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Abstract 

Membrane fouling (especially biofouling) as a critical issue during membrane reactor 

(MBR) operation has attracted much attention in recent years. Although previous 

review papers have presented different aspects of MBR’s fouling when treating various 

wastewaters, the information related to biofouling in MBRs has only simply or partially 

reviewed. This work attempts to give a more comprehensive and elaborate explanation 

of biofilm formation, biofouling factors and control approaches by addressing current 

achievements. This also suggests to a better way in controlling biofouling by developing 

new integrated MBR systems, novel flocculants and biomass carriers.    

Keywords: Membrane bioreactor; Biofouling; Sludge properties; Operating conditions; 

Biofouling control strategies 
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1. Introduction 

Membrane fouling, especially biofouling, is what primarily hinders the 

application and development of membrane biroeactors (MBRs) (Meng et al., 2009). 

Recently, some review papers have analysed membrane fouling in MBRs for 

wastewater treatment. Meng et al. (2009) addressed fouling behaviour, fouling factors 

and controlling strategies of MBRs for municipal and industrial wastewater treatment. 

However, specific information regarding effects of sludge conditions (e.g. mixed liquor 

suspended solids (MLSS), sludge viscosity) on membrane fouling and impacts of bound 

EPS on sludge characteristics (e.g. flocculation ability, hydrophobicity) was not clearly 

provided.  

The fouling characterisation methods, results and fouling mitigation strategies 

were updated and critically re-evaluated by Drews (2010). Nevertheless, some key 

parameters affecting membrane fouling were not articulated in this review, such as EPS 

and HRT. Le-Clech (2010) reported MBR applications, design and removal 

performance, and current research trends. However, this review paper did not discuss 

the HRT as one of the main parameters affecting soluble microbial products (SMP) and 

membrane fouling. An overview on the current application of MBR technology for 

industrial wastewater treatment was presented by Lin et al. (2012), who reviewed and 

analysed more than 300 scientific publications on MBRs (including anaerobic MBR 

(AnMBR)) for industrial wastewater treatment. However, since the objective of this 

review was not to comprehensively present membrane fouling mechanisms and 

characteristics, membrane fouling (including fouling factors and membrane fouling 

propensity) was only briefly mentioned together with some unique and significant 

findings concerning membrane fouling control measures. Although Mutamim et al. 
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(2012) reviewed the performance of MBRs in treating high strength industrial 

wastewater, which covered the operation, constraints and fouling mitigation strategies 

in general views, the information was inadequate regarding the influence of membrane 

properties, biomass and operational conditions on membrane fouling along with 

membrane fouling mitigation. Similarly, a later review did not clearly address the 

relationship between EPS/SMP and membrane fouling (Mutamim et al., 2013).  

To date, several review papers have been published on biofouling in MBRs. Guo 

et al. (2012) undertook a holistic review on different membrane fouling phenomena 

during water and wastewater treatment, but only partially discussed biofouling in 

membrane filtration processes. Wu and Fane (2012) reviewed factors (feed 

characteristics, oxygen level, temperature, steady or unsteady-state operation) affecting 

microbial behaviors, characterisation technologies of biofoulants and strategies for 

controlling microbial relevant fouling (e.g. application of ozone, etc.) in MBRs when 

treating industrial and municipal wastewater. Unfortunately, this review did not 

document the effects of HRT on characteristics of microbial flocs and their metabolic 

products, which affected membrane fouling. Nguyen et al. (2012a) highlighted the 

underlying causes of membrane biofouling, emphasised the role of EPS in membrane 

biofouling, and discussed recent developments in biofilm examination and biofouling 

control in water and wastewater treatment. However, this review did not elaborate on 

the impacts of operating conditions (i.e. HRT) and sludge characteristics (i.e. MLSS) on 

membrane fouling. Later on, a comprehensive review conducted by Wang et al. (2013a) 

focused on membrane fouling caused by EPS, including their secretion, transformation, 

release, and adsorption in MBRs for municipal and industrial wastewater treatment. 
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Nevertheless, new knowledge on sludge properties regarding membrane fouling, such 

as MLSS and floc size was not articulated.    

This review paper is dedicated to broader and more detailed analyses of the main 

aspects of biofouling in MBRs based on current research achievements. A more 

thorough discussion is carried out with respect to biofilm formation, the interactions 

among the biomass characteristics, operating conditions, feedwater characteristics and 

membrane properties, and their effects on membrane biofouling. Furthermore, some 

helpful and reasonable suggestions are given in view of biofouling minimisation. 

Finally, emerging fouling control strategies (e.g. membrane cleaning, biomass carriers, 

flocculants, etc.) are presented along with future research trends in membrane 

biofouling.  

 

2. Biofouling and its effects on membrane systems  

Of the six principle fouling mechanisms (pore blocking, cake formation, 

concentration polarization, organic adsorption, inorganic precipitation and biofouling), 

biofouling is the most complicated since it is associated with undesirable deposition, 

growth and metabolism of bacterial cells or flocs on membrane surface and/or inside 

membrane pores (Guo et al., 2012). Generally, six steps involved in biofilm formation 

are shown in Fig. 1 (Bitton, 2005; Guo et al., 2012): (1) formation of a conditioning 

film on the pristine surface after exposing the surface to the feed including organic 

matters; (2) transport of microorganisms and planktonic cells to conditioned surface by 

diffusion, convection, turbulent eddy, and chemotaxis; (3) adhesion of microorganisms 

to conditioned surface as a result of the negatively free energy of adhesion, the balanced 

force between Lifshitz-Van der Waals forces and repulsive or electrostatic forces from 
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both microbial and substratum surfaces, or hydrophobic interactions; (4) continuous 

attachment and adsorption of microorganisms on the surface due to the presence of EPS 

which enables microorganisms to be adhered to the surface and bond with the biofilm; 

(5) biofilm growth and accumulation; and (6) formation of a three-dimension biofilm.  

