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Mobile Robot Localization and Mapping using a
Gaussian Sum Filter

N. M. Kwok, Q. P. Ha, S. Huang, G. Dissanayake, and G. Fang

Abstract: A Gaussian sum filter (GSF) is proposed in this paper on simultaneous localization
and mapping (SLAM) for mobile robot navigation. In particular, the SLAM problem is
tackled here for cases when only bearing measurements are available. Within the stochastic
mapping framework using an extended Kalman filter (EKF), a Gaussian probability density
function (pdf) is assumed to describe the range-and-bearing sensor noise. In the case of
a bearing-only sensor, a sum of weighted Gaussians is used to represent the non-Gaussian
robot-landmark range uncertainty, resulting in a bank of EKFs for estimation of the robot
and landmark locations. In our approach, the Gaussian parameters are designed on the basis
of minimizing the representation error. The computational complexity of the GSF is reduced
by applying the sequential probability ratio test (SPRT) to remove under-performing EKFs.
Extensive experimental results are included to demonstrate the effectiveness and efficiency
of the proposed techniques.

Keywords: Gaussian sum filter, distribution approximation, mixture reduction, simultaneous
localization and mapping.

1. INTRODUCTION

Mobile robots have been utilized to work for and with
humans in an ever increasing pace. In addition to the
motorized mobility, it is a fundamental requirement that
a mobile robot should be able to know its position within
its operating environment before any assigned task can
be accomplished [1], for example; in space exploration,
underwater navigation, warehouse and office deliveries.
Furthermore, a priori knowledge of the environment
may not always be available, such as in cases of search
and rescue operations, otherwise a cost has to be invested
in structuring the environment. Therefore, it is impor-
tant that the robot is able to build a map of its operating
area. In most situations, the mobile robot is equipped
with internal sensors, e.g., wheel encoders, that provide
information on the robot motion from which the robot
location is inferred. However, internal sensors operate
in an open loop without external references tend to accu-
mulate location errors over time. External sensors, e.g.,
laser scanner, sonar or camera, are therefore frequently
mounted on the mobile robot to provide some kind of
external references to landmarks for its localization. Ex-
ternal sensors may provide measurements in the form
of range-and-bearing or just range-only or bearing-only
measurements. Consequently, the type of sensor used
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plays a crucial role in the performance of any estimator
or filter designed to localize the robot and to build a map.

The pioneering work on SLAM was presented in [2]
and introduced the concept of state estimation. A frame-
work using the stochastic mapping was proposed in [3]
to estimate the robot location, based on the Bayesian es-
timation theory. It was implemented via an extended
Kalman filter (EKF) with the availability of a range-
and-bearing sensor. The work reported in [4] derived
the convergence properties for the SLAM problem, us-
ing an EKF and also assuming that range-and-bearing
measurements were available. Specifically, the stochas-
tic mapping approach implements an EKF subjected to
the pre-requisite that the system is linearizable and, most
importantly, that the estimation uncertainty can be de-
scribed by a Gaussian probability density function (pdf)
whose characteristic parameters are the mean and co-
variance. The EKF then propagates the mean and co-
variance through filter iterations and provides an op-
timal estimate in the sense of minimum mean-square-
error. When range-and-bearing measurements are pro-
vided, the a priori pdf of a landmark can be charac-
terized by a Gaussian and the EKF can be applied di-
rectly. However, when only the bearing measurement
is obtained, specially designed estimators must be em-
ployed due to the violation of the spatial Gaussian pdf
assumption. This bearing-only SLAM problem is the
focus of the work presented here.

It is anticipated that for bearing-only SLAM, some
form of representation of a non-Gaussian pdf should
be adopted or appropriate filters have to be employed.
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In [5], a particle filter (PF) [6] was used to estimate
the range of a landmark to the robot in a target track-
ing application. However, quite often the PF is com-
putationally expensive because the representation of the
non-Gaussian pdf requires a large number of weighted
samples. The PF is also liable to the pre-mature conver-
gence or sample impoverishment problem where sam-
ples tend to concentrate on a small region of the solution
space. Hence, the PF needs to be modified to counteract
the sample impoverishment problem [7]. An approach
that makes use of reduced particle representation and
Kalman filtering was reported in [8]. The technique can
be traced to the fundamental derivation of the Gaussian
sum filter (GSF) as proposed in [9]. For this, an arbi-
trary pdf is represented by a weighted sum of Gaussians
and the estimation is proved to comply of EKFs. The ba-
sic idea is to coordinate multiple filters, each operates in
an appropriate solution domain, and the results are opti-
mized via a weighted sum. This philosophy is also ap-
plied in the form of a mixture of expert systems [10]. A
variation of the weighted sum principle also found many
applications such as in radar tracking [11], vehicle track-
ing [12] and air traffic control [13]. These implemen-
tations present an interactive multi-model configuration
where computational complexity can be reduced.

