
A METAMODEL FOR MODELING
COLLABORATIVE SYSTEMS

I.T. HAWRYSZKIEWYCZ
University ofTeclmology~ Sydney

Sydney, NSW 2007

ABSTRACT

Computers are now being increasingly used to support
:ollaborative knowledge intensive processes. These are
Collaborative processes where intense interaction takes place
between team members working towards a common goal. The
paper identifies technology as an enabler of the collaborative
work practices in such processes. To do this technology must

. provide ways to set up systems to support collaboration and at
the same time assist users to adapt systems to changing work
practices. The paper defines a collaborative metamodel to define
collaborative work practices and to, provide the ontology to
define software agents that help users adapt it to changing needs.
It then describes a prototype implementation.

Keywords: Collaboration, Software agents, knowledge
intensive processes.

INTRODUCTION

Collaboration is becoming more prominent in the business
world with many distributed organizations requiring people to
collaborate across distance. The Internet has been suggested and
often used as a way to support collaboration. However, studies
(9) have shown that collaboration using Internet services such as
e-mail usually does not go beyond exchange of documents.
.Ience the complexity of relationships or knowledge processes

'-'that can be supported using Internet services is limited.

Knowledge processes require intense exchange of information
between team or alliance members to reach some desired
outcome and must go beyond simple exchange of messages or
documents but operate interactively in a shared context. One
generic example of such processes is where tacit knowledge of
experts is combined with refined explicit knowledge to create
new products and services (11). Another is to characterize them
as innovation (22) processes where people combine knowledge
from a variety of fields to create new knowledge. Just to name a
few applications, there are distributed software project teams
(5), design teams, planning and evaluation teams, client support
teams, as well as the need for meetings during various stages of
the business process. For example, producing a new car model
can require well over 200 designers of different components to
coordinate their activities and share their knowledge.

The paper premises that successful collaboration requires
the combination of the three important dimensions shown in
Figure 1. First there is the social culture where people develop
the relationships and work practices necessary to share and
create knowledge in mutually acceptable ways. Then there are
ways to manage organizational knowledge. Knowledge
management includes support for interpreting information in its
context using the tacit knowledge of participants and the
distribution of such interpretations. Technology then becomes
the enabler for both maintaining the personal relationships and
providing the tools and services to share knowledge in
meaningful ways.

FIGUREl
Dimensions of Collaboration

Social relationsbips

Work pradiee
Ways to share knowledge
Interpretation in practice

Spring 2005 Journal of Computer Information Systems 63

To be an effective enabler, technology must support the
social relationships in a given application and provide people
with services to construct knowledge. This paper proposes that
technology facilitation requires two parts. One is to select
technologies that best support social relationships and maintain
such relationships. The other is to assist users to setup and
change systems as their work practices change. Suggested ways
to do the latter include using software agents (12). Furthermore,
such assistance must be provided In general ways rather than
specifically for each application. The paper proposes a
metamodel of collaboration to provide a foundation of
generalized support. The model is used:

define collaborative processes for any application and
implement them as electronic workspaces, and
provide the ontology that provides a foundation to define
agents, which assist users to adapt their system to changing
work practices.
The paper then describes an implementation based on open

system Java architecture that directly implements the concepts.
The implementation allows workspaces to be created in terms of
these concepts, and provides the ability to change workspace
structures dynamically as the work situation changes. The open
architecture provides a way to easily integrate the agents into the
system. The paper then shows how the metamodel provides the
framework to identify reusable agents and how they can be
combined into flexible agent architectures. The reusable agents
are modeled on social structures such as assessing situations,
arranging plans or allocating responsibilities.

MODELS OF COLLABORATION

Collaboration has been characterized by a variety of social
models and implementations that support these models. One
way to categorize models is by distinguishing between
specialized approaches to model one class of application, and
generic approaches that can model any application. From a
specialized approach we have early applications such as IBIS (8)
that provide a shared resource for decision making. This is
followed by more recent systems such as CoGenTex's EMMA,
which have a more collaborative model to support decision
making. Other examples of specialized models are joint
document editing (27), or models of team support in global
environments (28).

