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Abstract

While the field of experimental micrometre scale EBIED / IBIED (“electron beam chemistry” or

“ion beam chemistry”) has been growing in recent years, the 3D simulation of these systems at real

scales has been non-existent. This type of simulation is important for it is only in three dimensions

that interesting asymmetric and patterning phenomena can be tracked.

There are a couple of difficulties in these types of simulations. One is solving the diffusion of

adsorbate concentrations in the system. Accurate simulation of diffusion on general 2D surfaces

is non-trivial, (even on 1D curves), and can require unnatural re-parametrization of the surface

(re-meshing). Another difficulty is that simulations have generally been atomistic and limited in

scale. The key to providing large scale 3D simulations comes from applying new, mathematically

robust, computer-science methods based on implicit surfaces to this field.

In this thesis, the issues above are addressed in a couple of different ways. In one case, diffusion

over a complex surface was reduced to piecewise axially symmetric equations. Later, implicit

methods for solving adsorbate kinetics continuum equations and evolving the surface are imple-

mented, the closest point method and the level set method respectively. The development of the

tools themselves is a non-trivial exercise as there are few software libraries for the level set method

and none for the closest point method. These tools were then used independently to simulate etch-

ing and diffusion, as well as in concert to demonstrate the ability to simulate 3D deposition in the

mass transport limited and reaction rate limited regimes.

xxi





Chapter 1

Motivation and background

1.1 What is EBIED / IBIED?

Electron and ion beam induced etching and deposition (EBIED and IBIED) are a set of techniques

which can modify a substrate with high spatial resolution by a charged particle beam incident onto

a substrate in the presence of an adsorbate gas, see Figure 1.1.

Several physical processes are ongoing simultaneously in this system. An ion beam incident on

the surface will result in a collision cascade which damages the bulk and causes sputtering from

the surface. For an electron beam, damage and sputtering are often negligible. Lower energy

vacuum /
precursor

surface

solid

charged
particle
beam
flux

gas molecules

adsorbatese−

ion
interaction

volume

electron
interaction

volume

FIGURE 1.1: EBIED and IBIED surface schematic.
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“secondary” electrons are generated in all cases, and can escape the solid if they are close enough

to the vacuum-surface interface. Meanwhile, a gaseous precursor is delivered into the system.

Molecules adsorb onto the surface, diffuse along the surface, and desorb from the surface back into

the vacuum with some characteristic residence time. Depending on the adsorbate, a multitude of

things can happen. Adsorbates might spontaneously etch the surface away or build up the surface.

Additionally, adsorbates have an energy dependent interaction with a primary or secondary particle

flux through the surface. In this interaction, the adsorbate might be fragmented into new species.

The surface evolves as a net result of some or all of these EBIED / IBIED processes.

This entire set of processes is surface dependent. Depending on the shape of the surface: 1)

adsorption, diffusion, and desorption can be affected, 2) ion-solid and electron-solid interactions

will vary, and 3) surface evolution itself will be altered. Prior research provides no framework for

modelling this in 3D over micrometre scales, as will be discussed in Section 1.2. This thesis will

focus on the simulation of the surface physics and solving the fundamental problems of interaction,

evolution, and diffusion which arise. The goal is to provide new tools for three dimensional micro

scale simulation of electron and ion beam chemistry.

1.2 Modelling of EBIED / IBIED with a gas precursor

Modelling literature of adsorbate kinetics and surface evolution in EBIED and IBIED dates back

to the 1980s.

For IBIED, generally only adsorbate kinetics or surface evolution was modelled. Many investiga-

tions treated adsorbate kinetics as a steady-state coverage model [1–11], or assumed coverage was

uniform and unity [12, 13]. Surface evolution by the level set method for ion beam sputtering was

modelled by [14, 15].

For EBIED, a dynamic Monte Carlo simulation was used to track deposits in 2D [16–18] and 3D

[19, 20] and eventually added adsorbate diffusion by tracking atomic hops over a nanometre sized

area. Another approach developed was to track coverage [21, 22] and then concentration over the

surface [23–27], sometimes tracking two populations of adsorbate [23, 25, 28–30]. Modelling of

both adsorbate kinetics and surface evolution by a hybrid continuum and Monte Carlo model [31,

32] were two-dimensional, relying on axial symmetry.
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Modelling concepts have been shared by EBIED and IBIED, advancing both. But neither sup-

ports the larger (micro) scale 3D continuum models. This capacity would be useful both because

it is on the scale of the experiment, but also because 3D is interesting when exploring patterns

and asymmetric phenomena. This work applies new techniques to overcome this limitation, and

demonstrates that general surfaces and evolving surfaces can be simulated in concert with mod-

elling electron / ion solid interactions and solving the adsorbate continuum equation to steady

state.

1.3 Experimental EBIED / IBIED

Experimental research in EBIED / IBIED is very active and productive. A number of different

interesting effects and results have been published since 2008, all depending on adsorbate kinetics

driven by electron or ion beams. New 3D pattern formation effects include: pattern formation

induced by ion beam driven atomic surface currents [33], ordered nanodroplets [34], pillar growth

[35], and pyramidal pits [36]. New physical effects include activated chemisorption [30]. Further

control of surface changes include: patterned Pt deposits by activated chemisorption [37], nitrogen

vacancy (NV) charge state switching by fluorination of H-terminated diamond [38] and nanosyn-

thesis by pulsed electron beam which tunes deposition between two adsorbates with differing

electron impact cross-sections [39].

Electron beam induced deposition (EBID) is a room temperature, direct-write nanofabrication

technique that requires only a single processing step [40]. It has been used to fabricate nanoscale

3D plasmonic helix arrays [41], optical nanoantennas [42, 43], nano-scale tunneling electrodes

[44], magnetic nanowires [45], catalytic seeds for site-specific growth of nanowires [46], and

electrodes for controlling domain wall motion in ferroelectric films [47].

Gas-mediated electron beam-induced etching (EBIE) is a direct-write, subtractive nanofabrication

technique in which an electron beam and a precursor gas are used to realize chemical dry etching

with a spatial resolution of ≈ 10 nm. EBIE is typically performed using electron microscopes that

are equipped with gas injectors and enable in situ imaging and analysis of the features fabricated

by an electron beam. Historical overviews and reviews of the EBIE technique and the underlying
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chemical pathways can be found in references [18, 25, 40, 48, 49]. Recently, EBIE has been used

for engineering quantum emitters in hexagonal boron nitride (hBN) [50].

IBIED uses a focused ion beam to process the substrate allowing for implantation of defects,

doping, deposition, stress induced bending, milling, and gas-enhanced etching, [51–56]. All these

processes make IBIED a great tool for constructing micro- and nano-scale structures.

1.4 Outline of thesis

This thesis presents new contributions to modelling in gas assisted ion and electron situations,

with a focus on surface evolution and surface diffusion. Chapter 2 describes the first example of a

Focused Ion Beam (FIB) chemistry process driven by self-assembly producing gallium pillars, and

solves the problem of surface evolution and diffusion in an elegant, efficient way that exploits the

symmetry of this novel system. Chapter 3 reviews the implementation of a state-of-the-art generic

surface evolution algorithm that is topologically robust and 3D and demonstrates the technique of

applying this implicit surface method to track evolution in the case of electron beam etching of di-

amond. Chapter 4 incorporates a reaction-diffusion partial differential equation (PDE) solver with

the surface evolution method of Chapter 3 and final results are presented with this new state-of-

the-art EBIED / IBIED modelling method. Finally, conclusions and future directions are presented

in Chapter 5.



Chapter 2

Gallium fluoride pillar modelling

This chapter reviews the first known focused ion beam (FIB) chemistry process which is driven

by self-assembly, and the gallium concentration diffusion model which tracks the growth kinetics.

Here surface diffusion is complicated by the geometries involved, and is solved by division of

the simulation surface into two well-chosen surfaces with simple coordinate systems. Boundary

conditions were chosen so that the two diffusion equations are coupled together, driving evolution

of the pillar.

In 2013, Botman, Bahm, et al. published Spontaneous growth of gallium-filled microcapillaries

on ion-bombarded GaN [35]. All experimental work was performed by Aurelien Botman. The

first analytic model of the growth kinetics, (2.1) created by Milos Toth, approximated the growth

deceleration. Alan Bahm defined and implemented a more exact model which simulates the evo-

lution of Ga surface concentration (2.2), and is necessary to provide convincing evidence for the

growth mechanism. This second, more exact model involved a implementation of diffusion across

different geometries alongside a droplet and sheath volume tracking model. The result matched

the experimental geometric measurements at both short and long times, and gave a reasonable

estimate for the sheath density.

Section 2.1 is the publication [35] in its entirety. This gives the context, covers the background and

experimental results, and includes portions of the experimental and theoretical work for concise-

ness. Section 2.2 covers the model implementation and its results in detail. Section 2.3 illustrates
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the self-ordering process. Section 2.4 reviews this contribution and it’s relationship to surface

topics in this thesis.

2.1 Spontaneous growth of gallium-filled microcapillaries on

ion-bombarded GaN: Published in [35]

Abstract of publication [35]: Bottom-up growth of microscopic pillars is observed at room tem-

perature on GaN irradiated with a Ga+ beam in a gaseous XeF2 environment. Ion bombardment

produces Ga droplets which evolve into pillars each comprised of a spherical Ga cap atop a Ga-

filled, gallium fluoride tapered tube (sheath). The structures form through an interdependent,

self-ordering cycle of liquid cap growth and solid sheath formation. The sheath and core growth

mechanisms are not catalytic, but are instead consistent with a model of ion-induced Ga and F

generation, Ga transport through surface diffusion, and heterogeneous sputtering caused by self-

masking of the tapered pillars.

Emergent phenomena such as spontaneous pattern formation, self-assembly and self-organization

[33, 34, 57–60] have stimulated much research into the underlying mechanisms and applications

in bottom-up growth [59, 60] at length scales ranging from the atomic to macroscopic. Here we

report a spontaneous, room temperature growth mechanism that yields microscopic pillars each

comprised of a solid, tapered, gallium fluoride sheath and a Ga core that protrudes from the sheath

and forms a liquid spherical cap at the pillar tip. The growth process was observed on GaN irradi-

ated by a Ga+ beam in a gaseous XeF2 environment. Pillar growth is initiated by the formation of

a spherical liquid Ga droplet and concurrent growth of a solid sheath, caused by chemical conver-

sion of liquid Ga to gallium fluoride. Tapered pillars emerge from an interdependent, self-ordering

cycle of Ga droplet (i.e., pillar cap) growth and sheath formation. The underlying mechanisms are

non-catalytic and physically distinct from others reported in the literature, such as vapor-liquid-

solid, solid-liquid-solid, and solution-liquid-solid growth [61].

It is well known that ion bombardment in vacuum of III-V semiconductors such as GaN [25,

62, 63], GaAs, InN, InAs, and InP can give rise to the formation of metallic droplets on the

substrate surface [34, 64, 65]. Preferential sputtering of the group V element and ion beam induced

decomposition and restructuring of the surface cause the group III species to accumulate [66–
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69], and droplets to form through nucleation, growth and ripening mechanisms [34, 64, 65, 70].

In some instances, the droplets have very narrow size distributions, and can be ordered through

spontaneous or directed processes such as off-normal ion irradiation [34] and pre-patterning of

droplet nucleation sites [64].

Droplets generated by the irradiation of GaN in vacuum by a normal incidence, focused, rastered,

30 keV Ga+ beam are shown in Figure 2.1(a-b). The droplets nucleate preferentially at surface

steps (Figure 2.1(b)), consistent with a mechanism that involves diffusion and pinning at free-

energy-minimising loci. In a gaseous XeF2 environment, ion irradiation also gives rise to the

formation of Ga droplets. However, the droplets act as nucleation sites for the formation of pillars

that grow antiparallel to the ion beam. Figure 2.1(c-d) shows two frames from Supplementary

Video 1, a movie produced by real time secondary electron imaging of the growth process.1 The

movie reveals that the droplets nucleate in random locations and that the growth of each individual

pillar starts, decelerates and terminates spontaneously as the ion beam is scanned repeatedly over

the substrate.

The observed pillar growth is highly atypical in that XeF2 normally acts as a precursor for chemical

etching of ion-irradiated substrates [25]. XeF2 is also known to contribute to swelling caused by

ion irradiation, and top-down (subtractive) structure formation caused by heterogeneous etching

[63, 71]. Such processes are, however, clearly different from the pillar growth reported here.

The pillars in Figure 2.1(d) are aligned vertically, but distributed randomly along the substrate. Or-

dered arrays (Figure 2.1(e)) and individual pillars (Figure 2.2) can be fabricated by pre-patterning

Ga droplet nucleation sites using the focused Ga+ beam. The time-evolution of a single pillar is

demonstrated in Figure 2.2 by 9 frames from Supplementary Video 2, a movie of the growth pro-

cess. The images show (at 6 seconds): a hole that had been made by a stationary Ga+ beam and

acts as a droplet nucleation site; (at 6-31 seconds): droplet nucleation and growth occurring while

the ion beam is scanned repeatedly over the rectangle seen in the images; (at 80-524 seconds): pil-

lar formation; (∼ 400 seconds): droplet nucleation at the edge of the scan rectangle; (at 400-554

seconds) pillar growth termination; and (at 554 seconds): droplet nucleation and growth observed

to occur at the pillar base and the edge of the scan rectangle immediately after pillar growth has

terminated. Figure 2.3(a) shows plots of the pillar cap diameter d1, the corresponding volume V ,

1For electron image movies of the growth process and detailed descriptions of the experimental methods, see the

electronic publication http://dx.doi.org/10.1103/PhysRevLett.111.135503
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a) c) XeF2 

d) XeF2 

e) 

GaN base GGGG

Ga droplet 

b) 

FIGURE 2.1: (a-b) Electron images of Ga droplets on GaN formed during ion beam irradiation

in vacuum, and two frames from a movie of droplets (c) growing to form pillars (d) in XeF2. (e)
Pillar array grown on a pre-patterned GaN substrate. Each scale bar represents 5 μm. The ion

beam was scanned in the serpentine pattern shown in (c).

and the pillar base diameter d2 as a function of time (t). Vertical growth terminated at ∼ 530

seconds, where ∂V/∂t = 0.

Pillar composition and internal structure were determined by cross-sectional electron imaging and

energy dispersive x-ray spectroscopy (EDS). EDS maps of pillars that had been grown for 60, 420

and 1200 s are shown in Figure 2.4(a-c), where each time stamp corresponds to the growth time of

a different pillar. Ga and F (but no Xe, N or O) were detected in the pillars. The maps show that

each pillar is a Ga-filled, gallium fluoride microcapillary (i.e., a tapered fluorinated sheath). The

most stable gallium fluoride stoichiometry is GaF3 [72], which has a high melting point of 800◦C,

in contrast to that of Ga (30◦C) which behaves as a supercooled liquid at room temperature. The

Ga core extends beyond the sheath and forms a spherical Ga cap (shown in Figure 2.4(d)). The

liquid nature of the Ga caps is illustrated by the image sequence in Figure 2.5 which shows the

coalescence of two adjacent pillar caps into a single, asymmetric Ga droplet. The images also

illustrate the high cohesive energy of Ga which is responsible for droplet formation.