The bearing-only SLAM problem requires some spe-
cial treatment as the system dimension is not constant
and measurements are incomplete due to the lack of
range information. Initially, before any landmark is ob-
served, the system contains only the robot location and
orientation. The system dimension increases when land-
marks are observed and included in the estimator, thus,
leads to the initialization problem. As range information
is missing, the landmark location cannot be inferred di-
rectly from one bearing measurement. A delayed initial-
ization strategy was implemented in [14], whereby land-
marks were incorporated into the EKF after confirm-
ing that the associated uncertainty has been described
with sufficient accuracy by a Gaussian pdf. The uncer-
tainty was firstly represented by using a large number
of samples and tested by a goodness-of-fit metric using
the Kullback divergence. However, the use of numerous
samples would increase the computational load. Simi-
lar delayed strategy using an EKF was described in [15]
where the use of samples was avoided but delays were
still encountered. Recently, there has been some re-
search on implementing an un-delayed strategy where
landmarks are incorporated into the estimator when they
were firstly observed. In our preliminary work [16], a
GSF was used in SLAM with efficiency improved by the
sequential probability ratio test (SPRT). The un-delayed
strategy was also adopted in [17] with special treatment
on the representation by Gaussians. In the work therein,
the non-Gaussian pdf was represented by the geometri-
cally distributed hypothesis as suggested in [18].

The implementation of a GSF is, in fact, a paral-
lel running of multiple EKFs. The major drawback of
the GSF is its multiplicative complexity as compared
to a single EKF. This observation naturally demands
for an efficient implementation by removing redundant
EKFs that do not contribute significantly to the state es-
timate. In [19], the significance of individual EKFs were
checked statistically for removal through a greedy algo-
rithm. An approach based on cost functions was adopted
in [20] to decide on the construction of the Gaussian
sum. However, these methods rely on the supply of sam-
ples as training data which is not rationally justifiable in
the SLAM context. For this, the work in [21], where dis-
tances between Gaussian mixtures were derived, may be
promising in dealing with the construction of Gaussian
sums.

In this work, a GSF will be applied in solving the
SLAM problem for a mobile robot using bearing-only
measurements. The contributions of this paper are
twofold. First, the choice of the number of Gaussians
and their parameters in the GSF will be elaborated. In-
sights will be given by formulating a relationship be-
tween the Gaussians and a specific approximation er-
ror probability. Secondly, an efficient method that over-
come the computational complexity will be proposed
here. The test and removal of redundant EKFs will be
implemented on the basis of the SPRT to guarantee a
predefined tolerable decision error with a finite number
of tests required.

The rest of the paper is organized as follows. In Sec-
tion 2, the SLAM problem is briefly reviewed within the
stochastic mapping framework and the need for Gaus-
sian representation is introduced. Section 3 will be de-
voted to the development of the GSF with considerations
on landmark initialization constraints, choice of GSF pa-
rameters and strategies to reduce the computational com-
plexity. In Section 4, results from experiments using a
Pioneer mobile robot will be given to illustrate the effec-
tiveness of the proposed approach. Finally, a conclusion
is drawn in Section 5.

2. LOCALIZATION AND MAPPING

When a mobile robot is deployed in its operating envi-
ronment, it is required that the robot keeps tracking of its
own location and orientation, and be able to model the
environment in the form of a feature based map. Fig-
ure 1 illustrates the SLAM process for the conventional
range-and-bearing case. This problem is cast as a state
estimation process where the Bayesian estimation phi-
losophy is applied.

The location of the robot is referred to a world-
coordinate frame and its orientation is measured coun-
terclockwise with respect to the x-axis. Landmarks are
assumed to be scattered across the operating area and
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Fig 1: Simultaneous localization and mapping.

the sensor returns range and bearing measurements rel-
atively to the robot position. The robot motion is de-
scribed by a system or process model and the sensor is
characterized by a measurement model.

2.1. System Model
Let the system be described by a state vector and

evolves in discrete time, that is [1]

xk+1 = f(xk,uk +wk), (1)

where x is the state vector consisting of the robot and
landmark locations, f is the process model, u is the con-
trol command, w is the control noise having a Gaussian
pdf and subscript k is the discrete time index.

The state is, in general, not directly measurable but
through noisy measurements described by a measure-
ment model

zk = h(xk)+vk, (2)

where h is the observation function and v is the observa-
tion noise with an arbitrary statistical characteristic.

In the Bayesian estimation framework, information
about the system is contained in the a posterior pdf.
When observations are available, we are interested in the
conditional pdf

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (3)

where Zk is the aggregated observations available up to
time k, and

p(zk|Zk−1) =
∫

p(zk|xk)p(xk|Zk−1)dxk, (4)

is a normalization factor.
Further manipulation can lead to a recursive estimator

given by a prediction step as

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (5)

When implementing the above Bayesian estima-
tion procedure for the special case of a linear pro-
cess/observation system with noises described by a sin-
gle Gaussian, the well known Kalman filter can be ap-
plied. For non-linear process/observation models, an
EKF is frequently used, provided that the system is lin-
earizable.

2.2. Stochastic Mapping
When the discrete sampling time is small and the

robot is moving at a low speed, the process model may
be linearized by a Taylor series expansion from which
the EKF is derived. Furthermore, if the sensor is able to
provide sufficiently accurate measurement to landmarks
(e.g., range-and-bearing measurements), then the obser-
vation model is also linearizable with acceptable lin-
earization errors. In practice, most sensors can be char-
acterized by a Gaussian pdf on its measurement errors.
Based on the above conditions, the stochastic mapping
for a mobile robot proceeds as given in the following
steps with the use of an EKF [3].