Fig. 1.  

 

The effects of biofouling on the performance of membrane systems are as follows: 

(1) decreased membrane permeability resulting from bacterial attachment and 

subsequent growth on the membrane surface; (2) precipitation of calcium carbonate at 

an elevated pH; (3) accumulation of abiotic particles because of microorganism 

adhesion or an enzymatic attack on the membrane or the glue lines; and (4) concentrated 

polarization by biofilms on the membrane surface (Dreszer et al., 2013). During the 

MBR process, biofouling results in poorer membrane permeability, more serious flux 

decline, more frequent membrane replacement and higher operational and maintenance 

costs. 

 

3. Factors affecting biofouling in MBR 

The biofouling factors discussed in this review paper include mixed liquor 

properties, operating conditions, feed water characteristics and membrane properties.  

 

3.1. Mixed liquor properties 

3.1.1. Bound extracellular polymeric substances (EPS)  

Bound EPS, which are mainly composed of polysaccharides (EPSC) and proteins 

(EPSP), played a pivotal role in membrane biofouling development, especially cake 

layer formation. In a MBR under long-term operation, biocake on the membrane surface 
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mainly consisted of microbial cells and EPS, which evolved from an initially reversible 

fouling inducing via the accumulation of easily removable organic substances to the 

subsequent development of irreversible fouling; this in turn is due to consistently 

increasing EPS levels (Domínguez et al., 2012).  

Tian et al. (2011a) observed that more severe membrane fouling occurred during 

filtration of bulking sludge, which was linked to the abundance of filamentous bacteria 

and presence of more cell-bound EPS than that for the normal sludge. Excessive EPS 

would deteriorate the structure of sludge flocs and reduce their bioflocculation ability. 

Moreover, a higher EPSP/EPSC ratio in the bulking sludge increased floc hydrophobicity. 

Thus, the sludge flocs having more EPS and higher EPSP/EPSC ratio could aggravate 

membrane fouling by their deposition on the membrane surface. Liu et al. (2012) 

discovered that higher levels of loosely bound EPS (LB-EPS) resulted in a poorer 

flocculability and a lower settleability of activated sludge, and the formation of looser 

sludge flocs, which increased cake layer resistance, total membrane resistance and TMP 

development. It was also pointed out that a high concentration of LB-EPS obtained at a 

high proportion of dead cells in activated sludge stimulated the generation of fine 

particles and attachment of small flocs onto the membrane. This gave rise to the 

formation of a dense cake layer on the membrane surface and serious membrane fouling. 

However, tightly bound EPS (TB-EPS) reduced the incidence of membrane fouling. A 

greater TB-EPS to LB-EPS ratio reflected a high flocculability of activated sludge, thus 

encouraging the generation of large flocs, less membrane fouling and lower total 

membrane resistance (Azami et al., 2011).  
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3.1.2. Soluble microbial products (SMP) and biopolymer clusters (BPC)  

When compared to other sludge characteristics (e.g. MLSS, particle size 

distribution, bound EPS), SMP had the strongest relationship with membrane fouling 

rate (dTMP/dt) (Zhang et al., 2015a). SMP (or soluble EPS) could be readily deposited 

and adsorbed on and/or into the membrane owing to the permeation drag and higher 

Brownian diffusion. In addition, the attachment of SMP to membrane surface could be 

achieved by considerably high attractive interaction energy and through overcoming 

high repulsive energy barrier. Thus, they would encourage the formation of a gel layer, 

cause membrane pore blocking, and penetrate into the pores and spaces between 

particles in the cake layer. In the gel and cake layers, SMP with macromolecular 

character constituted the major soluble organic substances. When compared to the cake 

layer, the gel layer possessed more SMP, which had unusually high specific filtration 

resistance being almost 100 times higher than the cake layer. These effects led to 

serious membrane fouling and decreased permeate flowrate (Hong et al., 2014; Wang et 

al., 2012; Wu and Huang, 2009). Current studies revealed that the molecular weight 

(MW) distribution of SMP impacted membrane fouling. Shen et al. (2010) and Shen et 

al. (2012) pointed out that large-molecular-weight fraction (MW > 100 kDa) in 

hydrophilic substances (HIS) of SMP, which mainly consisted of the polysaccharide-

like substances, engendered severe flux decline and pore plugging. Shen et al. (2010) 

concluded that size exclusion played a key role in irreversible fouling of HIS.  

Membrane fouling was also significantly influenced by SMP compositions 

(especially proteins/polysaccharides (SMPP/SMPC) ratio). Yao et al. (2011) found that 

higher SMPP/SMPC ratio reduced irreversible fouling and promoted the interaction of 

SMPP and SMPC for cake layer formation on the membrane’s surface. However, Gao et 
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al. (2013a) reported that when operating MBRs for treating industrial wastewaters from 

a local thermomechanical pulping mill, higher SMPP/SMPC ratio negatively influenced 

the cake layer structure (i.e. higher thickness, lower porosity, smaller floc size) and 

increased the filtration resistance. Besides, Tian et al. (2011b) conducted a series of 

stirred dead-end filtration tests to evaluate the fouling potential of biomass-associated 

products (BAP) and utilization-associated products (UAP). The results implied that 

membane interception induced almost complete reduction of proteins and partial 

decrease of polysaccharides of UAP and BAP in the permeate. Membrane foulants were 

mainly composed of proteins and polysaccharides. The modelling work demonstrated 

that cake filtration and complete blockage were primary fouling mechanisms for BAP 

and UAP filtration, respectively. This suggested that fouling potential for the UAP was 

higher than that for BAP.  