Generic models can also cover a large range of application
areas. Corresponding technologies can be specialized or general.
One is coordination models, in particular workflows.
Coordination models have emphasized the sequencing of tasks
to achieve some precise goal. One of the earliest models was
DOMINO (21), which supported office flows over the Internet.
Standards for such systems then evolved primarily through the
workflow management systems coalition. Other early systems,
in particular ConversationBuilder (19) and Oval (25) placed
more on community semantics providing objects, views for
presentation to users and supporting these users with
conversational tools. LOTUS Notes was an early commercial
system that supported similar semantics. Later research has
concentrated on systems that provide more flexibility in
dynamically defining coordination as for example, Ariadne (10),
which concentrated on flexible coordination.

Another is community models, and there are also general
social models. Community models have emphasized sharing of
predominantly explicit knowledge through technologies such as
newsgroups. Community models can be open or they can have
specific goals. The most common support here is Internet
systems such as newsgroups, which supported open
communities. Recently more goal oriented support systems such

Spring 2005

as BCSW have been developed that provide communities with
specific tools such as circulation folders, briefcases as well as
workflow support.

Social models such as coordination based on speech acts
(6) or activity theory (23) have also been used as a basis for
developing collaborative systems. The best example of a support
system is Action Workflow (33) that is based on speech acts.

_Our work QV(:!' a number of years has.been to identify the
semantic concepts in these models and combine them into one
metamodel, which provides a general set of semantics that
provide a platform to support any coordination model. We thus
combine community and work process semantics to reflect the
current work environment while providing the ability.N
dynamically change processes. The model also provides a
framework for generating agent support systl:m~.".

SEMANTICS TO DESCRIBE COLLABORATION

Our goal has been to integrate the semantics of the generic
models into one metamodel that can be used to model
community, coordination and social models. Current modeling
methods cannot be used to do this. Most current conceptual
modeling methods concern relatively stable processes and
emphasize functions rather then people. In stable processes, the
flow oftransactions can be predefined and the data structures are
stable. Methods such as dataflow diagrams, ER models or object
modeling can be used to model such systems. Existing modeling
methods have a number of limitations in modeling dynamic
systems. Objects in object modeling can be such agencies, as
can data objects. However, with object modeling, organizational
entities cannot easily adapt their agencies to changing
requirements. The model proposed in this paper satisfies three
characteristics. These are to:

provide concepts that map directly to an implementation so
that dynamic changes can be made at the interface level,
design agent based systems that actively support users. The
semantics can be used to construct system descriptions in
methodologies such as Prometheus (29) that can
subsequently lead to specifications of agent networks to
support dynamic organizations, and
provide a basis for managing knowledge by using the ideas
of organization computational theory (4) by selecting
agencies that result in a subdivision of knowledge into self-
contained chunks, which can be readily recombined into
emerging organizational structures.
Thus rather than identifying data objects and processes, we

identify organizational entities and their agencies. This approach
also supports the notions of Rehfeldt and Turowski (31) of
organizations supported by interacting agencies. In such
organizations people have their agency as can documents. Thus
in any interaction, a document agency may possess the
knowledge of how best to structure a document whereas a
person can use their knowledge to add content following the
structure. The new emphasis, however, needs to go beyond
simply functional agencies but to include social and process
agencies in the model. The agent architecture is defined using
the same ontology to interpret collaborative actions and to signal
suggested agent actions to the collaborative environment.

