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Abstract 

Anaerobic co-digestion (AcoD) is a pragmatic approach to simultaneously manage organic wastes and 

produce renewable energy. This review demonstrates the need for improving AcoD modelling capacities to 

simulate the complex physicochemical and biochemical processes. Compared to mono-digestion, AcoD is more 

susceptible to process instability, as it operates at a higher organic loading and significant variation in substrate 

composition. Data corroborated here reveal that it is essential to model the transient variation in pH and 

inhibitory intermediates (e.g. ammonia and organic acids) for AcoD optimization. Mechanistic models (based 

on the AMD1 framework) have become the norm for AcoD modelling. However, key features in current AcoD 

models, especially relationships between system performance and co-substrates’ properties, organic loading, 

and inhibition mechanisms, remain underdeveloped. It is also necessary to predict biogas quantity and 

composition as well as biosolids quality by considering the conversion and distribution of sulfur, phosphorus, 

and nitrogen during AcoD. 

Keywords: Anaerobic co-digestion; Biosolids quality; Mathematical modelling; Process stability; Nutrient 

recovery; Sewage sludge. 

1 Introduction 

The past 10 years have seen a substantial expansion in anaerobic digestion (AD) applications, particularly 

co-digestion. The term co-digestion refers to the simultaneous digestion of two or more organic substrates. In 

comparison to mono-digestion, anaerobic co-digestion (AcoD) offers several advantages such as the 
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improvement of the balance of nutrients and C/N ratio, alleviation of inhibitory effects due to toxic substances 

and other inhibitors via dilution and enhancement of methane production kinetics (Mata-Alvarez et al., 2011; 

Xie et al., 2011). AD plants can co-digest a variety of solid waste substrates to increase biogas production. 

However, inappropriate selection of co-substrates, co-substrate composition and operating conditions can lead 

to process instability and significant reduction of methane production. Although pilot-scale and even full-scale 

AcoD experiments can be designed and performed strategically to provide practical guidelines, there is 

enormous time required for the start-up of these systems and to reach steady state conditions, letting alone 

significant capital costs. Therefore, a general co-digestion model is necessary to support full-scale design and 

operation decisions as well as to assist lab scale and pilot co-digestion research.  

Qualitative and quantitative aspects of physico-chemical and biochemical reactions can be included in 

process models. These range from hydrodynamics and mass transfer to microbial population dynamics in 

different reactor configurations under different environmental and operating conditions. However, estimating 

the kinetic constants is a challenging task because AD is a complex multi-stage dynamic process that involves a 

consortium of microorganism groups. In addition, the microbial community structure can vary in response to 

changes in substrate composition, intermediates inhibition, organic loading rate (OLR), hydraulic retention time 

(HRT), sludge retention time (SRT), temperature and reactor configuration. In the case of insoluble substrates, 

it is further complicated by the lack of a reliable method for quantifying microbial biomass (Yu et al., 2013b). 

To better understand the status and relative capacity of each model, we undertook a critical review of the 

literature to characterize the demonstrated model applications on energy production and volatile solid (VS) 

reduction by AcoD and critical barriers to AcoD technologies that have the potential to contribute to energy-

positive wastewater management. Based on available data, the typical performance of the technologies linked 

with models in terms of operating conditions and process stability was quantified. Seeking a deeper 

understanding of the mathematical modelling used in each model category, the capacity of existing models to 

optimize AcoD operation for on-demand bioenergy production, VS reduction and biosolids quality were also 

evaluated. Furthermore, key knowledge gaps for optimising existing models and the development of new 

models were identified and discussed. On this basis, a research roadmap for future model developments to 

comprehensively simulate the AcoD process and its impact on downstream process were proposed. This review 

aims to provide further insight to the scientific audience interested in the fundamental aspects of AcoD, its 
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impact on process performance, and its optimisation through mathematical modelling, as well as practitioners 

interested in AcoD technologies. 

2 AcoD of sewage sludge with organic waste 

2.1 Current status 

Driven by energy security, resource recovery, and environmental protection, scientific and commercial 

interest in AcoD has grown significantly in recent years. Preferable co-substrates with sewage sludge, digester 

capacity, operation conditions and process performance in full-scale AcoD studies have been systematically 

reviewed by Shen et al. (2015). They highlighted a range of potential benefits of co-digestion including higher 

methane yield, more efficient digester volume utilization, and reduced biosolids production (Shen et al., 2015). 

In some cases, co-substrate addition can also result in synergistic enhancement of biodegradation of both the 

main and co-substrate. Nevertheless, data from full scale anaerobic digesters are very scarce. Indeed, most 

AcoD investigations to date are from laboratory scale studies and their results cannot be readily transferable to 

full scale operation. Besides, there have been very few pilot and full scale studies on this topic.  

The limited number of pilot and full scale studies available in the literature is a major hurdle to the 

transfer of technological know-how to full scale AcoD implementation. More importantly, there is currently 

very little capacity in the available models to guide pilot and full scale investigation efforts to strategically 

target key research needs for full scale implementation. Indeed, AcoD differs significantly from mono-digestion 

in process intensity (e.g. OLR) as well as substrate composition (e.g. temporal variation, nutrient content, sulfur 

content, and co-substrate biodegradability). 

In the context of wastewater treatment, the primary function of AD is to stabilize sewage sludge prior to 

land application or landfilling. Biogas production is an attractive component but not always essential in AD 

plants. As mono-digestion of sewage sludge is usually operated at a low OLR (typically < 1.0 kg VS/m3/d), the 

modeling requirements for mono-digestion of sewage sludge are often simplified to include only organic (i.e. 

COD fractionation and OLR) and hydraulic loading (i.e. HRT) as key inputs while key outputs are VS reduction 

and biogas production (Figure 1A).  As a result, the need to assess process stability is limited, although several 

indicators (e.g. pH and alkalinity) and intermediate products (e.g. VFAs) have been successfully used to model 

mono-digestion. As a typical example to illustrate the current mathematical modelling capacity for mono-

digestion of sewage sludge, Mendes et al. (2015) conducted a sensitivity analysis to evaluate kinetic parameters, 

followed by an evaluation of organic shock loading. However, in most mono-digestion studies to date, only pH 



  

4 

inhibition has been incorporated in the mathematical modelling (Mendes et al., 2015). This leads to an 

oversimplification of complex inhibition mechanisms, and thus most current models cannot accurately predict 

the AcoD process.  

AcoD operation is inherently more complex than mono-digestion. Several critical factors including co-

substrate properties and composition, co-substrate induced inhibitions, and OLR can significantly affect the 

AcoD process. When adding sulfur-rich co-substrates, an unfavorably high H2S content in biogas can be 

expected, which can negatively influence subsequent biogas utilization. Such high level of H2S is due to sulfate 

reduction processes outcompeting methanogenesis for carbon and energy sources under anaerobic conditions 

(Barrera et al., 2013). In addition, several inhibitory intermediates can coexist in anaerobic digesters. Recent 

studies have highlighted the significance of the interplay amongst these inhibitory intermediates, particularly 

during AcoD operation (García-Gen et al., 2013; Jensen et al., 2014; Zonta et al., 2013). Furthermore, AcoD 

process generally operates at a much higher OLR and thus is more susceptible to process instability compared 

to mono-digestion.  

In light of the current AD model development and practical applications, necessary inputs and outputs to 

describe the AcoD process are depicted in Figure 1B. In general, to accommodate co-substrates induced 

inhibitions and to predict AcoD system performance, co-substrates characterization, co-substrates organic 

loadings and various inhibition terms are required as key inputs. As such, the AcoD model is expected to 

produce a large range of outputs, including recommended maximum OLR, optimal main substrate/co-substrate 

ratios, biogas quality, and process stability related parameters.  