Fig. 2 shows a schematic illustration of the correlation between SMP and BPC in 

MBRs. The interception of BPC by sludge layer, the aggregation and clustering of SMP 

and small BPC as well as attachment of loose EPS within the sludge layer were 

responsible for the formation and growth of BPC in sludge cake. BPC acted as glue and 

thus prompted the biomass deposition on the membrane surface, which in turn 

accelerated the formation of sticky and impermeable sludge cake. It resulted in serious 

membrane fouling and high filtration resistance of the cake layer. On the other hand, 

BPC could be detached from the membrane surface into the sludge suspension by the 

turbulent shear resulting from aeration in MBR. Large BPC of activated sludge in MBR 

will deteriorate due to the fluid turbulence, generating smaller SMP segments. 

Subsequently, both SMP and BPC were in a transformable state regarding their size 
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distribution and demontrated a balanced size distribution in mixed lquor in MBR (Sun 

et al., 2008; Wang and Li, 2008). 

Fig. 2.  

 

3.1.3. Mixed liquor suspended solids (MLSS) and sludge viscosity  

Some studies have explored the relationship between sludge viscosity and MLSS 

concentration as well as their impacts on membrane biofouling. Table 1 displays the 

effects of MLSS concentration on biofouling in MBR. Higher MLSS resulted in more 

retention of sludge particles, colloids, macromolecular matter and microbial products in 

the bioreactor. Higher sludge viscosity moderated the effects of air bubbling on 

membrane fouling reduction, discouraged membrane fibre vibration, and allowed larger 

air bubbles to move at low rise velocity. Moreover, higher viscosity also dampened the 

back transport effect and increased the net force towards the membrane surface, leading 

to the deposition of sludge flocs, biopolymers and smaller particles on the membrane’s 

surface. Thus, activated sludge with higher MLSS levels and viscosity will compromise 

membrane performance in terms of more rapid flux decline, lower membrane 

filterability, higher TMP and greater membrane fouling resistance (Kornboonraksa and 

Lee, 2009; Lay et al., 2010; Meng et al., 2007).  

Table 1.  

 

Current studies have pointed out that MLSS of 10 g/L was a critical point with 

respect to membrane fouling. Wu and Huang (2009) suggested that high MLSS 

concentration (> 10 g/L) stimulated a wide-range increase in sludge viscosity, which 

showed a remarkable impact on membrane filterability (poor filterability). Lousada-
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Ferreira et al. (2010) collected activated sludge from full-scale MBRs and submitted the 

sludge to cross-flow filtration by employing the same membrane and operating 

conditions. MLSS concentrations were varied (3.6–18.3 g/L) by diluting the original 

samples. MBR activated sludge at higher MLSS concentration (> 10 g/L) adsorbed 

smaller particles (< 20 μm) and generated dilutions with worse filterability. Very 

different results were obtained for the activated sludge samples at MLSS concentrations 

below 10 g/L, which could not entrap particles.  

 

3.1.4. Floc size  

It has been indicated that the permeate flux (membrane permeability) was 

positively correlated with sludge floc size (Kornboonraksa and Lee, 2009). From the 

hydrodynamic viewpoint, large flocs could be dragged away from the membrane by 

high shear-induced diffusion and inertial force as well as lower Brownian diffusion. The 

deposition of larger and looser sludge flocs on the membrane encouraged the formation 

of a more porous and permeable cake layer, thus reducing fouling resistance. On the 

other hand, Brownian diffusion controlled the motions of small flocs at lower shear 

stress (Dizge et al., 2011a; Pan et al., 2010). It is noted that membrane pore size should 

be also taken into account when investigating the effects of sludge floc size on 

membrane fouling. Shen et al. (2015) observed that when membrane pore size was 0.3 

μm and most of flocs were larger than 1 μm, less obvious pore clogging occurred. The 

thermodynamic analyses revealed that the specific energy barrier was slightly higher 

when decreasing the sludge floc size, while smaller flocs promoted an increase in the 

attractive specific interaction energy in contact. Hence, the whole effect favoured the 

deposition of small flocs on the membrane and the subsequent formation of a less 
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porous cake layer with small pore size, which in turn increased hydraulic cake 

resistance and osmotic pressure-induced resistance as a result of more biopolymer 

matters being retained in the pores of the cake layer.  

