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Abstract

The NNC (Neural Network Controller) automatically tunes the buffer SIze at the

user/server level to eliminate any chance of overflow in the client/server interaction over

a TCP logical channel. Together with the buffer tuning operations at the system/router

level (e.g. the AQM (Active Queue Management) activities) they form a unified solution.

The power and stability of the NNC was verified over the Internet, but the result shows

that the drawback of the NNC is its long control cycle time. This drawback hinders the

deployment of the NNC in the real-time applications. To overcome this we propose the

novel HBP (Hessian Based Pruning) optimization technique. This technique operates as a

renewal process, and within the service life of the Optimized NNC (O-NNC) the

optimization operation repeats as renewal cycles. The feed-forward neural network

configuration of the O-NNe is optimized in every cycle that involves two phases. In its

original un-optimized form the NNC runs as a twin system of two modules:" Chief +

Learner". The O-NNC always starts with the un-optimized configuration. In the first

phase the weights for the Learner's neural network arcs are computed and sorted. Those

arcs with weights insignificant to the control convergence speed and precision are marked.

The marking is based on "dynamic sensitivity analysis" that utilizes the HBP technique.

In the second phase the Chief optimizes the neural network by excluding/skipping the

marked arcs. The aim is to shorten the computation for the control cycle. The

"HBP+NNC' is the basis of the O-NNC model, which essentially uses virtual pruning
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because the marked arcs are excluded from the computation but not physically removed.

While the Chief is carrying out actual dynamic buffer tuning the Learner undergoes

training. The O-NNC model is verified by running the Java-based prototype on the Aglets

mobile agent platform in the Internet environment. The results are positive and indicate

that the HBP technique indeed yields a shorter O-NNC control cycle time than the

original un-optimized NNC in a consistently manner.

Keywords: O-NNC, HBP, optimization, pruning, Taylor series, buffer overflow control

1. Introduction

Ideally a Transmission Control Protocol (TCP) channel could have two levels of

buffer overflow control mechanisms to achieve a unified solution: a) throttling and AQM

(Active Queue Management [Brad98]) at the router/system level, and b) dynamic buffer

tuning at the server/user level [PRDC99, PIDOl, FLC03, GAC02]. Different methods

exist for a router to throttle a client process that sends a lot of traffic in a short time

because the sudden burst of traffic can easily overflow the router buffer, causing

widespread retransmissions and network congestion.
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[System level) (User level)

Figure 1. Client/server interaction over a logical TCP channel

Throttling can be achieved by two means: a) by using the user-provided ad hoc

algorithms that work with the TCP/IP choke packets [Tan03], and b) with organized
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solutions designed for TCP end-to-end active buffer management at the system level. The

IETF (Internet Engineering Task Force) proposes to use the AQM approach in the

RCF2309 and the RED (Random Early Discard) algorithm [Floyd93] is the candidate

[Brad98]. The RED operates in two stages: a) firstly, to throttle the sender to cut down

transmission voluntarily, and b) if this does not work then new messages are dropped in

favor of those already queued. Different experimental results, however, indicate that the

RED algorithm is unstable [Ott99] and this led to the appearance of different algorithmic

and intelligent AQM methods [Ren02, FirOO]. The RED experience has provided

valuable information for how to design a better RED-based algorithm. The problem of

the RED is caused by its "un-configured" approach in which new packets are randomly

dropped. This approach makes RED unstable by being overly sensitive to network

parameters [MayOO, ChrisOO], and to over the instability the enhanced RED versions are

self-configuring and/or configurable. A self-configuring mechanism drops packets

selectively, and the FRED (Fair RED) [Lin97] is an example that controls its selectivity

by the per-flow information. The FRED, however, consumes more memory and

processing time than the simpler WRED (Weighted RED) and RIO (RED In and Out)

mechanisms [BodOO]. The WRED, which is for usage in the core router rather than the

peripherals, can be configured to drop packets selectively based on the IP precedence.