Fluorine was detected only in the tapered sheaths (Figure 2.4(c)). The sheaths are present only
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FIGURE 2.2: Electron image sequence showing the growth of a pillar and the formation of sec-

ondary Ga droplets.

in regions that were protected from sputtering through masking by the Ga caps, as indicated by

an arrow in Figure 2.1(d). Masking also prevents sputtering of the underlying GaN substrate,

resulting in the formation of the raised GaN features seen at the base of each pillar in Figure 2.1(e)

and in Figure 2.4(c).

Figure 2.4(e) shows an EDS map of a pillar grown at the periphery of the rectangle scanned by the

ion beam. The sheath is present only on the pillar surface that faces the scan rectangle, showing

that the ion beam plays a direct role in sheath formation, and that F is immobile at length scales

on the order of the pillar diameter. The map also shows that F is not entering the pillar from the

gas phase (through the cap) and is not causing fluoride growth at the sheath-core interface through

a vapor-liquid-solid mechanism.

The compositional maps in Figure 2.4 show how Ga droplets evolve into pillar caps and cores,
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FIGURE 2.3: (a) Cap volume V (×), cap diameter d1 (�) and pillar base diameter d2 (•) mea-

sured as a function of time, and corresponding curves calculated using (2.1) (- - - -) and (2.2)

(——). (b) Fraction of excess Ga atoms diffusing into the the sheath, the cap and away from the

pillar (‘out-diffusion’) calculated as a function of time. Vertical arrows show the time at which

pillar growth terminated.
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d2 

d1 dd1
V

FIGURE 2.4: Cross-sectional compositional maps (Red = Ga, blue = F, green = N) of pillars that

had been grown for (a) 60 s, (b) 420 s and (c) 1200 s, and (d) a secondary electron image of pillar

(c). Map (e) shows a pillar grown at the edge of the area bombarded by Ga+ ions. The dashed

horizontal line shows the position of the GaN surface prior to ion irradiation. Each pillar is coated

with a protective Pt film used to minimise cross-sectioning artifacts. The scale bar applies to all

images.

FIGURE 2.5: Image sequence showing a pillar (A) that has reached maximum height and is no

longer growing, the growth of an adjacent pillar (B), and coalescence of the pillar caps into a

single, asymmetric Ga droplet.
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and how sheath formation is enabled by the sidewall taper which prevents sheath removal through

sputtering. The maps also indicate how vertical pillars emerge from a cycle of cap growth and

sheath formation. However, the maps do not explain the pillar growth kinetics. To elucidate the

observed growth behaviour, we consider the isolated pillar imaged in Figure 2.2. The growth rates

of the Ga cap volume (V ) and diameter (d1) decrease with time, while the pillar base diameter

(d2) scales linearly with time (see Figure 2.3(a)). This indicates that the growth is rate limited by

the supply rate of Ga rather than fluorine. We therefore develop a model of growth kinetics based

on excess Ga generation and consumption in the system.

In the limit of short growth times, the sheath volume is negligible, and we assume that (i) the

excess Ga generation rate is proportional to the area of GaN that is bombarded by ions and acts

as a source of excess Ga, (ii) a fixed fraction of the excess Ga flows into and is consumed by the

pillar, which is located in the center of the Ga source, and (iii) Ga is removed from the cap through

sputtering at a rate that is proportional to the cap surface area, As. We can therefore approximate

the rate of change of the cap volume, ∂V/∂t, by:

∂V

∂t
≈ ∂V0

∂t

(
1− Ad1(t)

AI

)
− ∂γ

∂t
As(t)c, (2.1)

where ∂V0
∂t is ∂V

∂t in the limit t → 0, AI is the initial area of GaN irradiated by ions (i.e., the

rectangle around the pillar seen in Figure 2.2), Ad1 is the projected area of the growing Ga cap

in the plane of AI , and Ad1
AI

is the fraction of AI occupied by the growing cap. The excess Ga

generation rate is proportional to (1 − Ad1/AI) because the Ga cap resides on top of the GaN

substrate and masks it from ion irradiation. The last term, ∂γ
∂tAs(t)c, is the net volumetric Ga

removal rate, expressed as a product of the flux of Ga sputtered from the cap, ∂γ
∂t , (atoms/m2/s),

As and the volume of a Ga atom, c.

∂V0
∂t was deduced experimentally from the slope of V (t → 0), seen in Figure 2.3(a), and ∂γ

∂t is

a fitting parameter. Solutions to (2.1) yield the time-evolution of the cap volume V (t) and the

corresponding cap diameter d1(t). Figure 2.3(a) shows the best fit to experiment obtained by

setting ∂γ
∂t to 107 μm−2s−1 which corresponds to a realistic sputter yield of ∼ 11 (Ga atoms per

ion incident onto the spherical cap). The calculated V (t) profile is sub-linear due to two effects:

(i) an increase in As which acts as a Ga sink, and (ii) a decrease in the size of the Ga source caused

by the growth of Ad1. This simple time-evolution of the size of the Ga source and sink yields cap
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growth kinetics that are in agreement with experiment at short growth times. However, the model

overestimates the cap growth rate at long times. This divergence is hypothesized to be attributed

to Ga consumption in sheath formation. The next model (2.2) includes this missing effect and

successfully predicts cap growth rate at long times. Excess Ga is generated by ion irradiation

of the GaN substrate and supplied to the cap through diffusion along the surface of the growing

sheath. Hence, the fraction of Ga consumed in sheath formation and the Ga flow rate into the cap

increases and decreases with time, respectively.

In order to account for sheath formation, we use (2.1) to define initial conditions for an explicit

simulation of excess Ga generation, diffusion, consumption and removal from the system. Specif-

ically, we calculate the time-dependent excess gallium concentration C across the sheath and the

GaN substrate by solving:

∂C

∂t
= af̂ − bC +D∇2C, (2.2)

where a is the excess gallium generation coefficient (atoms per ion incident onto GaN), f̂ is the

mean ion beam flux in the plane of the substrate, b is the Ga uptake rate by the sheath, and D is the

Ga diffusion coefficient. The domain of (2.2) spans the substrate and the pillar (represented in two

different coordinate systems). A detailed description of the model implementation is provided in

Section 2.2.

Here (2.2) was solved numerically, using input parameters that are equivalent to those used in

(2.1), and by using b as a fitting parameter. Figure 2.3(a) shows plots of d1, d2 and V calculated as

a function of time. Part (b) of the figure shows corresponding plots of the fraction of excess Ga that

is consumed by the sheath and the cap, and the fraction lost through out-diffusion (i.e., diffusion

away from the region of GaN bombarded by Ga ions). The latter is approximately constant during

growth, thereby validating assumption (ii) made in setting up (2.1).

The modelling data in Figure 2.3(a) are in excellent agreement with experiment, and were obtained

by setting b to 1.1 × 106 s−1, which yields a physically realistic sheath with a density that is

approximately half that of single crystal GaF3. Solutions to (2.2) consistently predict a peak in C

on the GaN substrate, near the pillar base. This peak, shown in Figure 2.6, is in the vicinity of

‘droplet 3’ marked on Figure 2.2. Such droplets are often observed to nucleate immediately after

pillar growth has terminated, and cause nucleation of neighbouring pillars, a number of which are
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FIGURE 2.6: Excess Ga concentration (C) along the GaN substrate versus distance from the

pillar base (r − r2), plotted for t = 229, 329, 429 and 529 s. [r2 = d2/2]

seen in Figure 2.1(e). The frequent nucleation of such droplets is likely caused by a combination

of the elevated Ga concentration, and the presence of an asperity at the pillar base.

We can now combine the above experimental and simulation data to form a detailed picture of

pillar growth. Liquid droplets form at the substrate, as in prior studies of III-V semiconductors

performed in vacuum [34, 64, 65, 70]. XeF2 gives rise to the formation of solid sheaths which

deform the growing Ga droplets into the pillar cores seen in Figure 2.4. Pillars emerge through a

self-ordering cycle of droplet growth and sheath formation, in which vertical growth occurs only

when the cap diameter increases with time. Sheath formation is induced by ion bombardment of

the GaN substrate. The absence of N (within the EDS detection limit) shows that the sheaths are

not composed primarily of material that is sputtered from GaN and redeposited on the growing

pillars. Instead, the most likely mechanism is (i) adsorption of XeF2 gas molecules to the pillar

sidewall, (ii) dissociation of the adsorbates by electrons [25] emitted from GaN due to ion impact,

and (iii) formation of gallium fluoride through reactions between liquid gallium and fluorine ad-

sorbates. The abruptness of the core-sheath interface seen in Figure 2.4(d) indicates that the sheath

constituents are not soluble in Ga. Gallium is supplied through surface diffusion, and generated by

ion beam decomposition of the GaN surface. The simulations show that the pillar growth rate is
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given by the rates of Ga supply through surface diffusion, Ga consumption in sheath formation and

Ga removal through sputtering. Sputtering also serves to remove all species, including F, N and O,

through ion bombardment of unmasked regions of the pillar and the substrate. Ion beam heating

may assist in maintaining the Ga in a liquid state, and may alter Ga diffusivity. It is, however, not

a prerequisite for pillar formation. Ga is a supercooled liquid at room temperature [73], and our

simulation results are insensitive to the exact value of D and account for pillar formation in the

absence of temperature gradients caused by localized heating.

2.2 Model implementation

As mentioned above, the time- and spatially-dependent excess gallium concentration C (m−2)

was calculated by solving (2.2):

∂C

∂t
= af̂ − bC +D∇2C.

where, a, is the excess gallium generation coefficient (atoms per ion), f̂ is the mean ion beam flux

in the plane of the substrate (ions/m2 · s), b is the Ga uptake rate by the sheath (s−1), and D is the

Ga diffusion coefficient. D is assumed to be the same on both surfaces.

The numerical model is axially symmetric about the z-axis. The surface was decomposed [74] into

two axially symmetric, one dimensional domains (sheath and substrate) shown in Figure 2.7, with

a continuity condition at the interface. Two arrays cp for the pillar and cs for the substrate held

concentration values from the origin outward through the whole simulation. As the sheath grew,

the smallest array cell on cs and the top non-empty array cell on cs were treated fractionally. In this

way, domains never changed (and no re-meshing was required). For the purpose of simplifying

simulation of diffusion, the slightly tapered sheath geometry is approximated by a uniform cylinder

with a radius given by the base radius r2. The model is then implemented by two coupled 1D mod-

els, sheath and substrate, in which diffusion is implemented using Cartesian
(
D∇2C = D ∂2C

∂z2

)
and radial

(
D∇2C = D

(
1
r
∂C
∂r + ∂2C

∂r2

))
coordinates, respectively. Where the sheath meets the

substrate, concentration is passed between the two arrays cp and cs maintaining a conservation of

mass.
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FIGURE 2.7: Numerical implementation of the model showing the substrate, and capped pillar

(note the pillar physically gradually tapers from r2 to r1 but computationally has been approx-

imated by a vertical cylinder). The computational domain consists of 1D arrays cp and cs con-

taining the excess Ga concentration along the pillar and substrate, respectively. Excess gallium

generated by the FIB diffuses out from the source region (r1, rf ), over the substrate, and up the

pillar. Dirichlet boundary conditions are implemented at the pillar height, h and substrate rmax

where C is set to zero. All Ga removed at h is added to the droplet volume which increases the

shadowed region (r2, r1). The droplet volume is also reduced by the FIB sputtering occurring

in ratio with its apparent area. The pillar height h and base r2 are set to increase through the

simulation by a fit to measured data of the GaF sheath.

Here (2.2) was discretized using first- and second-order central-difference schemes for time and

spatial derivatives respectively. The time step dt was set by the Lax-Richtmyer stability criterion

[74, 75], D dt
dr2

≤ λ, where λ was typically set to 0.1. The model yields C(z, t) and C(r − r2, t),

where z is distance up the pillar sidewall (i.e., sheath), and r−r2 is radial distance on the substrate

from the pillar base. The excess Ga generation rate (atoms/s) is recorded as a function of time, as

are the fractions of the excess Ga that are consumed by the sheath and the cap, and the fraction

that is lost through out-diffusion.
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The gallium generation rate, a, is only applied on the substrate region that is not masked by the

pillar cap, r1 < r < rf , and is zeroed elsewhere. The gallium uptake rate, b, is only applied on

the growing sheath region, 0 < z < h, and is zeroed elsewhere. These constants are input to the

simulation.

The gallium diffuses over the two geometrically distinct surfaces, and is subject to Dirichlet bound-

ary conditions at the pillar top and a radial point sufficiently far away from the pillar base. The

concentration is set to zero at these points in the model.

The volume of the droplet is also tracked. At each timestep, Ga removed by the boundary condition

at the top of the pillar is added to the droplet. The droplet is assumed to be a spherical cap. The

volume of the cap was determined by measuring the height and width of caps experimentally. This

yielded a volume to radius radio used in computing the droplet growth. Sputtering of the droplet

is handled as a boundary condition using the same value of the sputter flux (∂γ∂t = 107 μm−2s−1)

as in (2.1). Finally, the ion flux, f̂ , was set to 1.6 × 106 ions/μm/s, the experimental value used

to generate Supplementary Video 22. The changing droplet volume changes r1.

The time-dependent values of h and r2, which reflect growth of the GaF sheath, were supplied by

fits to experimental data (see Figure 2.3 for an example of the r2 data (r2 = d2/2) and fit).

The model was written in Python [76], and uses the scientific computing package NumPy [77] for

efficiency optimizations.

2.2.1 Model results

The key achievement of the model is that it accounts for mass transport of Ga quantitatively (i.e.,

tracking material flux: in the droplet, sheath, vacuum, or diffusing out along the GaN surface), and

it reproduces the pillar growth kinetics using realistic input parameters.

The parameter a was found by setting b to zero and fitting the calculated time-dependence of the

cap volume, V (t), to experiment (i.e., the cap of the pillar imaged in Supplementary Video 2).

At short growth time, best fit is obtained when a = 13 (atoms/ion), which yields a flow rate of

∼ 2.4 Ga atoms into the pillar cap per ion incident onto GaN, and corresponds exactly to the

2Videos are online at http://dx.doi.org/10.1103/PhysRevLett.111.135503
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FIGURE 2.8: Schematic of sheath volume calculation as approximated by the difference between

two inverted truncated cones. Left is a profile view of the pillar, cap, core and sheath. Middle
is the two inverted truncated cones that define the inside and outside of the sheath. Right is the

volume from the difference, the sheath volume.

initial volumetric excess Ga generation rate (∂V0/∂t ≈ 10−3 μm3s−1) used in (2.1). That is, the

two models defined by (2.1) and (2.2) are consistent when the fraction of Ga consumed in sheath

formation is ignored (i.e., b = 0). With this condition, both models are in good agreement with

experiment at short growth times, where the sheath surface area is negligible, but overestimate the

growth rates at long times, where a significant amount of excess Ga is used up in sheath formation.

Next, b was found by fixing a at 12, and by varying b so as to match the experimental V (t) profile.

Best fit was obtained by setting b to 1.1 × 106 s−1, which yields a physically realistic sheath

density (estimated from the measured sheath volume and the simulated uptake of Ga) that equals

approximately half that of single-crystal GaF3. This calculation is shown in detail next.

