
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Can SDN technology be transported to software-

defined WSN/IoT?

Thi Minh Chau Nguyen, Doan B. Hoang, Zenon Chaczko

University of Technology Sydney

Faculty of Engineering and IT

Sydney, Australia

ThiMinhChau.Nguyen@student.uts.edu.au, Doan.Hoang@uts.edu.au, Zenon.Chaczko@uts.edu.au

Abstract— Wireless sensor networks (WSNs) are essential

elements of the Internet of Things ecosystem, as such, they

encounter numerous IoT challenging architectural, management

and application issues. These include inflexible control, manual

configuration and management of sensor nodes, difficulty in an

orchestration of resources, and virtualizing sensor network

resources for on-demand applications and services. Addressing

these issues presents a real challenge for WSNs and IoTs. By

separating the network control plane from the data forwarding

plane, Software-defined networking (SDN) has emerged as

network technology that addresses similar problems of current

switched-networks. Despite the differences between switched

network and wireless sensor network domains, the SDN

technology has a real potential to revolutionize WSNs/IoTs and

address their challenging issues. However, very little has been

attempted to bring the SDN paradigm to WSNs. This paper

identifies weaknesses of existing research efforts that aims to

bring the benefits of SDN to WSNs by mapping the control plane,

the OpenFlow protocol, and the functionality between the two

network domains. In particular, the paper investigates the

difficulties and challenges in the development of software-defined

wireless sensor networking (SDWSN). Finally, the paper proposes

VSensor, SDIoT controller, SFlow components with specific and

relevant functionality for an architecture of an SDWSN or SDIoT

infrastructure.

Keywords—Software-defined networking, software-defined

wireless sensor network, software-defined IoT

I. INTRODUCTION

Wireless sensor networks (WSNs) were developed in the
early 2000s and are now widely used in monitoring and
tracking applications, e.g., seismic and structural monitoring,
inventory location monitoring, indoor or outdoor environmental
monitoring, power monitoring, and health and wellness
monitoring as well as humans, vehicles, objects, or animals
tracking [1]. However, as part of the IoTs era where every
network-capable devices are connected as part of some Internet
applications, WSNs have to overcome their limitations such as
limited storage, low processing capacity short transmission
range, high energy consumption, and underutilization. They are
also application-dependent [1] and hard to manage with manual
configuration and rigid policy [2]. Architecture, routing
protocols, energy minimization algorithms and management
schemes have been proposed, but their complexity prevents
them from widespread deployment.

The Internet has grown into a huge and global
interconnecting infrastructure, yet this conventional network is
still using complicated and cumbersome network management
systems that deal individually and manually with numerous
network elements; complex and intertwined distribution of
network control and transport protocols [3]; and rigid support
for applications and services. In particular, a network device
cannot be updated, replaced, or reconfigured easily without
affecting other network devices because its distributed control
plane and data plane are both embedded in the device itself.
New protocols or network architectures cannot be introduced
for innovative and emerging applications. A new networking
technology is needed and SDN is not only that technology but
also a new networking paradigm because the ideas and
principles behind SDN are applicable to control, management,
and other networking domains. SDN attracts not only academia
but also the networking industry with its four key benefits [3]:
1) the separation of the control plane and the data plane,
allowing them to evolve independently and leaving networking
devices simple to forward data efficiently; 2) the centralization
of network control at a controller external from the network
device (the SDN controller or a Network Operating System
(NOS)); 3) the network programmability via software
applications running at the control or application planes; and 4)
the use of flow-based forwarding rules instead of destination-
based decisions. Despite the differences between switched
network and wireless sensor network domains, the SDN
technology has a real potential to revolutionize WSNs/IoTs and
address their challenging issues. However, very little has been
attempted to bring the SDN paradigm to WSNs. Several surveys
on various efforts in extending SDN paradigm to WSNs
appeared recently in [4, 5]. Reference [5] presents a general
view of work on SDN to SDWSN migration without analyses of
any specific SDWSN aspects. State of the art of SDWSN
research is discussed in [4] which reviews recent studies
extending SDN paradigm not only to sensor networks but also
to other wireless networks including cellular, mesh and home
networks. In [4], related works are classified into three groups:
solutions to challenges of SDWSN design, resource allocation
and management, and hierarchical scalable architectures.
However, there is a little in-depth discussion on SDWSN style
of networking. This paper reviews recent efforts in transporting
SDN to SDWSN with full benefits. In particular, the paper
discusses issues and challenges in applying software-defined
paradigm to WSNs/IoTs. Finally, the paper proposes an
architecture with relevant SDIoT/SDWSN controller, SFlow,

mailto:ThiMinhChau.Nguyen@student.uts.edu.au
mailto:Doan.Hoang@uts.edu.au

and VSensor components for software-defined WSN and
software-defined IoT environment.

