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ABSTRACT - In this paper, we introduce a new concept, the a-fuzzy max order, and then use the
concept in the study of fuzzy linear constrained optimization problems. For constraints given by n
inequalities involving fuzzy numbers with isosceles triangle membership functions, we prove that the
feasible solution space is determined by 3n non-fuzzy inequalities. For constraints involving fuzzy
numbers with other forms of membership functions, we develop two numerical algorithms
respectively for the determination of the feasible solution space and the solution of the fuzzy

optimization problem. An illuminative example is also given in this paper to demonstrate the validity
of the methods and algorithms developed.
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1 Introduction

In optimizing real world systems. one usually ends up with a lincar and nonlincar programming problem. For
many cases, the coefficients involved in the objective and constraint functions are imprecise in nature and have
to be interpreted as fuzzy numbers to reflect the real world situation. The resulting mathematical programming is
therefore referred to as fuzzy mathematical programming problem.

In recent years, various attempts have been made to study the solution of fuzzy mathematical programming
problems with objective functions involving fuzzy numbers, either from theoretical or computational point of
view. Tanaka ct al. [12] formulated the fuzzy linear programming (FLP) problem as a parametric linear
programming problen. while Luhandjura [7] formulated the (FLP) problem as a semi-finite linear programming
problem with infinitely many objective functions. More recently, Maeda [9] formulated the (FLP) problem as a
two-objective linear programming problem. However, Maeda’s work is applicable to fuzzy numbers with
triangular membership functions only. Zhang et. al [16] has thus further developed Maeda’s work to formulate
the (FLP) problem as a four-objective linear programming problem and the new work is applicable to problems
involving fuzzy numbers with any form of membership functions.

This paper is a continuation of our recent work presented in [16]. In the paper, we develop an optimization
method for solving a different kind of problems, namely linear optimization problems with constraint
incqualities involving fuzzy numbers. The rest of paper is organized as follows. In section two, we give some
basic definitions and theorems fundamental to the development to be described in section three. In Section three,
we firstly introduce the concept of «-fuzzy max order and use the concept to define a fuzzy optimization
problem. Then, an important theorem is developed concerning the determination of the feasible solution space
defined by the constraint inequalities involving only fuzzy numbers with isosceles triangle membership
functions. In Section four, two numerical algorithms are developed respectively for the solution of the (FLP)
problem and the solution space defined by the constraints involving fuzzy numbers with any form of

membership functions. In Section five, an illustrative example is given to demonstrate the validity of the
methods and the algorithms developed.
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2. Preliminaries

In this section. we present some basic concepts. definitions and theorems that are 1o be used in the subsequent
sections. The work presented in this section can also be found from our recent paper in [16].

~ e . . . . T
Let R be the set of all real numbers, R” be n-dimensional Euclidean space. and x = (x;, xo. ..., x) " v=(v, vs ...,
.\',Q)T € R" be any two vectors, where xi v e Roi= 1.2, . nand 7 denotes the transpose of the vector. Then we
. ~ ! a3 . [y
denote the inner product of x and v by (\.\‘.,\'/\,v For anv two vectors x, v € R we write x>y iff

X; > v 7i=120n x> vitf vy > vandy= pox>yift >0 7i=12, 0

Definition 2.1 A fuzzy number « is defined as a fuzzy set on R, whose membership function (7, satisfies the

following conditions:

1. 4t is a mapping from R to the closed interval [0, 1];
2. it 1s normal, i.e., there exists x € R such that ff; (x) = 1;

3.foranvio e (00 1], 4. = {x0 g5 (x) = 2} is a closed interval. denoted by[af{, af ].
Let F(R) be the set of all fuzzy numbers. By the decomposition theorem of fuzzy set. we have
a= . Uﬂ,[uﬁ‘,af]. (1
for every 4 2 FIR).
Let £7(R) be the set of all finite fuzzy numbers on R

Theorem 2.1 Lot o he a fuzzv set on R then a e FIRVifund onlv il us satisfies

1 xemon
i
H(x) =4 Lix) N<mo,
ll\’(,\‘) x>0

where Lixy (s the right-continuous monowne increasing funciion. O <Lixiy< Land lim, |, Lixy=0, R(x)is the

left-caontinuous monotone decreaxing tuncrion. D <Rix) < | and him,_ ., R(x)=0.
Corollary 2.1 Forevery d € F(RYand 2. 2 € [0, 1), if A, < A~ then a, ca, .

Definition 2.2 Fer any a. b € FiRyand 0</ 2 R the sum of ¢ and b and the scalar product of / and & are

defined by the membership functions

)

u, sl =sup min {0 : (0 (

12

Ly (D= sup s (), {

Theorem 2.2 Foram a, he F(Ryand 0<a e R,

G-h= U/
wi= | aas. ]
FRI
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Definition 2.3 Let a; € F(R),i=1,2,--,n. We define a =(d,,a,,"--.4d,)
1z R" = [0,1]

n
x5 g (1),
i=1

where ¥ = (x;, x» ..., x)' & R and dis called an n-dimensional fuzzy number on R". If

a; € F'(R),i=12,---,n, @ is called an n-dimensional finite fuzzy number on R".

