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COMPUTATION OF ROBUST H∞
CONTROLLERS FOR TIME-DELAY

SYSTEMS USING GENETICALGORITHMS

H. Du,∗ N. Zhang,∗ and J. Lam∗∗

Abstract

This paper presents an evolutionary computation approach to de-

sign robust H∞ controllers for linear uncertain time-delay systems

via a combination of genetic algorithms (GAs) and linear matrix

inequalities (LMIs). Both state feedback and static output feedback

controllers can be designed with this approach. It is demonstrated

by numerical examples that the controllers designed by this ap-

proach can allow larger delay size than previous results for the same

H∞ performance bound. Hence, this approach is less conservative

than existing methods.
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1. Introduction

Considerable research efforts have been devoted to the
problem of delay-dependent robust H∞ controller design
for linear uncertain time-delay systems. The main objec-
tive of the delay-dependent H∞ control is to obtain a con-
troller such that the maximal delay size for a fixed H∞ per-
formance bound is allowed or the minimalH∞ performance
bound for a fixed delay size is achieved. Hence, the conser-
vatism in the delay-dependent H∞ control is measured by
the allowable delay size or the minimal performance bound
obtained. During the last decades, various approaches
have been proposed to reduce the conservatism of delay-
dependent conditions by using new bounding for cross
terms or choosing new Lyapunov–Krasovskii functional [1–
7]. In particular, a less conservative delay-dependent H∞
control was proposed in [5] for linear systems with a state
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delay based on a new Lyapunov–Krasovskii functional. It
was also shown that the proposed method is much less
conservative than previously existing results presented in
[1, 3] . Further improved conditions for the solvability
of the delay-dependent H∞ control are given in [7] where
newly obtained results with reduced conservatism are es-
tablished.

In most of the previously published research works,
however, the H∞ controller synthesis conditions are pre-
sented in terms of nonlinear matrix inequalities to reduce
the conservatism. Although iterative algorithms have been
developed to solve the nonlinear matrix inequalities due
to the nonconvex feasibility problem, conservatism can be
significant and the iterative algorithms can only locate sub-
optimal solutions. Moreover, these works are only focused
state feedback control. At present, not a lot of efforts
have been given to designing the static output feedback
controllers for time-delay systems although the realization
of the static output feedback controllers is more
practical.

This paper develops an algorithm for designing both
state feedback and static output feedback H∞ controllers
for the linear uncertain time-delay systems. To circumvent
the nonlinear matrix inequality problems involved in the
delay-dependent conditions, the genetic algorithm (GA),
which has been extensively applied in many areas [8, 9]
due to its high potentialities in global optimization, is em-
ployed to search for the possible solutions. Specifically,
in each generation of the GA, potential controller candi-
dates are created for the verification of the closed-loop
H∞ performance via its linear matrix inequality (LMI)
characterization. Numerical examples show that the pro-
posed approach can achieve a significant reduction in the
conservatism when compared with previous results.

2. Problem Formulation

Consider the following state-delayed systems:

ẋ(t) = [A+ΔA(t)]x(t) + [A1 +ΔA1(t)]x(t− τ(t))

+[B +ΔB(t)]u(t) +Bww(t)
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z(t) =

⎡
⎢⎢⎢⎣

C0x(t) +Dww(t)

C1x(t− τ)

Du(t)

⎤
⎥⎥⎥⎦

y(t) = Cx(t)

x(t) = φ(t), t ∈ [−τ , 0] (1)

where x(t)∈R
n is the state; u(t) ∈ R

m is the control
input; w(t) ∈ R

p is the disturbance input that belongs to
L2[0,∞); y(t) ∈ R

p is the measured output; z(t) ∈ R
l is

the regulated output; τ(t) is the time-varying delay of the
system state and is assumed to satisfy 0 < τ(t) � τ , τ̇(t)
� μ, where τ and μ are given constant scalars; φ(t) is a
continuous initial function; A, A1, B, Bw, C0, C1, D, Dw,
and C are known real constant matrices with appropriate
dimensions; ΔA(t), ΔA1(t), and ΔB(t) are time-varying
uncertain matrices of the form:

[ΔA(t) ΔA1(t) ΔB(t)] = MF (t)[N N1 Nb] (2)

whereM , N , N1, andNb are constant matrices, and F (t) ∈
R

q×k is an unknown matrix satisfying F (t)F (t)T � I.
Such parameter uncertainties ΔA(t), ΔA1(t), and ΔB(t)
are said to be admissible. In this paper, we are interested
in designing a memoryless controller K ∈ R

m×p such that:

u(t) = Ky(t) = KCx(t) (3)

such that, for any time delay τ(t) satisfying 0 < τ(t) � τ ,
τ̇(t) � μ,

1. The closed-loop system is asymptotically stable for all
admissible uncertainties.

2. The closed-loop system guarantees, under zero initial
condition, ‖z‖2 < γ‖w‖2, where γ > 0 is a prescribed
constant, for any nonzero w(t) ∈ L2[0,∞).