1. When k = 0, set

x0 = xv,0 ← 03×1 (6a)

P0 = Pv,0 ← 03×3, (6b)

where the subscript v stands for the robot, xv =
[xv,yv,φv]T , (xv,yv) is the robot location and φv is
the robot orientation. The zero settings denote the
initial location of the robot being at the origin of a
co-ordinate frame with zero uncertainty.

2. When k ≥ 0, issue command uk to drive the robot
and make prediction on the robot state, according to

xk+1|k = f(xk|k,uk) (7a)

Pk+1|k = ∇fxPk|k∇fT
x +∇fuΩ∇fT

u , (7b)

where the notation (k + 1|k) denotes the transition
from time k to k + 1, ∇fx and ∇fu are Jacobians of
the process model with respect to the state and con-
trol, and Ω is the covariance matrix of the odometer
noise given by

Ω =
[

σ2
v 0

0 σ2
γ

]
, (8)

where σv and σγ are the standard deviations of the
speed and turn-rate measurement noise.

3. If an observation, with range and bearing (r,θ) is
declared from a new landmark, then perform the ini-
tialization as follows.

(a) Generate an initialization function

g = (xT
v ,xT

f o,x
T
f (r,θ))T , (9)
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where x f o is some previously registered land-
mark, x f (r,θ) is the newly observed landmark
with the range and bearing measurements and

x f (r,θ) =
[

xv + r cos(φv +θ)
yv + r sin(φv +θ)

]
(10)

(b) Perform system augmentation

xk+1|k ← [xT
v ,xT

f o,x
T
f ]

T (11a)

Pk+1|k ← ∇gP−∇gT , (11b)

where

P− =
[

Pk+1|k 0
0 R

]
(12a)

R =
[

σ2
r 0

0 σ2
θ

]
, (12b)

σr,σθ are the standard deviations of the range
and bearing measurement noise assuming a
Gaussian pdf, and ∇g is the Jacobian of the
initialization function with respect to the sys-
tem state and measurements.

4. If the observation is from a previously registered
landmark through a data association process, then
perform a Kalman filter update by calculating

ν = z−h(xk+1|k) (13a)

S = ∇hPk+1|k∇hT +R (13b)

K = Pk+1|k∇hT S−1, (13c)

and

xk+1|k+1 = xk+1|k +Kν (14a)

Pk+1|k+1 = Pk+1|k−KSKT, (14b)

where ν is the innovation, S is the innovation covari-
ance, ∇h is the Jacobian of the measurement model with
respect to the robot and measured landmark, K is the
Kalman gain.

2.3. Bearing-only SLAM
Bearing-only SLAM is more challenging than the

range-and-bearing SLAM process as the sensor only
provides bearing measurements. As noted from the
stochastic mapping procedures, it is difficult to initialize
a landmark without range information. Furthermore, a
Gaussian pdf is ineffective to describe the associated un-
certainty in the range to the landmark. Some researchers
have adopted a delayed initialization strategy, e.g., [14]
and [15]. However, it is generally not straightforward
to assign decision rules (with specific probability of er-
ror in decisions) and to determine when such decision
can be made in order to incorporate a new landmark into

the system. Fortunately, a further investigation into the
stochastic mapping procedure reveals that, if the noise
characteristic from the bearing measure can be modelled
as a Gaussian then the EKF iterations can still be applied.

In the current research, we will present an application
of the Gaussian sum filter consisting of a bank of EKFs
to the bearing-only SLAM problem. This filter is a very
attractive candidate as the EKFs can be applied with a
proper representation of the initial pdf for the range to
a landmark. The computational burden of using a bank
of parallel EKFs will be resolved by reducing the num-
ber of EKFs through a hypothetical test where decision
errors can be explicitly specified.

3. GAUSSIAN SUM FILTERING

The Gaussian sum filter is directed towards represent-
ing an arbitrary pdf with the use of a mixture or a num-
ber of weighted Gaussian pdfs. It has been demonstrated
that the representation error can be maintained at a low
level, with proper choices on the mixture parameters,
namely, the set of weighting factors, the means and vari-
ances of the Gaussians. Figure 2 illustrates the concept
of a Gaussian sum filter. Each Gaussian is operative in
an EKF which conducts its own estimation of the robot
and landmark location. Their outputs are then weighted
and summed to provide an overall aggregated estima-
tion.

In general, for an arbitrary pdf, one can have the fol-
lowing approximate distribution

p(x)≈
N

∑
i=1

αiN(mi,Ωi), (15)

where N is the number of Gaussians in the sum, αi is
the weight, mi ∈ Rd and Ωi ∈ Rd×d are the means and
covariances of individual Gaussians

N(mi,Ωi) = 1√
(2π)d |Ωi|

exp(− 1
2(x−mi)T Ω−1

i (x−mi)),

(16)

Fig 2: Concept of Gaussian sum filter.
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and where d is the dimension of the Gaussian pdf, the
weights are constrained by

N

∑
i=1

αi = 1, αi ≥ 0 ∀i, (17)

and the vector of parameters is defined as

ϑ , [mi,Ωi] = [mi1, · · ·mid ,Ωi11, · · · ,Ωidd ]. (18)

When it is required, e.g., to associate measurements
to registered landmarks, the aggregated filter output may
be calculated sequentially from time k to k +1 by

xk+1|k+1 =
N

∑
i=1

αk+1
i xi,k+1|k+1 (19a)

Pk+1|k+1 =
N

∑
i=1

αk+1
i (Pi,k+1|k+1 + P̄i), (19b)

where

αk+1
i =

αk
i λi

∑N
j=1 αk

j λ j

λi =
1√

(2π)d |Si|
exp(−0.5νT

i S−1
i νi)

Si = ∇hPi,k+1|k∇hT +R

P̄i = (xi,k+1|k+1−xk+1|k+1)(xi,k+1|k+1−xk+1|k+1)
T ,

(20)

and weight αk+1
i is denoted as the normalized weight

at time k + 1, λi is the likelihood of an individual EKF,
νi is the innovation corresponding to measurements, P̄i
is the error covariance matrix and xi,k+1|k+1 is the state
estimate from each elementary filter of EKFs.