The sheath geometry can be approximated as the difference between two (inverted) truncated

cones. One truncated cone is formed by the outside of the sheath, and the second is formed

from the inside. They share the same height h, and radius r1 at top, where the sheath comes to a

point, and two different radii r2 at the substrate, see Figure 2.8. The volume of a truncated cone is

given by

V =
1

3
πh(r21 + r22 + r1r2) (2.3)

The experimental data for the radii and height are indicated in Table 2.1. The volume of the sheath
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Volume r1 (μm) r2 (μm) h (μm)

a 0.5918 0.3261 2.491

b 0.5918 0.5417 2.491

TABLE 2.1: Experimental data for determining the volume of the sheath.

is given by the difference of

Vsheath = Vb − Va = 2.5153− 1.6944 = 0.82089μm3 (2.4)

The size of a GaF3 molecule is VGaF3 = 4.7 × 10−11μm3 so this volume could hold at most

1.75×1010 molecules. One Ga atom is required for every molecule of GaF3. Integrating the

simulated flux of atoms into the sheath over the time period specified (98.56 to 529.76 seconds)

yielded 7.87×109 Ga atoms or 44%. Therefore the estimate for sheath density is reasonable, at

approximately 1/2 that of a maximally packed crystal.

The Ga diffusion coefficient, D, equals ∼ 2000 μm2s−1 at room temperature [78, 79]. It was

assumed to be constant across the pillar sidewall and the GaN substrate. The model output was

insensitive to the exact value of D, which primarily affects only the amount of time it takes for

C(z, t) and C(r − r2, t) to reach a steady state. An example of model output is shown in Figure

2.9.

2.3 Self-ordering cycle

Finally, it is worthwhile to note that this process is a self-ordering cycle, see Figure 2.10. As

a self-ordering process, many pillars can be grown in parallel, which is essential for large scale

production. As a cycle it is self-limiting: as the droplet grows larger, it experiences more sputter

and blocks more of the surface from generating the excess gallium. The combination of a cyclic

process with self-ordering behaviour is seen in many places in natural living systems. When

viewing videos of this pillar growth the eye instinctively identifies this growth as “life-like”, for

just this reason, e.g., one can think of time-lapse footage of mushrooms sprouting. In the videos

showing many pillars growing, one can also discern a competition for resources: larger pillars end
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FIGURE 2.9: An example of the output generated by a simulation run showing the best value of

flux to allow matching the data. Top graphs show concentrations on z and r over time (t = 0 is

red curve, changing to blue at final t). Middle left shows data and model for the cap size, right

shows droplet volume with time. Bottom shows reconstruction of pillar over time.
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FIGURE 2.10: An interesting aspect of the pillar growth is that it is a self-ordering (and self-

limiting) cycle. Sheath formation requires droplet growth (and XeF2, secondary electrons (not

shown), and excess gallium). Droplet growth requires sheath formation (and excess gallium). If

any of these processes is interrupted then the growth cycle halts.

up drawing off the excess Ga so that no droplets nucleate nearby, but many smaller pillars can

co-exist together as in Figure 2.1(d).
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2.4 Conclusions

In this chapter, simplicity of the surface diffusion model depended on keeping the simulation in

one dimension. This was achieved by: 1) approximating the sheath geometry (which physically

is a gradually curving surface) as a cylinder which has a known Cartesian Laplacian, 2) careful

joining of the two 1D simulations at the pillar base (to share in the flow of excess Ga), and finally,

3) exploiting the cylindrical symmetry. The resulting simulation ran in less time, consuming less

memory and fewer instruction cycles, than a 2D or 3D model would. This allowed for more

exploration of the parameter space of the gallium concentration kinetics, more time on the science,

and less time waiting for simulation runs to complete. Not all problems provide high levels of

symmetry that can be exploited. In the next two chapters full 3D simulations are required and

different techniques are used.
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Surface evolution modelling

This chapter introduces the level set method (LSM), a technique to evolve surfaces in a topo-

logically robust and stable fashion [80–82]. The level set method is used to demonstrate what

topographic patterns are produced by different anisotropic etch rates. This work was motivated by

the discovery of patterns which had not been reported in prior beam chemistry literature. By find-

ing the correct “rule set” the simulation predicts the surface evolution on diamond from electron

beam induced etching (EBIE). The anisotropic etch model, originally derived by Hubbard [83],

and expanded upon by Radjenovic [84–89], is used here to explain etching conditions on diamond

crystal, and shed light on the underlying etch mechanism.

In the next chapter (Chapter 4), the level set method is used to evolve surfaces based on rates

obtained by solving a reaction-diffusion (RD) equations which are used to model electron and

ion beam induced deposition/etching. The RD equation is solved on an embedded surface by

the closest point method (CPM) [90–93], which integrates naturally with the LSM. Using these

techniques the chapter demonstrates a surface evolution algorithm driven by an adsorbate kinetics

model which can be used to model electron and ion-beam induced etching and deposition. This

simulation is state-of-the-art in that it can easily track 3D surfaces, and can solve kinetics and

compute evolution in reasonable times (minutes to hours).

All experimental work in this chapter was done by Aiden Martin and James Bishop. The experi-

ment and model were published in Dynamic pattern formation in electron beam induced etching

[94]. This chapter includes portions of the experimental and theoretical work to show that this type
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of simulation agrees with theory and experiment, and provides broader context for simulations in

Chapter 4. Aiden Martin and Alan Bahm contributed equally to the work.

Section 3.1 includes the experimental and modelling results. Section 3.2 explains the level set

method technique, and Section 3.3 the implementation and the verification of the code. Applying

the technique to the case of anisotropic etching is covered in Section 3.4. Finally Section 3.5

presents conclusions and implications of this work.

3.1 Dynamic pattern formation in electron beam induced etching:

Published in [94]

Abstract of publication [94]: We report highly ordered topographic patterns that form on the sur-

face of diamond, span multiple length scales and have a symmetry controlled by the precursor gas

species used in electron beam induced etching (EBIE). The pattern formation dynamics reveal an

etch rate anisotropy and an electron energy transfer pathway that has been overlooked by existing

EBIE models. We therefore modify established theory such that it explains our results and re-

mains universally applicable to EBIE. The patterns can be exploited in controlled wetting, optical

structuring and other emerging applications that require nano and micro-scale surface texturing of

a wide bandgap material.

Electron beam induced etching [40, 95] is a high resolution, single step, direct-write nanofabrica-

tion technique in which a precursor gas and an electron beam are used to realize etching. To date,

EBIE has been used to study electron interactions with solids and adsorbates, and to machine a

wide range of materials using etch precursors such as oxygen, water, ammonia, nitrogen trifluo-

ride, xenon difluoride and chlorine. Key advantages of EBIE include cite-specificity, the absence

of staining and severe damage inherent to focussed ion beam techniques, and the ability to etch

materials such as diamond which are resistant to conventional chemical etch processes. Conse-

quently, EBIE has recently been used to realize practical device components for use in photonics

[96], plasmonics [97] and nanofluidics [98].

In this work, we report dynamic, highly ordered topographic patterns that form spontaneously

on the surface of diamond during EBIE. Pattern formation is a ubiquitous process that provides
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fundamental insights into the roles of symmetry breaking, anisotropy and nonlinear interactions

in emergent phenomena [99–101]. Here it reveals a chemical etch rate anisotropy that can not be

explained by established EBIE theory. We therefore propose a fundamental modification, whereby

the critical role of energetic electrons is to transfer energy to surface atoms of the solid rather

than to surface-adsorbed precursor molecules. The new EBIE model is confirmed experimentally,

explains the observed patterns, and resolves long standing problems that have been identified in

the EBIE literature.

Figure 3.1(a) is a schematic illustration of EBIE performed using H2O precursor gas. Figure 3.1(b)

shows images of topographic patterns that form on the surface of single crystal (001) oriented dia-

mond during H2O EBIE performed at room temperature (a detailed description of the experimental

methods is provided in the Supporting Information). A movie showing the pattern formation and

evolution dynamics is provided as Supplementary Video #1.1 Etching initiates at scratches and

other surface defects, which expand laterally during EBIE, evolving into highly symmetric rhom-

bohedra such as the large pit seen in the top left corner of Figure 3.1(b). Similarly, the topography

that is normally associated with surface roughness caused by EBIE rapidly evolves into step edges

with {110} sidewalls which propagate laterally until they reach the edge of the area scanned by

the electron beam. The {111} family of planes is absent from the resulting surface topography,

the step sidewalls are comprised of {110} planes, and 90◦ step corners are formed at the inter-

cepts of the {110} planes. Corner formation requires the (110), (1̄10), (1̄1̄0) and (11̄0) planes to

etch slower than the (100), (010), (01̄0) and (1̄00) planes. From these observations, we conclude

that H2O-mediated EBIE removes material from the {100} and {111} planes faster than from the

{110} family of planes.

In order to prove conclusively that the proposed anisotropy yields the four-fold symmetry observed

in Figure 3.1(b), we used the 3D implementation of the level set method (LSM) [81]. LSM is a

robust technique for evolving implicit surfaces under anisotropic velocity fields. It can be used to

calculate surface shapes produced by anisotropies defined by differences between the etch rates

of specific crystal planes. The simulations detailed in the Section 3.4 reveal that the calculated

surfaces match experiment only if the {110} planes that are oriented at 90◦ with respect to the

1See Supplemental Material at http://dx.doi.org/10.1103/PhysRevLett.115.255501 for scan-

ning electron microscope (SEM) movies of the etch process and detailed descriptions of the experimental methods.

These are not included here.
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FIGURE 3.1: Topographic patterns formed during H2O mediated electron beam induced etching

of single crystal diamond. (a) Schematic illustration of H2O EBIE. (b) Expanding rhombohedra

formed on the surface of (001) oriented diamond, and (c) trigons on the surface of (111) diamond.

(d,e) Corresponding simulated rhombohedra and trigons (colored by the relative local etch rate)

that are expected if the {110} planes are the slowest etching planes.

electron beam axis etch slower than all other planes. Supplementary Video #2 and Figure 3.1(d)

show the resulting rhombohedral surface features2.

The validity of the simulation was confirmed by applying the same etch rate anisotropy rule set

to (111) oriented diamond. The simulation and H2O EBIE both produced the trigons shown in

Figure 3.1(c) and (e). The LSM simulations therefore support our conclusion that the geometries

of patterns observed during H2O EBIE of (001) and (111) oriented diamond is governed primar-

ily by slow etching of specific {110} planes. However, this anisotropy can not be explained by

conventional, established EBIE theory which is based on the assumption that the key role of ener-

getic electrons is to dissociate surface-adsorbed precursor molecules. In the case of H2O EBIE of

diamond, a possible pathway in this framework is the following [40, 95]:

H2O[v] ↔ H2O[p] (3.1)

H2O[p]
Ξ1−→ H2 +O∗

[c] (3.2)

O∗
[c] +C[s] → C[s]O[c] (3.3)

C[s]O[c]
Ξ2−→ CO[v] (3.4)

where the subscripts [v], [s], [p] and [c] signify the vapour phase, solid phase, physisorbed and

chemisorbed species, respectively. Ξ1 represents the energy barrier for dissociation of H2O, and

Ξ2 is the binding energy of the reaction product. According to the standard EBIE model, Ξ1 and

Ξ2 are overcome by a transfer of kinetic energy from the electrons that drive EBIE, and thermal

energy of the substrate (kT ), respectively. This model has been used to explain a wide range of

2See videos online at http://dx.doi.org/10.1103/PhysRevLett.115.255501
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experiments such as dependencies of etch rates on time, beam current density and pressure of the

precursor gas [26, 95, 98, 102–111]. However, the model can not explain the etch rate anisotropy

seen in Figure 3.1, unless different crystal planes give rise to significant variations in the electron

dissociation cross-section of H2O adsorbates, the secondary electron emission yield, or the local

coverage of precursor molecule adsorbates. None of these are plausible since the precursor is H2O,

the patterns form at room temperature (and at elevated temperatures, as is discussed below), and

the slowest etching planes are not consistently dark in secondary electron images.

To resolve the above issues, we propose a new mechanism, in which electrons provide the energy

Ξ2 in Reaction 3.4. That is, the critical role of electrons is not to dissociate the physisorbed

precursor molecules, but to break bonds that bind surface atoms to the substrate and thus enable

the desorption of the final reaction products. During etching, Reaction 3.2 can reasonably be

expected to proceed spontaneously since active surface sites are generated continuously and the

precursor molecules will likely dissociate on unterminated sites. In this framework, the etch rate

anisotropy needed to produce the patterns seen in Figure 3.1 is not surprising since Ξ2 (i.e., the

C-C bond strength and the corresponding cross-section for scission by electrons) varies with the

crystal plane.

To confirm the proposed EBIE mechanism we performed an experiment based on the fact [112]

that the C-C bond strengths are modified by hydrogen which reconstructs and stabilizes the {111}
surface. We therefore performed H2O EBIE of (001) and (111) oriented diamond in the presence

of NH3 gas, where the role of the NH3 is to supply an excess of hydrogen radicals to terminate the

(111) planes. Figure 3.2 shows that the corresponding surface patterns consist of inverted pyramids

and trigons, respectively, and that these geometries are indeed expected from LSM simulations in

which the {111} planes are the slowest etching planes.

We performed one more experiment to further test the proposed EBIE mechanism. A consequence

of the conventional EBIE model is that the EBIE rate is directly proportional to the concentration

of physisorbed precursor molecules [40, 95]. Hence, the etch rate of diamond is expected to be

negligible at a temperature of ∼ 400 K, as is shown in Figure 3.3 (solid curves, calculated using

the rate equation model presented in the Supporting Information), irrespective of the electron flux

used to perform EBIE. However, we observe significant etch rates at temperatures as high as 600 K

where the measured etch rate is over three orders of magnitude higher than that predicted by the
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FIGURE 3.2: Topographic patterns formed during electron beam induced etching of single crystal

diamond in the presence of NH3. (a) Expanding inverting pyramids formed on the surface of

(001) oriented diamond, and (b) trigons on the surface of (111) diamond. (c,d) Corresponding

simulated pyramids and trigons (coloured by the relative local etch rate) that are expected if the

{111} planes are the slowest etching planes.

conventional EBIE model. This result is clearly inconsistent with the conventional model, but

is expected from the new model in which the EBIE rate is proportional to the concentration of

chemisorbed oxygen. The observed temperature dependence therefore serves as direct evidence

for the new EBIE model. Furthermore, the topographic patterns were observed at all temperatures

that were investigated, as is illustrated by the image shown in the inset of Figure 3.3. The abrupt

step edges in the patterns generated at ∼ 600 K are inconsistent with any model that attempts to

explain the etch rate anisotropy by spatial variations in the coverage of physisorbed adsorbates.

We note that the new EBIE model is consistent with all results in the literature that were explained

successfully by the conventional EBIE model. First, both models predict the same dependence of
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FIGURE 3.3: Temperature dependence of the rate of EBIE measured experimentally (points) and

calculated using the established model of EBIE detailed in the Supporting Information (lines)

using a wide range of electron fluxes. The etch rates are normalized to the EBIE rate at room

temperature. The inset shows an image of surface topography generated by H2O EBIE at ∼
600 K.

