival              
Linear surival + quadratic 
survivala 0.34046 0.16886 0.29608 0.1946 24.68% 20.36% 20.36% 20.36% 1
Provider              
non-trained 0.49109 0.1303 0.22846 0.15015 8.65% 7.13% 7.13% 7.13% 5
Trained 0.39969 0.1537 0.26949 0.17712 11.57% 9.55% 9.55% 9.55% 4
Form of payment              
Out of pocket 0.41435 0.14994 0.26291 0.17279 8.33% 6.87% 6.87% 6.87% 6
Tax 0.50468 0.12682 0.22236 0.14614 11.65% 9.61% 9.61% 9.61% 3
Location              
linear survival x location 2 0.426 0.14696 0.25768 0.16936 5.75% 4.75% 4.75% 4.75% 7

a Baseline sets all attributes to their mean levels 
b The change in predicted probability for price calculated for a move from the mean price of $275 to $100.   
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Table 9: Ordering of relative impact of attributes across methods 
Attribute Partial LL MRS Welfare 

measure 
Probability 

Main effects     
Survival 1 1 1 1 
Price 2   2 
Form of payment 4 3   
• Out of pocket   4 6 
• Tax   3 3 
Provider 3 2   
• Non-trained   2 5 
• Trained   5 4 
Location      
• Mall     
• Library  4 6 7 
• Gym     
• Senior centre     
Interactionsa     
Survival x provider 5    
Survival x form of payment 6    
Survival x library 7    
a The effect of significant interactions are included in the effect of the main effect in the calculation of 
the MRS, welfare measures and probability analysis 
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Table 10: Utilities and ranking of impacts of attributes across simulations 
 

True Systematic Utilities & 
Ranks 

Estimated Systematic Utilitiesa 
& Percentage Correctly 

ranked: Scale=0.25 ( β =4) 

Estimated Systematic Utilitiesa 
& Percentage Correctly 
ranked: Scale=1 ( β =1) 

Attribute Levels Impact Rank 
(impact) Levels Impact Ranking 

(%) Levels Impact Ranking 
(%) 

A 

-0.3 

0.5 6 

-0.175 

- 100 

-0.404 

- 100 -0.1 -0.053 -0.076 
 0.2 0.120 0.249 
 0.2 0.108 0.231 

B 

-0.6 

2.0 1 

-0.320 
0.973 
(0.043) 100 

-0.398 
2.593 
(0.098) 100 -0.3 -0.162 -0.301 

 0.3 0.167 0.226 
 0.6 0.315 0.473 

C 

-0.6 

0.9 5 

-0.385 
0.271 
(0.040) 88.60* 

-0.984 
0.752 
(0.066) 96.32** -0.3 -0.198 -0.511 

 0.3 0.186 0.486 
 0.6 0.397 1.009 

D -0.05 1.0 4 -0.019 0.330 
(0.050) 82.24* 0.129 0.874 

(0.089) 96.30**  0.05 0.019 -0.129 

E -0.6 1.1 3 -0.399 0.402 
(0.049) 93.32* -0.989 1.090 

(0.080) 99.98**  0.6 0.399 0.989 

F -1.5 1.5 2 -0.955 0.580 
(0.045) 100 -2.396 1.340 

(0.063) 100  1.5 0.955 2.396 
a Standard errors in brackets 
*The maximum number of times an attribute was incorrect by two whole rankings was 9 (0.18% of simulations). 
**3.68% of simulations ranked D (4th) and C(5th) the wrong way round whilst a further 0.02% of simulations ranked E(3rd) and D(4th) the wrong way round. 
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