 

3.2. Operating conditions 

3.2.1. Sludge retention time (SRT)  

It has been widely accepted that SRT is one of the most critical operating 

parameters during MBR operation. Table 2 summarises the effects of SRT on 

biofouling in MBR. When treating synthetic wastewater, SRT affected the microbial 

community and further activated sludge characteristics (e.g. MLSS concentration, EPS 

properties), which influenced the hydrodynamic conditions (the dynamic balance 

between shear force and permeate drag along the membrane surface). It in turn 

governed cake layer development and membrane fouling propensity. At infinite SRT, 

membrane fouling (cake-fouling) was more severe due to the presence of smaller floc 

size and more EPS than those at SRTs of 10 and 30 d when operating at a high flux of 

30 L/m2·h (Wu et al., 2011a). Chen et al. (2012) suggested that SRT should be 

maintained within a moderate range − 20 to 40 d. EPSC accumulated from SRT of 10 to 

40 d caused by endogenous respiration, and increase in microbial death and intracellular 

polymers. Meanwhile a prolonged SRT above 40 d led to a decrease in EPSC 

concentration considering that inadequate nutrients supplied for microorganisms 

prompted EPSC biodegradation. However, EPSC value at higher SRT (> 40 d) was still 

higher than that at lower SRT (< 40 d). On the other hand, the reduction of supernatant 

COD (SMP) was obtained at shorter SRT (< 40 d) because of their biodegradation. 
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When SRT was extended, SMP accumulated due to the dissolution of intracellular 

substances induced by the breakdown of dead cells and less SMP biodegradation.  

Table 2.  

When treating a pharmaceutical process wastewater at various SRTs (15 d, 30 d, 

without sludge wasting (WSW)), both permeate volumes and steady state fluxes of the 

submerged MBR (SMBR) increased at longer SRTs. This could be ascribed to the 

decreased membrane fouling because of lower concentrations of EPS and SMP 

(including protein and carbohydrate fractions). Total fouling resistance (RT) and cake 

resistance (RC) decreased with increasing SRTs. RC was the major contributor for RT 

under the WSW, while for 15 and 30 days of SRT, membrane pore resistance (RP) 

increased when compared to the WSW (Kaya et al., 2013). Zhang et al. (2015a) 

suggested that an anaerobic-oxic MBR at SRT of 30 d displayed better filtration 

performance compared to SRTs of 10 and 90 d when treating campus sewage. Median 

particle size and MLSS concentration in the MBRs followed the order of SRT = 90 d > 

SRT = 30 d > SRT = 10 d. SMP concentrations were higher at SRTs of 10 and 90 d than 

those at SRT of 30 d. SRT of 10 d gave rise to pore blocking and serious irreversible 

fouling, while the formation of a cake layer and severe reversible fouling were attained 

at SRT of 90 d.  

Based on investigations above and taking into account the suggestion by Meng et 

al. (2009), too long or short SRT was no advantage when attempting to control fouling. 

The selection of SRT for MBR operation depended on membrane properties (e.g. pore 

size), HRT and types of wastewater. MBR should be operated at SRT of 20–40 d when 

treating synthetic wastewater, while for real wastewater treatment, it is recommended 

that SRT be controlled at 20–30 d or WSW.   
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3.2.2. Hydraulic retention time (HRT)  

HRT is another key operating parameter having a pronounced impact on membrane 

fouling (especially biofouling) during the MBR process, which can alter mixed liquor 

properties, for instance EPS, SMP and sludge stability (Guo et al., 2012). Recent studies 

compared MBR performance at various HRTs. When operating a lab-scale combined 

system consisting of an anoxic tank and an aerobic MBR for digested wastewater 

treatment, more severe membrane fouling and higher filtration resistance and fouling 

rate were observed with decreasing HRT from 8 to 2.5 h. At shorter HRTs of 4 and 2.5 

h, the membrane surface was covered by thick flocs that blocked most of membrane 

pores (Gao et al., 2012). Babatouli et al. (2014) investigated the performance of an 

MBR pilot plant treating industrial wastewater at a short HRT of 20 h. Their results 

indicated that when compared to longer HRT of 24 h, shorter HRT of 19 h increased the 

fouling rate and total concentrations of EPS and SMP as a consequence of more 

substrate being made available for biomass at higher F/M ratio.  

3.2.3. Dissolved oxygen (DO)  

Air flow rate or DO is a principle operating parameter that determines the 

hydrodynamic conditions, sludge characteristics (i.e. EPS, SMP), and membrane 

fouling. When operating at low airflow rate or DO, cake layer would be formed by the 

deposition of MLSS on the membrane, which could not be removed by the low shear 

stress. Low DO also decreased aerobic activity of microorganisms, which reduced the 

generation of EPS or increased anaerobic degradation of EPS, leading to the sludge’s 

deflocculation. An appropriately high DO concentration could promote sludge 

bioflocculation, and enhance sludge characteristics and membrane performance. 

However, extremely high aeration intensity would break up sludge flocs, facilitate the 
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release of EPS, SMP and colloids, and deteriorate the filterability. It undermined 

membrane performance because of the accumulation of colloids and solute within/on 

the membrane (Braak et al., 2011; Faust et al., 2014). Gao et al. (2011) indicated that 

more severe membrane fouling at low DO concentration (0.5 mg/L) was ascribed to 

more EPS in membrane biocake than that at high DO concentation (4 mg/L).  

At different DO levels, microbial community structure in mixed liquor and 

biocake governed membrane fouling. The microbial community structure in biocake 

displayed larger variations than that in mixed liquor. De Temmerman et al. (2015) 

monitored a default aeration situation (reference) at DO of around 2 mg/L and an 

elevated aeration situation (disturbance) in two identical MBRs, respectively. The later 

one was accomplished by manually controlling aeration at DO concentration of around 

4 mg/L for 18 h, after which the DO level immediately decreased to 2 mg/L (the 

average setting, the reference situation). At high fine bubble aeration intensity, higher 

concentrations of SMP, biopolymers, and submicron particles (10 1000 nm) were 

obtained together with a shift in the particle size distribution (PSD) (3 300 m) towards 

smaller sludge flocs. As a result, the system demonstrated higher total fouling due to the 

formation of a less permeable cake layer and higher irreversible fouling mainly resulted 

from pore blocking. Overall, an “optimal” air flow rate or DO concentration should be 

determined considering loose/tight MBR configurations, and aeration time, position and 

mode (e.g. cyclic aeration on/off). 