2.2 Effect of co-substrate addition on AcoD 

Substrate properties and composition are key factors governing the AcoD process. Some substrates such 

as crude glycerol, fat-oil-grease, and most food waste are readily biodegradable, while several others such as 

silage and crop residuals have much slower degradation kinetics (Nghiem et al., 2014; Xie et al., 2011). Thus, in 

some cases, co-digestion can result in a higher methane yield (per unit of VS or COD input) than mono-

digestion due to the synergistic effect of the co-substrates (Mata-Alvarez et al., 2011). This synergistic effect is 

classified as either a boost in specific methane yield or an increase in biogas production kinetics. The former is 

exemplified by a study by Aichinger et al. (2015), who investigated the AcoD process of sewage sludge and 

whey. They demonstrated that co-digestion yields more biogas than the sum of the biogas produced from mono-

digestion of each substrate (Aichinger et al., 2015). The increase in biogas production kinetics without changing 
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the ultimate biodegradability during AcoD has also been reported by Astal et al. (2014). They reported that the 

mitigation of inhibitory compounds, such as long chain fatty acids (LCFA), contributes to such kinetics 

improvement (Astals et al., 2014). The improvement in biogas production kinetics observed by Astals et al. 

(2014) is likely associated with dilution of fats due to the addition of co-substrates.  

Antagonistic or neutral effects have both been observed during AcoD of sewage sludge and organic 

waste. Silvestre et al. (2014) reported that increasing grease waste from 27 to 37% at the same OLR (on a COD 

basis) decreases methane production by more than 40% during thermophilic AcoD of sewage sludge. Their 

results demonstrate an antagonistic effect possibly due to LCFA inhibition (Silvestre et al., 2014). In a 

subsequent study when adding co-substrate to more than 1% (v/v), they did not observe any changes in the 

specific methane yield during mesophilic AcoD of sewage sludge and crude glycerol (Silvestre et al., 2015). 

This antagonistic effect is not directly related to organic overloading or temperature. Indeed, it is associated 

mainly with co-substrates’ properties and composition (Silvestre et al., 2014).  

Co-substrate selection through an enhanced modelling capacity can be an avenue to facilitate synergistic 

effects and avoid antagonistic effects during AcoD. Preferable co-substrate properties include (i) high buffering 

capacity to avoid pH shock (Xie et al., 2011), (ii) sufficient nutrients and a balanced C:N ratio to maintain an 

active methanogenic activity (Wang et al., 2012) and (iii) higher readily biodegradable organic fraction to boost 

the kinetics of biogas production (Astals et al., 2014). In addition, a low concentration of nitrogenous matter to 

reduce free ammonia (NH3) inhibition (Yenigün & Demirel, 2013), and a relatively low sulfur content to 

suppress the activity of sulfur reducing bacteria (Chen et al., 2008) are also highly desirable co-substrate 

properties.  

2.3 Process performance 

2.3.1 Operating conditions 

2.3.1.1 Organic loading rates 

OLR applied in co-digestion is often much higher than that used in mono-digestion. Thus, OLR is an 

important parameter to achieve an optimized AcoD process. During mono-digestion of sewage sludge, the 

impact on process instability is negligible (depicted by a thin arrow in Figure 1A). In contrast, AcoD operates at 

a much higher OLR value and there is a considerable risk of over loading. Jabeen et al (2015) investigated co-

digestion of food waste with rice husk which has low biodegradability. They observed that when increasing 

OLRs from 5 to 9 kg VS/m3/d, the corresponding VFA/alkalinity ratio increased from the optimum value of 
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0.15 to an imbalanced value of 0.94, indicating impending process failure (Jabeen et al., 2015). An optimized 

AcoD process can be engineered based on optimal VS ratios between substrates under a maximum OLR. Based 

on an optimal VS ratio of 1:1, Li et al. (2015) recommended the maximum OLR for co-digestion of rice straw 

and cow manure of 6 kg VS/m3/d. Organic loading rates greater than 8 kg VS/m3/d could cause foaming and 

process instability due to higher acidification risk (Li et al., 2015; Liu et al., 2012). Therefore, there is a need for 

mathematical modelling to inform a maximum OLR for a stable AcoD process (Figure 1B).  

It is noteworthy that the acclimation of microbial communities can be facilitated by a stepwise increase 

in OLRs (Xie et al., 2012), leading to successful AcoD (Owamah & Izinyon, 2015). Such acclimation may 

avoid a non-reversible inhibition due to by-products (VFAs or NH3) formed in the digester at an excess OLR 

(Owamah & Izinyon, 2015; Xie et al., 2012). Thus uncertainties in mathematical modelling exist due to 

dynamics and interactions between different functional groups within a diverse microbial community. 

2.3.1.2 Hydraulic retention time 

HRT can significantly affect the microbial community and biogas yield. Optimum HRT can 

accommodate varying biochemical reaction kinetics during AD. The optimum HRT value is dependent on 

several factors including substrate properties and composition, operating conditions and reactor configurations. 

In general, the HRT needs to be long enough, typically more than 20 days to avoid process instability (e.g. 

accumulation of VFAs) (Dareioti & Kornaros, 2014). Nevertheless, stable methane production has been 

reported with HRTs even less than 20 days (Nghiem et al., 2014; Ratanatamskul et al., 2014).  

In a continuous stirred tank reactor (CSTR), the biogas yield (y) can be expressed as a function of the 

maximum biogas yield (ym), the first order rate constant (k), and the HRT on the basis of a mass balance and a 

first order kinetics:  

     Eq. 1 

The biogas yield y can be expressed as an absolute proportion (p) of ym (y/ym) based on Eq. 1. Linke 

(2006) has derived the relationship between p of ym and HRT under different k. It can be calculated that about 

45 days of HRT is needed to obtain 80% of the maximum biogas yield at the k value of 0.09 d-1. 

For a CSTR at steady state, assuming (1) first order kinetics and (2) constant specific biogas production 

per unit substrate removed, the following equation can be derived to predict the maximum VS reduction (VSr0) 

and first order hydrolysis rate constant (k).  

    Eq. 2 



  

7 

For example, by curve fitting using a series of VS reduction (VSr) and HRT, Dai et al (2013) estimated 

VSr0 to be 44.3% and 90.3%, respectively and k to be 0.17 d−1 and 0.5 d−1, respectively for dewatered sludge and 

food waste from long-term semi-continuous experiments. Based on Eq. 2, the minimum HRT to achieve 80% of 

maximum VS reduction (VSr0) is 24 days for dewatered sludge at k value of 0.17 d−1. In other words, as the 

HRT increases beyond 24 days, the additional increase in VS reduction is marginal.  

2.3.1.3 Temperature 

Temperature governs the biogas yield during AD by affecting the thermodynamics of acetogenic and 

methanogenic reactions. The AcoD process is usually applied under either mesophilic (35~38 °C) or 

thermophilic (50~70 °C) conditions. At a high temperature, the formation of H2 from organic acids oxidation 

becomes more energetically favorable, while the consumption of H2 by hydrogenotrophic methanogenesis 

becomes less energetically favorable. The degradation of organic acids under thermophilic conditions is faster 

and more favorable compared with mesophilic conditions. In general, thermophilic digestion has a higher VS 

reduction rate and pathogen inactivation compared with mesophilic digestion. Despite these advantages, most 

anaerobic plants operate under mesophilic conditions due to the risk of system instability under thermophilic 

conditions. For instance, Montañés et al. (2015) demonstrated that the biodegradation during co-digestion of 

sewage sludge and sugar beet pulp lixiviation was limited due to high volatile fatty acids (VFAs) concentrations 

under thermophilic conditions, while complete biodegradation was realized under mesophilic conditions. 

Moreover, thermophilic digestion also requires more heating and sometimes is not favourable based solely on 

energy balance considerations.  