The higher priority traffic (with higher precedence) is then delivered with a higher

probability. In the Cisco 7500 series router, the WRED implementation is called the

DWRED (Distributed WRED) because it is VIP (Versatile Interface Processor) based

[Cisco]. The other intelligent AQM algorithms that do not base on the RED include the

expert Fuzzy-PI model proposed in [Ren02]. The extant AQM algorithms work

exclusively with fixed-length buffers (FLB) and the ultimate action is to drop the

incoming messages by the "drop from front strategy [Laks97]". The tradeoff of the FLB

approach is increase in network congestion due to widespread subsequent retransmissions.

Since the AQM-throttled client reacts to reduce its transmission rate in a voluntary

manner, the benefit obtained by throttling is difficult to ascertain. However one can be

certain that system-level throttling does not prevent buffer overflow at the (server) level

because of the character of the merged traffic (indicated by the "+" symbol in Figure 1)

[Mit98, GAC02]. Figure 1 abstracts the client/server interaction over a TCP channel, and
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the server provides service to different clients in the asymmetric rendezvous (one-to-

many relationship). The merged traffic for the different streams of client requests may be

LRD (long-range dependence), SRD (short-range dependence) or multi-fractal [Pax95,

MedOO]. If all the clients make their requests simultaneously, the merged traffic easily

increases the queue length to overflow the buffer. The subsequent retransmissions due to

loss of requests in the overflow prolong the service roundtrip time (RTT). Therefore,

eliminating the overflow at the user level by dynamic buffer tuning [GAC02] is important

for achieving a reasonable and shorter RTT. The elimination also prevents waste of the

throttling resources already dished out at the system level.

Since Internet computing is naturally distributed, inter-object collaboration over

the Internet involves routing messages that traverse through different physical nodes and

links of varying qualities and capacities. For the sheer size of the Internet, routing is

frequently plagued by faults and errors of various kinds due to the network dynamics (e.g.

transmission errors, partial network hardware failures, and buffer overflow). If the

collective error probability p encompasses all the possible faults, then the average

number of trials (ANT) to get a transmission success over a logical channel
k400 k~oo

is ANT = ~jPj , which can be simplified to ANT = ~j[pj-l (1-p)]:::; )(1- p)" Since

p includes the error probability component Po for buffer overflow, the elimination of

Po definitely reduces ANT and shortens the RTT. In fact, all the buffer overflow control

methods seek to reduce or eliminate Po . Overflow prevention methods that have

previously appeared in the literature can be separated into two classes: FLB (Fixed

Length Buffer) or VLB (Variable Length Buffer). The older approaches (e.g. Blue

[Feng99] and the intelligent AQM model in [Awey02]) are all FLB-based techniques.

The FLB principle is to ensure the delivery of those messages already queued by

dropping the new comers to avoid overflow, with respect to some predetermined criteria.

This approach easily creates random loss over the Internet and widespread

retransmissions [Laks97]. Hence the FLB methods are intrinsically deleterious because

they introduce congestion while preventing overflow. The VLB methods, which are more

recent, eliminate buffer overflow with much less or no random loss at all. They usually
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work with dynamic buffer tuning, which ensures the buffer length always cover the queue

length. The first VLB algorithm includes the "P+D "(Proportional + Derivative)

controller, designed for user-level Internet applications [PRDC99]. The "P+D " controller

and the system-level AQM mechanism(s) together form a unified solution that minimizes

channel buffer overflow. The "P+D" controller uses the QOB (queue length over buffer

length) ratio for P (proportional) control and the current rate of change of the queue

length, namely, d~lt for the anticipative D (derivative) control. The experience with

actual "P + D" deployments, however, indicates that it cannot eliminate overflow

completely, due to insufficient anticipation. This led to the proposal and development of

the more powerful algorithmic PID (A-PID) controller, which is an enhancement of the

"P +D " model by re-enforcing it with integral (I) control [PillO 1]. It is algorithmic

because the control parameters do not change at run-time. The integral control element

feeds the past performance back to moderate and tune the current control process. The

feedback loop enables the A-PID to predict the advent of buffer overflow more

accurately and to take proactive corrective actions. The inclusion of the Convergence