3.2.4. Temperature  

It demonstrated that the decreased temperature (7, 15, and 25 °C) prompted the 

accumulation of polysaccharides in the soluble fraction of mixed liquor and a shift in 

floc size of the soluble fraction towards smaller particles. This in turn exacerbated the 
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occurrences of pore blocking/pore narrowing and membrane fouling (van der Brink et 

al., 2011). Gao et al. (2013b) found that in both mixed liquor and biocake, the decrease 

in temperature from 30 to 20 °C hastened the reduction of EPS and SMP (mainly EPSP 

and SMPP). However, an additional decline in temperature to 10 °C resulted in an 

obvious rise of EPS, SMP, EPSP and SMPP, thus aggravating membrane fouling. Both 

EPSC in biocake and SMPC/SMPP in mixed liquor were significantly correlated with 

temperature and filtration resistance. Another study implied that during the operating 

period (8.7−19.7 ºC), the decline in temperature encouraged the increase of EPS and 

SMP through promoting their formation and lowering hydrolysis ability of 

microorganisms, which triggered serious membrane fouling.  

 

3.3. Feedwater characteristics  

3.3.1. Organic loading rate (OLR) or food/microorganism (F/M) ratio  

The OLR or F/M ratio could change microbial behaviours, microbial properties 

and biomass characteristics in mixed liquor (e.g. MLSS, particle size, viscosity, floc 

structure, EPS and SMP) and membrane biofilm (e.g. bacteria community), thus 

influencing membrane biofouling. As compared to the low loading (0.33 g 

COD/(gVSS·d)), earlier and faster membrane fouling (irreversible fouling) was attained 

under the high loading (0.52 g COD/(gVSS·d)) because of higher EPS contents, 

substantially thick biofilm, and the dominance of two bacteria Betaproteobacteria and 

Bacteroidetes in the biofilm during the long-term operation (Xia et al., 2010). Wu et al. 

(2011b) reported that at various organic loadings, variations in F/M ratios and DO levels 

led to changes in bacteria communities and EPS generation during the initial operational 

period. At the steady state,  a slightly lower membrane fouling in the low-organic-
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loading MBR (0.57 kg COD/m3·d) but remarkably higher fouling and specific fouling 

reisistance in the high-organic-loading MBR (2.28 kg COD/m3·d) were achieved. This 

was comparable to the medium-organic-loading MBR (1.14 kg COD/m3·d) at a high 

flux of 30 L/m2·h. Higher organic loading increased EPS levels and facilitated the 

formation of cake fouling on the membrane surface, whereas the increased organic 

loading within a moderate range (0.57−1.14 kg COD/m3·d) helped to control fouling. 

On the other hand, a short-term starvation (low F/M ratio of 0.05/d) stimulated activated 

sludge to consume UAPs for exogenous metabolisms and retaining their activity, which 

was conducive to fouling reduction as a result of SMP decline. However, a long-term 

starvation would prompt the release of large amounts of high-molecular-weight BAP 

(humic-acid substances) from SMP, which clogged the overall membrane surface and 

subsequently led to serious fouling (Wu and Lee, 2011). 

 

3.3.2. Carbon to nitrogen or carbon to phosphorus ratio (C/N or C/P) 

Current studies focused on nutrient parameters, such as C/N, C/P ratios, which 

had an effect on bacteria communities and sludge characteristics, thereby influencing 

the potential for membrane biofouling. Compared to higher C/N ratio of 10:1 (lower 

NH4
+ concentrations), higher concentrations of NH4

+-N in the reactor at lower C/N ratio 

of 5:1, acting as a monovalent cation, replaced the polyvalent cations in EPS, which 

prompted the release of EPS components to form new SMP. Furthermore, SMP at lower 

C/N ratio possessed more SMPC (hydrophilic neutrals), higher SMPC/SMPP ratio and 

smaller MW distribution. It gave rise to higher irreversible fouling resistance, which 

was well correlated with fouling profiles, i.e. higher TMP increment rate (Feng et al., 

2012). Wu et al. (2012) indicated that compared to the control MBR (COD/N/P = 
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100:8.7:3.5), an increased nitrogen or phosphorus loading in MBRs (low C/N-MBR 

(COD/N/P = 100:17.4:3.5) or C/P-MBR (COD/N/P = 100:8.7:7.0)) triggered apparent 

shifts of bacterial communities in a similar way. When the low C/N- or C/P-MBR 

almost reached a steady state, biomass concentrations and EPS levels were comparable 

to those in the control MBR. In addition, dominant bacteria community were similar in 

both MBRs. Biomass samples from the low C/N-MBR and low C/P-MBR demonstrated 

larger flocs and lower membrane fouling rate as compared to the control MBR.  

 

3.3.3. Salinity and cations  

Previous studies indicated that high salt concentration broke the multivalent cation 

bridging among EPS within the sludge matrix, or reduced populations of protozoans, 

resulting in sludge deflocculation, and poor sludge quality, and compromised 

mechanical integrity and structure of sludge flocs. It reduced sludge filterability, whilst 

exacerbating membrane biofouling (De Temmerman et al., 2014; Jang et al., 2013). 