EBIE rate on electron beam energy since the secondary electron yield has the same dependence on

beam energy as the amount of energy that is deposited by the beam into the surface atoms of the

substrate. Second, both models predict the existence of reaction rate limited and mass transport

limited etching regimes (as is shown in the Supporting Information), which makes both models

consistent with a large amount of experimental data available in the EBIE literature. However, the

new model is unique in being consistent with reports of UV laser induced etching of diamond, that

is believed to proceed through a two photon C-C bond scission mechanism [101]. The new model

also provides a satisfactory explanation for the fact that single crystal diamond can be etched by

EBIE in the first place. The energy barrier of Reaction 3.4 in diamond is known to be significant

[113] and therefore etching observed at room temperature, or any temperature below the onset of

defect generation and graphitization cannot be accounted for in the standard model.

Finally, we note that the topographic patterns cannot be explained by an anisotropic sub-surface

damage generation mechanism analogous to the graphitization pathways encountered in conven-

tional dry and wet diamond etch processes [114, 115] for a number of reasons. First, the etch rate

anisotropy was modified significantly by the presence of NH3 gas, which should not change the

sub-surface damage generation rate. Second, prior studies of EBIE of single crystal diamond have
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failed to produce any evidence of damage by photoluminescence and Raman spectroscopy [96,

110, 116, 117]. Third, the generation rate of damage produced by a 5 keV electron beam scales

with the local energy density deposited into the substrate throughout the electron interaction vol-

ume [118]. The damage generation rate is therefore isotropic, except for special cases where the

electron beam axis is parallel to a channeling axis, which should produce a strong dependence of

the patterns on sample tilt, which was not observed in our experiments. We therefore conclude that

sub-surface damage generation does not play a role in the observed etching and pattern formation

behaviour.

To summarize, we showed several dynamic pattern formations on the surface of single crystal

diamond. We proposed an amended model for the EBIE process that is based on interactions

of electrons with the substrate rather than the precursor molecule adsorbates. Our results can be

leveraged to engineer surface patterns controlled by electron beam irradiation conditions.

3.2 Level set method

The modelling for the preceding section makes use of the level set method, explained here in two

dimensions. The next Section 3.3 demonstrates the 2D implementation and verification. After

this, Section 3.4 extends the LSM to three dimensions and explains the anisotropic etching model.

The level set method is a technique, invented in the 1980s, for evolving a surface under a velocity

field, generally attributed to Sethian and Osher. Very good overview texts include [80–82]. The

level set method evolves a surface implicitly instead of explicitly (c.f. Subsection 3.2.1), the ben-

efit of which is stable, topologically-robust evolution. Implicit surfaces can merge and separate

seamlessly while explicit surface methods have to contend with awkward de-looping when evolu-

tion creates a self-intersection. Topological changes are nicely shown in 2D image segmentation

examples [119], see Figure 3.4. Another advantage is that the LSM avoids the need for resampling

(or re-parametrizing) the surface when nodes become spaced too far apart or too close together.

Finally, the LSM is powerful in that correctly working code in 2D extends almost trivially to higher

dimensions, a property lacking in any explicit (mesh-based) surface evolution algorithm.

This technique has been applied in computational physics areas such as interface tracking, de-

formable models, microfluidics [120], fluid flow simulations [121], image restoration, 3D medical
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FIGURE 3.4: Image segmentation using the 2D LSM from [119] demonstrating the ability to

merge and separate 1D contours on a 2D image to segment out interesting information. In this

case, advancing the initial contour with speeds derived from the image allows the identification

of a lemon (top) and blood vessel (bottom). The left, middle, and right columns show the initial,

intermediate and final contours.
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FIGURE 3.5: The level set method has been the topic of over 10,000 publications as of 2015.

imaging (MRI) [122], simulation of water and smoke [123], image segmentation [124, 125], thin

film [126, 127] and crystal growth [127–131], shape optimization [132, 133], and modelling field

evaporation in an atom probe [134], and is an active and growing area of research today (see Figure

3.5).

The first simulation of etching, deposition, and lithography development with the level set method

was in 1997 by Sethian and Adalsteinsson [135]. Since 2000 it has been used to simulate sputtering

and re-deposition in focused ion beam (FIB) simulations of amorphous materials by Kim and

Hobler [14, 15, 136], wet and dry etch simulations by Radjenovic [84–89, 137–143], wafer surface
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etching and deposition [144–154] and FIB milling [155]. In this thesis the level set method is used

to simulate surface evolution from electron beam diamond etching (this chapter) and generalized

deposition (Chapter 4).

3.2.1 Concept

Consider a surface3 Γ moving under a velocity field, vvv. The level set function, φ, is defined to be

zero only on the surface

φ(xxx, t) = 0 (3.5)

positive outside (or above) the surface and negative inside (below), referred to as Ω+ and Ω−

respectively. The explicit surface ∂Ω (also known as Γ) is now “hidden” or embedded in this scalar

function φ consequently called the surface embedding4, see Figure 3.6. One of the advantages of

this formulation is that characteristics of the surface geometry can be expressed simply, but in

a form that extends over the whole volume. Most useful is the definition for the normal of the

surface, which is given by

nnn =
∇φ

|∇φ| (3.6)

and there are also natural definitions for curvature, κ, given in [80] and [81] which can be important

when considering the additional physics of surface tension.

Evolution of φ advances the implicit surface. Taking the total time differential of (3.5) and apply-

ing the chain rule yields

∂φ

∂t
+

∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
+

∂φ

∂z

dz

dt
= 0 (3.7)

which can be compactly expressed in vector notation as

φt + vvv · ∇φ = 0 (3.8)

3The surface is of codimension one in R3, meaning a (3 − 1 = 2) two-dimensional surface in a three-dimensional

space, or, a (2− 1 = 1) one-dimensional curve in a two-dimensional space.
4In specifying φ(xxx, t) we are, for the first time, introducing a coordinate system. As Sethian noted [156], this is an

unusual mathematical choice, as we have imposed an unnatural order on the problem in some sense, but we have at the

same time added a dimension not previously present in the problem. Hermann Weyl famously critiqued coordinates as

“the introduction of a coordinate system to geometry is an act of violence” (presumably stepping away from a purer

mathematical form to a more pedantic form).
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FIGURE 3.6: Two-dimensional example of a level set φ at regular grid points that is implicitly

representing a sinusoidal surface (purple curve). The level set function, φ, has been initialized to

the signed distance from the surface, the bold values control the location of the implicit surface.

Positive (blue) and negative (red) are indicated in a narrow band around the implicit interface.

Points outside the narrow band (|φ| > 3) are shown in grey.

where the notation φt is the partial temporal derivative ∂φ
∂t , ∇ is the partial spatial derivative, and

vvv is the total time derivative of the surface (also known as the desired velocity of the interface).

The velocity field, vvv(xxx, t), can be decomposed into normal (vNnnn) and tangential (vT ttt) vector

components with respect to the surface where vN and vT are scalar fields specifying the speed in

the normal and tangential directions respectively, that is,

vvv · ∇φ = (vNnnn+ vT ttt) · ∇φ (3.9)

the tangential component vanishes, and defining F ≡ vN , (3.8) becomes

φt + F |∇φ| = 0 (3.10)
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This is the canonical level set equation. What is remarkable is that we have eliminated the original

boundary Γ entirely, and represented it implicitly in φ. When this partial differential equation is

advanced in time, we can at any later time find our evolved surface by seeking out φ = 0.

The scalar F is the speed of the surface normal to itself at all points on the surface. The functional

form of F determines what kind of partial differential equation (3.10) is. For only positive F =

F (xxx) > 0, (3.10) is the Eikonial equation (see Sethian [80]). In this case the boundary always

moves outward, and will never re-cross a specific point more than once, e.g., a fire burning in

prairie will only visit each spot once. A special subcase, F = 1, can be used to generate a signed

distance function

|∇φ| = 1 (3.11)

where every value of φ will reflect the distance to the surface, positive if “above” and negative if

“below”, referred to as Ω+ and Ω− respectively. For F dependant at most on first order derivatives

of φ, i.e., F = F (xxx, φ,∇φ), (3.10) is a hyperbolic differential equation, the Hamilton-Jacobi

equation (HJE)

φt −H(t,xxx, φ,∇φ) = 0 (3.12)

Hamilton-Jacobi equations have well developed techniques for numerical integration, see Subsec-

tion 3.2.4.

The level set equation (3.10) is not generally differentiable (because of the absolute value), con-

sequently solutions found for it are known as weak solutions. It was work pioneered by Crandall

and Lions [157, 158] in 1983 which found viscosity solutions to HJE that allowed for the level set

technique to be constructed. A viscosity solution is a technique whereby a small viscosity term,

εΔu, is added to the HJE, allowing the correct solution to be reached as ε → 0. The level set func-

tion φ can be any function that conforms to (3.5), as long as it is Lipschitz continuous function,

that is, it satisfies

φ(x)− φ(y)

x− y
< C (3.13)

for some constant C and arbitrary x and y. One natural choice is the signed distance function

(sdf), which is often used in reinitialization, described next.

For more complete introductions to the level set method, there are several key books by Sethian
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[80] and Osher [81, 82], as well as some useful PhD dissertations, including Ertl [152], Sheik-

holeslami [146] and Nielson [159].

3.2.2 Reinitialization

The level set function φ can drift away from a signed distance function over time, especially if

artefacts creep in from boundary conditions far from the surface. Reinitialization is the process

of resetting φ to a signed distance from the interface. Overuse of periodic reinitialization is dis-

couraged [80] as it can affect the implicit surface. One technique implemented in the code in the

present work is to avoid drift by use of a well chosen extension velocity [160] as discussed in

Subsection 3.2.7. This successfully avoided the need for reinitialization.

3.2.3 Non-convex Hamiltonian

Sethian introduced the first case of the level set method to simulate etching, deposition and pho-

toresist development [135]. These applications require the use of a non-convex Hamiltonian in the

HJE formulation of the level set equation because of the surface speed driven by the sputter yield,

see Figure 3.7. The Hamiltonian is non-convex if any of the second derivatives are negative, that

is if

∂2H

∂pi∂pj
< 0 ∀i, j ∈ 1...3 (3.14)

This condition has implications for the numerical discretization of the system, see Subsection

3.2.4. Radjenovic has subsequently carried out multiple studies of wet etching, plasma etching

and deep reactive ion etching (DREI or Bosch process), using a non-convex Hamiltonian [84–89,

137–143, 161].

3.2.4 Discretization and choice of scheme

Given the level set equation (3.10) with a well defined speed function F the next step is numerical

discretization for simulation. The derivatives will be approximated by finite differences, which can



36 Chapter 3

10 20 30 40 50 60 70 80 90

5

10

15

Incidence angle (degrees)

Sputter yield (atoms/ion)

FIGURE 3.7: The speed function created from a typical atomic sputter yield (as generated by ion-

soild monte carlo code, Appendix A) becomes non-convex around 70-80 degrees. This results in

a non-convex Hamiltonian for the system.

be derived from a Taylor expansion. Notationally a first-order spacial derivative can be approxi-

mated by backward, forward or central differences

φ−
x ≡ φijk − φi−1,jk

Δx
(3.15)

∂φ

∂x
≈ φ+

x ≡ φi+1,jk − φijk

Δx
(3.16)

φ0
x ≡ φi+1,jk − φi−1,jk

2Δx
(3.17)

with similar expressions for φy and φz . Observe that the symmetric central difference is the aver-

age of the forward and backward differences φ0
x = (φ+

x + φ−
x )/2.

Depending on the form of the speed function F , different combinations of spatial discretizations

can be chosen, comprising a scheme. Various schemes including upwind, Lax-Friedrichs, Roe-

Fix, are all discussed in [81, 159]. The upwinding scheme, used for convex-HJE, selects between

forward and backward differences to simulate the direction of propagation of information driven

by the sign of the speed. Non-convex speed functions (common for ion-sputter yield curves) lead

to non-convex Hamiltonians requiring use of a scheme such as the Lax-Friedrichs scheme [80,

135], which is given [81] in two dimensions5 as

Ĥ = H

(
φ−
x + φ+

x

2
,
φ−
y + φ+

y

2

)
− αx

(
φ+
x − φ−

x

2

)
− αy

(
φ+
y − φ−

y

2

)
(3.18)

5In three dimensions the form is extended similarly.
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where Ĥ is the exact Hamiltonian, and H is the discretized approximation, and the α terms are

dissipation coefficients chosen by the partial derivatives of H as

αx = max |H1(φx, φy)| αy = max |H2(φx, φy)| (3.19)

where H1 ≡ ∂H/∂φx and H2 ≡ ∂H/∂φy. Underestimating these coefficients can lead to surface

instabilities, while overestimating will over-smooth the evolution [152]. However, it is not hard

to run trials to create estimates. More advanced and CPU intensive schemes exist (Local-Lax-

Friedrichs, Local-Local-Lax-Friedrichs) which locally determine dissipation at every time step.

Temporal discretization can be forward Euler, or Total Variation Diminishing Runge-Kutta (TVD

RK) if more accuracy is needed. The latter is notably used with many flavours in image segmen-

tation [82]. TVDRK is also known as “Strong stability preserving RK” [162].

3.2.5 Sparse field

As described so far the 3D full-array level set method implemented on a volume of linear di-

mension N would be computationally expensive, as it scales as O(N3). Sethian [80] initially

described a faster algorithm, the narrow band method, which considers only a small window of

size k around the embedded surface, which scales as O(kM2) where M is the number of cells in

the narrow band. This concept was taken to its limit by careful shrinking of the band to a single

grid point on either side of the surface in the sparse field method, originated by Whitaker [163–

165]. The code referenced in this thesis uses the full-array method as the simulation sizes were

small enough that optimization was not required.

3.2.6 Fast marching method

For strictly positive functions, F > 0, the level set equation (3.10) becomes a boundary value

problem, and the front-crossing time, φ, can be solved over the whole domain quickly by the fast

marching method (FMM). This algorithm begins at grid points near the embedded interface and

sweeps outward with the number of computational operations scaling as O(N3 logN) in 3D. This

improvement over the brute force approach, which scales as O(N6), is made possible by strategic
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use of the min-heap data structure [166]. This method is implemented and used by the code in this

thesis for initializing volumes with a given surface. The fast marching method is also important

for computing the extension velocity. Other alternatives, such as the fast sweeping method [167]

were not considered.

3.2.7 Extension velocity

In many physical problems, the level set speed function F has a well defined meaning on the in-

terface, but not off the interface. However, the level set equation (3.10) requires that F be defined

everywhere, sometimes called the extension velocity, Fext. With the only constraint being that the

extension velocity matches the interface speed at the interface, Fext(φ = 0) = F , there is consid-

erable latitude to define Fext. This flexibility can be employed to avoid periodic reinitialization,

using the fast marching method as per Adalsteinsson [160]. The extension velocity is adjusted to

continually maintain a signed distance function near the surface and is held as the recommended

practice [80], despite the more efficient but less accurate method by Richards [168], and the more

recent and accurate work by Chopp [169, 170], which does not yet extend to 3D. If further ef-

ficiency is needed, a technique for narrow-banded extension velocity can be employed by Peng

[171].

3.3 Implementation and verification

A level set surface evolution algorithm was implemented in Julia, see Appendix C. It supports ex-

tension velocities, re-initialization, convex and non-convex Hamiltonians, and Lax-Friedrichs (LF)

and Local-Lax-Friedrichs (LLF) dissipation schemes. This custom code allows for straightforward

integration with the Ion-Solid-Interactions code (see Appendix A) and the adsorbate kinetics mod-

elling code (Chapter 4).