Algorithm (CA) [CAOl] in the integral control element gives speed and precision to the

latter. The CA is an IEPM (Internet End-to-End Performance Measurement [IEPM99])

technique. In the A-PID controller the CA is implemented at the micro level because it

exists as an independent logical object to be invoked for service by message passing. In

its micro Java form the CA is known as the M3 RTtool [M3RT02, M2RTOl]. Although

the A-PID experience shows that it always eliminates buffer overflow at the user level, it

has two distinctive shortcomings: a) it locks unused buffer space after every corrective

action and thus has negative impact on the system throughput, and b) the queue length

can get dangerously close to the buffer length and this threatens overflow under serious

perturbations. The desire to eliminate these shortcomings prompted the development of

the intelligent A-PID versions that use soft computing techniques to tune the A-PID

control process. These versions include: a) the GAC (Genetic Algorithm Controller

[GAC02]), and b) the FLC (Fuzzy Logic Controller [FLC03]). The NNC (Neural

Network Controller [NNC03]) is a spin-off from the GAC and FLC experience. Both the

GAC and the FLC use soft computing techniques to support the objective
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function: to, tl} 2, which maintains the given safety margin l\. The maintenance augments

the anticipative power of the A-PID component, which by itself has no concept of a

safety margin. The NNC also works with the {0,tl}2 objective function but unlike the

FLC and GAC it involves no A-PID model.

2. Intelligent Buffer Controllers and Motivation for HBP

The NNC, which tunes the buffer size in the adaptive manner at the user/server

level, has been stable and effective [NNC03]. The problem is its long control cycle time

and therefore we propose the Hessian Based Pruning (HBP) technique to shorten it. So

far, the FLC, GAC and NNC are the only intelligent "dynamic buffer tuners" that can be

identified from literature. They all eliminate overflow at the user-level by maintaining the

given safety margin l\ about the reference, which is represented by "0" in the to, tl} 2

objective function. This reference can take many forms, and for the FLC, GAC and NNC

it is the QOBR , namely, the chosen "queue length over buffer length" ratio. For example,

one can have the combination of l\ = 0.2 (i.e. 20%) and QOBR = 0.8 (i.e. 80%).

In the GAC the control parameters are tuned in a timely fashion to eliminate

overflow. In this way it provides a more accurate dynamic buffer tuning mechanism than

the A-PID. Yet, buffer overflow still occurs under the GAC control for serious

perturbations. Our analysis shows that this is caused by the very nature of the genetic

algorithms (GA) not to ensure the global-optimal solution in the solution hyperplane

[Mit99]. Any successful finding of the global-optimal solution hinges upon whether it is

present in the subset of solutions provided for the GA operation. The FLC, which is

basically "A-PID + Fuzzy Logic", has smoother and more precise control than the A-PID.

Our experience with the FLC shows that it consistently eliminates overflow completely.

Although the FLC is structurally more complex compared to the A-PID, they have

comparable execution times. The FLC control, however, can oscillate at the system

steady state and yield poor system performance. The desire to eliminate these oscillations

motivates the proposal of the NNe. The control cycle times (CCT) of the FLC, GAC, and

NNC have been measured and compared, with the help of the Intel's VTune Performance

Analyzer [VTune]. This tool records the CCT in terms of the number of neutral clock

pulses/cycles. A measurement can be converted into the corresponding physical control
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cycle time (P-CCT) for any platform by: P - CCT = CCT *s., where Hz is the

platform's operating speed in mega hertz (MHz). The VTune shows that the Java -based,

un-optimized NNC prototype always has the longest CCT, compared to the A-PID, FLC,

and GAC prototypes (also Java-based), as presented in Table 1.

VLB tuners (Java-based Technique Average number of clock
prototypes) involved Number 0 ycles to converge to the A verage number of

~ava lines optimal reference after a clock cycles per
P = proportional control perturbation QOBR = 0.8 0 control cycle (CC)
D = derivative control
I = integral control i1 = 0.2

P + D (frequent overflow)
Algorithmic and

48 6450 (:::::74 CC) 87
110 IEPM support

A-PID (no overflow)
Algorithmic &

82 5000 (::::::22.7 CC) 220
IEPM ~ M3RT

GAC (occasional but ran Genetic

Ipverflow; A-PID& {O, i1} 2) Algorithm (GA) III 4995 (:::::10.5 CC) 475

FLC (no overflow; Fuzzy logic
116 5220 ( :::::20.5 CC) 255A-PID& {a, i1} 2)

NNC by backpropagation Neural Network &

( [Input-Hidden-Outpllt] IEPM ~ M3RT
neurons: [10-20-/); 240 10800 (I CC) 10800

{a,~} 2 and 110 overflow)

Table 1. The execution times of four intelligent VLB controllers/tuners by VTune [Lin02)

The development of the NNC model had gained from the previous positive

experience of using neural networks to support FLB-based AQM algorithms (e.g.