Jang et al. (2013) investigated MBR performance at various salinity conditions (NaCl, 

5−20 g/L) and found that the elevated salinity changed microbial composition, which 

influenced MBR performance. High salt concentrations increased fouling resistance due 

to the increased pore blocking and TMP increment rate, and this situation was mainly 

attributed to biomass properties (i.e. EPS, floc size and zeta potential). De Temmerman 

et al. (2014) asserted that the salt shock in the MBR (NaCl addition in the influent as a 

step up from 0.1 (background concentration) to 2 g/L lasting for 5 h) postponed the 

increase in submicron particles, SMP levels (proteins and polysaccharides), and 

irreversible fouling rate. There was no time delay in the shift in the supramicron particle 

size distribution towards smaller floc sizes and an increase in total fouling rate.   
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In feed water, divalent cations (i.e. calcium, magnesium) improved aggregation 

and stabilization of matrix of biopolymers, microbes and sludge flocs through bridging 

negatively functional groups within EPS, which alleivated membrane biofouling. 

Normally, a relatively lower monovalent to divalent cation ratio (< 2:1) but higher 

molar ratio of Mg:Ca (> 1:1) favours floc agglomeration (Arabi and Nakhla, 2009).  

3.4. Membrane characteristics  

Membrane characteristics (e.g. materials, morphology, pore size, zeta potential, 

hydrophobicity/hydrophibicity affinity) are the principal factors affecting membrane 

biofouling. A current study from Nittami et al. (2014) revealed that when using the 

municipal wastewater treatment plant (WWTP) sludge which showed higher 

hydrophobicity, a dense cake layer formation on the membrane and higher TMP 

increase rate were achieved in the MBR with an immersed hydrophilic membrane than 

those for the MBR with an immersed hydrophobic membrane. However, for the lab-

reactor sludge with lower hydrophobicity, the application of hydrophobic membrane 

triggered faster TMP increment. Thus, the effects of membrane surface hydrophilicity 

on membrane fouling were associated with the hydrophobicity of suspend sludge. It 

should be also noted that surface hydrophilicity/hydrophobicity of membranes was an 

essential factor for the interaction between membrane and foulants when the two 

contacting surfaces are infinite planar. However, when foulants are spherical particles as 

indicated by Zhang et al. (2015b), a different conclusion is reached. The interfacial 

interaction between sludge foulants and membranes was more remarkably affected by 

membrane surface zeta potential and roughness than membrane hydrophilicity/ 

hydrophobicity.  
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Membrane fouling control is possible for membranes with relatively higher zeta 

potential and certain roughness, which increased the strength of the electrostatic double 

layer interaction and the energy barrier, and consistently maintained the total repulsive 

interaction, respectively. Dizge et al. (2011b) investigated the type and pore size of 

membranes on membrane fouling employing cellulose acetate (CA), polyethersulfone 

(PES), mixed ester (ME), polycarbonate (PC) membranes with three different pore sizes 

(0.40 0.45, 0.22, 0.10 m) in cross-flow microfiltration experiments. When the pore 

sizes of the membranes decreased (e.g. PES and ME), RP decreased as larger flocs were 

deposited on the surface of these membranes to form a filter cake or they clogged 

membrane pore entrances instead of passing through the pores. Concentration 

polarisation resistance was higher in the case of PES and ME membranes with smaller 

pore sizes, which was resulted from adsorption of soluble fraction of microbial products 

(carbohydrate and protein) onto the membrane surface. When compared to the clean 

membranes, the surface of fouled CA, PES and ME membranes indicated less 

roughness (smoother) because their surface cavities were covered by the microbial flocs.  

Through evaluating effects of membrane pore size, surface porosity, pore 

morphology, and hydrophobicity on membrane fouling, it was suggested that less 

fouling could be achieved for the membrane with higher hydrophilic property, 

asymmetric structure, interconnected pore morphology, relatively large pore size and 

high surface porosity (van der Marel et al., 2010).  

 

4. Biofouling control strategies 

4.1. Membrane cleaning 
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Currently, membrane cleaning is classified into four types, namely, physical, 

chemical, physico-chemical and biological/biochemical in view of fouling removal 

mechanisms or the used cleaning agents. Physical and/or chemical cleaning methods 

could damage membrane properties, encourage the release of chemical reagents and the 

formation of cleaning by-products, which are detrimental to membranes, the 

environment, microbial community and cell activity. To overcome the issues of above 

cleaning approaches, biological/biochemical cleaning (e.g. mild cleaning alternatives, 

such as enzymatic cleaning, energy uncoupling and quorum quenching) has also been 

widely employed for the removal of membrane foulants. These methods are more 

efficient in decreasing biofilm formation with less adverse effects on microbial activity, 

microbial community, and membrane properties (Wang et al., 2014).  

 

4.2. Addition of media 

The direct addition of biomass carriers into MBRs could improve characteristics 

of mixed liquor and cake layer, thus alleviating membrane fouling. Jin et al. (2013) 

elucidated that ceramic MBR with suspended carriers (AnoxKaldnes, K1 carriers) 

having relatively low density and large size contained larger biomass flocs, less SMP 

and less EPS than that without the carriers. Furthermore the biomass carriers can reduce 

the cake layer on membrane surface but only slightly affect pore blocking.  

The fresh powdered activated carbon (PAC) in a submerged MBR at relatively 

high concentrations eliminated EPS, SMP, fine colloids, polysaccharides, total organic 

carbon (TOC) and planktonic cells in the supernatant of mixed liquor by synergistic 

effects of adsorption, decomposition, and biodegradation. Furthermore, PAC promoted 

the production of large, strong and dense sludge flocs, which limited deposition of 
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particles on the membranes and release of foulants, and retarded gel layer formation.  