Design of this core code was informed by reviewing the few existing LSM libraries. Code by Dr.

Ian Mitchell for Matlab designs for the full-array method only, and does not support extension

velocities or fast marching methods [172, 173]. The implementation in the Insight Segmentation

and registration Toolkit (ITK) [174], is heavily aimed at medical image segmentation and lacks

support for non-convex HJE necessary for FIB simulations.
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FIGURE 3.8: Verification of the implementation of the LSM using a first-order convex scheme.

Top left shows the correct entropy solution for a cosine front evolving upward with speed F = 1.

Top right shows an initially circular level set (φ = 0 yields the black circle) evolving with

a surface speed F = ((R − 3)2 + 1) · (2 + sin(4θ)) using the extension velocity (instead of

reinitialization) to correctly maintain the front (blue) and the neighbouring level sets (green).

Bottom left shows the translation of a circle using F = (1, 0) · ∇φ
|∇φ| from (1,0) to the origin.

Bottom right shows solid body rotation of a circle about the origin using F = (−y, x) · ∇φ
|∇φ|

from (-1,0) to (1,0). Page numbers are listed from [166] for comparable descriptions and plots.

The 2D code was tested by duplicating known results from the literature. This included the correct

evolution of a cusp, a translation and a rotation of a circular interface from [175], see Figure 3.8. A

FIB sputtering example comparing the usage of convex versus non-convex Hamiltonian was also

run [176, 177], see Figure 3.9.

With the 2D LSM proven, a 3D LSM was built for use in full 3D surface evolution simulations.
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FIGURE 3.9: Verification of the implementation of LSM in the case of FIB sputtering using a

first-order non-convex scheme. An analytic approximation is used for sputter yield which gen-

erates the speed F = [1 + 4 sin2(θ)] cos(θ). Left plot shows convex scheme demonstrates the

incorrect evolution (blue) while the right plot with a non-convex scheme demonstrates the correct

evolution (green).

The first applied use was for anisotropic diamond etching, as shown in this chapter, and then to

EBID (see Chapter 4). The code can easily be modified to simulate FIB milling and deposition.

3.4 Diamond etch model implementation

This section contains part of the supplemental information for the publication Dynamic pattern

formation in electron beam induced etching [94] from Section 3.1 and explains how the speed

function was developed, the etch kinetics verified, and the simulation performed.

3.4.1 Etch rate anisotropy

The level set speed F is given by the etch rate R of the diamond crystal for the normal direction

of the surface

F = R(θ,Φ) (3.20)

where the usual definitions for polar angle θ taken from the positive z-axis, and azimuthal angle

Φ around the xy-plane apply. The etch rate in any direction can be determined by interpolation
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FIGURE 3.10: Etch rate regions A,B,C, defined in 1/16 of the sphere completely determine (by

symmetry) the etch rate in any direction.

from a set of crystalline direction etch rates [83–89]. With the etch rates of the {100}, {110}, and

{111} planes defined as R100, R110, and R111 respectively, R becomes (see Radjenović [87])

R(θ,Φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R100 − (R110 −R111) cot(θ)/ cos(Φ) + (R110 −R100) tan(Φ) ∈ A

R100 + (R110 −R100) cot(θ)/ cos(Φ) + (R111 −R110) tan(Φ) ∈ B

R100 + [(R110 −R100) cos(Φ) + (R111 −R110) sin(Φ)] tan(θ) ∈ C

(3.21)

where the regions A,B,C are defined in Figure 3.10.

3.4.2 Simulation verification

The LSM surface evolution implementation driven by interpolated etch rate is verified by simula-

tion of crystal spheres etching inward and spherical voids etching outward. The evolution of the

structures obey etch kinetic theory that states “convex surfaces are confined by rapidly dissolving

planes, and concave surfaces by slowly dissolving planes.” [178]. By setting one etch rate to be

fast and all others slow, spheres etch down to the correct polyhedra defined by those planes, e.g.,

{001} planes etching fast forms a cube. By reversing these conditions, i.e., setting one etch rate

slow and all others fast, voids in crystal etch out to the same polyhedra, see Figure 3.11 (images

and videos generated using the LSM code were rendered using ParaView [179]).



42 Chapter 3

fast 

slow 

FIGURE 3.11: Verification of the implementation of LSM with etch rate interpolation on spheres

etching in and spherical voids (or bubbles) etching out. Top the first two rows show initial condi-

tions of spheres and voids, and bottom the last two rows show final conditions of the same. Red

indicates slow etching and blue fast etching. The three columns of the spheres (and voids) show

the {001}, {011}, and {111} planes etching fastest (and slowest).
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Precursor Crystal orientation Slow etch planes

H2O (001) 110 (at θ = 90◦)

H2O (111) 110

NH3 (001) 111

NH3 (111) 111

TABLE 3.1: Simulation etch rates for different diamond crystal orientation and precursors. Etch

rates are either “fast” or “slow”. The ratio of the fast etch rate to the slow is always 1:5 (slower

ratios of 1:10, 1:100, make no significant difference).

3.4.3 Determination of anisotropic etch rates

The etch pit shapes observed experimentally were reproduced using LSM simulations only if:

• The {111} planes etched slower than all other planes in the case of NH3 EBIE of (100) and

(111) oriented diamond (see Figure 3.10).

• The {110} planes which are at θ = 45 degrees with respect to the electron beam axis

etched the slowest in the case of H2O EBIE of (100) and (111) oriented diamond (see Figure

3.12(a)).

The above anisotropy rule set is summarized in Table 3.1.

The initial surface in each simulation was a concave hemispherical etch pit in a flat plane (Figure

3.12(b)). This isotropic starting point ensures that the final evolved surface geometry is defined

purely by the etch rate anisotropy.

Note that during EBIE of (001) oriented diamond, the electron beam is incident onto two sets of

(110) planes, at polar angles θ of 45◦and 90◦. In the case of H2O EBIE (where the etch pit shapes

are defined by the etch rate of (110) planes), the 45◦ planes etch slower than the 90◦ planes. This is

likely caused by preferential defect incorporation during chemical vapour deposition of diamond

[180].
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FIGURE 3.12: (a) The scheme used to implement H2O EBIE of diamond. The colour red

indicates slow etching direction and blue fast etching. (b) Corresponding initial voids coloured

by relative etch speed.

3.5 Conclusions

In this chapter we have developed and verified code for a robust 2D and 3D surface evolution

technique by employing the level set method. Here the level set method represents the most el-

egant choice for evolving the diamond etch pits under a given velocity field. Furthermore, this

method can handle the difficult issues posed by merging and separation of surfaces. It works very

well in three dimensions which is the natural domain of interesting surface patterns. Finally, the

concept of the implicit surface is easily combined with both 1) the Ion-Solid-Interactions model

(see Appendix A), which often needs to know the distance to the surface (to determine if the mov-

ing particle is inside or outside), and with 2) the closest point method, which is used to compute

adsorbate kinetics to steady state as described next in Chapter 4.
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Adsorbate kinetics modelling

This chapter presents a new model for tracking adsorbate kinetics on general surfaces1. This

method is built on two techniques: 1) generalizing the continuum model for adsorbate kinetics,

and 2) solving the reaction-diffusion partial differential equation(s) for the adsorbates using the

closest point method. At the end of this chapter these two techniques are combined with the

surface evolution technique of the level set method into a new state-of-the-art electron and ion

beam induced deposition (EBIED / IBIED) modelling method. This tool set shares a common

implicit surface representation throughout and it solves the core problem of the thesis, that of

evolving surfaces and solving EBIED / IBIED reaction-diffusion equations on surfaces. By way

of example, the tool set is applied specifically to simulate surface evolution (deposition) in mass

transport limited and reaction rate limited regimes.

The core idea for the continuum concentration model for adsorbates comes from the literature.

The framework generalization of this model to handle various species and definitions of addition

and diffusion are mine. The closest point method and algorithm come from the literature. The

implementation and application to adsorbate kinetics on evolving surfaces are mine, as well as the

modelling and results.

Section 4.1 introduces the continuum equation for adsorbates, and shows how it can be generalized

for multiple species or surface interaction modes. Section 4.2 reviews some of the existing tech-

niques for solving partial differential equations (PDEs) on curved surfaces. Section 4.3 focuses on

1By general surface, we mean a surface of any shape, that is, not necessarily flat, nor symmetric.
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the technique chosen for evolving the adsorbate continuum equation on a general surface, and the

closest point method (CPM) while Section 4.4 describes the implementation. Section 4.5 solves

the issue of combining these two techniques and applying them to mass transport limited and re-

action rate limited situations. The benefits of this new state-of-the-art EBIED / IBIED modelling

method are concluded in Section 4.6.

4.1 EBIED / IBIED PDE definition

The typical EBIED / IBIED equation for adsorbate kinetics tracks adsorbate concentration N on a

surface

∂N

∂t
= A−R+D∇2

SN (4.1)

where the arrival A onto the surface depends on coverage, partial pressure, and precursor gas

delivery nozzle position, the removal R depends on desorption rates and ion / electron flux on

parts of the surface, and the transport is given by diffusion. All of these terms have units of flux

and they are dependant on the shape of the surface, which may be initially flat, but will be altered

over time by etching or deposition.

Here (4.1) is a second order partial differential equation, which is parabolic and inhomogeneous.

More specifically, it is a diffusion equation with source and sink terms. By including many adsor-

bate species and adsorption conditions, it may form a system of equations, see Appendix B.

Analytically solving PDEs on a generalized surface is a mathematical challenge, even in one di-

mension. By generalized surface we mean surfaces which may not conform to a regular coordinate

system, as is generally assumed in differential geometry. The gradient ∇ and divergence of the

gradient (Laplacian) ∇2 ≡ Δ are well known in Cartesian, cylindrical, spherical and other “uni-

form” coordinate systems. On general surfaces, the gradient is the intrinsic gradient ∇S , and

the Laplacian is the intrinsic Laplacian ΔS also known as the Laplace-Beltrami operator. These

naturally extend the regular coordinate system definition, taking the local coordinate system into

account.

A further complication can be introduced by the evolution speed of the surface on which the PDE

is being solved. For a dynamic surface evolving at a rate comparable to the time frame of the
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diffusion equation, the PDE values will be affected. A quasi-static surface where the surface

changes are slow compared to the adsorbate kinetics, allows for a two-step approach where 1) the

adsorbate PDE is solved to convergence, and then 2) surface evolution is driven forward, and then

the PDE is solved again, etc. In the modelling of Section 4.5 this quasi-static approach is taken.

4.2 Techniques for solving PDEs on surfaces

4.2.1 Explicit surface techniques

While there has been development of finite element methods (FEM) for solving PDEs (a good

review is given by Dziuk [181], and a recent example of solving a PDE on an evolving surface

is given by Madzvamuse [182]), there are still many issues. As discussed in [93], the efficient

parametrization methods still result in complicated formulas and singularities which must be han-

dled specially, with the cost of substantial organizational complexity. Finite element methods

(FEM) and finite volume methods (FVM) define the surface as a mesh (or polyhedral triangula-

tion), and require a “deceptively difficult” [93] discretization of the PDEs including complexities

inherent in deciding what normal and curvature values should be. The discontinuous Galerkin

method, which relies on a combination of both FEM and FVM, can also support surface diffusion,

however, application is complicated [183, 184].

4.2.2 Implicit surface techniques

Bertalmio [185] pioneered an approach to solving a PDE on an implicit surface. Using the sur-

face’s level set and surface data extended to a Cartesian grid, the PDEs can be evolved on a regular

grid. The method of extending the original data on the surface to the 3D volume is the same as

used for the extension velocity by Adalsteinsson [160] (as mentioned in Subsection 3.2.7), and is

attributed originally to Chen [186].

Greer [187] improved this method by a simple redefinition of the projection operator used when

extending the surface data to the volume. This removed the need for reinitialization of the level

set and clarified the boundary conditions necessary to solve the PDE.
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4.2.3 The closest point method technique

The closest point method (CPM) by Ruuth and Merriman [90] (see Section 4.3) moved away from

the level set embedding, with further benefits. It defines a method to simplify the solution of a PDE

on a manifold by replacing the problem with another PDE in the embedding space whose solution

will match on the surface. Macdonald [188] notably advanced the closest point method to handle

implicit time evolution, which makes it able to handle larger time steps, speeding up simulations.

Macdonald also investigated solving for interfaces on general surfaces (using the level set method

PDE and embedding it via the closest point method) [91].

For its mathematical elegance and algorithmic simplicity, the closest point method was chosen to

implement for evaluation of the adsorbate kinetics PDEs.

4.2.4 Other applications of CPM

The closest point method has been used to visualize flows on surfaces [189]. Biddle and Naden

have demonstrated noise removal from images on curved surfaces [190, 191], and Tian demon-

strated segmentation on curved surfaces [192]. Marz has investigated applications to thin film

flow [193]. The principle introduced by CPM, that “standard Cartesian derivatives equal surface

derivatives if the quantity of interest is constant in the normal direction” is used in the Kolah-

douz model of vesicle membrane voltages [194] where tension and transmembrane potential are

computed [195, 196].

4.2.5 Recent developments with CPM

Improvements to the performance of the CPM are still being made [197]. Chen has shown that for

larger surfaces in 3D, a multigrid approach is available that dramatically reduces the computation

time [198]. Fuseiler [199] attempted to improve upon CPM by using a kernel approach, but with an

O(N2) computation penalty. Auer [200] has implemented the CPM in a graphics processing unit

(GPU) application programming interface (API) (called CUDA) pipeline to simulate fluid effects

on surfaces by the Navier-Stokes and wave equations.
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4.3 Closest point method

The closest point method is a technique to evolve partial differential equations on general surfaces.

It defines a new PDE in an embedding Cartesian space whose solutions agree on the original

surface. Thus, the closest point method represents the surface implicitly, as does the level set

method. The CPM originated in 2008 by Ruuth and Merriman in a time-explicit form [90], was

advanced to handle implicit time2 evolution in 2010 by Macdonald [91, 92, 188], and has since

been generalized for variable coefficient and non-linear PDEs [197].

The core idea in the closest point method is that surface derivatives are simply Cartesian derivatives

which drop the normal components [201]. For example, given a surface S, for a scalar function

u on this surface (say, adsorbate concentration), there exists a coordinate system (n, t1, t2), see

Figure 4.1, such that the Cartesian gradient

∇u =
∂u

∂n
�n+

∂u

∂t1
�t1 +

∂u

∂t2
�t2 (4.2)

and the intrinsic gradient

∇Su =
∂u

∂t1
�t1 +

∂u

∂t2
�t2 (4.3)

agree along the surface. For a vector property �v the intrinsic divergence is

∇S ·�v =
∂v1
∂t1

+
∂v2
∂t2

(4.4)

Applying the intrinsic divergence on (4.3), yields the intrinsic Laplacian (the Laplace-Beltrami

operator)

ΔSu = ∇S · ∇Su =
∂2u

∂t21
+

∂2u

∂t22
(4.5)

The implication is that if we extend a surface function, u, in the normal direction, then solutions to

differential equations of u on the surface are given by an equivalent Cartesian differential equation.