A controller K satisfying the above conditions is said
to be a γ-suboptimal H∞ controller.

Now, we provide the following theorem based on the
recently published result in [7] with proof omitted.

Theorem 1. If there exist matrices P > 0, Q > 0, Z > 0,
Y , W, K, and a scalar ε > 0 such that the following matrix
inequality holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 + Γ Φ2 +Ψ τ̄Y PBw τ̄ATZ + τ̄(BKC)TZ CT
0 0 (KC)TDT PM

∗ Φ3 + εNT
1 N1 τ̄W 0 τ̄AT

1 Z 0 CT
1 0 0

∗ ∗ −τ̄Z 0 0 0 0 0 0

∗ ∗ ∗ −γ2I τ̄BT
wZ DT

w 0 0 0

∗ ∗ ∗ ∗ −τ̄Z 0 0 0 τ̄ZM

∗ ∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (4)

where Φ1 = PA+PBKC+(PA+PBKC)T −Y −Y T +Q,
Φ2 = PA1+Y −WT , Φ3 = W+WT−(1−μ)Q, Γ = ε[NT+
(KC)TNT

b ][NT+(KC)TNT
b ]T ,Ψ = ε[NT+(KC)TNT

b ]N1,
then there exists a γ-suboptimal H∞ controller for all time
delay satisfying 0 < τ(t) < τ and τ̇(t)�μ.

3. Computational Algorithm

The matrix inequality condition in Theorem 1 is not an
LMI in terms of the decision matrix variables. An iterative
algorithm has been used to solve (4) in most of the pub-
lished works. However, only local solutions can be found
and only state feedback controllers can be obtained (i.e.,
the matrix C is invertible in (1)). In the following, an algo-
rithm which combines the random search capability of GA
with the solvability of LMI will be proposed. Specifically,
we find a desirable controller K by solving the following
maximization problem:

max
K∈Rm×p

τ subject to LMI (4) (5)

In this problem, GA is used to randomly generate a ma-
trix K ∈ R

m×p initially which changes thereafter within
the evolution procedure according to objective (5). If (5)
is feasible for an evolved K, which has the maximum τ ,
then this K satisfies the specifications and thus constitutes
a solution to the design problem. Note that the matrix
inequality (4) is LMI once the control gain matrix K is
known, and this LMI can be solved efficiently by using ef-
ficient convex optimization algorithm. Furthermore, non-
square matrix C cannot affect the characteristic of LMI
in (4) so that the static output feedback controller can be
designed as well by defining an appropriate C matrix.

As the standard GAs can be found in most related
textbooks, an outline of our algorithm, which is similar to
that used in [10], is given below:

Step 1. Use a binary string to encode the feedback
gain matrix K.

Step 2. Generate randomly an initial population of
Np individuals.

Step 3. Evaluate the objective (5) and assign fitness to
every individual. Decode the initial population produced
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in Step 2 into real values for every controller gain matrix
Kj , j = 1, 2, . . . , Np. For every Kj , use the bisection
method to search for the maximum delay τj such that with
such a delay τj and Kj , LMI (4) is feasible. Take every
delay τj as the objective value corresponding to Kj and
associate every Kj with a suitable fitness value according
to rank-based fitness assignment approach, and then go
to Step 4. If for a Kj , there is no feasible delay can be
found such that LMI (4) is feasible, the objective value
corresponding toKj will be assigned a large value to reduce
its opportunity to be survived in the next generation.

Step 4. Use tournament selection approach to choose
the offspring.

Step 5. Perform uniform crossover with probability pc
to produce new offspring.

Step 6. Mutate bits for individuals in the population
with a small mutation probability pm.

Step 7. Retain the best chromosomes in the population
with elitist reinsertion method.

Steps 3–7 correspond to one generation. The evolution
process will repeat for Ng generations or being ended when
the search process converges with a given accuracy. The
best chromosome is decoded into real values to produce
again the control gain matrix.

4. Numerical Examples

The basic GA parameters used in this paper are as follows:
Np =80, pc =0.8, pm =0.01, Ng =30. As GA is a proba-
bilistic search procedure based on the mechanism of natu-
ral selection and natural genetics, to show a fair evaluation,
in the following, we will carry out 50 runs independently
for every case.