When the summed representation is applied in the a
priori pdf in the conditional pdf (3), the stochastic map-
ping can be carried out by a bank of EKFs as shown
in [9]. The remaining problem renders to how to choose
the Gaussian sum parameters.

3.1. Choice of Parameters
By invoking the principle of maximum entropy for

insufficient reasoning, the initial range pdf for a new
observed landmark is assigned with a uniform distribu-
tion. Assume that a range measurement is available, it is
treated as a random variable due to noise corruptions. If
one knows the mean and variance, then a Gaussian distri-
bution can be used to describe the measurement without
risking over-confidence. If only the mean is available,
the exponential distribution is required to represent the
variable. On the other hand, when the mean and variance
are both unknown, which is the case for a bearing-only
sensor, the uniform distribution has to be used instead.
In addition, the bearing measurement error distribution

can be characterized by a Gaussian distribution as nor-
mally found in practical sensors.

Let the bearing sensor operates within a working
range, r ∈ [rmin,rmax]. We assume that the desired pdf is
represented by a sum of N Gaussians of a given pd(x).
Now we propose a Gaussian sum with the same num-
ber of components as that of the desired pdf, then the
probability that the approximation error to be maintained
above a threshold can be given by the Chebyshev in-
equality. That is, for one of the Gaussian

P(||ϑp−ϑd || ≥ ε)≤ ||ϒ||
ε2 , (21)

where ϑp and ϑd are the parameters of the proposed and
desired Gaussian sums, ε is the error bound, ||ϒ|| is the
Frobenius norm1 for the covariance ϒ of the difference
between the parameters.

If the N groups of proposal parameters are chosen
identically and independently, we may invoke the weak
law of large numbers and have

P
(||ϑ̄p−ϑd || ≥ ε

)≤ ||ϒ||
Nε2 = τ, (22)

where ϑ̄p is the sample mean of the parameters, and τ is
the error probability threshold.

Examining the above inequality, we see that for a
given number of Gaussians and a fixed approximation
error ε , the error probability threshold τ is only af-
fected by the distribution of the parameters via ϒ. It
is, in general, difficult to assign the individual param-
eters for the proposed Gaussian sum. Alternatively, the
choice of parameters should avoid potential risks of be-
ing over-confident. Therefore, by invoking the princi-
ple of maximum entropy, we maximize the magnitude of
the covariance ϒ. Since a uniform distribution maintains
the largest entropy, we assign the means of the Gaus-
sians to be evenly allocated within the working range
r ∈ [rmin,rmax]. That is

mi = rmin +
(rmax− rmin)

2N
(2i−1), i = 1 · · ·N. (23)

Similar argument also leads to the assignment of equal
weighting factors when a landmark is firstly initialized,
that is

αi = N−1, ∀i. (24)
Regarding the selection of the covariances Ωi, the de-

sired pdf is chosen as uniform over the sensor range.
Without loss of generality, assume that the support of
the uniform pdf spans ±1. Furthermore, consider the
approximation of this uniform pdf by a single Gaussian
(which is normalized to such a scale compatible to the
span of the support) as shown in Figure 3, where the ap-
proximation error is shown by the shaded areas.

1The Frobenius norm, ||ϒ||=
√

∑i ∑ j |γi j|2, is adopted here as
the matrix norm because the off-diagonal elements in ϒ represent-
ing the orientation of the distribution are also taken into account.
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Fig 3: Gaussian approximation error.

Let the probability of the Gaussian approach zero for
the supports far away from ±1, then the approximation
error also tends to zero. Furthermore, let the variance of
the Gaussian be selected such that the errors within and
beyond the uniform pdf are given by

εin =
∫ 1

−1

∣∣∣∣
1√

2πσ
exp(

−x2

2σ2 )− 1
2

∣∣∣∣dx (25a)

εout =
∫ ∞

1

2√
2πσ

exp(
−x2

2σ2 )dx, (25b)

where σ is the variance of the Gaussian.
In addition, let there be a second Gaussian, e.g., on

the right-hand side (for positive supports x > 0), but the
means and variances of the two Gaussians are selected
such that they span the same support as before. Then the
approximation error from the second Gaussian will com-
plement the first Gaussian, see Figure 4 (shaded area).
Considering the left-hand side Gaussian, the lack of rep-
resentation to the uniform pdf (upper right area) is com-
pensated by the additive portion contributed from the
second Gaussian on the right-hand side.