2.3.2 Process stability: intermediates inhibition 

AcoD can significantly enhance biogas production. However, the addition of unsuitable co-substrate or 

inadequate amount of co-substrate can deteriorate the AcoD system. This may be attributed to intermediates 

inhibition such as free ammonia, VFAs, and LCFA inhibition. AcoD system may recover after a prolonged 

periods subjected to the nature and level of inhibition and microorganisms acclimation. Xie et al.(2011) 

observed reversible inhibition during AcoD of grass silage and concentrated pig manure, and speculated that the 

phenomenon is likely associated with the combinational effects of high concentrations of NH3, VFAs and low 

pH. Nevertheless, accumulation of these intermediates can disrupt the AD process. Thus, rigorous modelling to 

predict their concentration and inhibition mechanisms is essential particularly when these inhibitory 

intermediates may be enriched in AcoD process (Figure 1B). 



  

8 

2.3.2.1 Free ammonia 

Free ammonia inhibition during AcoD has been investigated more intensively via experimental 

approaches than mathematical modelling. Co-substrates rich in nitrogenous matter (e.g. proteins and urea) can 

be degraded into two most predominant forms of inorganic nitrogen: ammonium-N (NH4
+-N) and NH3 during 

AcoD (Chen et al., 2008). Varying inhibition concentrations of NH3 and NH4
+-N has also been summarized by 

Chen et al. (2008). NH3 is more toxic to methanogens than NH4
+-N, as it can diffuse through the cell membrane, 

causing potassium deficiency and lower pH due to proton imbalance (Sung & Liu, 2003).  

To date, very few studies have been conducted on mathematical modelling of NH3 inhibition during 

AcoD, possibly due to the complex factors that affect the inhibition. These factors include differences in co-

substrates and inocula, operating conditions (OLRs, HRT and temperature), and microbial acclimation. 

Modelling of NH3 inhibition during AcoD has been performed by Angelidaki et al. (1993) with NH3 and acetate 

constituting the primary modulating factors in the model, and subsequently García-Gen et al. (2013) based on 

anaerobic digestion model No 1 (ADM1). In the modified model by García-Gen et al. (2013), only acetoclastic 

NH3 inhibition is accounted for during pilot-scale AcoD of pig manure, wine and gelatine at mesophilic 

conditions. Consistent prediction of gas and liquid composition was achieved (García-Gen et al., 2013). 

However, the inhibition mechanism used in their study may not be exhaustive as the degree and nature of 

inhibitions vary under various conditions and circumstances (Wang et al., 2016).  

2.3.2.2 Volatile fatty acids 

Similar to previous NH3 inhibition studies discussed above, VFAs inhibition during AcoD has been 

primarily focused on experimental studies rather than mathematical modelling. As important intermediate 

products, VFAs are transformed to acetic acid before being converted to CH4. The conversion rate is larger for 

butyric acid than propionic acid. The propionic acid to acetic acid ratio can be used as a reliable indicator for 

digester imbalance, and an propionic acid to acetic acid ratio greater than 1.4 could indicate impending digester 

failure (Marchaim & Krause, 1993). The activity of methanogens was inhibited to a significant extent when 

propionic acid and total VFA concentrations reached about 2.9 g/L and 10 g/L, respectively, but this inhibitory 

effect was weakened when the total VFAs concentration fell to 6.2–8.5 g/L (Wang et al., 2009).  

In the available mathematical models VFAs accumulation through overloading during AcoD has been 

linked directly to acidic pH that causes the inhibition of the methanogens. Accordingly, VFAs inhibition can be 

greatly reduced in AcoD systems with a good buffering capacity. Indeed, microbial communities, particularly 
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the indigenous community of methanogenic archaea, can withstand high VFAs concentrations in such an AcoD 

system (Franke-Whittle et al., 2014). In a complex scenario where additional inhibition mechanisms may exist, 

an inhibition and non-competitive model for AcoD can be proposed to distinguish the inhibition effect. For 

example, Jensen et al. (2014) investigated the impacts of organic and hydraulic loads on process performance 

and microbial community during AcoD of mixed sewage sludge and highly hydrolysable crude glycerol. By 

using the model, they demonstrated that the inhibition was caused by VFAs accumulation from rapid 

fermentation of glycerol rather than the presence of toxic compounds in the co-substrate (Jensen et al., 2014).  

2.3.2.3 Long chain fatty acids 

Addition of lipid rich co-substrates results in formation of intermediate products LCFAs. LCFAs have been 

identified as the main inhibitory factor during AcoD of sewage sludge and grease waste (Silvestre et al., 2014). 

At a high LCFAs level, the methanogenic microbial population can be suppressed, leading to VFA 

accumulation and deteriorate methane production. A key inhibition mechanism of LCFAs is biochemical 

inhibition on microbial cell membranes, including cell lysis, enzyme activity inhibition and electron transport 

chain disruption (Ma et al., 2015). The other inhibition mechanism is classified as physical inhibition due to 

LCFAs adsorption on the surface of microbial cell membranes, leading to mass transfer limitation (Pereira et 

al., 2004). Zonta et al. (2013) proposed two new LCFA-inhibition models, which can be compatible with the 

full ADM1 model. In the kinetics model, they include (i) adsorption of LCFA over granular biomass, and (ii) 

specific LCFA substrate (saturated/unsaturated) and LCFA-degrading populations. A new variable to describe 

the state of damage of the acetoclastic methanogens is also introduced to account for the inhibition caused by 

the adsorbed LCFAs. Zonta et al. (2013) successfully developed two distinctive models with the main 

difference being how the LCFA-inhibitory phenomena on acetoclastic methanogens are expressed: one is 

through a common non-competitive inhibition function, and the other is through a new variable that accounts 

directly for the damage of the cell functionality. It has been revealed that the acetoclastic population is more 

sensitive to the LCFA inhibition than the acidogenic population (Zonta et al., 2013).  

3 Mathematical modelling 

 The available mathematical models for AD and AcoD can be divided into five categories namely 

basic kinetic models, ADM1, statistical models, computational fluid dynamics (CFD) models and other 

algorithm approaches. The advantages and limitations of these are summarized in Table 1. There is some 

overlap between these categories as the mass balance for specific state variables is the basis of all mathematical 
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models. For example, to predict the methane potential, COD, elemental composition, organic fraction 

composition and electron transfer can be used in the mass balance.  

3.1 Basic kinetics models 

AD kinetics models are based on the microbial growth and substrate consumption rates which depend on 

a growth-limiting substrate concentration. Nutrients are assumed to be sufficient in substrates, and expressions 

for inhibition can also be included. Some common kinetic expressions depicting the kinetics of AcoD processes 

are summarized in Table 2. These equations represent the fundamental framework for simulating the AcoD 

processes. 

First order kinetics has been widely applied in anaerobic biodegradation of particulate matter. For 

example, hydrolysis of substrates in ADM1 is assumed to be a first order reaction (Batstone et al., 2002). In 

addition, endogenous decay processes are also modelled using first order kinetics (Batstone et al., 2002). 

Subsequently, the methane production from a mixture of substrates can be simulated following simplified first 

order kinetics (El-Mashad & Zhang, 2010). Several other kinetic models such as Gompertz and dual pooled first 

order have also been used to assess methane production during batch co-digestion (Dennehy et al., 2016; Xie et 

al., 2011). It is noteworthy that due to the high initial VFA content of some substrates, conventional first order 

and Gompertz models may be inappropriate for determining reaction kinetics, while a dual pooled first order 

model was found to provide the best fit for the data (Dennehy et al., 2016). Hydrolysis can also be modeled 

using Contois model, as hydrolysis is considered a biochemical reaction facilitated by extra-cellular enzyme 

produced by hydrolytic/acidogenic bacteria (Carrera-Chapela et al., 2016). It has been shown that Contois 

model, which links hydrolytic biomass growth with substrate degradation, works better than the first-order 

kinetics model (Ramirez et al., 2009a).  

Substrate conversion in biological processes commonly applies Monod-type kinetics. The specific 

growth rate of microorganisms is a function of the substrate concentrations in the Monod equation. Contois 

expression considers that the substrate concentration in the digestate is dependent on the influent concentration, 

so that both parameters are independent. It is a key modification from Monod equation. Both models take into 

account the organic load involved in the process as a fundamental parameter for the reactor performance and 

have been widely used in the modelling of anaerobic processes (Lokshina et al., 2001).  