Elementary concepts

Figure 2 illustrates some simple concepts that concentrate
on elementary work activities. Each concept is represented by an
ellipse. Relationships between the concepts are represented by
links between the ellipses. The elementary concepts allow users
to define activities and workgroups and can support what have

Journal of Computer Information Systems 64

been defined earlier as community semantics. The workgroups
participate in the activities. Workgroup participants are assigned
to roles that can take actions, and view and change selected
artif8cts. Thus the semantics are that a workgroup is created and
this workgroup can create any number of activities and assign
responsibility to workgroup members in each activity. Semantic
commands here center on creating objects that correspond to the
metamodel concepts and the links between them. The
commands include:
Create workgroup (workgroup-name=<text»,
Create activity for workgroup (workgroup-name, activity-

name=<text>),

Create role in activity (activity-name, role-name=<text»,
Add artit8ct-to-aetivity (activity-name, artifact-name = <text»,
Add action-to-aetivity (action-name, artifact-name = <text»,
Assign role to action (role-name, action-name),
Assign artifact to action (artifact-name. action-name).
Add-participant-to-workgroup (workgroup-name. participant-

name=<text»,
Assign-participant-to-role (participant-name = <text>

These commands are implemented in our workspace
system, LiveNet, and can be used to create models defined in
terms of the semantics. A model using the semantics is shown in
Figure 3.

FIG1JRE2
Elementary Concepts

NOTATION.~.
5=J

•8
.•#-----~--~.~~"
\ \lIOdc.group .)-, -:":

FIGURE 3
A Simple Model

Figure 3 illustrates a model using the concepts shown in
Figure 2. The model shows two classes each modeled as an
activity, named class 1 activity and class 2 activity. Each class
has two roles, teacher and student Each role has its separate
responsibilities. The teacher role can add documents to the
activity. The student can read the documents and make
Comments about them. The participants in each role can be
different or they can overlap. Thus there are two participants,

Spring 2005

Linda and Pan, who participate in each of the two classes. The
others take part in one class only.

The system is dynamic in the sense that changes can be
made at any time. Thus the semantics allow participants to be
created and added to workgroups at any time. Similarly artifacts
and actions can be added or deleted to activities as required.
Existing roles can be assigned responsibility for these actions.
A1tcmativelynew roles can be created.

Journal of Computer Information Systems 65

Extending to groups and work processes

The type of semantics supported by the elementary
concepts has a number of drawbacks and the final model
includes a number of extensions.
• Create and manage groups independently of activities. This

allows teams to be treated as whole and assigned to roles as
a group rather than as individuals.

• Introduce work-items within activities to provide an
intermediate level to describe organizational work, and

• Introduce events that can be combined into workflows, by
distinguishing between completion and initiation events.
and specifying workflows by defining the initiation events
that are activated by a given completion event.
Figure 4 shows the metamodel that supports the enriched

semantics. It now includes a more sophisticated concepts to

model communities within organizations. The communities now
overlap and can be assigned to roles as groups rather than as
individuals. The model also includes events to model workflows
thus combining community and coordination semantics. The
metamodel shown in Figure 4 combines organizatiOnal
structures such as activities and work-items, work processes
including events and workflows, and social structures that
enable groups to be formed and participants to be included in
such groups. It provides ways to combine work-items into
activities with members of groups assigned responsibilities
through roles for those work-items. Furthermore work-items can
be grouped in different ways to match the perspective of
different users. It supports social interactions. through group
formations, discussions or notifications. as well as more
structured workflows by associating events with artifacts. The
main concepts are:

Artifact - data objects such as documents, calendars. It can also be a record of discussions or other personal interactions.
View - a collection of artifacts. These can be documents. calendars, or multi-media records. They can also be other views.
Activity - produces a well defined artifact as its output (e.g. produce a planning document), and can include many work-items to do so.

Provides views necessary to carry out the work-items.
Role - defines responsibilities in system in terms of work-items that it can carry out and the views that it can access.
Participant - a specific person that is in a group and can be assigned to a role.
Group - a collection of participants that can be assigned to a role.

rk-item - a set of actions and interactions needed to produce intermediate outcomes that eventually produce an activity output (e.g. review
part of a planning document - which may include a number of actions. assess a situation). A work-item is composed of a number of actions
and provides tools to carry out the actions.
Action - a specific unit of work carried out by a role (e.g. change an artifact, send an artifact). Can notify selected roles when completed.
Can be a:

Soloamon - carried out by one participant, or
Interaction - the basic exchanges between people when they collaborate in the activities.