The remainder of this paper comprises four sections. Section
II discusses advantages and challenges in adapting software-
define paradigm to WSNs. Section III synthesizes recent works
regarding OpenFlow-based SDN architectures, SDWSN
controller’s placement, SDWSN southbound interface (SBI),
the protocol stack of sensor nodes and sink nodes. Section IV
discusses and proposes the functionality of the control plane, the
SBI, and the data plane with virtual sensors. Section V
concludes this paper.

II. SDN PARADIGM: BENEFITS AND CHALLENGES TO WSNS

A. SDN architecture

SDN components consist of SDN devices, controllers and
applications, falling into three main planes, namely data,
control, and application planes respectively [3, 6] (Fig. 1).
Communication between the control plane and the others is via
two main interfaces, called SBI and northbound interface (NBI).

1) Data plane
The data plane comprises both virtual and physical SDN

devices, known as SDN switches. These devices consist of
functional elements including a packet-processing function, an
abstraction layer, and an application programming interface
(API), known as a SBI [7]. The packet-processing function is
responsible for handling arriving packets based on
specifications of flow entries in flow tables provided by the
controller. The abstraction layer abstracts the SDN device as a
set of flow tables. To allow SDN devices to upward interact
with the control plane, a SBI is needed to define communication
approaches, message types, and a secure communication
channel between the two entities.

2) Control plane
The SDN control plane mainly 1) manages the infrastructure

layer and implements policies to the data plane via the SBI, and
2) provides a global view of the underlying network for the
application plane via the NBI [3, 6]. It includes basic
components such as device manager, packet processing unit,
topology manager, routing and SBI [8].

3) Application plane
The application plane houses network services and

applications. Via a highlevel programming language in the
control plane, the applications can access the global network
view and use the underlying services to execute a function. In
particular, requirements for a SDN application are defined and
translated into commands to program SDN switches [3].
Network services are used to execute network applications and
provide them with APIs to communicate with other planes.

4) Northbound interface (NBI)
The NBI is a bridge between the application plane and the

control plane. It allows end-host applications to autonomously
and dynamically to send requests to the underlying network.
The NBI enables application developers to control and program
the network [6]. It provides the application plane with the
abstraction of low-level instructions to allow the SBI to
configure SDN devices. The NBI is defined as a software

system, not a hardware one. Requirements for different network
applications are different, so NBIs are various. Currently, there
is a wide range of NBIs as RESTful APIs, Ad Hoc APIs, file
systems, and other specific APIs like SDMN API, NVP NBAPI.
However, none of them is considered as a standardized NBI [3].

Fig. 1. SDN architecture [8]

5) Southbound interface (SBI)
SBI is a bridge between the control plane and the data plane

[3]. It offers an interaction method between the control and data
elements, as well as a set of instructions to forwarding devices.
Some SDN controllers may support a single type of SBI. SDN
SBI proposals include SoftRouter, ForCES, and OpenFlow.
They are different in terms of architecture, design, protocol
interface and forwarding model. By comparing their differences
and similarities, OpenFlow-based SDN provides higher
flexibility and control in terms of development, administration,
and network management [3, 9]. It is not surprised that
OpenFlow-based SDN paradigm has been applied to a number
of proposed SDWSN architecture [2, 10-15].

The OpenFlow protocol allows SDN switches to interact
with the control plane. SDN switches with OpenFlow
implementation include three main components, namely flow
tables, OpenFlow secure channel, and OpenFlow specification.