Taking the absolute approximation error as a measure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

complemented error

Fig 4: Complemented approximation error.

of the errors, the exact cancellation of errors within the
uniform pdf is achieved by selecting the variance such
that the Gaussian function is set at the point where the
two Gaussians joint. The variances of the Gaussians can
be determined by letting the Gaussian intersect the uni-
form pdf at x = 1 such that the Gaussian is half of its
peak, i.e.,

exp(
−x2

2σ2 ) = 0.5, (26)

or x = 1.1774σ . Thus

σ = 0.85, (27)

with reference to the ±1 limits on the uniform pdf. Fig-
ure 5 illustrates the effect of the choice of the Gaussian
variance. The graph shows the uniform pdf (rectangle)
to be represented and the Gaussians (dotted) and their
sum (solid) for the use of 2, 5, 10 and 20 Gaussians re-
spectively. It is observed that a smaller number of Gaus-
sians, e.g., 2 Gaussians, gives a coarse representation;
while the use of a larger number of Gaussians (up to 30
Gaussians) provides a very small approximation error.

Note that since the support of the uniform pdf is
halved due to the addition of the second Gaussian, the
remaining approximation error is also halved. There-
fore, the approximation error decreases monotonically
when the number of Gaussians increases, provided that
the variance of the Gaussians is selected corresponding
to the separation of their means, i.e.,

σi = (0.85∆m)/2, ∀i (28a)
∆m = mi+1−mi, 1 < i < N−1. (28b)

Given an error threshold ε , the number of Gaussians
can then be calculated. The reduction of the approxi-
mation error by adding Gaussians is determined by the
number of Gaussians used.

Figure 6 illustrates the approximation error against the
number of Gaussians (solid) and the reduction in the er-
ror (dotted). When using more than 8 Gaussians, the re-
duction in approximation error is not significant as com-
pared to the maximum error from using a single Gaus-
sian. Furthermore, since the approximation error (25a,
25b) is the integration of the error across the supports,
the distribution of the error itself then becomes irrele-
vant. It is obvious that the law of diminishing return ap-
plies in this case, i.e., the gain in using a large number of
Gaussians diminishes. Moreover, the number of Gaus-
sians used is also determined by the trade-off between
the approximation accuracy and the permissible compu-
tational resource. Here, according to the argument stated
above, we choose 9 for the number of Gaussians used
in the representing the range measurement uncertainty.
This number will be reduced, in order to decrease the
computational complexity, as described in the following
section.
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Fig 5: Approximation of uniform pdf. (a) 2 Gaussians,
(b) 5 Gaussians, (c) 10 Gaussians, (d) 20 Gaus-
sians.
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Fig 6: Approximation error vs. number of Gaussians.

3.2. Reduction of EKFs Used
The number of Gaussians or extended Kalman filters

used in the Gaussian sum filter, to a certain extent, af-
fects the computational efficiency of the filter. There-
fore, the number of EKFs used should be kept as small
as possible provided that the range measurement pdf, in
the SLAM context, is adequately represented within a
specified error limit. The strategy adopted in this work
is that when a EKF is ensured of superior performance,
the other elementary filters in the GSF are then removed
in order to reduce the computational complexity.

Sequential Probability Ratio Test
The sequential probability ratio test (SPRT) is a

decision-making technique that allows for the choice of
a delayed decision in addition to the conventional ac-
ceptance and rejection decisions and does not require a
knowledge of the likelihood distribution to derive the de-
cision thresholds.

In our SLAM problem with the Gaussian sum filter
approach, the ratio of the innovations from the EKFs is
used as the test metric. We define the hypotheses as

H0 : this particular EKF truly estimates
the system states

H1 : any other EKF truly estimates the
system states.

(29)

Given the null H0 and alternative H1 hypotheses and
the thresholds A and B, the test procedure is conducted.
At time indexed by kd , the null hypothesis for the i-th
EKF is accepted if

kd

∏
k=1

p(νi(k)|H0)
p(νi(k)|H1)

> A, (30)

and the alternative hypothesis is accepted if

kd

∏
k=1

p(νi(k)|H0)
p(νi(k)|H1)

< B, (31)
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otherwise, additional measurements to obtain νi(k + 1)
at the next time step are required. Note that νi(k) stands
for the innovation of the i-th EKF at time index k.

The relation between the thresholds and decision er-
rors of false alarm αa and missed detection αb is given
by the following expression and can be user-specified.
In our implementation the common practice that both er-
rors are specified at 0.05 is followed.

A≈ 1−αb

αa
, B≈ αb

1−αa
. (32)

Test Against Multiple Alternatives
In cases where there are multiple alternatives such as

estimates resulting from a bank of EKFs, several choices
for the likelihood of the alternative hypothesis may be
considered, for example:

Minimum:

p(νi|H1) = min
j=1, j 6=i

{p(ν j|H1)}, (33)

Maximum:

p(νi|H1) = max
j=1, j 6=i

{p(ν j|H1)}, (34)

Average:

p(νi|H1) =
1

N−1

N

∑
j=1, j 6=i

p(ν j|H1). (35)

The minimum likelihood approach is aggressive, aim-
ing to reduce the number of EKFs in a minimum num-
ber of iterations. However, in some situations there may
be other equivalently performing EKFs close to the best
performing one. At the other end of the spectrum, the
maximum ratio strategy adopts a conservative philoso-
phy. It may take extensive filtering iterations before the
next high-performing EKF is sufficiently inferior to the
best performing EKF. Hence, a delayed improvement on
the computational efficiency is expected. The averaging
approach smooths out the likelihood ratio sequences and
produces a moderate decision strategy. Thus, it compro-
mises between the risk involved and the efficiency im-
provement. Therefore, the latter approach is adopted in
this work.