ot type - is in an activity and can either be an 'initiation-event' that notifies a role in the activity to carry out work-item, or is a 'completion-
event' initiated by a role following completion of a work-item.

nt-rule - defines the next initiation-event or events to be activated following the completion-event.
ld10w - describes a s uence of event rules. Can be attached to an artifact

FIGURE 4
Collaborative Metamodel

The additional semantics now are:
Assign group to role (workgroup-name, role-name),
Add work-item in activity (work-item-name, activity-name),
Add action to work-item (action-name, work-item-name),
Create initiation-event-in-activity (event-name=<text>,

role-name-to-cause)

Create initiation-event-in-activity (event-name=,text., role-
name-to-be-notified»

Create event rule (initiation-event, completion-event)
The effect of the introduction of groups is shown in Figure

5.

Spriog2005 Journal of Computer Information Systems 66

FIGURES
Another Example

Figure 5 also illustrates the complete notation. Some
symbols correspond to those in other methodologies such as
Prometheus as the goal is to extend to agent systems. Others are
specific to the metamodel. Thus we use a loose cloud notation
for activities as we see activities not being fixed but evolving
over time through creation of new work-items or roles as
needed. The loose cloudy shape portrays the fact that new
activities can be easily formed by grouping existing work-items.
The event structure is also different to make a distinction

between completion and initiation events and also to distinguish
from agent events that are part of agent architectures.

Work process evolution

Work evolution can be managed by executing metamodel
commands dynamically as work practices change. The left hand
side of Figure 6 is a simple example. This shows the use of
events to model worldlows.

FIGURE 6
Modeling Emergent Workftows

The model in Figure 6 includes two activities.
• invoice reception that has one view, sales that includes

sales and invoices. One role, 'sales officer', carries out the
'work transaction' work-item to check invoices against
sales. Once checked event 'request payment' is initiated.

Spring 2005

This activates event 'make payment' in the make payments
activity.

• make payments, where the role 'payments officer' is
notified by event 'make payment' to make a payment.
The right hand side shows the ability to change the system

Journal of Computer Information Systems 67

using simple operations. This is to extend the system to
include an approval activity and thus model dynamic
changes to worldlows. It requires elementary commands to:

• Create a new activity ('approval'),
• Create a work item ('approve-payment') in that activity,
• Create a new role of 'manager',
• Delete event rule,
• Create new initiation event,
• Create new completion event,
• Create new workflow rule.

EXAMPLES OF PRACTICAL APPLICATION

The metamodel semantics can be a tool used in analysis or
can serve as a way of choosing agencies with methodologies
such as Prometheus (29) or form a basis for choosing agents in
AgentUML (3). A typical set of steps followed to create a model
is:
1.

2.
3.

Define the high level activities in the system and the work-
items in each activity.
Define groups or teams and add participants to the groups.
Add artifitcts needed by the work-items and create views
for the work-items to identify the artifacts needed by the
work-item.
Define roles and assign responsibilities for work-items to4.

roles and then assign participants to the roles.
5. Expand work-items in terms of their actions and identify

views for these to 'use or create' artifacts.
6. Identify any predefined events and consequent rules and

specify the 'initiation-events; to be activated following a
'completion-event'. Worldlows are 'made of' that specify
sequences of event rules.
This process can be followed to describe a system in terms

of the concepts shown in Figure 4. The system model uses a
notation that borrows from a number of such methodologies but
makes a clear distinction between organizational entities and
agents. The paper now describes the notation and illustrates the
model using some examples. The metamodel described here has
evolved through a variety of applications such as business
networking (13), strategic planning (14) and administrative
systems (15). The metamodel concepts can be used to develop
high level conceptual models of applications. These models are
then used to design technical implementations.

Example - Business Networks

A model of business network formation is illustrated in
Figure 7. Here brokers are contracted to facilitate the formation
of business networks.