Let F(R")and F'(R") be the set of all n-dimensional fuzzy numbers and the set of all n-dimensional finite fuzzy

numbers on R respectively.

Proposition 2.1 For every a € F(R™), a is normal.

Proof. Since a € F(R"), there exist d; € F(R),i=1,2,---,n such that @ =(a;,d,,"--,a,). As a; (i =12,---,n)
1s normal, it follows that there exists x; € R (i =1,2,---,n) such that U (x)=1(=12,-n). Letx=(x; x2 ...,
x,,)T e R", then

Hz(x)= A Hz, (x;) =1,
i=1

which implies that @ is normal.

Proposition 2.2 For every d € F(R"), the A-section of @ is an n-dimensional closed rectangular region for
any A €[0,17.

Proof. Since a € F(R"), there exist d, € F(R),i =12.---.n such that @ =(d;.d>.---.d, ). As the 2-section of

a; (i =12.--.n)is a closed interval [a,-L. a R] (i=12,---,n), we have

AR

ay ={xpfz (X) > A}
n
=10 A pz (x> A}
=1 =

=465 (V) 2 A= 20 m)

T .
=i =(x, X0, X,) ix €a i =120 0]

. L Ry .
3% e[au,au],z:1,2,---,/1},

T
= {x=(x,%3,,%,)

for any A e (0, 1]. This implies that the A-section of & is an n-dimensional closed rectangular region for any A
(0. 1]

Proposition 2.3 For every d € F(R")and 2, 2, €{0.1]) if 2y < As then a; ca, .
Proof. Obvious.
Definition 2.4 For any n-dimensional fuzzy numbers abe F(R™), we define
Lodxbiff ot >t and ol 08 2120 2 e
20 dxb iff af>bhand af b8 =120 2e01);
3. @-biff ab>btand af > 0% i=12,m 2 (0]

We call the binary relations >, and > a fuzzy max order, a strict fuzzy max order and a strong fuzzy max

order, respectively.
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3. Fuzzy linear programming problem and a-fuzzy max order
Consider the following fuzzy linear programming (FLP) problem:

% maximize  {c, .\‘>F = z C;X,
(FLP) <

subjectto Ax<h, x>0

where

T =(F,,T.,0,) e FX(R). b=(b.by b )T eF*R"Y,  Ad=la,),

in which d, = FYR.i=12-.m j=12,- n Based on the definition of the fuzzy max order (Definition

2.5), the (FLP) problem (5) is equivalent to the following (FLP,) problem.

maximize <c, x>F = Z C;x;
(FLP,) i1
lsubjectto Afx<hl Ay < >0, vae0])

Obviouslv. a feasible solution must satisfy the constraints for all 2 e {0, 1] However. i general, this
requirement is too strong. Now consider a typical coefficient ¢ represented by a fuzzy number ¢ . The

possibility of such a parameter ¢; taking value in the range [¢,7.¢." ] is A or above. While the possibility of ¢,
. - L R F— . . .
taking value beyond [e;7, ¢, 71 is less than A Thus. one would gencrally be more interested in solutions

i

obtainad using cocflivients ¢ taking values in [c,7. with £ 2 & > 0. As a special case, i the coeflicients

invelved arc cither real numbers or fuzzy numbers with triangular membership functions. then. we will have the
usual non-fuzzy opunuzauon probiem wuppose that we choose « = 1. To formulate this idea. we introduce the

following definitions.

Definition 3.1 For any n-dimensional fuzzy numbers «.h € F(R"™), we define

. oo Loy 2 . :
4 d= bl el ekt and g 2T i=12 noAefa ]
<~ T L, ;
> e, bt aT <b nos
6. G-, bt g >t o Aelal]
U Ty ai; i Hosoeall]

We call the binary relations = .= and >~ a a-fuzzy max order, a strict a-fuzzy max order and a strong -

&

fuzzy max order. respectively.

With Defimion 3.1, we turn our interest to the solution of the {ollowing problem:

“maximize << ﬂ.\'>l_ = Z X,
, : ;
(FLP,) - i=l (6)
|
jsubject o v~ b, x>0

maximize <(', .\‘> =3,
\ i=1 —
(FLPu), ) 1 ; (7
. ! ; ;- N
1 subjectto AT x < bl v 0.9/ g(ald]
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. I L R Ly R R
where ¢ =(c;),., . Ay = (u,,l_) LAY = (a,,}_z) .bf =(b),. and b = (b,»i.‘)m,‘_.
R e TR FRr s . i :

Alneon

Theorem 3.1 Let & be the solution of the (FLP,,) problem (7). Then it is also a solution of the (FLP,) problem

defined by (6).

Proof. The proofis obvious from Definition 3.1.