[Aweya98]). The experience with the Java-based NNC prototype confirms that the

backpropagation approach can indeed get rid of oscillations in the control process

effectively. The NNe's feed-forward neural network configuration is shown in Figure 4.

Repeated analyses and experiments suggest that there is no performance advantage of

having a more complex NNC configuration than Figure 4 (e.g. more neurons for the

hidden layer). The long CCT for the NNC prototype nevertheless indicates that the NNC

structural complexity should be optimized for the sake of better response timeliness. It is

otherwise difficult to deploy the NNC in real-life time-critical applications. For this

reason the HBP optimization technique is proposed. The principle is to prune the
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insignificant neural network connections or arcs in the NNC in a virtual, dynamic fashion

[Oh98, Moody96, Goh94].

Fuzzy Control

- Trendline(Fuzzy Control)

.1l.PID

• Trendline(.ll,PID)
Neural Control

- Trendline(Neural Control)

Of,
'5 Ij~a:

04
OJ

01
!J -t-',,- -'~~'-"-"'-'-'-'~'-"""'r""~""~ •.~.- •.._.~_._-_.".",._-~ •.~.••-.•- ,~..••_ .••__ •••._•.._-._ •...•_..__•._,._ •._"

65lXlOO , 050000

Figure 2. A comparison case of NNC, A-Pill and FLC convergence with optimal
reference QOBR = 0.8

Table 1 shows that the structurally simplest" P+D" tuner (only 48 Java lines)

needs the most number of control cycles (i.e. 74 CC) to converge to the optimal QOBR

reference. The CCT time, however, is the shortest (87 clock pulses) among all the listed

tuners. The FLC execution time (i.e. 255 clock cycles) is comparable to the much simpler

A-PID (i.e. 220 clock cycles) because the presence of "don 't care" states in the FLC

fuzzy control [Lin02]. These states are inert and require no computation at all. Although

the NNC always provides the smoothest and the most precise control (Figure 2), it has the

longest convergence time (i.e. 10800 clock pulses) towards QOBR=0.8. This doubles that

required by A-PID and FLC. Although physically 10800 clock pulses is not a very long

time, its impact on control timeliness can be significant. In light of the Intel-Pentium III

9333 MHz platform the NNC convergence time is P - CCT = [10800/ ] ~ 116 f-l sec.
/(933*106) .

Even in this short period deleterious results are possible if the perturbations are shorter
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than l1.6,L1 sec. This makes it worthwhile to cut down the CCT of the NNC, and this is

precisely what the O-NNC is aiming at.

,------------,
I I
I Learner NNC module IJ
L I RO.18 swap after learner

I I
is sufficiently trained·
twin system

Chief NNC module

~ Server - ~---+ 1 Q_u_e_ue _

Buffer

Figure 3a. The O-NNC - a twin system of two NNC clones

First phase
by Learner

••
Second phase
by Chief

••

_I ..HBP optimIZation renewal CYCle-.!

.------------------O-NNC servicelifespan--------------------~
Figure 3b. The HBP is as a renewal process

3. The Optimized NNC

When the O-NNC controller is not running it is structurally a system of two NNC

clones: Chief and Learner that cooperate asynchronously (Figure 3a). While the Chief is

performing actual dynamic buffer tuning the Learner undergoes training/relearning. After

finishing training the Learner performs the first phase of the HBP optimization process
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and thereafter the Learner swaps position with the current Chief In the first phase the

Learner computes the weights for all the arcs in the neural network and marks those that

have insignificant impact on the control speed and precision. In the second phase of the

optimization process the Chief excludes (virtually prunes) the marked arcs from the

actual computation so that the control cycle time is shortened. The O-NNC is a dynamic

model and carries out virtual pruning on the fly. The HBP technique in action is a

renewal process, and therein every optimization renewal cycle has two phases. These

phases are repeated cyclically throughout the service life span of the O-NNC (Figure 3b).