FIGURE 7
Conceptual Model of Business Networks

I_U

There are four activities in Figure 7, namely:
• Identify business opportunities where external contacts

notify brokers of business opportunities,
• Find potential businesses where brokers identify some of

their clients, who may be willing to form a network to
respond to the opportunity,

• Prepare a memorandum understanding with these candidate
businesses, and

• Form a contract.
Figure 7 was the first step in a study to design support

systems for supporting business network formation. The strategy
was to develop acontaet service for brokers and a portal service
to post opportunities, and identify brokers and business to
respond to these opportunities.

Example - Global Planning

Another example is shown in Figure 8. The field officers

here collect information about the health status in the localities.
This is summarized at the regional office and then made
available for identifying problems and raising awareness of
these problems with researchers. The activities in Figure 8 are:
• Collecting health information of the different regions to

identify regional health deficits,
• Discuss regional issues to identify global issues and set

priorities in terms of world health problems,
• Raise awareness of world problems through publications

and public awareness programs,
• Initiate research programs to solve problems by seeking out

grant bodies and interested researchers and research
institutes,

• Set up and monitor projects to implement solutions.
In both of the above cases the model was used to set

strategic directions and define projects to develop systems that
support these directions. They can also be used at an
applications level as described in the following.

Spring 2005 Journal of Computer Information Systems 68

FIGURE 8
Conceptual Model of Global Planning

Modeling Personalized Learning

Figure 9 shows a conceptual model that describes a

personalized learning environment. The basic idea of the system
is that a learner looks at the things that they need to do and
identifies their learning goal.

FIGURE 9
Conceptual Model of a Learning Process

l'he main activities here are:
• Develop learning plans, which is an activity where

instructors develop learning material and setup learning
plans. They can invite experts or other people to assist and
review their learning plans.

•• Develop personal plans for learners. Here the instructor
together with the learner set up a learning program that
includes a personalized learning plan. It also includes ways

• to assess and record student learning outcomes.
Carry out leaning plan, which is an activity where the
student follows the learning plan. It helps students to select
the best learning method for their plan and carry out any

learning tasks.
The work-items can be expanded in terms of their actions

and the activities can themselves be redrawn to show different
perspectives. The rnetamodel concepts can be directly
implemented in our LiveNet system.

SYSTEM ARCHITECTURE

In the implementation, activities become workspaces while
the other concepts become components of the workspace. The
overall architecture to implement the metamodel is illustrated in
Figure 10. The foundation stores a collaborative application in a

Spring200S Journal of Computer Information Systems 69

relational database in terms of the metamodel concepts. Thus
there us a table for each activity and other tables that describe
the components of each activity. The basic operations become
sequences of commands that transform the database. The
foundation basically supports the collaborative semantics, which

are provided through a 2JEE platfonn. Interfaces are generated
through a JSP mapping. The database structure is not directly
related to the interface and alternate interface mappings can be
generated from the collaborative application.

FIGURE 10
LiveNet Architecture

-
Specification method

Development language

There are a number of options of presenting conceptual
models in a technical implementations. The simplest is to
present the concepts as a generalized interface to users. Each
activity in that case becomes an electronic workspace. An
example of such presentation is illustrated in Figure 11. This

shows a "carry out learning plan" activity implemented as a
LiveNet workspace showing the different learning steps,
including "learn-about-design". "learn -about-proposals", and
so on. In addition it includes supporting artifacts such as a
learning schedule.

FIGURE 11
A Workspace for Learning

- ...- -- ~29t-o:.t.:- ~'l"
",,.; ••••.• 1'1'- _ ..
12*fOoI.h- =~- _.
n'•••••.•••- dllI ••••U
U.sJ.l02.'.

e;=
......._t.-_ .