B. SDN paradigm and its implication on WSNs

Software-defined networking is not just a new networking
technology; it is a new paradigm that opens up explorations and
solutions in provisioning and management of resources from
infrastructure to applications and services. The logically
centralized control allows controllers to gain a complete
information base of the underlying network for optional and
real-time provisioning of network services. Programmability of
the control plane allows autonomous configuration and
management of network devices. Virtualization of resources
allows physical resources to be virtualized and support
simultaneously multiple services and users.

WSNs do not really operate the same way as switched
networks, but they exhibit many similar characteristics.
Networked sensors are network devices and they have to be
configured and managed by their controllers. WSNs often
organized into clusters and managed by cluster controllers. In a
comprehensive application, a WSN may employ a large number
of sensor nodes. Clearly, the above SDN paradigm would bring

benefits to WSNs if applied appropriately. Efforts have been
made to realize these benefits as follows.

Simple sensor node and energy saving [11, 16]: sensor
nodes simply forward data based on the decision of the control
logic. Energy consumption of a sensor node is thus reduced.

Routing protocol: Routing technique can be highly
improved in OpenFlow-based SDWSN structure. Yuan, et al.
[17] design a new routing protocol integrating OpenFlow
protocol and a wireless sensor link-state routing protocol which
can send less than a half control packets per minute and
independently operate when the controller fails. With similar
concern, Han and Ren [18] has proposed a new routing protocol
in a clustered SDN-based WSN structure. Compared to
LEACH, LEACHM, and DEEC, the routing protocol has better
performance concerning the death node number, the network
lifetime, and especially a greater advantage in data transmission.

Network management: network characteristics can be
remotely and centrally configured instead of manually and
individually reconfigured. A smart network management has
been proposed in [11] to address WSN problems such as power
consumption, sensor node mobility, localization and topology
discovery, and network management. Nonetheless, the proposal
has not been evaluated for its efficiency; the authors suggest as
a future research, to estimate the method’s performance
regarding reliability and security. Furthermore, it focuses on the
controller architecture without discussion of the SBI.

Network programmability and innovation: network policies
can be programmed by the software running on the control
plane [3, 8] by defining flow entries. This enables a higher
degree of innovation in designing network protocols.

Network function virtualization [8]: a sensor node can be
virtualized to perform the desired network function through a
hypervisor in the controller. This opens up a new dimension of
services and services provisioning.

Efficient network utilization and services development: with
the global view of the underlying network, the controller is able
to create virtual networks based on its network abstraction and
virtualizes sensor nodes to handle specific-purpose applications.
This allows deployment of multiple WSN applications over a
single physical WSN [2, 19]. Moreover, the controller can
flexibly allocate appropriate network resources to an
application. This allows the developments of infrastructure as a
service [19] and platform as a service.

Energy efficiency: This can be achieved with appropriate
SDWSN architectures that enable efficient transmission of
packets over WSNs [16].

Cloud integration: A cloud can play an integral part in WSN
applications by releasing sensor nodes the burden of data
storage and data processing. With the extension, sensing as a
service can be developed with SDWSN.

C. Challenges in translating SDN to SDWSN

SDN is originally designed for wide area networks with
powerful switching and routing devices, so it is difficult to
completely apply SDN principles to WSNs because of the
constraints of sensor nodes and the limitations of the wireless

medium. Essentially, sensors are not switched network devices
and hence they are limited in their capability. Furthermore, they
do not always use IP protocol for communication. Developing
an OpenFlow-based SDWSN model may encounter many
technical challenges.

1) Designing an OpenFlow-based SDWSN SBI
Many difficulties are encountered in emulating an

OpenFlow-style SBI because of the differences in the
functionality of a switched network device and a sensor.

 Data Plane – Flow creating: typical WSNs employ
different addressing as attribute-based naming instead of
using IP-like addressing, while packets are processed
based on flow entries using IP addresses [2]. This
prevents the SDWSN SBI from creating flow entries, so
two methods are suggested: 1) modifying matching field
of flow tables or 2) using uIP/uIPv6 or Blip [2].

 Secure channel establishment: a TCP/IP connection
between the control plane and the data plane is
established based on the IP addresses from two
participants in the communication [2].

 In-network processing module is needed to wirelessly and
remotely update sensor firmware and software according
to future demands [2].

 Control traffic overhead: the secure channel can be only
hosted with in-band management or out-of-band
management in wired networks, whereas only in-band
management is supported in wireless networks, leading to
an overhead of both data and control traffic [2, 10].