After the Learner has trained sufficiently it assumes the role of the Chief The previous

NNC development experience, however, shows that any increase in neural network

complexity (e.g. more neurons in the hidden layer) amplifies the training time

disproportionately [Lin02]. The quest for a simpler configuration led to the choice of the

backpropagation model for the NNe. Further inquiry revealed that there is no

convergence and performance advantage to have a more complex configuration for the

NNC than Figure 4.

Figure 4. The NNe backpropagation configuration

The skeletal O-NNC neural network configuration is the same as the original

NNC: 10 input neurons, 20 hidden neurons, and 1 output neuron. The NNC, which works

by backpropagation, is trained with L'l as the teacher signal and the Sigmoid function:
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!(x)=l.O/(l.O+e-X
). The activation energy (value) for the neurons in the hidden and

output layers are computed by the following:

a) Sigmoid (I InputActivation * weight (input-hidden»

b) Sigmoid (I OutputActivation * weight (hidden-output)

The input neurons in the NNC are fed by the ten entries in the vector Q\.cctor with

the following composition:

a) Ten queue length samples: They are sampled at equal time distances within the chosen

renewal window of size W, divided equally into ten portions. The data sample for each

portion is denoted by QtX; X = 1,2,...,10.

c) The J(j!' input replacement: If the NNC is supported by the micro M3 RT IEPM

technique to predict the trend of change in the queue length, then the lOth entry in the

Qvector' namely, Qtl0w is replaced by the QCA-estimlltc value. This value enables the NNC

to maintain ~ more accurately by using the past control performance as the feedback

to moderate the current control cycle for integral effect. The NNC model is

summarized in the equations: (3.1) and (3.2). The new buffer length: L(W + 1) to

maintain the safety margin ~ in the next or (W + 1)'" control cycle is a function

(i.e. fVNC (.)) of Q\.cctor(W) and QCA-eslimatc (t10,,) if M3RT is used (Q,lOw otherwise).

L(W + 1) = [vxc [Qvecror (W), QueuecA_estimate(tlOw) or Q,IO. ] (3.1)

Controller Case 1 Case 2 Case 3
-!- Mean deviation ~

NNC (no M3 RT support) 0.02386 0.01853 0.02245

NNC&M3RT 0.02260 0.01655 0.02115
Performance improvement: 5.28% 10.7% 5.8%
NNC-" NNC &M3 RT"

*100%
NNC

Table 2. Comparison of three cases of mean deviations (with ~ = 0.2 and k = 7000)

11



The evaluation of the smoothness of the O-NNC convergence is obtained by

measuring the mean deviation (MD) of the control output from the QOB R reference. That

is, M D ~ [tI" - QO B, I]/k, with k as the sample size. For demonstration purposes,

Table 2 shows three MD cases, with /),.= 0.2, QOBR = 0.8, and k = 7000 . The largest

MD recorded for the un-optimized NNC with no M3 RT support is 25%. The M3 RT

presence lessens the MD to a maximum of only 19%, a 6% improvement. By default the

O-NNC always has M3RT support for better convergence precision and shorter CCT,

which is further reduced by the inclusion ofHBP.

3.1 The Hessian-based Pruning Technique

The Hessian Based Pruning (HBP) technique is proposed in this paper for

optimizing the NNC neural network configuration in the adaptive, dynamic, and cyclical

manner. In operation the HBP is a renewal process, and the optimization in every HBP

renewal cycle has two phases of operations, as shown in Figure 3b:

a) First phase: The Learner computes the weights of all the arcs In its neural

network and marks those insignificant ones with the principle of dynamic

sensitivity analysis. They are insignificant because they have relatively lower

impact on the NNC convergence speed and precision. The phase ends when the

Learner swaps position with the current Chief

b) Second phase: After the Learner becomes the Chief all the marked arcs are

virtually pruned (excluded) from its computation to shorten the control cycle time.