Theorem 3.2 If all the fuzzy coeflicients @, and b, have isosceles triangle membership functions

0 t<z—h:
t—z+h: i
— I—h- <t<:Z
h = o
He) =9 oo, . (8)
—— Z<t<z+h
h’:/ = .
0 z+he <t

N

where = denotes a;; or b, .z and 4= are the centre and the deviation parameter of = respectively. Then, the

5

space of feasible solutions X is defined by the set of x € R” with x;, for 7= {.2,.. n, satisfving

~

{T agx. <h

} Z[a” —(l-a)hs v,
/=1

by =(l-ah,

<
4 = (9)
} H
4}?[(1” +(l=adhs v, <b, ~{l-a)h;
Proof.
From Theorem 3.1, X is defined by
Ve=lxeR Sasx, <bi e x <b i xs0 7 elad]andi= 12 (10)
prT T E T A - 7=
Thatis. Vis the setof x € R” with x > 0 and satislying
I, = D u',,"f.\", 7/*‘_,»/;, <0 J;, = s a; g ~’v <0.7ieladjandi=120n (Ih
i ~ - = - o A =
For fuzzyv numbers with isosceles triangle membership functions. we have
al = (-4 @ S =a e (=, (12)
by = b —hy A=A) b =b +hi (1= 4). (13)
Substitutng {12y and (13} into (111, we have
L= 2lay; —/z;;” (I=A)]x; =[h, _hE. (1-4)], (14
/=1
Joo= Slay, ~hy (1= A, =1 =k (1= 4)). (15)

wn
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0.7/ ¢lal]and i =12, m 1f (9) 1s sausfied. From

Now, our problem becomes to show that [, <0.J;, <
(9),. we have
Tagx, —b; <0 (16)
i1 -
From (9)- 1, we obtain
z(l—a)(/zuuxjfhﬁ)‘i Sagx; ~b;, (17)
=

—
jos

j(lva‘)(/zd x; =) *11:..\', -h
= Yo ’ T =l :

A

m.

c e landi=12... .

Thus, from (14 and (15) and using (16) - {18). we have, for any £

T A Tara
The prootis complete,

4 Numerical algorithm
mphasized that for problems involving fuzzy numbers with nonlinear membership functions.

It should be ¢

Theorem 3.2 will not be applicable. However, based on Theorem 3.1, we can derive a numerical algorithm for
the determination of the space of feasible selutions and an algorithm for the numerical solution of the (FLP.)
problem defined by (7). For simphicity in presentation. we define
Fx>0vielal]).

X, =ixveR?| aby

Algorithm for the space of feasible soivtions 3
terval {17 be divided into m sub-intervals with (m=1) nodes A, (i = 0. m) arranged in the order ¢ = /2,

=1

<=

Let the in

TS s

N - ) o derermine V7 A
Step 10 Set = 2. then determine X7 = (.47
1)

2
Step 2: Determine X7 = .\,

6
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Step 3+ IF (X ~ X™), then X = X™". Otherwise. set m to 2m and o to Step 2, where A7 ~ X" means that the
I g g
space A7 is close to A™. namely

L xR represents the interval of x; obtained by using 2m sub-intervals.

in which [x;7, x;

Alcorithm for the (FLP...) problem:

Let the interval [« 1] be divided into m sub-intervals with (m=11nodes 4. (7 = 0. mn arranged 1n the order ¢ =
Ay < A; < A< < =1 and denote

Step 11 Set m = 2, then solve the (FLP,1), problem for (x),.. where (x),, = (3, X3...., x,,),, and the subscript m
indicates that the result is obtained subject to constraint xe X™:

Step 20 Scive the (FLP )=, problem for (x)s,,:

Step 30 If M(_\‘):m - (x) E< Tol, the solution of the (FLP,.;) problem is x=(x).,. Otherwise, update m ta 2m

m

and go to Step 2.

N

An illustrative example

To conclude this paper, we give an example in this section.

Example
Tmavimize i) e 0= (19
fsubjectto Ta+6y— 42
iy
| .
- > . -~ -
(FLPy < Sy+0y o 43 (20
x-—y—4
i x>0,v>0

[iRY

o

where ¢ denotes a non-fuzzy value saustving g {¢) =1. While, 42 and 43 are fuzzy numbers with membership

functions given by

0 ¢ o=2
Py
! c=2<x
| 0 =
~ (X)) =< -
e =900y '
————— cax<e+2
) =

=

vy
1A

o
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If all fuzzy numbers ¢; are replaced by non-fuzzy value ¢ satisfying Hz (¢;)=1, then the (FLP) problem

becomes the normal linear mathematical programming problem. The solution in this case is
",y = (51—1:, 1%) with objective function value —104.000. If fuzziness has to be considered, by Theorem
3

3.2, the problem becomes a usual linear programming problem subject to 9 constraint inequalities. The solution
in this case 1s (x*,)'*)=(4.9286,0,9286) with objective function value —100.143. As a validation of the

algorithims presented in Section 4, the feasible solution space X and the (FLP),; problem are also solved by the

algorithm for X and the algorithm for the (FLP),, problem respectively. The solutions obtained are exactly the
same as those from Theorem 3.2.
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