The fresh PAC could also accelerate the combined effects of collision and adsorption on 

the membrane surface. Consequently, adding PAC led to less membrane pore blocking, 

formation of a more porous, less compact and more stable cake layer on membrane 

surface, lower fouling rate, longer lifespan of membrane, and less energy consumption. 

Another advantage took the form of lower operating costs for cleaning the membrane or 

replacing it (Jamal Khan et al., 2012; Ng et al., 2013; Skouteris et al., 2015).  

When compared to the conventional MBR (CMBR), sponge in the SSMBR 

reduced TMP development rate, and sustained good microbial activity and stable sludge 

volume index (SVI) value (Nguyen et al., 2012b). Deng et al. (2014) elucidated that 

sponge reduced EPS and SMP, lowered biomass growth, sludge viscosity and growth of 

filamentous bacteria, increased zeta potential and relative hydrophobicity (RH), and 

enlarged sludge floc size, thus reducing RC, RP and membrane fouling propensity in the 

SSMBR.  

Other kinds of additives such as diatomite and clinoptilolite have successfully 

been employed in MBRs for membrane fouling reduction. They enlarged sludge floc 

size, increased MLSS, reduced foulants (e.g. dissolved organic matter (DOM)) in mixed 

liquor, and enhanced sludge settleability through the combined effects of adsorption and 

co-precipitation on fine colloids and DOM (Rezaei and Mehrnia, 2014; Yang et al., 

2010).   

 

4.3. Addition of flocculants 

Adding different kinds of flocculants in MBRs could alter the properties of 

activated sludge and cake layer and lead to enhanced membrane performance. The 
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effects of inorganic flocculants (FeCl3 and polyaluminium chloride (PACl)) and natural 

organic flocculant (chitosan) on the performance of a submerged MBR were evaluated 

by Guo et al. (2010) in short-term experiments. The results suggested that MBR with 

addition of natural organic flocculants displayed relatively constant sludge volume 

indexes and higher specific oxygen uptake rates. Lower SMP levels and membrane 

fouling rates were achieved when applying inorganic flocculants in MBR. Zhang et al. 

(2014) pointed out that at high salt shock, application of organic flocculant (especially 

MPE50) could increase floc size, relative hydrophobicity, zeta potential and bound EPS 

(especially EPSP), and reduce SMP by entrapping onto flocs, thus effectively mitigating 

membrane fouling.  

Nguyen et al. (2010) showed the effectiveness of a new combined inorganic-

organic flocculant (CIOF) of FeCl3 and MPE50 for membrane fouling control in an 

aerated submerged MBR. Moreover, a stable SVI and low TMP development rate were 

also realised by CIOF addition. Ji et al. (2014) presented that a polyacrylamide-starch 

composite flocculant (PAM-MGMS) in submerged MBRs not only demonstrated a 

long-lasting effect on SMP removal, but also extended the duration of floc size 

reduction caused by the irreversible deterioration of sludge flocs under continuous shear 

stress as well as the degradation of the modified starches. Therefore, PAM-MGMS 

could be suggesting as an additive for fouling control.  

As the aforementioned flocculants exerted detrimental impacts on the 

environment and promoted the generation of “secondary pollutants” during wastewater 

reclamation and reuse, a new green bioflocculant (GBF) as a safe biodegradable natural 

flocculant was developed by modifying a natural starch-based cationic flocculant 

(HYDRA Ltd., Hungary) (Ngo and Guo, 2009). A patented GBF was then developed at 
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University of Technology, Sydney (UTS), namely Gemfloc®. The results of a recent 

study (Deng et al., 2015) suggested that better sludge characteristics were given by the 

MBR with Gemfloc® addition (MBR-G), as demonstrated by less SMP, larger floc size, 

higher zeta potential and greater RH, lower growth of suspended biomass and lower 

sludge viscosity. Moreover, Gemfloc® reduced the contents of EPSP, SMP and BPC in 

the membrane cake layer. Therefore the MBR-G realised lower membrane fouling 

potential, RC and RP.  

 

4.4. Other methods 

As aerobic granule sludge featured an apparently large floc size with regular and 

compact structure, desirable settleability, high biomass, various bacteria community and 

high metabolic activity, Wang et al. (2013b) employed the aerobic granular sludge in a 

MBR for membrane fouling control at a high flux of 20 L/m2·h. The results implied that 

in comparison to the MBRs with flocculent sludge, bulking sludge and smaller aerobic 

granular sludge (average diameter of 434 m), the good aerobic granular sludge (larger 

average diameter of 903 m) in the MBR significantly extended the filtration duration 

and reduced membrane fouling. Membrane fouling in the aerobic granular sludge was 

mainly attributed to RP, while RC dominated the filtration resistance for flocculent 

sludge or bulk sludge due to the deposition of small particles on membrane surface, 

which prompted serious cake fouling. Recent studies also focused on the development 

of electro-MBRs (e-MBRs) for fouling minimisation. A recent study by Zhang et al. 

(2015c) revealed that a low-voltage electro-MBR (e-MBR) using stainless steel mesh as 

the anode, namely Fe-MBR, lowered TMP, decreased irreversible fouling and enhanced 

pollutant removals as compared to another e-MBR with titanium anodes (Ti-MBR) and 
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one MBR without an electrical field. The electrical field exerted the electrical field force 

on negatively charged foulants, which moderated their tight attachment on the 

membrane surface and helped remove the fouling layer. Additionally the release of iron 

resulted in the reduction of TOC and polysaccharides of SMPs. Therefore less 

irreversible fouling and lower overall fouling rate were realised in the Fe-MBR.  