Example 1. Consider the example as appeared in [1–7]
with the following system matrices:

A =

⎡
⎣ 0 0

0 1

⎤
⎦ , A1 =

⎡
⎣−1 −1

0 0.9

⎤
⎦ , Bw =

⎡
⎣ 1

1

⎤
⎦ ,

B =

⎡
⎣ 0

1

⎤
⎦ , C0 =

[
0 1

]
, D = 0.1, Dw = 0

Table 1
Statistical Results of GA Approach with 50 Runs: Example 1

γ τ C Matrix Search Range

Minimum Maximum

0.1015 1.3908 (2.04%) 1.4137 (22.45%) I2×2 [−800 800]

0.1015 Not found Not found [1 0] [−800 800]

0.1015 1.4134 (61.7%) 1.4137 (38.3%) [0 1] [−800 800]

0.1287 1.4137 (100%) 1.4137 (100%) I2×2 [−40 40]

0.1287 Not found Not found [1 0] [−400 400]

0.1287 1.4137 (100%) 1.4137 (100%) [0 1] [−40 40]

19.12 36.7195 (2.33%) 68.7248 (2.33%) I2×2 [−100 100]

19.12 0.8991 (2%) 0.9873 (80%) [1 0] [−800 800]

19.12 1.4137 (100%) 1.4137 (100%) [0 1] [−100 100]

As considered in the aforementioned references, the
time delay is constant and hence μ = 0.

In terms of the given H∞ performance bound γ, the
C matrix, and the search range for the controller gain, we
search for the maximal delay size for several cases using the
algorithm (referred to the “GA approach” in the sequel)
presented in the last section. The statistical results for 50
runs are given in Table 1, where the percentages within the
brackets indicate the probabilities of the obtained values in
the 50 runs, i.e., each percentage in the bracket represents
the percentage of solutions that gives minima/maxima and
the number of all the feasible solutions in each of the 50
runs. In the table, “not found” means that, for such
a combination of performance and delay size, a solution
may not exist or if exists, the algorithm cannot find it in
the computational setting. Fig. 1 shows the evolution
process of the maximal delay for 50 runs when γ=0.1015,
C = I2×2. It can be seen from Fig. 1 that every run can
converge to a stable value within 30 generations.

The results listed in Table 1 are obtained based on
certain specified search ranges for the controller gains. In
fact, under the same H∞ performance bound γ, different
search range will affect the obtained maximal delay. For

Figure 1. Evolution process for the maximal time delay
within 50 runs, γ=0.1015.
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Table 2
Statistical Results of GA Approach with Different Search Range in 50 runs

γ τ Feedback Gain Matrix K Search Range

Minimum Maximum

0.1287 1.4138 (2%) 1.4140 (98%) 103[−0.0002 −1.3734] [−104 104]

0.1287 1.4130 (4%) 1.4142 (46%) 105[−0.0001 −5.2260] [−106 106]

0.1287 5.0002 (4%) 8.7503 (2%) 107[0.0193 −8.8135] [−108 108]

Table 3
Comparison of Maximal τ Allowed (State Feedback)

Methods Given γ Maximal τ Allowed Feedback Gain Matrix K C Matrix

Lee et al. [5] 0.1015 0.999 [3.6828 −827.0898] I2×2

GA approach 0.1015 1.4137 [−0.0023 −519.5111] I2×2

Fridman and Shaked [3] 0.1287 0.999 [0 −1.0285× 106] I2×2

Lee et al. [5] 0.1287 1.25 [0.6407 −89.1149] I2×2

Xu et al. [7] 0.1287 1.39 [−0.1120 −74.1909] I2×2

GA approach 0.1287 1.4137 [−0.0010 −8.5979] I2×2

Palhares et al. [6] 19.12 6 [−279.35 −343.6300] I2×2

GA approach 19.12 68.7248 [−99.1695 −99.4198] I2×2

example, when γ=0.1287, we search for the state feedback
controller within different search range. The results are
given in Table 2 from which we can see that under the same
performance bound γ, a larger controller gain is necessary
to ensure a larger delay bound for the same system.

To illustrate the reduced conservatism of the obtained
results, we compare the optimal results for the state feed-
back cases obtained in Table 1 with previous results in
Table 3. We note that the results published in [7] are less
conservative than previous results as the improved matrix
inequalities are used (the result for [7], computed using the
suggested iterative method, was not reported in the pa-
per). However, the H∞ synthesis result in [7] is still based
on the iterative algorithm. It can be seen from Table 3
that for the same performance bound γ, the GA approach
can find the state feedback controllers that allow larger
delay size than existing methods. In this sense, the GA
approach is less conservative than the methods compared.
The GA approach is based on the improved matrix inequal-
ities presented in [7], but the obtained results are much less
conservative than those reported. This shows that the GA
approach has reduced the conservatism caused by using
the iterative algorithm. Furthermore, it is noted that the
state feedback gains obtained by the GA approach are all
smaller than the corresponding ones presented in [5–7] as
we naturally constrain the search range for the controller
gains in the GA approach. A smaller controller for the
same γ will reduce the possibility of input saturation.