Our literature search indicates that the HBP technique has not been used before for

optimizing neural network configurations. This original technique is proposed for the

NNC only after a thorough search and investigation of different optimization approaches

in literature [Oh98, Goh94, HomOO,Ga1l92]. The HBP technique is unique because it is

for real-time applications and its simplicity is the key to success. Other extant techniques

from the literature usually require complex mathematical manipulations. The published

previous experience for pruning feed-forward neural network configurations is

exclusively off-line in nature. This makes them unsuitable for the on-line NNC

application envisaged here. For the sake of supporting NNC pruning on the fly, we could

either adapt an extant technique or propose a brand new one. We chose the latter
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approach because the extant algorithms are mathematically complex and therefore

potentially require a long execution time.

The HBP operation is based on concept of dynamic sensitivity analysis, and the

rationale is to mark and skip a neural network connection if the error/tolerance of the

neural computation is insensitive to its presence. For the NNe the error/tolerance is the

± ~ band about the QOBR reference in light of the {a, ~)2 objective function. The core

argument of the HBP technique is: "if a neural network converges toward a target

function so will its derivatives [Gall92]". In fact, the main difference among all the

identified performance-learning laws from literature [Hagan96] is how they leverage the

different parameters (e.g. weights and biases).

Graph showing the effect of Learning Rate on Mean Square Error

I-+- Learning Rate(21) -?i- 22 23
2

l-

o
l-

W 1,5+--------------------------------1
~
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::::sC" - .., •.•
III ,'\ i

c *'-.- .. !
: 0,5 +---01":. .... ---- ,I!
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Figure 5. The graph showing the effect of learning rate on mean square error

The HBP adopts the Taylor Series [Finn94] (equation (3.3)) as the vehicle to

differentiate the relative importance of the different neural network (NN) parameters. The

meanings of the parameters in equation (3.3) are: F() .. the function, w .. the NN

connection weight, .1w ~ the change in w, VF(w) .. the gradient matrix (i.e. expression

(3.4)), and V2F(w) .. the Hessian matrix (i.e. expression (3.5)). The symbols in the
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equations mean the following: T for transpose, 0 for higher order term, n for the n" term,

and ~Vt'l for partial differentiation. The expansion about w: F(w+L1w) is described by

equation (3.3).

TIT ' iF(w+L1w) = F(w) + l7F(w) L1.v+ -L1w V-F(w)L1vv + OnlL1w 11)+·.······(3.3)
2

V'F(w): [_a_F (w)
aWl

_a_F(W) _a_F(w)]T (3.4)

aW2 aWn

a2

--, F(w)
ow;
a2

--==-----F(w)
cw2cw,

,,'
o F(w)

°w,w2

a
2

, F(w)
ow;

a2

... F(H')
°w,ow"

a2

F(w)
Ow Ow (3.5)

2 11

a2 a2

--==-----F(w) F(w) ...
cw"ow, 0W"cw2

...

a2

--,F(w)c -
w"

The preliminary O-NNe results confirm that the HBP performs effectively as

expected. These results and findings concur with similar experience published previously

[Oh98]. That is, the weighing factors (synaptic weights or learning rates) affect the

convergence speed. Many different experiments were carried out to study the effect of

different learning rates, and one set of these results is chosen and presented in Figure 5

for demonstration purposes. It shows how the correlation between the learning rate and

the mean square error (MSR) varies. A learning rate is the magnitude of change when a

connection weight is adjusted in training. For example, the desired output is

w::'j(k+l) = w::~(k)-aaF(X)~m with w:'~(k) as the current weight and a the learning/01 '.J

rate. The MSR, which is defined as: MSR =E[(target output - actual output)'?], measures

the control accuracy, where E is the averaging operator. The MSR should decrease when

the convergence gets closer to the QOB R reference. The experimental results, however,

indicate that the bigger learning rates may yield oscillatory convergence. This is clearly

shown by the rates: 23 and 24 in Figure 5, and in contrast, the smaller rates: 21 and 22

produce much smoother control. Under equation (3.3), the learning/training process
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should converge to the QOBR reference, which is mathematically known as the target

global minimum surface. The convergence makes the gradient vector VF(w)

insignificant and eliminates the" VF(wl L1w" term from equation (3.3). This implies not

only that the larger ordinal terms in equation (3.3) can be ignored but also a possible

simplified form (equation (3.6)) for the equation. Further simplification of equation (3.6),

based on: L1F=F(w+L1w)-F(w), yields equation (3.7).