•••••••• 1 ••••••••

••••••••••..•••.• u~u
.•••• Iiiiiioi .•.

r CJ , __ (0)

r D Ioo•••• -.boo,.t·,u.;o<,(O)

r;:) ••••.•.•b.'*"'_ ••••(.)
rCJI.-.. .•~ ••••••••.(2i)

r ~ 1••••••••••• dMd<Aoo(7J

r CJ ••••••~."' ••••••' u:)

An interface based on generalized semantics places the
additional burden of users having to map their perception of the
work onto workgroup semantics. User must first of all see their
problem in terms of the generalized semantics and express it at
the interface in terms of these semantics. Thus although the
system is generalized in the functional sense and can be easily
customized to a particular application, the customization still
requires users to think in ways to map their problem semantics
to generalized semantics when using the system, thus placing
barriers in its use. Alternatively a specialized interface can be

provided where each concept is mapped onto a concept natural
to a user problem domain. In general this maps each rnetamodel
to a specific user domain concept. Alternatively the metamodel
can be enhanced by directly representing derived relationships at
the user interface. The paper now illustrates two examples of
such representations.

Often the process of setting up and changing such
workspaces as collaboration evolves can become onerous and is
abandoned. Another approach is the use of software agents.
Hattori, (12), proposed agent support for such systems

Spring 2005 Journal of Computer Information Systems 70

emphasizing workspace and personal agents. Their work
~ested activity and personal agents and concentrated on loose
~oups exchanging information.. However, again the
Coordinationneeded to work towards some goal is not provided
in this model. We use our metarnodel to define generic agents
that can integrate community and coordination semantics.

USING THE METAMODEL TO DEFINE
-GENERlC-AGEN'fS

Software agents obtain information about their
environments expressed in terms of collaborative concepts as
percepts from the collaborative system. These percepts are then
used by the agent system to determine actions to be taken in the
collaborative system. Such actions are again expressed in terms
of the collaborative metamodel. Our goal is to design an
architecture with reusable agents that possess knowledge that
Cl'~ be combined to construct a number of collaborative
,,--,:sses. The initial goal is to have the generic agent object
classes "mirror" the collaborative object classes. These agent
classes are:
Activity agent - is set a goal and defmes a plan to attain the

goal. The plan requires tasks to be set up and monitored to
realize parts of the goal. It initiates work-items to carry out
the tasks. .

Work-item agent - Carries out a specific task and reports to the
activity agent. Arranges work in terms of role
responsibilities. Can select specific collaborations' such as a
discussion, document management or notification service.

Role agent - determines the skills needed by the roles and finds
participants with specific skills to carry out the role. The
role agent finds such participants by interacting with a
broker agent.

Group Agent - has as its goal to establish a group with common
characteristics and share knowledge between them.
Proactively, it can suggest that people join particular
groups.

Personal agent - knows about a person's interests,
responsibilities and commitments. Can maintain a person's
schedules and keep track of their activities.

Artifact agent - possesses knowledge of how to structure a
document and the skills needed to construct each part.
Defines a plan in terms of events to be followed to achieve
the artifact goal and interacts with coordination agents to
find the activities and people to contribute to document
oonstmction

Connect (Broker) agent - knows domain-specific workspaces
that can be specialized to selected goals. Selects or creates
workspace instances with those goals.

Coordination agent - Coordination (planning) agents create
plans for other agents, as for example a plan to complete an
artifact agent. Coordination agents monitor events and
respond to these events following interaction with other
agents.
At a more detailed level, we use a standard reasoning

model for agents, as shown in Figure 12, and implement it using
the three layer architecture (26) chosen from a number of
alternative architectures (36). Agents are used to achieve goals
using plans defined by agent users and details of these can be
found in Hawryszkiewycz and Lin (17).

Integrating Agents with Conceptual Models

Generic agents can then be associated with the objects in
the conceptual model. Thus for example an activity agent is
associated with activity 'develop personal plan' in Figure 9. A
work-item agent would then be associated with each work-item
in 'develop personal plan'. As shown in Figure 12, the agents
communicate with each other as a multi-agent system (17). The
activity agent would create the work-items and work-item agents
and monitor their progress. The activity agent perceives the state
of each work-item through its work-item agent and suggests
times to start the next. The activity agent then monitors the
progress of each work-item. The goal is for the activity agent to
decide how to expedite progress, either through calling for
actions to be taken or possibly creating new work-items.