Removal of Elementary EKFs
Assume that the GSF is operating with a total number

of EKFs. When a decision is made according to SPRT,
one of the EKFs (e.g., the k-th) will remain in the filter
bank (the null hypothesis accepted) while all others are
removed from the GSF. The aggregated system estimates
(19) are copied to the k-th EKF and its weight is set to
unity. The outcome is therefore an efficient implemen-
tation of a GSF which reverts to that of using a single
EKF, and hence resulting in a significant reduction in
complexity.

3.3. Data Association and Landmark Initialization
Data association is the procedure as of how a given

measurement is linked to a registered landmark in the
system. The conventional approach is used here to im-
plement a nearest neighbor test. Given, for example, a
bearing-only measurement θ , its statistical distance to a
registered landmark is inferred by the normalization of
the difference from the expected bearing, that is

γ = ν2S−1 (36a)

ν = θ − θ̂ (36b)

θ̂ = arctan
(

y f − yv

x f − xv

)
−φv (36c)

S = ∇hT P∇h+σ2
θ , (36d)

where θ̂ is an expected bearing measurement. Note that
the innovation and its covariance are calculated corre-
sponding to the aggregated system states.

Associating Existed Landmarks
When landmarks are observed repeatedly, the mea-

surements will be used to update individual EKFs. Since
the measurements are obtained from the real robot and
landmarks, data association is conducted using the ag-
gregated state estimations, as given by the procedure of
(36). On the contrary, if data association is conducted for
an individual EKF, some EKFs will not be updated due
to failures in data association. Consequently, the weights
of EKFs cannot be adjusted. In this work, we adopt
the conventional Mahalanobis distance based nearest-
neighbor validation using the χ2 test. For instance, for a
5% error threshold, the threshold on γ is set at 3.84 for a
one degree-of-freedom distribution.

Initializing Landmarks
When a new landmark is observed while the GSF is

operating, it is incorporated into all the EKFs. Since the
location of the new landmark is independent of the land-
mark estimates in the GSF, it is difficult to assign the
weights of individual EKFs after the landmark initial-
ization. The following strategy is adopted on the basis
of the fact that, the best estimation at hand is the aggre-
gation of estimations from the EKFs. Here, we regener-
ate the full number of EKFs by copying the aggregated
estimation to all EKFs and initialize each of them using
the bearing measurement and a randomly picked pseudo
range given by (23). All the weights are reset to N−1.

3.4. Computational Complexity
In [5], a particle filter is applied in estimating the

ranges of targets using bearing-only sensors. In prin-
ciple, the PF [6] is a sample-based implementation of
the Bayesian estimation theory. Notably, the PF is ef-
fective in formulating estimators for non-linear and non-
Gaussian systems in contrast to the widely used EKF.
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The EKF, in turn, is efficient for systems that are linear
and uncertainties can be modelled by Gaussian pdfs.

In the PF, a pdf is represented by a large number of
particles or samples,

p(xPF) =
∞

∑
i=1

wiδi(x−xi), (37)

where wi is the weight of a sample, such that ∑∞
i wi = 1,

and δi is a Dirac delta function which is zero everywhere
except at xi.

For the EKF, the pdf is parameterized by its mean m
and variance Ω,

p(xKF)=
1√

(2π)d |Ω| exp
(−0.5(x−m)T Ω−1(x−m)

)
,

(38)
where, again, d is the dimension of the Gaussian.

In order to truly approximate an arbitrary pdf, the
number of samples used in a PF could approach an in-
tractable large number. Otherwise, if insufficient sam-
ples are used (e.g., less than 10000), due to compu-
tational resource limitations, sample impoverishment
problems [22] may render the PF impracticable. On the
other hand, the EKF represents the pdf by parameteriz-
ing the mean and variance and the GSF contains a small
multiple of these parameters. Therefore, the number of
parameters is significantly less than the number of sam-
ples used in PFs. The update of the PF also requires to
calculate the likelihood functions in accordance to the
number of samples. Thus, an additional complexity is
further added to the PF implementation.

4. EXPERIMENTS

4.1. Experimental Setup and Evaluation
Several experiments have been conducted to illustrate

the effectiveness of the proposed Gaussian sum filter-
ing approach for mobile robot localization and mapping.
The robot, Pionner DX2, is driven to follow several tra-
jectories with different starting positions and in different
laboratory environments. The robot moves at 0.15m/sec
and turns at±6deg/sec maximum. Furthermore, a laser
scanner (SICK LMS200) using only the bearing mea-
surements, as the proof-of-concept, and a camera are
used as the sensing device. The laser scanner provides
scans across 180◦ in front of the robot, landmarks are
extracted from scans using reflector strips. The camera
gives 256 gray-level images of 200× 150 pixels reso-
lution, contains a 60◦ field-of-view, also pointing for-
ward from the robot. Landmarks are extracted from in-
terest points at the transitions of furniture edges and the
floor [7].