 Traffic generation: traffic is has to be generated to
conform with the flow entry definition of OpenFlow
specifications, so a traf-gen module is needed for each
sensor node [2].

 Power efficiency: it is essential to support duty cycles
[15] to periodically turn off the radio, and in-network data
aggregation to remove redundant data [2, 15]. This is
addressed by an in-net proc module [2] or an additional
aggregation player in the protocol architecture of sensor
nodes, or new actions in flow tables [15].

 Backward and peer compatibility: SDWSN design is
expected to be compatible with traditional networks
without SDWSN SBI or OpenFlow support [2].

2) Designing a SDWSN node
Without changing the basic functionality of a sensor, the

challenge is to empower it with adequate capability for
software-defined control: a capacity for flow table storage, and
capability for handling flow requests from low-tier nodes or the
controller. Following aspects should be taken into consideration
in designing a SDWSN node.

 New hardware architecture for sensor nodes may be
needed to allow flow-table implementation from the
controller. Additionally, memory capacity can sufficiently
store the implemented flow tables.

 Processing speed: SDWSN nodes have to handle a large
number of requests from applications and other nodes.

Current switches are unlikely to tackle flow demands
from applications because the SDN devices only forward
data and frequently request instructions from the
controller to handle arriving packets. This leads to poor
performance of the controller regarding processing power
and switch-controller link congestions [9].

 Standardized protocol stack: to support network
virtualization requires accesses to heterogeneous sensor
nodes to create multiple virtual WSNs for various WSN
applications. Moreover, sensor nodes with different
higher protocol layers are difficult to migrate between
different networks and communicate with sensor nodes in
these networks. Well-defined functional layers are needed
for a proper interaction between the nodes and the control
software.

III. CURRENT RESEARCH ON SDWSN

Most of the ongoing research efforts propose their models
based on the OpenFlow-based SDN principles. These proposals
can be classified into four groups in terms of SDWSN
architecture, SDNWSN controller position, SBI design, the
protocol stack of sensor nodes and sink nodes.

A. SDWSN architecture

Fig. 2. Software-defined wireless sensor network architecture [2]

Early research efforts in SDN-WSN integration have
focused on defining a meaningful and effective architecture.
They focus on different aspects of the architecture: SDN
architecture for WSNs [20], multi-controller support [10],
controller placement [11], and controller core functions [11].
Generally, following the OpenFlow-based SDN structure,
SDWSN architecture is structured into three main planes:
application, control and data planes [2, 11, 20] (Fig. 2). The data
plane composes of sensor nodes forwarding flows of packets.
The control plane is responsible for deploying the desired
network management policy [15], routing and performing
routing and QoS network control [2]. Specifically, the controller
is responsible for flow- table definition, mapping function, and
mapping information. SDWSN applications can be
implemented on top of the control plane [20]. The applications
can be associated with the networking of the WSN, e.g.,
topology control and routing [20]. APIs are needed to allow
communications between the planes. However, no attention is
paid to the SDWSN NBI and only a few designs of SDWSN

SBIs are proposed in [2, 12, 15], but they mainly rely on the
OpenFlow.

B. Controller placement

TABLE I. SDWSN CONTROLLER POSITIONS

SDWSN

structure

Controller Position SDWSN switch function

Layered SDWSN architecture

Type 1 Remote server Sink or gateway

Type 2 Base station N/A

Clustered SDWSN architecture

Type 1 Cluster head Gateway/sink/base station

Type 2 Cluster head Sensor nodes

Type 3 Remote server Cluster head

Looking from the architectural angle, the primary concern of
SDWSN control plane is if it is distributed or centralized [3].
The position of the controller significantly impacts the SDWSN
performance in terms of energy consumption, scalability and
reliability. Most of SDWSN architectures are proposed with
both centralized [11, 14, 16, 18, 20] and distributed control
plane [10, 12, 15, 21, 22]. The two approaches result in
differences in position and function of the SDWSN controller
and SDWSN nodes (Table I).