Several other simplified kinetics models have also been demonstrated for AD in the literature. For 

instance, Lokshina et al. (2001) evaluated the kinetic coefficients and their standard deviations using the 
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methane accumulation curves of low-temperature acetoclastic methanogenesis by an integrated Monod and 

Haldane models. A better fit was obtained with the Haldane models and their exponential approximations for 

the wide range of initial acetate concentrations (4.2 - 84 mM; 5 - 100 mM) applied to the UASB biomass at 11 

and 22 °C and for the lake sediment samples at 6 and 15°C, respectively. At the higher temperature (30 °C) no 

significant difference was observed between the Haldane and Monod models, thus the Monod model with a 

simpler expression can be adopted (Lokshina et al., 2001). Hidaka et al. (2015) developed a simplified model 

based on ADM1, with a few modifications including (1) the model inputs for substrates are determined in terms 

of degradation speed rather than components (carbohydrates, proteins and lipids), and (2) acetate and hydrogen 

were considered as one state variable. Given a reasonably close agreement between the model simulation and 

the experimental results, the authors suggested that the model can be used as a pre-evaluation tool to facilitate 

the introduction of co-digestion at WWTPs (Hidaka et al., 2015).  

Currently available kinetics models may over-simplify the dynamics of rate-limiting steps (Table 1). In 

other words, the rate-limiting step can be influenced by operating conditions, thus it is unlikely to be constant 

(Yu et al., 2013b). In addition, in these models the intermediates inhibition cannot serve as the indicator for 

digester stability as it becomes difficult to estimate when only a single type of microorganism (e.g. acetoclastic 

methanogens) is considered. Furthermore, basic kinetics models (commonly used for laboratory-scale batch 

studies) cannot be used to provide direct practical knowledge for full scale AcoD implementation (Table 1). 

Therefore, these pitfalls prevent further practical application of such models, leading to the development of the 

more complex mechanistic model ADM1. 

3.2 ADM1 

3.2.1 Basic principles 

The ADM1 model developed by the IWA AD modelling Task Group is arguably the most widely 

applied model in the research area. It includes five steps: disintegration, hydrolysis, acidogenesis, acetogenesis 

and methanogensis (Figure 2). The disintegration breaks solid complexes into carbohydrates, lipids, proteins 

and inert material (soluble and particulate inert). These substances are subjected to enzymatic hydrolysis, 

forming sugars, amino acids and LCFA. It is followed by acidogenesis, where sugars and amino acids are 

fermented to produce VFAs, hydrogen and carbon dioxide, and acetogenesis, where LCFA, propionic acid, 

butyric acid and valeric acid are anaerobically oxidized into acetate, carbon dioxide and hydrogen. The last step 
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involves the acetoclastic methanogenesis, where acetate is converted to methane and carbon dioxide, and 

hydrogenotrophic methanogenesis, where carbon dioxide is reduced by molecular hydrogen to form methane. 

ADM1 includes (1) 19 biochemical processes, of which 4 equations capture particulate matter 

degradation, 8 equations describe soluble matter degradation and 7 equations represent biomass concentrations; 

(2) 6 acid/base equilibria in association with pH calculation; (3) 3 gas-liquid transfer processes (CH4, CO2, H2), 

(4) inhibitions, and (5) a number of variables, of which 12 variables represent particulates (Xi), 24 variables 

represent soluble (Si) and 3 variables represent gases. The ADM1 model starts with the disintegration of 

composite particulate materials (i.e. decomposition of feed or decaying biosolids according to their predefined 

fractions and composition of carbohydrates, proteins, fat (lipids) and inerts). The second step is enzymatic 

hydrolysis of disintegrated carbohydrates, proteins and fat (lipids), which is the start of the corresponding five 

pathways of anaerobic degradation. These first two degradation steps are modeled using uptake kinetics of 

different substrates by seven bacterial groups. The decay processes of the seven bacterial groups are also 

considered and the decaying particulates are sent back to the disintegration step. 

3.2.2 Parameter estimation, calibration and model validation 

Two procedures govern the successful implementation of modelling work: (1) well defined substrate 

composition in relation to the model input state variables, and (2) calibration process, particularly for the 

sensitive parameters. In ADM1, the input COD fractionation is divided into 13 components, 11 of which are 

associated with biodegradable components. These components are: composite substrate (Xc); polymers: 

carbohydrate (Xch), proteins (Xpr), and lipids (Xli); monomers: sugars (Ssu), amino acids (Saa), and long chain 

fatty acids (Sfa); VFAs: butyrate (Sbu), valerate (Sva), propionate (Spro) and acetate (Sac); inert COD: soluble 

fraction (Si) and particulate fraction (Xi). Thus rigorous determinations of the substrate characterization and 

kinetics parameters regarding the disintegration and hydrolysis phases can be performed prior to the numerical 

simulation. As such, Girault et al. (2012) proposed a framework for the numerical determination of the set of 

ADM1 input state variables for each substrate. Briefly, VFA-fractions were directly measured (Step 1); the 

concentration of the biodegradable fractions and the hydrolysis rate constant were optimized through curve 

fitting (Step 2); the individual COD fraction (for which hydrolysis is not rate limiting) was then calibrated based 

on the best simulation of the complete curve (Step 3); and the inert COD was determined by the total COD 

balance (Step 4) (Girault et al., 2012). Although the numerical method is easy to implement for a wide range of 
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substrates, fractions of solid waste mixture as ADM1 model input have been usually carried out experimentally 

(Klimiuk et al., 2015; Mottet et al., 2013; Razaviarani & Buchanan, 2015). 

The kinetics parameters concerning the disintegration and hydrolysis phases during AcoD are also 

estimated and calibrated prior to the implementation of ADM1 simulation (Razaviarani & Buchanan, 2015). 

Derbal et al. (2009) estimated the constants for disintegration and hydrolysis of carbohydrates, proteins and 

lipids (Kdis, Khyd.Ch, Khyd.Pr, and Khyd.Li) in their study, and found they were equal to typical values reported in the 

literature for biowaste. It is controversial to apply kinetic parameters estimated from lab-scale experiments to 

the modeling of full-scale digesters, as demonstrated by Batstone et al. (2009) that the first order hydrolysis rate 

constant (khyd) obtained from anaerobic batch tests are not appropriate when applied to continuous digester 

modelling. This could be largely attributed to the simple disintegration step of a homogeneous substrate (Xc) 

simulated by a single kinetic parameter within ADM1 model. As such, Mottet et al. (2013) modified ADM1 

model using a new disintegration/hydrolysis structure and implemented two hydrolysable composite fractions of 

sewage sludge (i.e. a readily hydrolysable fraction and a slowly hydrolysable fraction). Mottet et al. (2013) used 

anaerobic batch tests to calibrate model kinetic parameters and biomass concentrations. The model was then 

validated against the same substrate subjected to a thermal pretreatment. They observed that the model was 

representative in terms of methane production following the intrinsic changes of the waste active sludge 

composition through the different thermal pretreatment conditions as well as in a continuous full-scale 

anaerobic digester (Mottet et al., 2013).  

3.2.3 Extensions and modifications 

Notable extensions and modifications have been made to ADM1 to broaden the capacity to predict the 

AcoD process and to take into account the toxic effects of inhibitory substances from co-substrates and 

intermediates. Modifications to the current ADM1 model are necessary to solve characterization of the 

substrates and definitions for disintegration and enzymatic hydrolysis steps (García-Gen et al., 2013; García-

Gen et al., 2015; Shi et al., 2014; Zaher et al., 2009). Other extensions and modifications for ADM1 include 

degradation of new soluble fermentable substrates (García-Gen et al., 2013), organic contaminants degradation 

(Fezzani & Ben Cheikh, 2009), disintegration of organic waste solids using surface-based kinetics model 

(Esposito et al., 2011a) and VFAs inhibition (Boubaker & Ridha, 2008). Recently, Flores-Alsina et al (2016) 

extended the ADM1 with P, S and Fe biological and physico-chemical reactions. This important extension 

considers (1) potential uptake of organics by XPAO to form XPHA affecting overall biogas production, (2) 
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substrates with high S content leading to H2S formation and (3) the proportioning of soluble and particulate P in 

the digester outlet affected by the cationic load, which is linked to pH and precipitation of minerals.  