The dramatic advantage of this is that in Cartesian space, all the proven tools for numerically

solving PDEs are now at our disposal. Whenever we are ready to view the solution on the curve,

2Note that there are two uses of the words “implicit” and “explicit” now being employed. Implicit and explicit

surfaces refer to the spatial representation, while implicit and explicit time integration refers to the mathematical method

to solve a PDE system at a later time. PDEs that require an implicit time integration approach are generally referred to

as stiff.
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�n
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�t2

�tt11

�t2

S

FIGURE 4.1: Schematic of surface S with locally oriented basis such that �t1 and �t2 lie locally in

the surface and �n is normal. Adapted from [201].

interpolation on the Cartesian grid to the surface will yield the present value of the surface function,

see Figure 4.2. For full details, see [90].

Depending on the differential order of the PDE, there is a minimal degree of interpolant that is

required. Above this minimum, the choice of interpolation method to use is free, however there

is a natural trade off between accuracy and computation time. Studies of CPM show that a four

point (which is third degree p = 3), dimension by dimension barycentric Lagrange interpolation

is satisfactory for 3D simulations on surfaces [188]. This 4x4 interpolation stencil is implemented

for this work.

The extension of surface data to the Cartesian embedding out along the normal is performed by

introducing the closest point operator cp(x). This operator maps any point x to the point on the

surface that is closest to x, see Figure 4.3. The surface function u is extended over all space

by applying u(x) = u(cp(x)). The equivalent Cartesian PDE is formed by replacing all points x

with cp(x), and all intrinsic operators with Cartesian equivalents. For example, a simple diffusion

equation on the surface (with initial condition)

∂u(x)
∂t

= DΔSu(x) u0(x) = u(x, 0) (4.6)

becomes

∂u(cp(x))
∂t

= DΔu(cp(x)) u0(x) = u(cp(x), 0) (4.7)

where (4.7) can be used to derive effective algorithms. These algorithms will need to ensure that

u stays constant in the normal direction as the solution evolves.
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FIGURE 4.2: Illustration of a curve through space, within its computation band of Cartesian grid

points. The solid grid points are used for interpolation of the solution back to the curve, the hollow

points indicate the boundary required for computation of the 5-point Laplacian stencil (example

shown with blue lines). The closest points on the curve for all grid points are shown as diamonds.

A 2x2 interpolation stencil is illustrated in red. The value of function u on the curve is determined

by interpolation of the values of u on the points (j,k,o,p) and their weights. Specifically the

closest point on the curve to j, denoted cp(j), is determined by the weights (wjj , wjk, wjo, wjp)
as indicated by the red lines.

Every grid point x derives its value from the corresponding mapped point on the curve cp(x). Every

point on the curve can be determined by interpolation from the local grid. This combination of

relationships can be mathematically captured in a sparse matrix, called the extension matrix E, see

the next section.

4.4 Implementation and verification of CPM

To implement the integration of a surface PDE, a computational band must be identified in the

Cartesian space that encompasses the surface. It must be large enough to support the interpolation

desired and any discretized spatial differential operators, e.g., the 5 (7) point stencil for the 2D (3D)

Laplacian. Macdonald specifies one algorithm for discovering the minimum set of points needed

to carry out the computation [188]. By beginning with a list of grid points comprised initially of

one point x1 known to be close to the surface, the algorithm progressively finds the closest point
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FIGURE 4.3: Example of the closest point operator cp(x) on several local grid points in the

computation band (a.k.a. a “porcupine” plot). Note that all extensions from x on the interior of

the curve are normals of the curve at cp(x).
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FIGURE 4.4: Intermediate results from the simulation correctly identify the computation band.

It encompasses the surface (left 2D circle and right 3D sphere) and is comprised of two sets of

points, set L has m points (blue and green) and set G has n points (red). The base points (green)

are the lower corners of the 4x4 interpolation stencil.

cp(x1) on the surface, and adds to the list all the (new) grid points needed to interpolate properly

to that closest point. The process is repeated until no new points are added. This forms the band

of points L. Additionally, a set of “ghost” points that are required for any second order central

difference are added, band G. The computational band is comprised of the union of two sets of

points, named L with m members and G with n members, see Figure 4.4.

In an approach that is similar to any implicit time method for the heat equation (e.g. the Crank-

Nicolson method), the relationships arising from the discretized Laplacian can be arranged into a

sparse matrix of size (m+n)×m named Δh. The closest point mapping and interpolation are also

expressed in a sparse matrix m × (m + n) named E, the extension matrix. The product of these

two matrices is m ×m matrix Δh × E = M̃ , see Figure 4.5. This matrix can then be integrated

forward in time to solve the diffusion equation.

However, one adjustment must happen first. The matrix M̃ was shown to be unstable by eigenvalue

analysis. It has also been shown that this instability can be eliminated without compromising the

correct solution by removing an unnecessary re-mapping in the Laplacian [188]. (This method was

reformulated recently by von Glehn et al. [197] in a form that allowed for clearer analysis of con-

vergence.) The former approach has been taken in the implementation, and to verify, eigenvalue

analysis for numerical stability is performed, see Figure 4.6.
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Δh (148x204) × E (204x148) = M̃ (148x148)

FIGURE 4.5: Visualization of the matrix equation Δh × E = M̃ . Intermediate results from

the simulation correctly produce sparse matrices with many near-diagonal entries. The matrices

capture the discretized Laplacian, Δh, the extension matrix, E, and their product M̃ (148x148).

The matrix visualization shows zeros as a uniform grey background, and non-zero values with

colour. These match well with matrices from Macdonald’s work, figure 3.1 in [188].

By stabilizing this stiff matrix for implicit time stepping, we have freedom to chose an algorithm

for large time steps. Backward difference formulas (BDF) of order 1, 2, and 4 have all been shown

to work [188], and BDF4 is implemented for best combination of accuracy and speed.

4.4.1 Implementation of diffusion

The code is implemented in Julia [202], see Appendix C. The performance is limited by the surface

evolution loop, which repeatedly multiplies large sparse matrices with vectors. The Julia package

IterativeSolvers has been used with the gmres() function to perform a generalized mini-

mization of residuals. This optimizes the speed of performing the computation of Ax = b (solving

for x).

The results of the Julia code match the analytical results for the cases of heat diffusion on a 2D

circle (shown) given in [187] and a 3D sphere (not shown), see Figure 4.7.

4.4.2 Implementation of sources and sinks

The implementation was tested with idealised sources and sinks such as might occur in adsorbate

kinetics situations. Two simulations were run, one with a flat surface, and one with a Gaussian
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FIGURE 4.6: Plots of eigenvalues in the complex plane at differing scales show intermediate

results from the matrix stabilization process. Top plots show eigenvalues for the unstable matrix

M̃ and a close-up of the positive real eigenvalues which are responsible for increasing instability.

Bottom plots show results of the stabilized matrix M (because it has no positive real eigenvalues)

by rewriting of the cp(x) mapping along the diagonal, c.f. Macdonald’s figure 3.5 in [92], and see

[92, 188] for details.

“etch pit”. First on a flat surface it was demonstrated that diffusion from a source spread out evenly,

until it encountered the domain edge (see Subsection 4.5.3 for details on boundary conditions), and

then a sink was added to show the difference in concentration in the steady state, see Figure 4.8.

Material which reached the domain edge was removed at a rate equivalent to the net flux into

the system, allowing an equilibrium to be reached. Thereafter, the surface was altered so that a

Gaussian pit (an etch pit) corresponded to the sink location, and the simulation was run again to

a steady state, see Figure 4.9. In both cases, the concentration profiles at the steady state were

as expected. The addition of a sink to the flat surface pinched the contours around the sink. The
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FIGURE 4.7: Validation of the CPM implementation by solving for heat diffusion on a circle.

Top shows the beginning and Bottom shows the ending heat distribution on a unit circle. Left
shows the computational grid surrounding the circle, with each point coloured by its heat value.

Middle plot compares the computed u (red) with analytic solution e−t cos(θ) (blue), however

they lie so close as to be indistinguishable. Right plots the difference between computed and

analytic as a measure of the error.

warping of the surface eased the pinching, as there was now more surface area on which diffusion

could take place.

Having verified the CPM implementation for solving reaction-diffusion problems of adsorbate

kinetics on fixed general surfaces, it can now be used in conjunction with surface evolution to

simulate deposition on evolving surfaces.

4.5 Simulating adsorbate deposition

By now combining the tool to compute (4.1) for adsorbate surface diffusion (CPM) with that to

compute surface evolution (LSM), a model can be built to simulate deposition.
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FIGURE 4.8: Modelling of diffusion of adsorbates on a flat surface to the steady state by the

closest point method. Left with only a source of adsorbates (uniform flux 20 a.u. in a circular

region radius of 0.2 a.u.). Right with the addition of a sink for adsorbates (uniform flux -10 a.u.

in a circular region radius of 0.2 a.u.). Colour and contours indicate the relative concentration of

the adsorbates. Boundary conditions were set such that in the steady state, the net flux into the

simulation was zeroed. These simulations are on a grid of 80x80 and take about 5 minutes to run

on a 2012 MacBook Pro.

4.5.1 Steady state assumption

Modelling the mass transport limited regime requires modelling surface evolution with adsorbate

kinetics. One key assumption is necessary, that the surface is moving slowly compared with the

evolution of the adsorbate’s PDE. In other words, the adsorbate PDE is always assumed to reach a

steady state before the surface is evolved by one step. The simulation then proceeds by alternating

between modelling adsorbate kinetics and modelling surface evolution by first computing diffusion

with the CPM to a steady state and then evolution for a short time period (one time step) with the

LSM.

4.5.2 Deriving closest points on implicit surface from φ

Initializing the closest point method requires computing the closest point on the implicit surface

for every grid point in the computational band using the values of the level set function φ. As long

as φ is well-maintained as the signed distance function during evolution (as can be accomplished
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FIGURE 4.9: Modelling of diffusion of adsorbates on a flat surface with a Gaussian pit to the

steady state by the closest point method. The source is a uniform flux 20 a.u. in a circular region

radius of 0.2 a.u. and the sink is a uniform flux -10 a.u. in a circular region radius of 0.2 a.u.

Left shows a top-down view. Right shows an angled view from underneath. Colour and contours

indicate the relative concentration of the adsorbates. Boundary conditions were set such that in

the steady state, the net flux into the simulation was zeroed. This simulation is on a grid of 80x80

and takes about 5 minutes to run on a 2012 MacBook Pro.

by the extension velocity, Subsection 3.2.7), the closest points can be computed from the normal

∇φ and the distance to the surface φ. Evaluating these gives a vector from every grid point back to

the closest point on the surface. The normal ∇φ is computed by second-order central difference.

Experimentation shows that re-initialization of φ may also be required. Over time, the evolved

level set produces a spread in the extrapolated closest points found for the implicit surface. The

spread is within a single grid spacing and is a result of discretization artefacts creeping into the

signed distance function. Testing found that the spread can be reduced by increasing the grid

resolution and by reinitialization of the level set function φ, see Figure 4.10.

4.5.3 Ghost widths

At each CPM initialization step, when the computational band is determined, it is most convenient

to inset the simulation so that the computational-band-seeking-algorithm never runs off the simula-

tion domain edges. At the lateral edges of the simulation domain a number of ghost cells are added
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FIGURE 4.10: Illustration of the improvement of the CPM-LSM technique by reinitialization of

φ after every surface evolution step. This example had an initially flat surface (at y = −1, not

shown) that rose up asymmetrically producing a sinusoidal surface after many time steps (shown).

Top without any reinitialization, the approximation of the closest points on the surface by φ
exhibit a small spread over approximately one grid spacing. Bottom including reinitialization of

φ before each CPM step maintains the surface sharpness. (As specified in Subsection 4.5.3 the

surface and φ are defined over all x and the closest points of the surface do not extend into the

ghost widths at x < −1 and x > 1.)
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FIGURE 4.11: Illustration of ghost width for CPM initialization from φ in 2 dimensions. In our

application, we assume the surface to extend and intersect the y-axis through the whole simula-

tion. The level set φ must be extended so that the full L and G bands can be constructed and

evaluated. In 3D φ is extended in both x and y, that is, we assume the simulated surface to reach

the edges of the simulation.

to accommodate the CPM on φ. This ghost width is determined by the number of cells needed by

the CPM interpolation, plus one for the CPM ghost band. By lateral edge, we mean the simulation

domain walls which the surface intersects, e.g., in 2D with a flat simulation surface along y=1,

the lateral edges are the two minimum and maximum x lines, in 3D with a flat simulation surface

along z=1, the lateral edges are the four xy planes at x,y extrema.

In the ghost cells the value of φ is filled outward by copying it laterally. The closest point initial-

ization is then also forced to laterally translate in by the ghost width, preventing any closest points

to be found in the ghost width, see Figure 4.11.
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4.5.4 Results

With the above adjustments, the CPM and LSM can be run serially (i.e., over and over), evolving

surfaces based off of the steady state solution of a reaction-diffusion PDE. As an example to

illustrate this proof-of-concept a beam induced deposition will now be run.

The simulation starts with a flat surface. A Gaussian beam which will “consume” adsorbates and

create surface deposits is directed normal onto the surface, slightly off centre, so as to introduce an

interesting asymmetry. The gas arrival rate determines the flux of adsorbates onto the surface. For

simplicity, the conversion rate of the adsorbates to deposits under the beam is set to unity. Every

time step, CPM computes the steady state concentration of adsorbates according to the arrival rate

distribution (source) and beam conversion / consumption (sink). The steady state is determined

ad hoc by performing false-time iterations. The LSM then advances the surface based on the

conversion distribution, and the algorithm repeats. Some tuning of the size of the CPM false-time

steps was done to insure that steady state was reached.

Three different distributions of gas arrival are run. First is a high uniform flux, which always

provides more than enough adsorbates for the beam to deposit - this is known as the reaction

rate limited regime. Second is a low uniform flux, which does not provide enough adsorbates for

the beam flux. All adsorbates under the beam are immediately deposited, and diffusion allows

an additional flow of adsorbates in from elsewhere in the domain. This is known as the mass

transport limited regime. The third gas distribution is an off-centre Gaussian distribution which

does not coincide with the beam (this is also mass transport limited). This asymmetric situation

will cause deposition to happen only when adsorbates diffuse from the arrival site to a region with

appreciable beam flux.

In two dimensions, results show the expected trends in behaviour. The first two deposits are sym-

metric, and the last asymmetric. The volume of the deposits decreases as the allowed consumption

of adsorbates decreases, see Figure 4.12.

This example can also be run in three dimensions. This is one aspect where the power of the

implicit methods shines - extending working 2D code to handle 3D is relatively trivial, compared

with mesh-based methods.
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FIGURE 4.12: 2D illustration of deposit growth (blue) under different conditions of gas flux

(red) and beam (black). Top a uniform gas flow and beam which does not deplete the adsorbates

results in a symmetric deposit. Centre a condition where the beam is depleting the available

precursor shows growth farther out due to adsorbates arriving via diffusion. Bottom an offset

localized arrival of the gas (which could be a simulation of GIS arrival itself [102]) results in an

asymmetric deposit. Domains here are 81x81 and all simulations ran in less than 10 seconds on a

2012 MacBook Pro.
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In 3D, the results again show the expected trends in behaviour. Now however, in the asymmetric

case, the deposit can be seen to form an even more interesting (and intuitive) crescent shape, see

Figure 4.13.