The controller can be deployed in a base station [11, 16], a
remote server [15], a sink [15], or in a cluster head [16, 18, 22].
In particular, in the centralized model, the central controller is
responsible for the whole network and it can reduce
synchronization time between distributed control planes.
However, a network with only one controller may face with an
insufficient undertaking of a huge number of flows, and difficult
management of a large scale network [6]. Moreover, it may
become a single point of failure and limited in scalability [3].
Alternatively, the distributed structure has a flexible scalability
and resilience varying to different network scales [3], but they
may encounter a consistency issue. Placing the controller at the
cluster head can bring benefits such as power reduction [16],
network stability, routing efficiency [18], and fewer messages
exchanged among sensor nodes . In a clustered network, a
sensor node can act as a gateway, sensor node enabling
SDWSN SBI, a local cluster head or a SDWSN switch.

C. SDWSN SBI

To be an OpenFlow-based SBI, the SDWSN SBI must
preserve essentially the propertied of the OpenFlow protocol.
However, because of the different characteristics between the
switched network and the wireless sensor network, major
modifications to the original design of the OpenFlow protocol
(mentioned in section II.C) are required for it to be applicable to
WSNs. To meet those requirements, three proposals to SDWSN
SBIs are proposed, namely sensor OpenFlow protocol [2],
SDWN protocol [15], and SDN-WISE protocol [12], an
extension of the SDWN protocol. Properties of the SDWSN
SBIs are presented in Table II.

Lou, et al. [2] has initially analyzed challenges of applying
SDN to SDWSN and suggested corresponding solutions.
However, they mainly focus on ideas without performance
evaluation of their proposal or specifications for sensor

OpenFlow in terms of message type, packet format and
operation. These limitations have been improved by the
proposal of SDWN [15] which consists of sensor OpenFlow
features and offers other significant features like duty cycles
configuration, flexible definition of flow entries (or called flow
rules), in-network data aggregation, and actions to enable cross-
layer optimizations. Nonetheless, the proposal fails to provide
protocol details and performance evaluation. Only SDN-WISE
protocol [12] presents a more completed proposal supporting
flexible rules extended from the rule definitions proposed in
[15]. Specially, the SDN-WISE is stateful protocol compared to
the stateless traditional OpenFlow. Furthermore, SDN-WISE
has been simulated with OMNet++ simulator [12]. To optimize
the power usage in WSNs, the SDN-WISE protocol is designed
to support duty cycle and data aggregation, but the there is no
evaluation for the two features.

TABLE II. SPECIFICATIONS OF CURRENT PROPOSALS FOR SDWSN SBI

D. Protocol stack of sensor nodes and sink node

To support SDWSN SBIs that behave like OpenFlow,
supporting protocol stacks of both controller and sensor nodes
are firstly proposed in [15] and extended in [12].

1) The sink node
The control logic may be deployed in a sink node [15] or in

a remote server [12], called controller node. The controller node
consists of two different parts (Fig. 3): the lower part for
handling the communication with generic nodes and the upper
controller part for handling the controller’s functionality and
network virtualization [12, 15]. The controller part comprises
three layers, called Adaption, Virtualizer [15], [12] and Control
layers. They are responsible for formatting messages according
to the SDN-WISE protocol, for creating abstractions of the
underlying networks used for network virtualization, and for
network management policy (e.g., creating flow tables and
defining appropriate rules for receiving packets) respectively.

2) The sensor node
Regular sensor nodes enabling SDWSN SBI are called

software-defined wireless sensor nodes (SDWS nodes). The
protocol stack of SDWS node is defined in [12, 15], as depicted
in Fig. 4. In addition to the regular layers, MAC and PHY, other
three layers are needed, such as FWD (processing incoming
packets in accordance to flow rules specified by the controller),
AGGR [15] or INPP [12] (performing tasks related to in-
network processing or data aggregation), and NOS or TD
(controlling layers as FWD, AGGR or INPP).

Fig. 3. Protocol stack of SDWS controller node [15]

Fig. 4. a) SDWN [15] and b) SDN-WISE [12] generic-node protocol stack

IV. SDWSN/SDIOT PROPOSAL

 Although many research efforts have extended the SDN
paradigm into WSNs, not much attention has been directed to
the design of the controller in the control plane, the
functionality of sensors in the data plane, and the API between
them. Most try to reuse the OpenFlow with minor modifications
and with little consideration of the WSN environment. It is
clear from our review and discussion; we observe the following.