Co-substrates are heterogenic and dynamically changing in composition. Thus, parameter estimation 

problems and use of fraction parameters can be avoided through a dynamic interface to ADM1, which is a 

general transformer model for any combination of co-substrates. Zaher et al. (2009) employed models 

integrated in General Integrated Solid Waste Co-Digestion model (GISCOD). They successfully developed 

transformer model nodes which generate input for ADM1 by estimating the particulate waste fractions, while 

hydrolysis nodes were modeled separately for each substrate. The authors applied the integrated model to a co-

digestion study of diluted dairy manure and kitchen wastes, demonstrating reliable simulation results in terms of 

process optimization (Zaher et al., 2009). The AD process was modeled using the ADM1 (Batstone et al., 2002) 

as a basis with phased implementation to separate the enzymatic hydrolysis of solid wastes from the metabolic 

reactions utilizing soluble substrates. García-Gen et al. (2015) developed a methodology to estimate 

disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based AcoD model. 

Fractions of substrates were divided into readily and slowly biodegradable fractions. The model was calibrated 

against batch reactor experiments treating individual fruit and vegetable waste fraction of solid waste. 

Validation of kinetic coefficients was performed using a continuous co-digestion experiment. Finally, 

simulation of batch and continuous experiments was carried out with a modified ADM1-based model. It is 

noteworthy that GISCOD allows for a dynamic changing input, but it is quite complex. In contrast, the 

fractionation approach is very straightforward to implement, but it is less accurate. 

3.2.4 Limitations 

Several limitations in ADM1 model have been acknowledged in the literature. LCFA inhibition, which 

has a significant impact on the AcoD process, has been systematically investigated by Zonta et al., (2013). 

However, to date this feature has not been considered in the ADM1 model for AcoD. Indeed, the inherent 

features in the ADM1 model, such as the requirement to understand and estimate kinetic parameters for the 

various bacterial groups present in the reactor and a very ponderous amount of substrate characterization could 

hinder its practicality for full-scale simulation. Furthermore, the mechanism of the disintegration and hydrolysis 

of solid substrates is a notable limitation in the current AD modelling paradigm. In most cases where 

disintegration of solid substrate is the rate-limiting step, a criticism could be made upon the presentation of the 
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initial stages of AD using the proposed ADM1 model, as hydrolysis can occur even before disintegration due to 

the enzymatic penetration into complex materials (Batstone et al., 2015).  

The challenge of maximizing energy production and resource recovery also require further development 

of the ADM1 model. A key feature for incorporation into the ADM1 model is to determine the fate of 

phosphorus and sulfur (Table 1). This additional feature should include all phosphorus species in relevant 

fractions of the AcoD process (Johnson & Shang, 2006). Moreover, the inherent composition and properties of 

co-substrates and operating conditions affect biogas and biosolids quality during AcoD of sewage sludge and 

organic waste. Biogas utilization considerations also reinforce the need to expand the current model capacity to 

predict sulfur conversion and distribution (see section 4.2). In addition, the complex interactions between 

substrates that may facilitate synergistic or antagonistic effects remain largely unsubstantiated. It is 

hypothesized that several mechanisms may benefit the synergistic effects including metal additions, reduced 

intermediates inhibition, sufficient nutrients and a balanced C:N ratio (Astals et al., 2014; Dennehy et al., 2016; 

Xie et al., 2011). However, to date, there have not yet been any laboratory studies to comprehensively elucidate 

these underlying mechanisms. Thus these mechanisms have not been fully accounted for in the current scope of 

ADM1 model.  

3.3 Statistical models 

Apart from main stream mechanistic models focusing on the fundamental characterization of AcoD, 

statistical models emphasize the interrelationship between key parameters (e.g. substrate/co-substrate ratio, C/N 

ratio, OLR, and temperature) and the outputs (e.g. methane yield and VS reduction) (Xie et al., 2012). There are 

two most frequently used statistical approaches in AcoD, namely simplex-centroid mixture design and central 

composite design (CCD). The former contains different combinations of substrate mixture as variables, while 

the latter can involve several factors, such as substrate/co-substrate ratios and C/N ratios. Both are suitable 

methods for optimising methane production from AcoD using a variety of substrates (Wang et al., 2013).  

It is noteworthy that the simplex-centroid mixture design approach can establish the surface model of 

continuous variables to optimize the proportions of all components for a target response variable. When 

analysing the effect of substrates, mixtures are expressed on a VS basis, and visualisation of the effects of 

subtrates on the dependant variables (typically specific methane yield) is achieved using a triangle whose 

vertices are corresponded to a pure blend (mixture that is 100% single substrate). The standard forms of the 

widely used mixture models are linear, quardratic, special cubic, full cubic, and special quartic models (Rao & 
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Baral, 2011). Pagés-Díaz et al. (2014) used a four factor mixture design (a special cubic model with 14 

coefficients) to optimise mixture composition and correlated biological processes and statistical results. 

Similarly, CCD approach utilises response surface methodology (RSM) to optimise the studied paramters. 

 Functional relationships between responses (Y) and a set of factors (X1 and X2) can be described by 

estimating coefficients of the following second-order polynomial model based on experimental data.  

Y= 0+ 1X1+ 2X2+ 11X1
2+ 22X2

2+ 12X1X2    Eq. 3 

where Y represents the predicted response of methane potential, X1 is the ratio ofM1/M2; X2 is the ratio of C/N; 

0 is a constant; 1 and 2 are linear coefficients; 12 is interaction coefficients and 11 and 22 are quadratic 

coefficients. In some cases, it may be more appropriate to employ CCD approach to design the experimental 

conditions, such as OLR, HRT, and temperature (McLeod et al., 2015).  

Numerous studies have investigated the effect of operating conditions on AcoD processes. However, they 

focused mostly on quantitative sensitivity, neglecting any qualitative aspects. Statistical models can inform the 

design of initial conditions and parameters to achieve optimum output for full-scale operation of AcoD system 

(Table 1). The predictive limitation of this methodology varies from one study to another subjected to the 

sensitivities of multiple variances reported in each case study. The degree of similarity of the reaction kinetics, 

sensitivities, and inhibition between lab-scale and full-scale digesters determines the accuracy for predicting the 

full-scale measurements (McLeod et al., 2015). It may therefore be acknowledged that there are some 

limitations of applying statistical modelling to predict a highly complex relationship in AcoD. 

3.4 CFD models 

 Mixing allows for intimate contact between active microorganisms and feed substrates, and enhances the 

mass transfers of intermediate byproducts within digesters for effective AD processes. CFD models offer a 

versatile approach to study flow and velocity fields, turbulence, particle trajectories, rates of energy dissipation, 

transport of dissolved components and to determine volumes of high mixing intensity and stagnant zones, based 

on digester geometry, feed locations and operating conditions (Yu et al., 2013b). These models can be 

implemented in the following procedures: (1) constructing the geometry of the digester studied in a computer 

aided design type program, (2) fitting a mesh to divide up the entire domain into smaller cells, (3) setting 

boundary conditions such as inlets, outlets, and walls, (4) defining the properties of different phases (gas, liquid 

and solids), and (5) selecting different solvers and turbulence models to calculate how the phase/phases are 

affected by the geometry and boundary conditions in each individual cell defined by the mesh (Lindmark et al., 
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2014). Once validated, the CFD model can be used to design, evaluate, and optimize the AcoD process. Zhang 

et al. (2016) applied the CFD model to investigate the mixing mode and power consumption in anaerobic mono- 

and co-digestion of cattle manure and corn stover. They observed that for different mixing modes, the optimum 

feedstock ratio for co-digestion changed with net power production and the best option of CM/CS ratio for 

continuous mixing and intermittent mixing were 1:1 and 1:3, respectively. 