4.6 Conclusions

This successful proof-of-concept demonstrates the natural capability of this approach. Etching

could just as simply be performed as deposition. Features can be added on without much dif-

ficulty. More realistic beam profiles and gas arrival profiles are simply a matter of defining the

distributions. Adding beam rastering is only a matter of shifting the location of the conversion

around the surface. More complex adsorbate situations can be added into the PDE (see Appendix

B). Non-local effects from the electron / ion interaction volume could be added with the appropri-

ate Monte Carlo simulation (see Appendix A for ion solid interactions, also see Chapter 5).
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FIGURE 4.13: 3D illustration of deposit growth under different conditions of gas flux and beam.

Each row of images shows the same surface and deposit coloured left by concentration of adsor-

bate on the surface and right by amount of adsorbate under the electron beam being converted to

deposited material. (The border seen on simulations in the left view is an artefact from the render-

ing software). Top a uniform gas flow and beam which does not deplete the adsorbates results in a

symmetric deposit. Centre a condition where the beam is depleting the available precursor shows

growth farther out. Bottom an offset localized arrival of the gas (which could be a simulation of

GIS arrival itself [102]) results in an asymmetric deposit.
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General conclusions and future

directions

This chapter proposes an addition to the surface evolution and adsorbate continuum model outlined

in the previous chapter, by including a Monte Carlo model (see Appendix A for details) which

computes the electron / ion solid interaction as an input to the adsorbate kinetics partial differential

equation (PDE).

Section 5.1 introduces the complete model, and Section 5.2 finishes with general conclusions.

5.1 Including sample interactions

Having demonstrated the closest point method (CPM) implementation for solving the problem

of adsorbate kinetics PDEs in Chapter 4, it can now be used in conjunction with surface evolu-

tion (Chapter 3) and beam-sample interactions (Appendix A) to refine the tool set for simulating

deposition and etching with a gas precursor on changing surfaces.

Simulations can be built using all three of the models implemented, in a cycle, each providing

inputs to the next step. 1) The ion / electron sample interactions can be evaluated to determine the

flux of particles across the surface and its effects on the adsorbates on the surface. This provides

the source and sink terms in the adsorbate kinetics PDE(s). 2) For the solution of the PDE on
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1. Evaluate
beam-sample
interaction
Monte Carlo

2. Solve adsorbate kinetics
Closest point method

3. Evolve surface
Level set method

FIGURE 5.1: Schematic of approach for computing surface diffusion and evolution for electron

and ion beam induced etching and deposition (EBIED / IBIED) over the whole surface. Fluxes

from the beam and beam sample interaction are calculated to a “steady state” (until the statistics

are significant) by a Monte Carlo based method (Appendix A). Adsorbate addition and removal

due to fluxes (Appendix B), as well as diffusion, are calculated to the steady state by the closest

point method (Chapter 4). Finally, an iteration can be made to evolve the surface subject to some

limit using the level set method (Chapter 3). Then the cycle is repeated.

a surface, use the closest point method to transform the PDE into an easily solvable PDE on a

Cartesian mesh, and integrate to a steady state. 3) Once the adsorbate kinetics are known, the

surface can be evolved by etching or deposition using the level set method. The process then loops

back to step 1, with a new surface, see Figure 5.1.

The implicit surface representation can be shared through all three models and provides a distinct

advantage to this entire process. (The closest point method creates a slightly different embedding

than the level set method (LSM), but this is not a significant penalty.) The implicit surface provides

mathematically natural definitions for normals and curvatures, which are necessary for various

physical computations. The evolution of implicit surfaces is topologically robust, allowing for

the merging and separation of surfaces. The beam-sample interaction model benefits from the

signed distance function representation of the implicit surface, in that as scattering is tracked, the

algorithm always has a precise sense of distance from the surface. This is useful, for example,

in truncating trajectories early, if one is only interested in surface flux, and in computing electron

emission only within the electron escape depth of the material. Redeposition can be computed with
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ray-tracing mechanics easily [148]. Implicit surfaces avoid “work-arounds” needed with evolving

meshes, such as re-meshing [32], and de-looping [80].

Computationally, the MC step will be the most expensive. This can be ameliorated by techniques

such as building cached tables, designing algorithms to be single instruction multiple data (SIMD),

or running parallel code on graphics processing units (GPUs)1. The LSM step will be the most

expensive in storage. This may be partially improved by a non-uniform grid which is refined in

areas of higher detail, however this is complicated by the fact that changing the implicit surface

representation impacts all three steps in the simulation.

5.2 Conclusions

The state today of simulation of electron or ion beam chemistry is lagging behind experimental

work. Diffusion can be an important component to simulation. This thesis has shown that surface

diffusion can drive surface evolution in several ways, such as growing the Ga droplet in Chapter 2,

and deposition in Chapter 4. Electron and ion beam induced etching and deposition share common

problems of surface evolution and adsorbate surface concentrations.

By moving away from mesh methods (also known in 1D as “string” methods) towards a new

implicit surface representation, we could produce more powerful models. Furthermore, additional

physics can be added such as surface tension / stress, curvature driven flow, etc. These implicit

surface techniques simplify and empower the simulation of continuum adsorbate kinetics on a

surface and the evolution of that surface by deposition or etching in three dimensions.

The implicit surface level set method has been utilized for many types of physics simulations since

its invention, and have even been used for focused ion beam (FIB) deposition and etching. The

closest point method, a much more recent development, is used in a few but growing number of

research areas.

However, no work has been done to apply the implicit surface closest point method to adsorbate

reaction-diffusion kinetics, nor to couple it with surface evolution via the level set method. In this

1Monte Carlo methods are easy to parallelize since every run is independent.
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thesis it is shown that these two implicit surface methods can be made to work in concert, proving

they can be used as a basis for EBIED and IBIED simulations.

During the course of this research, a considerable effort went into understanding the mathematics

of and approaches to working with implicit surfaces. Further effort went into using this under-

standing to implement LSM and CPM algorithms and test them against published use cases. These

verification steps were essential, and so, were documented in detail (LSM verification in Section

3.3, etch verification in Section 3.4.2, CPM verification in Section 4.4). The code development

was a non-trivial exercise. At the time of writing, the level set method offers few libraries and the

closest point method none.

With the addition of a beam-substrate Monte Carlo method, the proposed tool set enables explo-

ration of phenomena and patterns with details at the scale of the interaction volume, over a micron

range domain, in three dimensions.
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Ion solid interactions modelling

This appendix implements a model for computing ion-solid interactions within a solid. While there

are many software packages for simulating ion trajectories in solids, none are freely available,

easily modifiable, and support generalized surfaces and materials. Only one package has very

recently claimed to provide these features [203], but a central library is currently missing. The most

widely used model, SRIM by Ziegler [204], uses the binary collision algorithm, and has undergone

much comparison with experimental results. While it does not support a general surface1, SRIM

does document its physical assumptions, physics and algorithms. Thus it provides one template

from which to construct a better surface-sensitive model, as well as a benchmark to test against.

The new code developed is called the Ion-Solid-Model (ISM), and is used to produce all plots in

this chapter. Its novel feature is that multiple solids of any shape can be specified for modelling.

All modelling results are my own.

This chapter covers some background and definitions (Section A.1) and the theory and models

of ion solid interactions (Section A.2). The binary collision algorithm, its limitations and some

decisions made in its implementation are reviewed in (Section A.3) along with results for general

surfaces. Finally, this work will be placed back into the context of solving surface problems

(Section A.4).

1only flat layers are supported by SRIM, no curved or “general” surfaces
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A.1 Overview

The study of the physics of projectile ions into solids spans over 100 years. Excellent reviews can

be found in [204–206]. Ion solid interactions are important for understanding high energy cosmic

ray damage of satellites, nuclear reactor walls damaged by neutrons, and nano-scale sputtering and

damage in focused ion beam (FIB) milling. This work will focus on the latter, which restricts the

energies of interest to less than 50 keV.

Inside the solid, the ion slows continuously due to interactions of its electrons with the solid’s

electrons, known as electronic stopping. When passing close to a nucleus, the ion scatters off,

and may knock the nucleus from its position in the crystal, creating an interstitial vacancy pair.

On average the ion loses energy to these scattering events described as nuclear stopping. If all

energy is lost the ion becomes implanted in the solid, or if it reaches the surface it may emerge as

sputter and potentially redeposit elsewhere on the surface. An atom in the solid matrix must be

given more than the lattice binding energy to move off-site and more than the displacement energy

to start on its own trajectory. The collection of trajectories of the incoming ion and all knock-on

atoms is known as a collision-cascade. An atom leaving the solid must have more than the surface

binding energy in the direction normal to the surface, see Figure A.1.

When a solid is perfectly crystalline, certain angles and positions for the incoming ion will allow

it to channel deeply into the material. As damage builds up in the solid, this lattice structure is

lost. In general, with typical FIB doses, this happens so quickly that it is reasonable to consider the

material as initially amorphous. The following discussion is limited to the case of an amorphous

substrate.

Signals that emerge from the solid due to these processes include neutral and ionized sputtered

atoms, which carry information about the initial composition of the solid, as well as secondary

electrons (SE) excited within the surface escape depth. These particles can stimulate further pro-

cesses with the surface adsorbates, see Chapter 4.
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FIGURE A.1: Ion solid interactions illustrated by a Ga+ ion (red) entering a silicon crystal with

nuclei (dark blue) and electron field (light blue).

A.2 Ion solid collision theory

Ion-solid interactions are complex, especially at high energy, as Ziegler notes [204], “Once the ion

penetrates a solid, it is quickly stripped of some of its electrons, and its charge state becomes a

function of the target. The target feels the ion coming, and its electrons polarize around the moving

ion. The charge state of the ion is modified by the polarized target, which then further affects

the target”. This many-body electrodynamic (and even quantum) problem is computationally

intractable. Progress can only be made by making reasonable simplifying assumptions.

A.2.1 Total stopping

As an ion moves through a solid it loses kinetic energy as a function of its instantaneous speed.

This probabilistic energy loss, characterized as a stopping force is often called in the literature

the total stopping cross-section [204]. The total stopping cross-section exhibits two peaks, a peak
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FIGURE A.2: Plots of the nuclear Sn(E), electronic Se(E) and total stopping cross section S(E)
for gallium in silicon.

at high energy due largely to electronic interactions and a peak at lower energy due to nuclear

interactions. Bohr was the first to observe that electronic and nuclear stopping could be treated

separately [207], by modelling the solid as a continuous electric field with point-like nuclei. Bohr

concluded that the energy loss of the ion moving through a solid could be reasonably divided into

two components corresponding to the nuclear stopping force, Sn(E), and the electronic stopping

force, Se(E), see Figure A.2 for an example of total, nuclear and electronic stopping. Semi-

empirical formulas have been developed for both Se(E) and Sn(E), which are described next.

A.2.2 Electronic stopping

Electronic stopping arises from inelastic electron-electron interactions between the solid’s elec-

trons and the moving ion’s electrons. It acts like a drag on the ion, slowing the ion without chang-

ing its direction (unlike the nuclear stopping, Subsection A.2.3). The force can strip off additional

electrons so that the effective charge will vary from neutral to completely ionized depending on

the speed; as Möller states [208], “the actual charge state of a fast ion in matter is continuously

fluctuating and determined by a balance between electron loss and electron attachment”. At low

energy, electronic stopping is approximately linear with energy. However, with increasing energy

(much higher than 50 keV) a peak occurs above which the ion, completely stripped of electrons,
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FIGURE A.3: Plots illustrating the total stopping cross section of several ion species in Si. If the

x-axis were normalized by ion velocity vFZ
2/3
1 the highest (electronic stopping) peaks would be

aligned.

has a falling Se. The exact position of this peak is dependant on the ion speed relative to the Fermi

velocity of the solid, vF ≈ vBZ
2/3
1 (where vB is the Bohr electron velocity), see Figure A.3.

Loosely interpreted, the ion experiences a peak drag when its speed is comparable to that of the

solid’s orbiting electrons.

There are two differing models for computing the electronic stopping, applied on either side of

this peak (low and high energies). The electronic interactions can be evaluated in the low energy

regime by the Lindhard and Scharff model [209], and the high energy regime by the Bethe model.

The Lindhard and Scharff (non-local) stopping is

Se =
8πe2a0
4πε0

Z
7/6
1 Z2(

Z
2/3
1 + Z

2/3
2

)3/2

v

v0
(LS low v) (A.1)

where a0 is the Bohr radius, v0 is the Bohr velocity, and v is the ions velocity, Z1 and Z2 are the

atomic numbers of the ion and atom. The Bethe stopping is
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(4πε0)2
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)
(Bethe high v) (A.2)
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FIGURE A.4: Plots of the electronic stopping cross section models for gallium in silicon at low

and high energy, as well as their reciprocal sum, taken to be the electronic stopping.

where me is the electron mass and I is the mean ionization potential and is approximated by

I = 10Z2 (eV). The value of v for which the switch is applied is v = v0Z
2/3
1 .

The two models are combined to give an approximation in the intermediate regime, providing a

smooth extension for the high-energy model at lower energies

1

Se
=

1

Se(LS low v)
+

1

Se(Bethe high v)
(A.3)

which is illustrated in Figure A.4.

While scientific interest in the stopping force ranges from 0 to 108 keV, the nanotechnology world

of FIB is only concerned with a fraction of this range, up to 50 keV. For the purposes of the binary

collision algorithm at lower energies, Se can be modelled as a velocity proportional drag on the

ion (called the continuous slowing down approximation) which has been expressed empirically by

Oen [210]. This form of Se accounts for and becomes dependant on the impact parameter p of the

collision (see Subsection A.2.4.)

ΔE =
0.045k

√
E

πa20
exp

(−0.3p

a0

)
(A.4)

where k is a function of Z1, Z2 and M1 and the and ion energy E is given in (eV).
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A.2.3 Nuclear stopping

The nuclear stopping cross section can be semi-empirically derived from a screened Coulomb

potential. Ziegler [204] gives the relationship as

Sn(E) =
8.462× 10−15Z1Z2M1Sε(ε)

(M1 +M2)(Z0.23
1 + Z0.23

2 )
(A.5)

where the units of Sn are (eV/(atom/cm2)) and where the reduced energy ε of the system is given

by

ε(E) =
32.53M2E

Z1Z2(M1 +M2)(Z0.23
1 + Z0.23

2 )
(A.6)

where for ε ≤ 30

Sε(ε) =
ln(1 + 1.1383ε)

2(ε+ 0.01321ε0.21226 + 0.19593ε0.5)
(A.7)

and for ε ≥ 30

Sε(ε) =
ln(ε)

2ε
(A.8)

Nuclear stopping dominates over electronic stopping at the low energies at which FIB is per-

formed. The relative magnitudes at all energies can be seen in Figure A.2.

The nuclear stopping of (A.5) does not yield details about the trajectory or sputter from ion-solid

interactions. A Monte Carlo evaluation of a series of classical scattering events is instead used to

build up trajectories and cascades in the solid. Next we review how one scattering event can be

solved, a core piece of the binary collision algorithm.

A.2.4 Classical scattering event

An atomic scattering event can be solved analytically. Momentum and energy are both conserved.