1 T'F(w+L1w) = F(w) + - L1w V F(w)L1w ... (3.6),
2

1 r ;eL1F=- L1w v F(w)L1w ... (3.7)
2

To recap, the HBP optimization cycle has two consecutive phases. The first one is

applied only to the Learner and the second only to the Chief The details involved in

these phases are as follows (first three points belong to the first phase and the fourth point

is the second phase):

a) Use Taylor senes (equation (3.3)) to identify the significant neural network

parameters.

b) Choose appropriate learning rates for the significant parameters to avoid

convergence oscillations, as il1ustrated in Figure 5.

c) Mark the synaptic weights that have insignificant impact on the Taylor series (15t

phase ends here).

d) After the Learner has become the Chief, it excludes all the marked connections in

its neural computation. The exclusion, which is represented by equation (3.8), is,

in effect, virtual pruning of the insignificant connections. It is only a logical

process because the physical skeletal NNC neural network configuration remains

intact. The net effect is the exclusion of the marked connections in the subsequent

O-NNC control computation.

The pruning decision is based on the Lagrangian index S (to be explained later).

Since the optimization starts anew every time the Learner has completed training and

acquired new weights for its neural network connections, the optimized outcome from

every cycle is always unique. This characterizes the dynamic and adaptive nature of

the HBP optimization process.
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If L1w in equation (3.7) is replaced by equation (3.8), then the Lagrangian

equation (3.9a) is formed. Now equation (3.3) has become a typical constrained

optimization problem [Bert82]. The symbols: U~and A in equation (3.9b), are the unit

vector and the Lagrange multiplier respectively. The optimum change in the weight

vector W, (equation (3.8)) is shown in equation (3.9b). For every entry in Wi there is a

unique Lagrangian index Si(equation (3.9c)). In the first phase of the HBP optimization

process the S, values are sorted so that the corresponding less significant Wi (neural

network connection) can be excluded from the Chief' neural computation, starting from

the lowest Si. The pruning process stops if the exclusion of the current S, affects the

accuracy and speed of convergence process. Only after the virtual pruning process has

completed that the Learner would become the Chief

~.=
II/I

4. Experimental Results

Different experiments were conducted to verify the efficacy and correctness of the

HBP technique and the O-NNC efficacy. The preliminary results confirm that the HBP

technique shortens the O-NNC control cycle time consistently. In the experiments the

skeletal O-NNC configuration is the same as the NNC prototype (Figure 3a), with 10

input neurons, 20 neurons for the hidden layer, and one output neuron. This configuration

is fully connected, with 200 connections between the input layer and the hidden layer, as

well as 20 connections between the hidden layer and the output layer. The O-NNC result

in Figure 6 is produced by the configuration that has a hidden layer of 187 arcs instead of

the 220 full connections. This is so because 33 of original 220 arcs are pruned by the

HBP on the fly. The different experimental results confirm that the O-NNC indeed has

the capability to yield the same level of dynamic buffer tuning and overflow efficacy as

for the un-optimized NNe, but with a shorter convergence time to reach QOB R. Figure 7
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shows how the O-NNC always ensures the current QOB value to be within the given

tolerance band of 12tll (QOBR=O.8). It also compares the QOB deviation profiles of the

three controllers: NNe, O-NNC and A-PID. As shown by Table 3, the O-NNC, however,

has a larger mean deviation (MD) than the un-nptimized NNe, MD ~ [t 111- QOB, I]/k .

1-- Oueue Length--- Buffer(NNC[Original]) Buffe r( 0- NNe [P ru ned]) Buffer(A-PID) I
100 -,---~~--_._._--_ .._~~~-

90
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-£ 70
CI
c 60
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~ 50
~ 40
ffi 30

20
10
O+------.----.-------.----.-------.----...,.J

890000 1890000 20900001090000 1290000 1490000
Time(ms)

1690000

Figure 6. A set of experimental results to compare NNC, O-NNC and A-PID

Controller/tuner Mean Deviation
NNC (Original) 0.0536
O-NNC (Pruned) 0.0916
PID 0.1279

Table 3. Mean deviations for Figure 7.

