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Abstract

While the field of experimental micrometre scale EBIED / IBIED (“electron beam chemistry” or
“ion beam chemistry”) has been growing in recent years, the 3D simulation of these systems at real
scales has been non-existent. This type of simulation is important for it is only in three dimensions

that interesting asymmetric and patterning phenomena can be tracked.

There are a couple of difficulties in these types of simulations. One is solving the diffusion of
adsorbate concentrations in the system. Accurate simulation of diffusion on general 2D surfaces
is non-trivial, (even on 1D curves), and can require unnatural re-parametrization of the surface
(re-meshing). Another difficulty is that simulations have generally been atomistic and limited in
scale. The key to providing large scale 3D simulations comes from applying new, mathematically

robust, computer-science methods based on implicit surfaces to this field.

In this thesis, the issues above are addressed in a couple of different ways. In one case, diffusion
over a complex surface was reduced to piecewise axially symmetric equations. Later, implicit
methods for solving adsorbate kinetics continuum equations and evolving the surface are imple-
mented, the closest point method and the level set method respectively. The development of the
tools themselves is a non-trivial exercise as there are few software libraries for the level set method
and none for the closest point method. These tools were then used independently to simulate etch-
ing and diffusion, as well as in concert to demonstrate the ability to simulate 3D deposition in the

mass transport limited and reaction rate limited regimes.
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