The estimated robot trajectories resulted from vari-
ous implementations and the produced maps are used to
quantify the effectiveness of the proposed method. Since

the range-and-bearing SLAM using a laser scanner has
been thoroughly studied, its results are used as the refer-
ences comparing the results from GSF implementations.
In addition, they are also compared against a single EKF
and the conventional GSF (without EKF reduction by
SPRT). The SLAM quantity is evaluated according to
the root-mean-squared values of the robot position er-
ror as well as the landmark location errors. Moreover,
the estimation uncertainties are assessed by the geomet-
ric mean between the range-bearing SLAM and the pro-
posed GSF uncertainties. Laser scans of the environment
are also included as a visual reference.

4.2. Using Bearings from a Laser Scanner
Trajectory 1

For the test on trajectory 1, Fig, 7, the robot (shown
as a triangle) moves on a counterclockwise circular path
(the center circle) where its position is relative to its ini-
tial position at time zero. Figures 7(a) and 7(b) show the
mapped environment and the corresponding position er-
ror when only odometer feedback is used to estimate the
robot position. The map of the environment generated is
not satisfactory which shows inconsistence on the laser
scans of the laboratory. On the other hand, if the esti-
mated robot position is correct, the laser scans should
overlap and produce a concise boundary of the labora-
tory. The position errors (middle lines in the sub-figures
of Fig. 7(b)) also grow unbounded against time (upper
and lower lines are the 3σ uncertainty bounds) over the
tested period for 500 steps of 0.2sec each due to the ac-
cumulation of uncorrected errors.

Results using a single EKF are shown in figures 7(c)
through 7(e) respectively. The mapped environment
shows consistence with the reference range-and-bearing
SLAM results. The robot position errors are bounded
within the uncertainties and are much reduced as com-
pared to the case of using odometry only. However, it is
noted here that the magnitude of uncertainties are larger
as compared to the GSF approaches presented in the se-
quel. Landmark location errors are small but initial er-
rors are larger than the GSF cases, which signifies the
need for the proper representation of landmark range un-
certainty.

A conventional GSF, using 9 EKFs as the proposed
GSF, is implemented where the reduction of EKFs is not
included. Results are shown in figures 7(f) to 7(h). Sat-
isfactory results are depicted for a consistent environ-
ment map with small robot and landmark errors. Results
from the proposed GSF implementation, with SPRT-
based EKF reduction, are depicted in figures 7(i) to 7(l).
Map and position/location errors are comparable to the
conventional GSF case. In addition, it should be noted
here that the number of EKFs included in the GSF, Fig.
7(l), has been reduced to one when the GSF converges
with all landmarks in the environment being observed.
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Trajectory 2

In this case, the robot is driven in the same laboratory
as the previous experiment. However, the robot starts
at a different position, thus, a different landmark obser-
vation sequence is obtained in this experiment. Results
are show in figures 8(a) to 8(l) separately. Similar con-
ditions as trajectory 1 are observed in this experiment.
Hence, the GSF approach is considered as effective on a
different environment and initial condition.

Trajectory 3

The robot is ported to another laboratory and the tra-
jectory starts from a circular path, then a straight line
(toward the left-hand side), back to the left and then an-
other semi-circular path. Results are shown in figures
9(a) through 9(l). Again, the resultant laboratory map
is not satisfactory when using odometry to estimate the
robot position. For the rest of the experiments, outcomes
are comparable to the previous two cases with the pro-
posed GSF approach producing efficient and effective
localization and mapping.

Trajectory 4

A forth trajectory is followed by the robot in the same
environment as for trajectory 3, but the robot starts at a
different position giving different landmark observation
sequences. Figures 10(a) to 10(l) depict the experimen-
tal results obtained in this case. SLAM quantities are
equivalent to the previous cases, hence, the proposed ap-
proach is also considered satisfactory.

4.3. Using a Camera
A camera is further used as the sensor when the robot

follows trajectories 1 to 4 respectively. Typical images
captured by the camera are shown in figures ?? and ??
containing scattered image frames from frame 1 to frame
500 corresponding to the GSF iteration time steps. The
scene illustrates test-benches, cabinets and chairs in the
laboratory. Furthermore, since laser reflectors are not
visually extractable, only robot position errors are con-
sidered while landmark errors are not evaluated in the
context of localization.

Trajectory 1

Figures 11(k) and 11(l) contain results for the mapped
environment and the robot position errors, respectively.
The mapped environment illustrates a consistence as
compared to the range-and-bearing SLAM case. The po-
sition errors are bounded within the uncertainties. How-
ever, due to the limited camera field-of-view and resolu-
tion, results are inferior to the experiment using the laser
scanner.

Table 1: Localization and mapping errors: using laser
scanner.

Error Odometry EKF GSF SPRT
Trajectory 1

xv 0.152 0.026 0.025 0.015
yv 0.176 0.021 0.020 0.019
φv 11.545 1.272 0.523 0.378
fx NA 0.120 0.109 0.093
fy NA 0.073 0.082 0.047

Trajectory 2
xv 0.179 0.022 0.020 0.021
yv 0.193 0.022 0.012 0.020
φv 12.783 0.442 0.798 0.921
fx NA 0.057 0.062 0.071
fy NA 0.040 0.035 0.044

Trajectory 3
xv 0.430 0.024 0.027 0.025
yv 0.752 0.048 0.041 0.042
φv 24.146 0.505 0.493 0.594
fx NA 0.024 0.036 0.030
fy NA 0.019 0.035 0.025

Trajectory 4
xv 0.652 0.063 0.041 0.042
yv 0.434 0.053 0.047 0.046
φv 26.510 1.691 0.548 0.502
fx NA 0.056 0.038 0.036
fy NA 0.107 0.016 0.020

Trajectory 2

Results from this experiment are shown in figures
11(m) and 11(n). Observations and comments to the re-
sults from trajectory 1 also apply here. Moreover, the
robot position errors maintain a similar order of mag-
nitude as the previous case. Hence, the proposed GSF
approach is considered consistent in performance.