With more effective and intuitive visual results analysis, CFD model can be used to visualize the flow 

pattern and movement of particles and dissolved components in a mimic anaerobic digester (Craig et al., 2013; 

Vesvikar & Al Dahhan, 2005). Separated from the kinetics of AcoD and focusing on the fluid dynamics, 

knowledge of the effects of mixing on the processes and criteria of optimal mixing is required (Table 1). Mixing 

effects within a digester is commonly unexplored in laboratory-scale reactors, where Van Hulle et al. (2014) 

compared a lab-scale (3.78 L) and a pilot-scale (120 L) anaerobic digester at both mixing and non-mixing 

conditions, and found that at lab-scale no significant difference in performance was found between these 

conditions, while at pilot-scale, a reduction of about 10% methane production occurred during unmixed 

conditions. The effect of mixing in full-scale digesters on process stability at different OLRs has been 

investigated by Gómez et al. (2006), who found that under low mixing conditions, the digester was able to 

maintain stable performance when it was overloaded. This phenomenon can be explained by a 2-D distributed 

model, which showed that at high OLR spatial separation of the initial methanogenic centers from active 

acidogenic areas was the key factor for efficient conversion of solids to methane, thus low mixing promoted the 

survival and expansion of most of the initiation centers for methanogenesis over the reactor volume in 

comparison with that of vigorous mixing (Vavilin & Angelidaki, 2005).  

 The addition of co-substrates with high solids (e.g. food waste) exhibit strong non-Newtonian fluid 

behavior, and a holistic design of the mixing system is required for such fluid rheology (Wu, 2012a). The 

amount and types of co-substrates used can change the rheological property and viscosity of the digestate, 

which means that a higher mixing intensity is needed to achieve a similar result (Lindmark et al., 2014). 

Considering the complex phenomena of particle segregation or aggregation (e.g. foaming or settling), multi-

phase non-Newtonian models and ADM1 model were used separately to adequately simulate the complex flow 

behavior of heterogeneous solid substrate (Yu et al., 2013a). Despite the higher complexity in multi-phase 

models than for single-phase models, a greater understanding, optimisation and commercialisation of AcoD 
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processes can be achieved by advancing the development and application of such models in the field of AcoD 

(Yu et al., 2013b).  

 Although CFD has been extensively used to address the issue of hydraulic design in AcoD system, the 

inherent relationship between mixing and methane yield has not been fully elucidated. In other words, CFD 

models have rarely been coupled with biological models (Table 1). This is mainly due to the complexity of 

numerical simulation and model stability when biological rate equations are coupled. Indeed, the physical 

process stays stable (a small time interval required for the mixing and heat transfer) relative to the entire 

duration (weeks or even months) of the AcoD process. To tackle the different time step requirements between 

physical and biological processes, a practical approach is to develop a two-stage simulation strategy that 

predicts the temporal biological process using a large time step based on steady fluid flow and heat transfer. In 

such approach, a computational cell is treated physically as an individual bioreactor with its own residence time 

and temperature (Wu, 2012b). This approach unravels the intrinsic relations amongst mixing, heat transfer, and 

biochemical reactions (e.g. methane yield) in anaerobic bioreactors.  

Distributed parameter models associated with CFD have been coupled with reactive models such as the 

ADM1 to evaluate process performance as impacted by non-ideal mixing (Van Hulle et al., 2014). Van Hulle et 

al. (2014) found a reduction of 10% in methane production during unmixed conditions due to the accumulation 

of undistributed VFAs. While a CSTR approach overestimated the biogas production by 10%, an application of 

more accurate mixing models could predict biogas production from a more complicated AcoD process (Van 

Hulle et al., 2014). 

3.5 Other algorithm approaches 

Due to the complexity of AcoD processes, the use of another approach, namely artificial neural networks, has 

been developed. This ‘black box’ approach does not need the information regarding the interrelationships 

between key variables. Gueguim Kana et al (2012) used artificial neural network (ANN) coupling genetic 

algorithm (GA) to model and optimize biogas production on mixed substrates of saw dust, cow dung, banana 

stem, rice bran and paper waste. The authors modelled the non-linear behavior of the process efficiently and 

derived a recipe for an optimum biogas production using these co-substrates. The specification of the network 

architecture and an adequate amount of consistent input data is required for the implementation of ANN. 

Gueguim Kana et al (2012) defined the biogas performance index by only five independent input parameters 
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corresponding to the concentrations of each co-substrates. This artificial intelligence based approach can 

significantly reduce the process development time for AcoD. 

Another algorithm approach, namely Ant-Colony-Optimization (ACO), was inspired by the behavior of 

ants that use pheromone trails to guide their explorations. To optimize the discharge of organic waste from 

different waste sources in real-time, Verdaguer et al. (2016) applied the ACO algorithm that maximizes the 

generation of biogas through AcoD, as well as demonstrated the usefulness of the ACO approach in terms of 

supporting the decision making on improving the sustainability of organic waste and SWS management. The 

proposed approach uses an ACO algorithm which maximizes an index that quantifies the capacity to produce 

biogas from a sequence of waste input produced from different waste generators. Another algorithm approach 

was adopted by Fang et al. (2009), who used weighted non-linear least-squares and accelerating genetic 

algorithm to estimate the kinetic parameters of activated sludge storage.  

These algorithm approaches can be advantageous, as they only require a minimum knowledge in the 

reaction mechanisms and experimental measurements of a number of parameters during AcoD. The drawbacks 

are the lacks of flexibility for reactor design and scale up, as well as the requirement of complex and diverse 

input-output relationships to train the method for the real-world scenario (Table 1).  

4 AcoD models: applications and limitations 

4.1 Capacities of current AcoD models 

Several AcoD models have been developed and applied in previous AcoD studies, including the modified 

ADM1 model, the GISCOD transformer model in Matlab-Simulink, and the full-plant model in the process 

model simulator SUMO (Aichinger et al., 2015; Zaher et al., 2009; Zhou et al., 2012). Key features, aspects and 

outcomes of these mathematical models are summarized in Table 3.  

An important aspect of current AcoD models is the capacity to identify the optimal ratio and organic 

loading of substrates and co-substrates for maximum energy and cost efficiency (Figure 3, Point 1), thus 

avoiding organic overloading (Aichinger et al., 2015; Esposito et al., 2011b; Zhou et al., 2012). These models 

are commonly mechanistic, linking key operating conditions (such as HRT and OLR) to digester performance 

(Figure 3, Point 1-4). For instance, Zhou et al (2012) investigated two important operating factors, SRT and 

OLR (or the mix ratio for co-substrates) based on a modified ADM1 model. The authors suggested that at a 

COD ratio of 1:1 AcoD of biowaste and manure yields the highest methane production and maintains the 

system stability at SRT of 26.7 d (Zhou et al., 2012). In another study Zaher et al. (2009) developed GISCOD 
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transformer model in Matlab-Simulink, where co-substrate loading ratios and HRT are optimized for maximum 

biogas production and VS removal efficiency by simulating hundreds of virtual experiments (Table 3). This 

model can be potentially applied to other AcoD processes.  