 

5. Challenges and perspectives 

Combining MBR with other technologies has been considered as a promising 

research trend. Although the current literature and discoveries have focused on this 

approach, a comprehensive biofouling framework needs to be developed. Thus, more 

efforts should be made to thoroughly analyse different MBR systems’ impact on 

biofouling (including the above-mentioned integrated MBRs). The advanced biofouling 

mitigation methods could be created based on the aforementioned studies. More 

specifically, characterisation of bacterial communities and MW fractions of foulants 

(EPS, SMP, and BPC) in both mixed liquor and cake layer, and biocake architecture 

should be done when operating integrated MBRs. It would be also interesting to 

conduct the meso-scale analyses and studies on micro-interfacial process in these 

integrated MBRs to have more in-depth understanding of membrane fouling behaviour. 

Apart from that, the effects of salt and temperature shocks on the performance of these 

integrated MBRs must be carried out in detail to evaluate their feasibility for biofouling 

control under stressful conditions. Future studies could be devoted to combining the 

SSMBR or the SSMBR-G with biological/biochemical cleaning methods into one 

bioreactor, i.e. immobilising the quorum-quenching bacteria into a sponge. Moreover, 
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the development of novel or modified flocculants and biomass carriers (e.g. using 

sponge) is to be encouraged in future studies. 

 

6. Conclusions 

This review presented the current achievements in key biofouling factors and 

recent developments in biofouling control strategies. BPC, EPS and SMP 

concentrations and their compositions largely influenced sludge properties and 

membrane fouling behaviour. Smaller floc size deteriorated membrane permeability. 

The optimum MLSS level (< 10 g/L), SRT (20−40 d) and temperature (15−30 ºC) 

should be maintained to minimize membrane fouling. The impacts of membrane 

properties were partially determined by sludge characteristics and feedwater 

characteristics. The integration of MBR with other approaches could effectively 

enhance MBR performance. Future work should elucidate fouling behaviour in 

integrated MBRs more clearly.    
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Fig. 1. Schematic of biofilm formation on a surface (modified from Bitton, 2005) 

Fig. 2. Schematic illustration of correlation between SMP and BPC in MBR 
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Table 1.  
Effects of MLSS concentration on biofouling 
 

Type of 
wastewater 

MLSS 
concentration Effects on biofouling References 

Synthetic 
wastewater  

3.0-25.0 g/L 

• At low MLSS levels (< 5.0 g/L), less 
membrane fouling was observed at the 
elevated MLSS concentration, while fouling 
rate was almost zero when MLSS 
concentration increased to 7.9 g/L; 

• When increasing MLSS concentration (> 10 
g/L) by two times, fouling rates increased by 
almost three times. Nine-fold increase in 
fouling rate was obtained over a three-fold 
increase in MLSS concentration (> 15 g/L). 

Li et al., 
2012; 

Lee and 
Kim, 2013 

Real 
wastewater 

2.3-20.0 g/L 

• A slight change of permeation flux was 
attained when increasing biomass 
concentration within low MLSS range (< 4.1 
g/L); 

• At higher MLSS concentration (4.1−6.75 
g/L), increasing MLSS notably decreased 
permeate flux; 

• The increase in MLSS from 5 to 20 g/L 
reduced the critical flux by 3 times.  

Bani-
Melhem et 
al., 2015; 
Damayanti 
et al., 2011 
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Table 2.  
Effects of SRT on biofouling 
 

SRT Effects on sludge characteristics and biofoulinga References 

3 50 d 
(HRT = 
6 26 h) 

• Shorter SRT facilitated the accumulation of 
carbohydrates and proteins of SMP and EPS in the 
submerged MBR. In addition, it also increased the 
amounts of small molecules (MW < 1 kDa) of SMP and 
reduced macromolecules (MW > 30 kDa) of EPS. More 
undefined microbial by-product-like substances and 
distinct O-H bonds in hydroxyl functional groups were 
found with decreasing SRT; 

• At lower SRT, MBR sludge featured poorer filterability 
and settleability, higher RH, and more filamentous 
bacteria. It led to more loose floc structure, poorer floc 
stability, poorer bioflocculation of activated sludge and 
generation of larger amounts of smaller aggregates; 

• More severe membrane fouling, less porous fouling layer 
and a relative higher specific resistance were attained at 
lower SRT (i.e. 10 and 15 d). Besides, more distinct 
fouling layer on the membrane was formed at lower SRT 
(23 d), containing significantly higher concentrations of 
deposited EPS (40-fold higher for protein and 5-fold 
higher for carbohydrate) than those at higher SRT (40 d). 

Al-Halbouni et 
al., 2008; Duan 
et al., 2014; Tian 
and  Su, 2012; 
Van den Broeck 
et al., 2012 

  a EPS, extracellular polymeric substances; MW, molecular weight; RH, relative hydrophobicity;  
SMP, soluble microbial products 
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Graphic abstract 
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Highlights 

• Biofouling has become a major issue during MBR operation. 

• Various MBR biofouling factors and control strategies are reviewed. 

• Sludge properties play a critical role in membrane biofouling potential. 

• Adding sponge or bioflocculant into MBR achieves desirable fouling reduction. 

• Development of integrated MBRs with novel flocculants and media is needed.  

 