Trajectory 3

Figures 12(k) and 12(l) contain results for the mapped
environment and the robot position errors while the robot
is following trajectory 3. The mapped environment illus-
trates, as for trajectories 1 and 2, a consistence as com-
pared to the range-and-bearing SLAM case. The posi-
tion errors are also bounded within the uncertainties.

Trajectory 4

The robot is further driven in an additional trajectory.
Results from this experiment are shown in figures 12(m)
and 12(n). They are equivalent to the results from tra-
jectory 3 in the previous experiment. However, due to
the limited camera field-of-view, occlusion and different
landmark observation sequences, results are inferior to
those obtained from trajectory 3.
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Table 2: Localization errors: using camera.
Trajectory Error

xv yv φv
1 0.174 0.093 2.940
2 0.072 0.091 3.888
3 0.110 0.164 3.566
4 0.125 0.134 4.732

4.4. Discussion
Experimental results are further summarized in tables

1 and 2. In the tables, the robot position errors are de-
noted by xv,yv,φv while the landmark errors are given
by fx, fy. In Table 1, the first column contains errors
resulted from using only the odometry to estimate the
robot position. The second column shows errors from
using a single EKF for bearing-only SLAM. The third
and forth column give results from using a conventional
GSF (without EKF reduction) and the proposed GSF
(with EKF reduction, and is denoted by SPRT) respec-
tively. These errors are computed by taking the root-
mean-squared values over the GSF iteration sequence.
The location errors are given in meters(m) and the ori-
entation error is given in degrees(◦).

In Table 1, the smallest error is indicated in bold-face
while the worst ones are denoted in italics. It is observed
that the best and worst indicators are spread across the
different EKF/GSF implementation approaches. How-
ever, it should be emphasized that most worst-case re-
sults come from the EKF case while the proposed SPRT
implementation gives most of the best results. In addi-
tion, worst case errors from the single EKF have a higher
order-of-magnitude (shown in bolded-italics) than both
the GSF/SPRT approaches. Hence, a single EKF is un-
reliable in the bearing-only SLAM problem paradigm.
It is also further noted that the proposed GSF has used
a diminishing number of elementary EKFs in the filter
with a reduction in computational complexity.

Results from using a camera are summarized in Table
2. Evidently, errors of equivalent order of magnitudes
are observed. Although the orientation errors are larger
as anticipated, which is mainly due to limitations in the
camera field-of-view and resolution. Nonetheless, the
vision-based GSF implementation is performing satis-
factorily.

5. CONCLUSION

We have presented a Gaussian sum filter for the es-
timation of the mobile robot pose and landmark loca-
tions, in the SLAM context for an unstructured environ-
ment using a bearing-only sensor. Due to the lack of
range measurements, stochastic mapping using an EKF
is replaced with a Gaussian sum filter in the form of a
bank of EKFs. The parameters of the initial Gaussians

are determined on the basis of the approximation error
incurred by using the Gaussian sum for representing a
uniform probability density function. A proper compro-
mise between the accuracy and complexity suggests a
practically tractable initial number of EKFs to be used.
The implementation complexity is further reduced by re-
moving non-performing EKFs via the sequential proba-
bility ratio test. The ultimate GSF then reverts to a single
EKF. Experiments have been conducted using the bear-
ing measurements form a laser scanner and a camera as
the bearing-only sensors in several environments and tra-
jectories followed by the robot. Our results have shown
that the proposed GSF implementation method is effec-
tive and efficient. Further work is directed towards im-
plementations in large operating environments.
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Fig 7: SLAM results from trajectory 1: Odomoter:- (a) Mapped environment; (b) Robot position error and uncer-
tainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark errors.
Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h) Landmark er-
rors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k) Landmark
errors; (l) No. of EKFs used in the GSF.
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Fig 8: SLAM results from trajectory 2: Odomoter:- (a) Mapped environment; (b) Robot position error and uncer-
tainties. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark errors.
Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h) Landmark er-
rors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k) Landmark
errors; (l) No. of EKFs used in the GSF.
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Fig 9: SLAM results from trajectory 3: Odomoter:- (a) Mapped environment; (b) Robot position error and uncer-
tainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark errors.
Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h) Landmark er-
rors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k) Landmark
errors; (l) No. of EKFs used in the GSF.
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Fig 10: SLAM results from trajectory 4: Odomoter:- (a) Mapped environment; (b) Robot position error and un-
certainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark errors.
Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h) Landmark
errors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k) Landmark
errors; (l) No. of EKFs used in the GSF.
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Fig 11: Typical images of the laboratory environment for trajectories 1 and 2, (a)-(j). SLAM results from using
camera: Trajectory 1:- (k) Mapped environment; (l) Robot position error and uncertainty. Trajectory 2:- (m)
Mapped environment; (n) Robot position error and uncertainty.
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