Another crucial aspect of current AcoD models is the ability to simulate process failure, thus facilitating 

favorable operating conditions in practice (Figure 3, Point 4). Process failure commonly occurs during AcoD 

operation, which may be evident as irreversible pH drop and unbalanced bacterial population (i.e. elimination of 

active acetoclastic and hydrogenotrophic methanogenic archaea). For instance, in an ADM1 based dynamic 

model, Esposito et al. (2011b) predicted a maximum COD ratio between organic fraction of municipal solid 

waste (OFMSW) and sewage sludge to avoid an overloading condition (Table 3). Zaher et al.(2009) conducted 

a study to predict impact of HRT and feedstock ratio on a two-stage anaerobic digesters treating diluted dairy 

manure and kitchen wastes. Severe inhibition induced complete halt of methanogenesis was predicted at HRT 

of 10 days (Zaher et al., 2009). Recently, Arnell et al. (2016) developed a procedure to characterize and 

fractionate COD of co-substrates for benchmark simulation model No 2 (BSM2) and ADM1, and then applied 

the model to a plant-wide simulation study. Two major failure modes (i.e. ammonia inhibition mode and LCFA 

inhibition mode) were identified (Table 3). It is noted that some inconsistencies between simulation results and 

experimental results are attributed to the adoption of some sensitive parameters, which correlates with feed 

concentrations, HRT and reactor configurations (Gavala et al., 2002).  

Additionally, the cooperative function of inhibition in AcoD model is an important aspect in some AcoD 

models (Figure 3, Point 5). Due to the heterogenic and dynamically changing co-substrate composition as well 

as lack of certain inhibition functions in original ADM1 model, AcoD models have been modified to correlate 

the operating parameters to process stability and optimization. For instance, Boubaker & Ridha (2008) 

incorporated modifications into inhibition functions of the original ADM1 model to account for a high total 

VFAs concentration (Table 3), which allowed for the prediction of digester failure at short HRT by the modified 

ADM1 model.  

4.2 Recommended new features of AcoD models 

4.2.1 Biogas quality 

Mathematical modelling for H2S formation and its concentration in biogas is underdeveloped (Figure 3, 

Point 6). As H2S is a very corrosive gas for engines, its content in biogas determines the biogas quality and 

economic viability of co-digestion and co-generation. To date, no mechanistic model has been reported to 
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predict H2S formation and its levels during AcoD. Nevertheless, some models have been developed based on 

ADM1 to reveal the bioreaction pathways for H2S (Barrera et al., 2015; Fedorovich et al., 2003; Liu et al., 

2015). For instance, Fedorovich et al. (2003) extended ADM1 with processes of sulfate reduction by the 

additional blocks (i.e. multiple reaction stoichiometry, microbial growth kinetics, conventional material 

balances for ideally mixed reactor, liquid-gas interactions, and liquid-phase equilibrium chemistry) to describe 

sulfate-reducing processes. However, the model could not predict H2S content in the biogas without considering 

the gas-liquid transfer for H2S (Fedorovich et al., 2003).  

Empirical modelling approaches have been used to predict formation and content of H2S in biogas. 

Attempts to predict H2S and NH3 contents in biogas have been conducted by Strik et al. (2005) using a black-

box approach, which employed the Matlab Neural Network Toolbox. The input includes parameters such as 

sulfate loading rate, H2S content in biogas, total sulfides in reactor, biogas-productivity, pH, and OLR. The 

proposed model based applications well predicted H2S and NH3 contents in biogas, and could probably be used 

to foresee, control, reduce or even avoid the production of toxic H2S and NH3 (Strik et al., 2005). A general 

screening approach for the H2S content in biogas has been developed by Peu et al. (2012) to evaluate 37 

different feedstock originated from urban wastewater treatment plants, farms, agri-food facilities and municipal 

wastes. Total sulfur content in the feedstock ranged from 1 to 29.6 mg S/kg of total solids. A model linking H2S 

content in biogas with the C:S ratio was also developed. Based on the model, a minimum C:S ratio of 40 is 

required in feedstock to limit the concentration of H2S in raw biogas to less than 2% (vol/vol) (Peu et al., 2012). 

However, these empirical approaches ignore the physiochemical process, and cannot predict the formation of 

H2S accurately during AcoD of some co-substrates such as pig slurry (Peu et al., 2011).  

A mathematical AcoD model needs to be developed to monitor H2S content in biogas from AcoD 

processes (Carrera-Chapela et al., 2016). It is anticipated that the new AcoD model can incorporate the 

competition between sulfate reducing bacteria and other bacteria such as acetogens as well as hydrogenotrophic 

methanogens at overloading or other inhibitory conditions (Figure 3, Point 4 and 5). Recently, a mechanistic 

model focusing on the H2S generation from AD of sewage sludge was developed by Carrera-Chapela et al. 

(2016). The model adopted the same stoichiometry and reaction kinetics based on the work of Donoso-Bravo et 

al. (2009), and provided the sulfate reducing stage with a reduced number of parameters. The model is able to 

describe properly the dynamic behavior of AD system, particularly its gas phase composition with an accuracy 

of 90% for H2S (Carrera-Chapela et al., 2016). Nevertheless, there is an urgent need to incorporate such 
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modifications to a generic AcoD model (Figure 3, Point 6). Indeed, current AcoD models have not incorporated 

the sulfate reduction pathway formulated in recent AD models, and ignore the presence of sulfur precipitants or 

its bound forms (e.g. sodium bisulfite) for further biochemical transformation. Without these underlying 

mechanisms, models cannot mechanistically describe the main biochemical and physico-chemical processes 

required for sulfur transformation, thus are not able to allow for plant-wide evaluation.  

4.2.2 Biosolids quality 

AcoD process can generate biosolids with varied quality. Digestate (biosolids) quality refers to the 

dewaterability, the odorous emissions, and the levels of micro-pollutants and pathogens in the water and sewage 

utilities. There are few comprehensive studies devoting to the effects of AcoD on the biosolids quality, the 

odorous emissions in particular. Jensen et al. (2014) conducted a study to co-digest sewage sludge and crude 

glycerol, and observed that digestate dewaterability was not affected by glycerol addition.  

The impact of AcoD on odorous emissions has become an distinct and important research field (Orzi et al., 

2015). The AcoD process becomes complicated by adding co-substrates rich in proteineous materials and 

sulfate. It is reflected by various occurrence of the sulfur related reactions and corresponding kinetics under 

different culturing temperatures (Du & Parker, 2012). Although biosolids odorous emissions have recently been 

investigated experimentally during manure composting (Zang et al., 2016), the measured biosolids odorous 

emissions have never been correlated to feedstock characteristics (e.g. sulfur content and feedstock 

composition) and operation conditions (e.g. substrates/co-substrates ratio, SRT, and temperature) to optimize 

the AcoD process. In addition, research on anaerobic sulfur conversions have been primarily focused on sulfide 

formation, mainly because it is known as the key odor causing compound (Talaiekhozani et al., 2016). 

Nevertheless, Higgins et al. (2006) proposed a cyclic pathway to describe the production and transformation of 

volatile sulfur compounds and H2S. The pathway involves processes such as degradation of protein, generation 

of associated volatile organic sulfur compounds (e.g. methanethiol) and subsequent formation of H2S (Figure 

4). This could be a fundamental part to be integrated into a new biosolids odorous emissions model (Figure 3, 

Point 7).  

The impact of co-substrates on AcoD process stability is well documented, but modelling studies 

regarding its impact on downstream processes are scarce (Figure 3, Point 6 and 7). Moreover, the impacts of 

AcoD on biosolids production and nutrients build-up have been evaluated in full-scale case studies. Aichinger et 

al. (2015) investigated the organic loading threshold during AcoD based on the trade-off between boosting 
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methane production versus increased nitrogen-return loads, biosolids production and polymer demand. The 

authors observed no significant increase in biosolids production and a minor increase in NH3 release 

(approximately 20%) at organic co-substrate addition of up to 25% in terms of VS  (Aichinger et al., 2015).  

In summary, a generic approach to correlate operating conditions (e.g. substrates/co-substrates characteristics 

and ratios, OLRs, HRT) to key state variables (e.g. methane production rates, VS removal rates, H2S formation 

and its content in biogas, odorous emissions from biosolids) is essential (Figure 3, Point 1-3, 6-7). It has been 

demonstrated that a reduced methanogenic activity can lead to an enhanced release of these sulfur compounds 

(Talaiekhozani et al., 2016). Therefore it is hypothesised that an optimised AcoD system can increase 

methanogenic activities and consequently mitigate volatile organic sulfur and H2S emissions under the sulfur 

loading rate threshold. 

