

Tim Foster & Rob Hope Institute for Sustainable Futures (UTS) & Oxford University

Predictors, Patterns & Implications of Waterpoint Financial Performance in Rural Kenya

Research jointly supported by the ESRC and DFID

Pathways to universal and sustained water, sanitation and hygiene

Water service delivery costs in rural sub-Saharan Africa likely exceed \$1b per year

Piped on Premises
Other improved

Community-based financing of O&M widely promoted in policies & assumed in finance plans

rural water policy or
 financing plan assuming some
 or all O&M costs covered by
 household contributions⁴

Mismatch between policy and reality: Majority of rural households do not pay for water services

Evidence from waterpoint financial records in Kwale, Kenya

- Financial records located at 100 communities
 270+ waterpoint years
 43,020 monthly contributions
 Integrated with household survey
 - (n=3,000+) & waterpoint census data
 - Assessment of payment prevalence, patterns, predictors & implications

Around one in four households in Kwale do not meet monthly payment obligations

Payment levels predicted by waterpoint location, pH, taste, rainfall season and group size

Monthly payment rates remain relatively stable above 50-60%, but are prone to collapse below this point

Pay-as-you-fetch: has higher revenue, lower downtime but associated with unimproved water use

Summary

- Non-payment and late payment prevalent
- Payment behaviours shaped by environmental & social factors
- Revenue collection prone to collapse when rates drop below 60%
- Pay-as-you-fetch generates more revenue & has shorter downtime but appears to deter some users

Footnotes

- 1. Data drawn from WHO/UNICEF Joint Monitoring Programme (2015).
- 2. Based on an estimate of 184 million handpump users (Macarthur, 2014), and mid-points of annual O&M cost requirement of US \$2-3 per person (WASHCost 2011, adjusted to 2014 values).
- 3. Based on an estimate of 70 million standpipe users and 29 million people with piped connections (calculated from JMP country files) and mid-points of annual O&M cost requirement of US \$2-12 per person (WASHCost 2011, adjusted to 2014 values).
- 4. Based on information presented in Banerjee & Morella (2011) & GLAAS (2014). Banerjee & Morella (2011) list countries with a rural water cost recovery strategy. GLAAS (2014) lists countries with a "financing plan [which] defines if operating and basic maintenance is to be covered by tariffs or household contributions".
- 5. n=17,515 (Afrobarometer, 2014). Available at: http://afrobarometer.org/data.
- Analyses based on publicly available waterpoint datasets (Virtual Kenya, 2015; National Water Sanitation and Hygiene Promotion Committee, 2014; Sierra Leone, STATWASH Portal; Government of Tanzania, 2014; Government of Uganda, 2012). For additional data see Waterpoint Data Exchange http://www.waterpointdata.org