Sensors are not network devices in the traditional switched
network and hence they should not be concerned with the
heavy-duty source-destination routing functionality. The
functionality and characteristics of sensors should be preserved:
simple data sensing point, minimum energy consumption, and
simple operation.

A controller in this SDWSN environment should not be
burdened with the heavy-duty of a SDN controller with
complex network operating system functionality; it should only
be concerned with managing and configuring its sensors and
sharing sensor recourses among its applications. Its scope
should be confined to the sensor services that can be offered to
the applications.

OpenFlow protocol a) is relevant for SDN switched devices
but is far too heavy and many features are unnecessary for
sensor devices, and b) does not configure devices but requires
OF-CONFIG to do so. From these observations, we propose the
following:

Creating a VSensor class: VSensor is a software-defined
virtual sensor. VSensor can be seen as an entity that represents a
single or multiple physical sensors, a single or multiple software
sensors (software interrupts, software alerts, software agents,
etc.) VSensor can be programed, configured and managed by its
controller in only relevant aspects of a sensor, not an SDN
network device.

Features Sensor

OpenFlow [2]

SDWN

[15]

SDN-WISE

[12]

Flow entry details Yes Yes Yes

Matching field Yes Yes Yes

Action field No Yes Yes

Statistic No No Yes

Packet header details No Yes Yes

Message type details No Yes Yes

Duty cycle No Yes Yes

Data aggregation No Yes Yes

In-band management Yes Yes Yes

Out-of-band management Yes No No

Implementation No No Yes

Stateful protocol No No Yes

Creating a SDWSN or SDIoT controller: The controller will
have few specific functions: managing, configuring,
programming VSensors, virtualizing sensor resources under its
control and providing sensor services as part of an overall
application. An SDIoT controller an also be considered as an
end user of a network endpoint that generates sensor data and
launches it into the interconnecting network infrastructure (the
IoT Internet, SDN networks, switched networks, clouds, etc).

Creating a SFlow southbound protocol: The protocol is
created in the same spirit/style as the OpenFlow, but it is not for
SDN devices. That means that it is not designed for routing
TCP/IP or UDP/IP ultimate source and destination flows.
Furthermore, SFlow will incorporate simple protocol for
configuring VSensor as an integral part of the SBI.

From the proposed three components, it is clear that the
three planes of SDN along with the benefits of the technology
are preserved. However, SDWSN/SDIoT can operate separately
from SDN or below the data plane of SDN. With this proposal,
SDWSN or SDIoT can easily be integrated into a global
software defined infrastructure (SDN, NFV, Cloud, IoTs) and
still preserves the simplicity and economy of sensors and
benefits of software-defined centralized control, virtualization,
programmability, and autonomous management and
configuration. For example, with the provision of classes of
VSensor, any request of WSN/IoT applications can be handled
by tailoring or extending the VSensor class. The
SDWSN/SDIoT controller can create on-demand VSensors or
networks of VSensors via the proposed SFlow southbound
protocol. The controller is able to create a graph of virtual
sensor networks and to configure VSensors in accordance to the
application’s demands. The noting point in the design is that the
SDWSN/SDIoT network would enable application designers to
design their applications without knowledge of the underlying
infrastructure, but they can control any connecting underlying
sensors through the VSensor. Currently, we are in the process of
designing and implementing the proposed architecture and its
components.

V. CONCLUSION

This paper discusses advantages and challenges to the SDN-
WSN integration. Ongoing research efforts extending SDN
paradigm into WSNs are discussed in terms of the proposed
SDWSN architectures, SDWSN controllers and their placement,
SBI specifications, and protocol stack of SDWSN sensor nodes.
Based on these studies and observations, the paper proposes a
SDN-style architecture and defines the functionality of
components of the control plane, the data plane, the interface
between the two planes for SDWSN/SDIoT, and trust aspects of
IoTs [23].

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network
survey," Computer Networks, vol. 52, pp. 2292-2330, 2008.

[2] T. Luo, H.-P. Tan, and T. Q. S. Quek, "Sensor openflow: enabling

software-defined wireless sensor networks," Communications Letters,
IEEE, vol. 16, pp. 1896-1899, 2012.