Part of the optimal results obtained in Table 1 for the
static output control cases are listed in Table 4. It is ob-
served that even for some obtained static output feedback

Table 4
Optimal Results for Maximal τ Allowed (Static Output

Feedback)

Given γ Maximal τ Allowed Feedback Gain C Matrix

Matrix K

0.1015 1.4137 −367.6754 [0 1]

0.1287 1.4137 −8.2885 [0 1]

19.120 0.9873 0.1060 [1 0]

19.120 1.4137 −0.8004 [0 1]

controllers, they can also allow larger delay size than the
previous results for the state feedback controllers under
the same performance bound in spite of their simplicity.

Example 2. Now, consider the system matrices as:

A =

⎡
⎣0 0

0 1

⎤
⎦ , A1 =

⎡
⎣−1 −1

0 0.9

⎤
⎦ , Bw =

⎡
⎣1
1

⎤
⎦ ,

B =

⎡
⎣0
1

⎤
⎦ , C0 =

[
0 1

]
, D = 0, Dw = 0,

M =

⎡
⎣0.2 0

0 0.2

⎤
⎦ , N = N1 =

⎡
⎣1 0

0 1

⎤
⎦ , Nb =

⎡
⎣ 0

0

⎤
⎦ .

Notice that ‖ � A(t)‖� 0.2, ‖ � A1(t)‖� 0.2. This case has
also been studied in [1, 3, 5–7].
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Table 5
Statistical Results of GA Approach with 50 Runs: Example 2

γ τ C Matrix Search Range

Minimum Maximum

0.03 1.3512 (5.41%) 1.3527 (72.97%) I2×2 [−90 90]

0.03 Not found Not found [1 0] [−900 900]

0.03 1.0384 (100%) 1.0384 (100%) [0 1] [−90 90]

0.01 1.3481 (2%) 1.3512 (12%) I2×2 [−90 90]

0.01 Not found Not found [1 0] [−900 900]

0.01 1.0378 (100%) 1.0378 (100%) [0 1] [−90 90]

Figure 2. Evolution process for the maximal time delay
within 50 runs, γ=0.03.

As in Example 1, the maximal delay sizes for several
cases are searched using the GA approach in terms of a
given H∞ performance bound γ for different C matrices.
The statistical results for 50 runs are given in Table 5.
Fig. 2 shows the evolution process of the maximal delay
for 50 runs when γ=0.03, C = I2×2.

To illustrate the reduced conservatism of the obtained
results, we compare the optimal results for the state feed-
back cases obtained in Table 5 with previous results in

Table 6
Comparison of γ-Suboptimal H∞ Controller (State Feedback)

Methods γ τ Feedback Gain Matrix K C Matrix

de Souza and Li [1] 1.95 0.3 Not provided I2×2

Lee et al. [5] 0.05 0.8 [−0.0337 −64.9821] I2×2

Xu et al. [7] 0.03 0.9 [0.2536 −99.0807] I2×2

GA approach 0.03 1.3527 [−29.9264 −65.6218] I2×2

GA approach 0.01 1.3512 [−33.4319 −73.3984] I2×2

Table 6. It can be seen from Table 6 that even for the case
of γ=0.01, τ =1.3512, a desired robust H∞ state feedback
controller can be computed as [−33.4319 −73.3984] using
the GA approach. This controller achieves a much smaller
γ for much bigger τ which implies that the GA approach
is much more effective than the existing methods.

Part of the optimal results obtained in Table 5 for the
static output control cases are listed in Table 7. It is again
observed that the static output feedback controllers can
allow larger delay size than the previous results for the
state feedback controllers under the same performance.

5. Conclusion

This paper presents an algorithm for designing robust H∞
controllers for uncertain time-delay systems. By using a
GA to search for possible controller gains and solving an

Table 7
Optimal Results for γ-Suboptimal H∞ controller

(Static Output Feedback)

γ τ Feedback Gain Matrix K C Matrix

0.03 1.0384 −33.6042 [0 1]

0.01 1.0378 −55.8804 [0 1]
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LMI, the required controller can be determined. More-
over, appropriate structural constraints can be imposed on
the controllers. Based on the recently developed matrix
inequality condition, the proposed approach reduces the
conservatism resulting from the iterative algorithm when
designing for the H∞ controller. The improvement over
previous methods by allowing a larger delay size under the
same H∞ performance bound has been demonstrated via
numerical examples.
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