4.2.3 Microbial diversity 

As depicted in the future research roadmap, important capacities regarding microbial analysis beyond 

current AcoD model studies are: (1) ability to standardize the model approach for maximum biogas production 

and VS removal efficiency with inhibition functions (Figure 3, Point 1 and Point 5); (2) ability to simulate H2S 

formation and its content in biogas (Figure 3, Point 6); and (3) ability to predict biosolids odorous emissions 

(Figure 3, Point 7). Importantly, integration of mathematical models with microbial community dynamics is 

needed (Figure 3, Point 8).  

Most studies are dedicated to the characterisation of microbial communities in anaerobic digesters. All 

ADM1-based models only utilize the total biomass concentration of each functional microbial consortium. The 

relationship between digester performance and microbial community structure has been also qualitatively 

studied during AcoD. In a study by Regueiro et al. (2015), microbiome changes due to changing environmental 

conditions as a result of the addition of three co-substrates (i.e. food waste, alkaline hydrolysate and glycerol) 

have been documented. It is reported that a reduced population of one species within a functional group due to 

system perturbation may be taken up by another species from the same group with a higher resistance (Briones 

& Raskin, 2003). The phenomenon is commonly referred to as functional redundancy. At the presence of 

functional redundancy, the relationship between digester functionality and microbial community is difficult to 

quantitatively model, as it lacks microbial community descriptors that may quantify, for example, functional 

redundancy in models (Venkiteshwaran et al., 2015). Hence, it becomes a major obstacle to improving design 

and operation of anaerobic digesters during AcoD. Ramirez et al. (2009b) tackled this problem by accounting 
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for microbial diversity in a structured model (i.e. ADM1) that could predict the adaptation of microorganisms to 

inhibitory substances to some extent. Thus, exploring the community response to the addition of co-substrates 

can offer an engineered community structure through altering co-substrates and their composition for an 

optimized AcoD process. Nevertheless, more studies are needed to link microbial community descriptors to AD 

models for the simulation, control and optimization of digesters (Figure 3, Point 8).  

4.2.4 Plant wide AcoD modelling 

Plant wide modelling of wastewater treatment has centered on the development of commercial software, 

such as BioWin computer modeling package (Batstone et al., 2015). It is well acknowledged that by the 

addition of co-substrates, the generation and quality of biogas and subsequent biosolids affect the overall 

revenue generation. AcoD also influences the subsequent wastewater (often called reject water or sludge 

centrate) treatment due to the release of nitrogen and phosphorous from co-substrates. Considerable progress 

has been made to implement AcoD in plant-wide WWTPs modelling by Arnell et al. (2016). The 

comprehensive method involves characterization of substrates, estimation of the substrate dependent 

parameters, modifications of ADM1, integration of AcoD in BSM2. In addition, the aforementioned GISCOD 

model was complemented by a Gaussian LCFA inhibition function to model AcoD. The impact of limiting the 

protein load from co-substrates was investigated to avoid NH3 inhibition in the digester and overloading of the 

nitrogen removal processes in the water train. The model also included LCFA inhibition as a result of high 

loads of lipid rich co-substrates. Nevertheless, both ASM and ADM1 could not simulate more complex effects, 

such as ion activity and ion pairing implemented in physico-chemical models, and thus considered inadequate 

(Batstone et al., 2012). Further developments on phosphorous and nitrogen cycles during AcoD in the whole 

wastewater treatment plant modelling need to be carried out (Figure 3, Point 9). 

5 Conclusion 

Mathematical modelling of AcoD has been developed based on both empirical and mechanistic approaches, 

with ADM1 being the most sophisticated one. AcoD operates at high OLRs under diverse co-substrates’ 

properties and composition; hence, its modelling requirements are more complex than mono-digestion. 

Compared with mono-digestion, the transient variation in pH and inhibitory intermediates are essential for 

AcoD optimization. New features in future AcoD models should involve interrelationships between system 

performance and co-substrates’ properties, organic loading, and inhibition mechanisms. The conversion and 
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distribution of sulfur, phosphorus, and nitrogen during AcoD in a plant-wide scope is also underdeveloped in 

current AcoD models. 
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LIST OF TABLES 
Table 1: Advantages and limitations of five model categories 

Model 
categories 

Advantages Limitations 

Basic kinetic 
models 

• Easy to implement  
• Identify the hydrolysis rate constant 

• Over-simplify the dynamics of rate-
limiting steps 

• Cannot provide direct practical 
knowledge for full-scale 
implementation 

ADM1 

• Most widely applied and recognized models 
in the research area 

• Mechanistic model allowing extensions and 
modifications to broaden its capacity 

• Require an improved practicality  
• Substrate characterization is ponderous  
• Conversion & distribution of S, P, and 

N are underdeveloped 

Statistical 
models 

• Qualitative analysis to aid the design of 
initial conditions and parameters for 
optimum AcoD output  

• Variations in reaction kinetics, 
sensitivities, and inhibition determine 
the accuracy for the full-scale 
predictions 

CFD models 

• Effective and intuitive visual results analysis 
• Reveal the effects of mixing on the AcoD 

processes  
• Provide optimal hydraulic design for AcoD 

system 

• Complex numerical simulation 
• Model instability when the physical 

process is coupled with the biological 
process 

Other 
algorithm 
approaches 

• Minimum requirements for the knowledge in 
the reaction mechanisms and experimental 
parameters measurements during AcoD 

• The lacks of flexibility for reactor 
design and scale up 

• Require complex and diverse input-
output relationships to train the method 
for the real-world scenario  
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Table 2: Key kinetic models applied in anaerobic (co)-digestion. 

Models Expressions Examples of applications 
First order kinetic model 

 

 

(Dennehy et al., 2016; Kafle & Chen, 
2016; Xie et al., 2011) 

Monod kinetic model 
 

(Lokshina et al., 2001) 

Contois kinetic model 
 

(Karim et al., 2007) 

Haldane kinetic model 
 

(Carrera-Chapela et al., 2016; 
Senthamaraikkannan et al., 2015) 

Chen and Hashimoto model 
 

(Ma et al., 2013) 

Modified Gompertz 

 

(Xie et al., 2011; Zhao et al., 2016) 

Dual pooled first order 
kinetic model  

(Dennehy et al., 2016; Rao et al., 
2000) 

Where, S is the substrate concentration (g/L); B is the microorganism concentration (g/L);  is the 

maximum specific substrate uptake rate (d-1);  is the maximum specific growth rate (h-1); Y is growth yield 
coefficient (dimension less);  is Contois kinetic constant (dimension less);  is the half saturation coefficient 
(g/L); n is the Haldane index (n=1 or 2);  is the inhibition constant (g/L); M represents the cumulative 
methane yield (mL/g VS); P stands for the ultimate methane yield (mL/g VS); HRT is digestion time or 
hydraulic retention time (d);  is Chen and Hashimoto kinetic constant (dimension less); k is a first-order rate 
constant (1/d); t refers to the digestion time (d); Rmax is the maximum methane production rate (mL/g VS/d);  is 
the lag phase (d); e is the constant 2.7183;  is the rate constant for rapidly degradable substrate (d-1),  is the 

rate constant for slowly degradable substrate (d-1), and  is the ratio of rapidly degradable substrate to total 
biodegradable substrate. 
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Figure 2: Anaerobic digestion model: (1) acidogenesis from sugars, (2) acidogenesis from amino acids, (3) 
acetogenesis from LCFA, (4) acetogenesis from propionate, (5) acetogenesis from butyrate and valerate, (6) 
aceticlastic methanogenesis, and (7) hydrogenotrophic methanogenesis (modified from Batstone et al. (2002)). 
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