FIGURE 12
Agent Communication

Activity
agenJ

Internal
monitoring

Create tand

Internal
monitoring

~~:X";..
reporting requirements

Reporting

Create agent to
support step

Work· item
agent

SUMMARY ACKNOWLEDGMENTS

This paper described a collaborative metarnodel that can be
used to model collaborative applications and provide a
framework for extending implementation to provide agencies
that support collaboration. It described the model and illustrated
its implementation and extension to flexible interfaces and
software agencies.

The work described here was supported by an ARC
Discovery grant. The contribution of Brian Henderson-Sellers in
refming the modeling concepts and relationships to object
modeling is acknowledged.

Spring 2005 Journal of Computer Information Systems 71

REFERENCES

1. Applegate, L.M. "Technology Support for Cooperative
Work: A Framework for Studying, Introduction and
Assimilation in Organizations," Journal of
Organizational Computing, I, 1991, pp. 11-39.

2. BCSW - http://bscw.fit.fraunhofer.de/. Last accessed Sept.
24,2004.

3. Bauer, B. "UML Class Diagrams: Revisited in the Context
of Agent-based Systems," Proceedings of Agent Oriented
Software Engineering, Montreal, 2001, pp. 1-8.

4. Carley, K.M. and L. Gasser. "Computational
Organizational Theory." In Weiss, G. (Ed.). Multiagent
Systems. MIT Press, 1999.

5. Cannel, E. Global Software Teams. Upper Saddle River,
NJ: Prentice-Hall, 1999.

6. Chang, M.K. and C. Woo. "A Speech-Act-Based
Negotiation Protocol: Design, Implementation, and Test
Use," ACM Transactions on Information Systems, 12:4,
1984,pp.360-382.

7. CoGenTex, Inc. EMMA Knowledge Representation.
http://www.cogentex.com/research/emma/metamodeVindex
.html. Last accessed Sept. 27, 2004.

8. Conklin, J. and M. Begeman. "gIBIS: A Hypertext Too;
For Exploratory Policy Making," Transactions on Office
Information Systems, 6, October 1988, pp. 303-331.

9. Cummings, J.N., B. Butler, and R. Kraut. "The Quality of
OnLine Social Relationships," Communications of the
ACM, 45:1, July 2002, pp. 103-111.

10. Divitni, M. and C. Simone. "Supporting Different
Dimensions of Adaptability in Worldlow Modeling,"
Computer Supported Cooperative Work. 9, 2000, pp.
365-397.

II. Grant, R.M. "Prospering in Dynamically-competitive
Environments: Organizational Capability as Knowledge
Integration," Organization Science, 7:4, July 1996, pp.
375-387.

12. Hattori, F., T. Ohguro, M. Yokoo, S. Matsubara, and S.
Yoshida. "Socialware: Multiagent Systems for Supporting
Network Communities," Communications of the ACM,
March 1999,pp. 55-59.

13. Hawryszkiewycz, I.T. "Support Services for Business
Networking." In Altman, E. and N. Terashima (Eds.).
Proceedings 1F1P96, Canberra. London: Chapman and
Hall, 1996.

14. Hawryszkiewycz, LT. "A Framework for Strategic
Planning for Communications Support," Proceedings of
the Inaugural Conference of Informatics in
Multinational Enterprises, Washington, October 1997,
pp. 141-151.

15. Hawryszkiewycz, LT. "Knowledge Networks in
Administrative System," Proceedings of the Working
Conference on Advances in Electronic Government,
Zarazoga, Spain, February2000, pp. 59-76.

16. Hawryszkiewycz, LT. "Designing Learning Activities from
Learning Objects," Proceedings of the 19th Annual
Conference of the Australasian Society for Computer in
Learning in Tertiary Education (ASCILlTE), Auckland,
December 2002, pp. 251-260.

17. Hawryszkiewycz, LT. and A. Lin. "Process Knowledge
Support for Emergent Processes," Proceedings of the
Second lASTED International Conference on
Information and Knowledge Management, Scottsdale,
Arizona, November 2003, pp. 83-87.