Controller/tuner The measured average number of
clock cycles per tuner control
cycle

NNC (Original and 10800
un-optimized))
O-NNC (Pruned/optimized) 9250

(925J{0800::::: 0.857; 85.7%)

Table 4. Comparing the average number of clock cycles per tuner cycle
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Figure 7. Indication of the HBP convergence stability

The average control cycle time or CCT for the O-NNC is only 9250 clock pulses

compared to the 10800 for the NNC (Table 4). The average control cycle time or CCT for

the O-NNC is only 9250 clock pulses compared to the 10800 for the NNC (Table 4). The

CCT in clock pulses are measured with the Intel's V'Iune Performance Analyzer [VTune],

and they can be converted easily into the physical control cycle time (P-CCl) for any

platform by P - CCT = CCT *r:where Hz is the platform's speed in hertz.

Figure 7 also compares the three controllers O-NNC, NNC and A-PID in terms of the

convergence smoothness. Figure 8 provides more convergence stability details for Figure

7, in terms of the individual deviations over time from the QOBR reference chosen for the

{O,M 2 objective function. The performance of the NNC (Original) and the O-NNC

(Pruned) performs better than A-PID with respect to the deviation error. Figure 9 is

another comparison of the three controllers. Figure 9a compares their efficacy in the

dynamic buffer adjustment/tuning process. Figure 9b compares the QOB profiles of the

three controllers over time, and Figure 9c to Figure ge show the deviations of the

individual controllers. From the preliminary experimental results we conclude that both

the NNC and the O-NNC performs equally well as the A-PID, but without the latter's

shortcomings. Despite its consistency of converging accurately to the QOBR, the O-NNC
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dynamic buffer tuning process is more oscillatory than its un-optimized NNe predecessor.

The oscillation is an undesirable side effect from the dynamic HBP optimization cycles.

In the future work this problem will be investigated so that appropriate solutions could be

proposed.
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Figure 8a. Deviation profile of the original NNC
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Figure 8b. Deviation profile of the O-NNC
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Figure 8c. Deviation by the A-PID controller
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Figure 9a. Another comparison of three controllers
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Figure 9b. The QOB profiles of the three controllers in Figure 9a
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Figure 9c. The deviation profile by the original NNe
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Figure 9d. The deviation profile by the O-NNC
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Figure ge. The deviation profile by the A-PID

5. Conclusion

The HBP technique is proposed for optimizing the NNC neural network

configuration in a dynamic manner. The aim is to shorten the NNC control cycle time,

and the "HBP+NNC' combination is called the Optimized NNe or O-NNC model. This

model is dynamic because when the O-NNC is not running it a system of two NNC
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clones. The preliminary experimental results confirm that the aim IS successfully

achieved because the O-NNC always yields a shorter CCT than its original un-optimized

NNC predecessor (about 14.3 percent better). The HBP technique in action is a renewal

process and every optimization cycle has two consecutive phases: "Learner + Chief". In

the first phase, the Learner computes the weights for the neural network arcs anew and

then marks the insignificant ones in a relative manner. In the second phase the Chief

excludes the marked arcs from its computation to shorten the control cycle time. The first

phase always starts with the original skeletal NNC configuration. The marking and

exclusion of the insignificant arcs underlie the HBP concept of virtual pruning. The

pruning process is only logical because it removes no physical connection from the

skeletal NNC configuration at all. The present HBP optimization technique is based on

the Taylor series. In the next stage of the research the following issues will be explored

and addressed: a) replacing the Taylor series with other techniques to support the virtual

pruning process, b) damping the possible oscillations in the HBP optimization process,

and c) the impact of different Intemet traffic pattems on the stability and efficacy of the

HBP technique and the O-NNe. This third issue is important for successful O-NNC

deployment over the Intemet because in the network traffic pattem changes without

waming. For example, it may switch suddenly from being SRD (short-range dependence)

to LRD (long-range dependence).
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