[3] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve

Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-defined

networking: a comprehensive survey," Proceedings of the IEEE, vol.
103, pp. 14-76, 2015.

[4] I. T. Haque and N. Abu-Ghazaleh, "Wireless software defined

networking: a survey and taxonomy," IEEE Communications Surveys &
Tutorials, vol. PP, pp. 1-1, 2016.

[5] N. A. Jagadeesan and B. Krishnamachari, "Software-defined networking

paradigms in wireless networks: a survey," ACM Computing Surveys
(CSUR), vol. 47, p. 27, 2014.

[6] J. Xie, D. Guo, Z. Hu, and T. Qu, "Control plane of software defined

networks: a survey," 2015.
[7] N. V. R. Gupta and M. Ramakrishna, "A Road Map for SDN-Open Flow

Networks," International Journal of Modern Communication

Technologies & Research (IJMCTR), vol. 3, 2015.
[8] D. Hoang, "Software defined networking–shaping up for the next

disruptive step?," Australian Journal of Telecommunications and the

Digital Economy, vol. 3, 2015.
[9] H. Fei, H. Qi, and B. Ke, "A survey on software-defined network and

openflow: from concept to implementation," IEEE Communications

Surveys & Tutorials, vol. 16, pp. 2181-2206, 2014.
[10] B. Trevizan de Oliveira, M. C. Borges, and G. L. Batista, "TinySDN:

Enabling multiple controllers for software-defined wireless sensor

networks," in Communications (LATINCOM), 2014 IEEE Latin-
America Conference on, 2014, pp. 1-6.

[11] A. D. Gante, M. Aslan, and A. Matrawy, "Smart wireless sensor

network management based on software-defined networking," in 27th
Biennial Symposium on Communications (QBSC), 2014, pp. 71-75.

[12] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, "SDN-WISE:

design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks," in 2015 IEEE Conference on Computer

Communications (INFOCOM), 2015, pp. 513-521.

[13] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, "Reprogramming
wireless sensor networks by using sdn-wise: a hands-on demo," in IEEE

Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2015, pp. 19-20.
[14] A. Mahmud and R. Rahmani, "Exploitation of OpenFlow in wireless

sensor networks," in 2011 International Conference on Computer

Science and Network Technology (ICCSNT), 2011, pp. 594-600.
[15] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, "Software

defined wireless networks: unbridling sdns," in European Workshop on
Software Defined Networking (EWSDN), 2012, pp. 1-6.

[16] P. Jayashree and F. Infant Princy, "Leveraging sdn to conserve energy in

wsn-an analysis," in 3rd International Conference on Signal Processing,
Communication and Networking (ICSCN), 2015, pp. 1-6.

[17] A. S. Yuan, H.-T. Fang, and Q. Wu, "OpenFlow based hybrid routing in

Wireless Sensor Networks," in 2014 IEEE Ninth International
Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), 2014, pp. 1-5.

[18] Z.-j. Han and W. Ren, "A novel wireless sensor networks structure
based on the SDN," International Journal of Distributed Sensor

Networks, vol. 2014, pp. 1-7, 2014.

[19] A. Mahmud, R. Rahmani, and T. Kanter, "Deployment of flow-sensors
in internet of things' virtualization via openflow," in Third FTRA

International Conference on Mobile, Ubiquitous, and Intelligent

Computing (MUSIC), 2012, pp. 195-200.
[20] M. Jacobsson and C. Orfanidis, "Using software-defined networking

principles for wireless sensor networks," in 11th Swedish National

Computer Networking Workshop (SNCNW), Karlstad, Sweden, 2015.
[21] R. Sayyed, S. Kundu, C. Warty, and S. Nema, "Resource optimization

using software defined networking for smart grid wireless sensor

network," in 3rd International Conference on Eco-friendly Computing
and Communication Systems (ICECCS), 2014, pp. 200-205.

[22] F. Olivier, G. Carlos, and N. Florent, "SDN based architecture for

clustered WSN," in 9th International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2015, pp. 342-

347.

[23] T. Nguyen, D. Hoang, and A. Seneviratne, "Challenge-response trust
assessment model for personal space IoT," in 2016 IEEE International

Conference on Pervasive Computing and Communication Workshops

(PerCom Workshops), 2016, pp. 1-6.