18. Hiltz, R. and M. Turoff. "What Makes Learning Network
Effective?" Communications of the ACM, 45:4, Apr
2002, pp. 56-59.

19. Kaplan, S.M., W.J. Tolone, D.P. Bogia, and C. Bignol
"Flexible, Active Support for Col1aborative Work wit
ConversationBuilder," Proceedings of the CSCW'9
Conference, Toronto, November 1992,pp. 378-385.

20. Klockner, K., P. Mambrey, M. Sohlenkamp, W. Prinz, L
Fuchs, S. Kolvenbach, U. Pankoke-Babatz, and A. Syri
"POLlTeam Bridging the Gap Between Bonn and Berlh
for and with the Users," Proceedings of the Fourtl
European Conference on Computer-supportel
Cooperative Work, ECSW'95, 1995,pp. 17-32.

21. Kreifelts, T., E. Hinrichs, K.-H. Klein, P. Seuffert, and G
Woetzel.!'Experiences with the DOMINO Offio
Procedure System." In Bannon, L., M. Robinson, and K
Schmidt (Eds.). Proceedings ofthe European Conferenci
on Computer Supported Collaborative Work, ECSW91
Kluwer Publications, Doedrecht, 1991.

22. Kuczmarski, T. Innovation: Leadership Strategies fOi
the Competitive Edge. Chicago: NTC Business Books
1997.

23. Kutti, K. and T. Arvonen. "Identifying Potential CSCI
Applications by Means of Activity Theory Concepts: A
Case Example," Proceedings of the CSC@'92
Conference, Toronto, November 1992, pp. 233-240.

24. LiveNet, http://livenet4.it.uts.edu.au.
25. Malone, T.W. and C. Fry. "Experiments with Oval: A

Radically Tailroable Tool for Collaborative Work,"
Proceedings of the CSC@'92 Conference, Toronto,
November 1992, pp. 289-297.

26. MUlier, J.P. The Design of Intelligent Agents. Springer
Verlag, 1996, pp. 7-44.

27. Neuwirth, c., D. Kaufer, R. Chanhok, and J.H. Morris.
"Computer Support for Distributed Collaborative Writing:
Defining Parameters of Interaction," Proceedings of the
1994 Conference on Computer Supported Collaborative
Work. CSC@94, 1994,pp. 145-152.

28. O'Hara-Devereaux, M. and R. Johansen. GlobalWork:
Bridging Distance, Culture and Time. San Francisco:
Jossey-Bass, 1994.

29. Padgham, L. and M. Winikoff. "Prometheus: A Pragmatic
Methodology for Engineering Intelligent Agents,"
Proceedings of the OOPSLA 2002 Workshop on Agent-
oriented Methodologies, Seattle, WA, November 2002,
pp.97-108.

30. Parunak, H. and J. Odell. "Representing Social Structures,"
Proceedings of Agent Oriented Software Engineering,
Agents, Montreal, 200\, pp. 17-31.

31. Rehfelldt, M. and K. Turowski. "Business Models for
Coordinating Next Generation Enterprises," Proceedings
of the IEEE AcademiclIndustry Working Conference
on Research Challenges, April 27-29, 2000, pp. 163-168.

32. Walsh, K.R. and S.D. Pawlowski. "Collaboration and
Visualization: Integrative Opportunities," Journal of
Computer Information Systems, 44:2, 2003/2004, pp. 58·
66.

33. Winograd, T. and F. Flores. "A Language/Action
Perspective on the Design of Cooperative Work," Human
Computer Interaction, 3, 1987,pp. 3-30.. d)

34. Wooldridge, M. "Intelligent Agents." In Weiss. G. (E ..
Multiagent Systems. MIT Press, 1999.

35. Workflow Management Coalition. http://www.wfmc.org.
Accessed Sept. 30, 2004.

Spring 2005 Journal of Computer Information Systems 72

http://bscw.fit.fraunhofer.de/.
http://www.cogentex.com/research/emma/metamodeVindex
http://livenet4.it.uts.edu.au.
http://www.wfmc.org.