Given the masses of the two particles M1 and M2, their interaction potential V (r), the impact

parameter p (the distance of the initial asymptotic trajectory of M1 to M2) and the energy E of

the incoming particle (with M2 initially at rest), the resulting energy transfer and scattering angles

can be derived. Without loss of generality, the event can be reduced to two dimensions and aligned

with the incoming particle velocity. Furthermore, it is useful to change from lab frame to centre of
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FIGURE A.5: A gallium ion at 30 keV scattering off of a silicon atom at rest. Here M1 =
69.723 a.m.u., M2 = 28.085 a.m.u., and the impact parameter p = 7.75 pm. The velocity Verlet

algorithm using the appropriate universal Ziegler, Biersack, and Littmark (ZBL) potential was

integrated to yield the trajectory. Timesteps taken are indicated by dots on the trajectory. Left
shows the scattering event in the lab frame which is completely determined by the (input) energy

E, impact parameter p, and masses M1,M2. The resulting (output) transferred kinetic energy

T = 17.7 keV (gained by M2, lost by M1), and the scattering angles θ = 24.38◦, φ. The distance

at the apsis (distance of closest approach) is 20.0 pm. Right shows the same scattering event in

the centre-of-mass reference frame. Note that in the CM frame there is only one scattering angle,

which defines both particles’ opposite exit directions. Right and left are on different scales.

mass (CM) frame by adding the system’s centre of mass velocity, −vC , to both particles. Under

this transformation, the CM is at rest, and symmetry of the trajectories is induced, see Figure A.5.

We will now review the derivation2 of the kinetic energy transferred, T (Θ), as a function of scatter-

ing angle Θ, and then the scattering angle itself, Θ(p,E, V (r)), as a function of impact parameter

p, initial energy, E, and potential of the system V .

A.2.4.1 Derivation of kinetic energy as a function of scattering angle

Applying conservation of energy and momentum for an elastic collision yields the relations

E =
M1v

2

2
=

M1v
2
1

2
+

M2v
2
2

2
(A.9)

2This most closely follows Ziegler [204].
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M1v = M1v1 cos(θ) +M2v2 cos(φ) (A.10)

0 = M1v1 sin(θ) +M2v2 sin(φ) (A.11)

Define new vector coordinates X and x for centre of mass and inter-particle distance

X =
M1x1 +M2x2

M1 +M2
x = x1 − x2 (A.12)

and the transformation between lab to CM frame becomes

x1 = X +
M2

M1 +M2
x x2 = X − M1

M1 +M2
x (A.13)

Define the velocity of the centre of mass as

vC =
vMC

M2
(A.14)

where

MC =
M1M2

M1 +M2
(A.15)

By subtracting the centre of mass velocity from both particles’ initial velocities, we transform the

system from the lab frame to the CM frame. In the CM frame the total momentum is always zero.

The total energy of the system in the CM frame is given by

EC =
M1(v − vC)

2

2
+

M2v
2
C

2
=

MCv
2

2
(A.16)

The relationship of the angles in lab and CM frames is geometric, see Figure A.6. The second

particle M2 has zero velocity initially in the lab frame, but −vC in the CM frame and ends with

velocity vC . By equal angles between parallel lines, and the isosceles triangle property (two equal

sides yield two equal angles) we have

φ =
Φ

2
=

π −Θ

2
(A.17)

and applying the law of cosines

v22 = v2C + v2C − 2v2C cos(π − Φ) = 2v2C(1− cosΘ) (A.18)
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FIGURE A.6: Geometric relationship of the angles between the reference frames for the M2

velocities, illustrating Φ = 2φ and Φ = π −Θ (image derived from Ziegler [204] pg. 2-5.)

yields

v2 = 2v
MC

M2
cosφ (A.19)

and

tan θ =
(v − vC) sinΘ

vC + (v − vC) cosΘ
=

M2 sinΘ

M1 +M2 cosΘ
(A.20)

We can now derive the energy transferred to the second particle in the lab frame from

T =
M2v

2
2

2
(A.21)

Using the angle relationships above, algebraic manipulation yields

T (Θ) =
4EM1M2

(M1 +M2)2
sin2

(
Θ

2

)
= Eγ sin2

(
Θ

2

)
(A.22)

where γ is the mass mismatch coefficient [205].

γ =
4M1M2

(M1 +M2)2
(A.23)

Observe that when M1 = M2, γ = 1, otherwise, γ < 1. The mass-mismatch coefficient by itself

can predict characteristics of the ion’s trajectory, see Subsection A.2.4.4.
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A.2.4.2 Derivation of scattering integral

The total energy in the CM frame is given in polar coordinates by

EC =
1

2
MC

(
ṙ2 + r2Θ̇2

)
+ V (r) (A.24)

Remembering that at t = 0 EC = 1
2MCv

2
0 we can eliminate MC

EC =
EC

v2

(
ṙ2 + r2Θ̇2

)
+ V (r) (A.25)

Now the angular momentum is constant as

JC = MCr
2Θ̇ (A.26)

and at t = 0, in terms of the impact parameter p is

JC = MCvp (A.27)

Setting these equal yields the relation

Θ̇ =
vp

r2
(A.28)

which can be substituted into (A.25), yielding

EC =
EC

v2

(
ṙ2 + r2

(vp
r2

)2
)
+ V (r) (A.29)

This can be rearranged to solve for dr/dt as

ṙ = v

√
1− V (r)

EC
−

(p
r

)2
(A.30)

Note that the trajectory reaches its apsis, where r is minimum (rmin) at the turning point ṙ = 0.

By evaluating

Θ̇

ṙ
=

dΘ

dr
=

p

r2
√
1− V (r)

EC
−

(p
r

)2 (A.31)
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and integrating (noting Θ = π initially) we have the scattering angle

Θ = π −
∫ ∞

−∞
p

r2
√
1− V (r)

EC
−

(p
r

)2dr (A.32)

which can be simplified by noting the symmetry of the trajectories around the apsis (rmin)

Θ = π − 2p

∫ ∞

rmin

1

r2
√
1− V (r)

EC
−

(p
r

)2dr (A.33)

where the distance of closest approach, rmin, is given by r such that

1− V (r)

EC
− p2

r2
= 0 (A.34)

All parameters in the integral above have been described except for the potential V (r), which is

discussed next.

A.2.4.3 Screened coulomb potential

As the ion approaches the target atom, there is a weak repulsive coulomb force between the two

nuclei, which is modelled as a columbic potential reduced by a screening function Φ

V (r) = Φ

(
Z1Z2e

2

r

)
(A.35)

Many inter-atomic screening functions have been proposed to reduce the coulomb potential, see

Figure A.7. The “universal” function ΦU empirically specified by Ziegler, Biersack, and Littmark

(ZBL) [211], yields a potential that agrees with experimental results within 5%.

A.2.4.4 Implications of mass mismatch

One consequence of the classical scattering is that the energy transfer and scattering angles are

limited by γ given in (A.23). This mass mismatch limits [205] the amount of energy transfer

possible when M1 > M2 and consequently the final scattering angle of M1. When the mass
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FIGURE A.7: Various screened potentials proposed in the literature, expressed on a dimension-

less plot. The Thomas-Fermi screening length rTF , is a function of atomic number and defines a

radial spread of electronic charge about the nucleus.

mismatch limits the angles possible, the cumulative effect over multiple scattering events results

in different trajectories of the implanted ion, see Figure A.8.

A.3 Binary collision algorithm

In general, nuclear interactions are evaluated as classical elastic scattering events, using a screened

Coulomb potential, see Ziegler [204]. The computation of the nuclear stopping essentially be-

comes a atom-atom screened-Coulomb interaction, which alters the trajectory of the ion’s path

through the solid. Only the ion and target atom are considered, making this a binary collision, the

fundamental assumption in the binary collision algorithm (BCA).

The assumption of a binary collision breaks down in certain energy regimes. Eckstein [212] notes

that the highest lower limit for BCA accuracy comes from the length needed for asymptotic trajec-

tories versus the lattice constant of the solid, and this is in many cases about 20 eV. There are other

physical arguments given by Robinson [213] limiting BCA at lower energies: many body effects

creep in at 10 eV which corresponds to the velocity of sound in metals; quantum mechanically at

1 eV, the deBroglie wavelength of a proton rivals the lattice dimension as well. Smith [214] notes
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FIGURE A.8: Implications of mass mismatch, (A.23). Top illustrates scattering for different

impact parameters. Example shows Ga (M1=69.7) atom onto a Si atom (M2=28.0) at 30 keV for

a range of impact parameters. Left shows the resulting scattering angle as a function of impact

parameter, and right shows the family of trajectories taken by the ion (green) and the target silicon

atom (red). Bottom illustrates the impact on implantation trajectories entering a solid (z < 0) for

carbon (M=12.01) and tungsten (M=183.84) at 30 keV. Left is carbon ions entering at (0,0) into

solid tungsten, and right is tungsten ions entering at (100,0) into solid carbon. In the former (light

ion into heavy solid) several of the trajectories return to the surface indicating ion re-entry into the

vacuum, in the latter (heavy ion into light solid) very little deviation from the original trajectory

is experienced.
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that typically the deBroglie wavelength is small compared to thermal vibration in atoms so that

quantum mechanics only plays a role in discussing the interatomic function.

The binary collision algorithm also assumes a series of single scattering events, no “change” to the

solid during the interactions, and enough relaxation time in between events such that the solid has

time to relax. The last condition is also known as the linear cascade regime.

The procedure for computing the ion path through the solid begins with a given initial position,

velocity and energy. The distance, or path length, to the next scattering event is determined from

the local atomic number and material density. An impact parameter p is selected from a random

distribution related to the path length. The scattering integral is computed and the resulting velocity

of the ion and target is determined. The ion’s kinetic energy is reduced by the nuclear collision and

by an energy given from the empirical electronic stopping. This is repeated until the ion’s energy

is small and the ion is implanted, or it leaves the solid as sputter. The entire trajectory is recorded

with bookkeeping done to note all energy lost in the solid and damage created. Targets which are

given enough energy to start their own trajectory are also all evaluated if desired. All data from

the trajectories is collated in a cascade. This algorithm for computing cascades is expressed in

pseudo-code in Algorithm 1. There are subtleties that different programs have implemented, for

full details, see [204, 206, 213, 214].

The key in this implementation which allows for general surfaces is that the BCA algorithm accepts

a function which decides where and if a moving atom has escaped the surface. By passing in the

function isOutsideVolume() the BCA can refer to any surface at runtime. The surface can even

be dynamically changing with every call. This change is required when interfacing with a surface

evolution technique, such as the level set method, see Chapter 3.

Additionally, dynamic compositional changes can be added (as is done in TRIDYN) if the target

is specified by a function.

A.3.1 Biersack’s “scattering triangle”

The scattering integral, (A.2.4.2), can be evaluated computationally in several ways, ordered below

from most CPU intensive to least:



84 Appendix A

Data: ion, E, target, x, v, isOutsideVolume(), gen, t, doRecoils

Result: cascade data structure

Emin = minimum surface binding energy of target;

while E > Emin do
determine next nuclei for scattering event;

p =

√
− log(RN )

πNλ ;

Θ, T, r0 = computeScatteringIntegral();

advance x, v;

if T >nuclei displacement energy AND doRecoils then
recursive call for atom with T - lattice binding energy;

append subcascade to cascade
end
record step in trajectory in cascade;

if isOutsideVolume() then
return cascade

end
end
Algorithm 1: Recursive algorithm to compute a series of binary collisions down to a minimum

energy, returning the resulting cascade of events from ion passing through an amorphous solid.

• numerical evolution of trajectory (velocity Verlet algorithm)

• numerical quadrature on the scattering integral

• Biersack’s fitting formula “magic formula”

In 1980, Biersack published [215] a method which can be used to approximate the classical scat-

tering integral. Biersack claimed that this algorithm works to 1% but never published the proof3.

The software package SRIM and MARLOWE claim to use this algorithm, though experimenta-

tion seems to indicate that SRIM does not apply this approximation for non-high energy ions. The

algorithm (also known as the “magic algorithm”) uses the concept of a scattering triangle con-

structed from the tangential curves at the apsis and its orientation to the asymptotic approach of

the two masses in the CM reference frame, see Figure A.9.

Geometrically, the triangle relates the scattering angle to the characteristic distances in the binary

collision.

cos

(
Θ

2

)
=

ρ+ p+ δ

ρ+ r0
(A.36)

3In Biersack’s paper [215] reference 15 is “J.P. Biersack, L.G. Haggmark and M.I. Baskes, to be published”, how-

ever, online searches do not show any publication.
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FIGURE A.9: Definition of Biersack’s scattering triangle (blue) in terms of the trajectories of the

two masses interacting in a screened coulomb potential in the CM reference frame. Here M1 and

M2 are the masses of the ion and atom respectively, p is the impact parameter, r0 is the distance

of closest approach, ρ1 and ρ2 are radii of curvature of trajectory of closest approach, and δ1 and

δ2 are “correction terms”. Figure derived from Smith [214] pg. 20

with ρ = ρ1+ρ2 and δ = δ1+δ2. Given the impact parameter p, the apsis r0 is found from (A.34)

(by, for example, Newton’s method). The radii of curvature ρ1 and ρ2 can be found by computing

the centrifugal force. The remaining term δ is typically much smaller than the other distances. A

fit with five degrees of freedom is then made for δ against numerical integration of the scattering

integral.

This approach is computationally faster (on the order of x50 in cases tried), but the ISM imple-

mentation shows that it underestimates the scattering angle. For example, in a binary collision for

gallium ions at 30 keV on silicon, see Figure A.10. Others have also noted differences [216]. For

this reason, the scattering triangle approach was avoided. Similar speed increases in the code can

be achieved by creating lookup tables of the precisely computed scattering angles.

A.3.2 Implementation

The implementation was performed initially in python [217] and plotted by Matplotlib [218].

However, it was quickly ported to the Julia programming language [219], see Appendix C, to

more easily take advantage of multi-core environments and 2D/3D plotting with the Gadfly pack-

age [220] and ParaView [179], see Figure A.11 for an example of ParaView output. The program
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FIGURE A.10: Biersack’s approach (“magic formula”) poorly estimates the scattering angles of

gallium (top) and carbon (bottom) ions at 30 keV on Si over a wide range of impact parameters.

Plotted here are the three techniques listed in Subsection A.3.1.

features the ability to handle any type of amorphous material volume (with mixes of different den-

sities in 3D) and any surface definition (spheres, cylinders, irregular, etc.). These features are not

provided by the most common package available, SRIM [211].

A.3.3 Validation and Results

The ISM code was first compared against the results from SRIM in the case of a flat plane. The

results are not compared with experiment, as SRIM itself has deficiencies in comparing with ex-

periment [221, 222]. Thereafter, the ISM code was run to generate results in non-flat conditions,

which SRIM cannot reproduce.
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FIGURE A.11: Example of snapshot from 3D scientific visualization software, ParaView, dis-

playing several collision cascades coloured by time in femtoseconds from early (blue) to late (red)

in the cascade.
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FIGURE A.12: ISM results show excellent agreement with SRIM for implantation (top) and the

correct trend (but not absolute agreement) for sputter yield (bottom). The latter can be brought

into agreement with SRIM for some versions of electronic stopping. The error bars indicate the

standard deviation of the scatter in the z implantation depth.

A.3.3.1 Flat surfaces

The results for implantation agree closely. Results for sputter yield do not match exactly, due to

inadequate documentation detail on how SRIM handles the surface but can be tuned to agreement

with various reasonable choices of electronic stopping, see Figure A.12. These results allow for

running simulations for implantation, or for studying sputter yield ratios. This code can also give
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FIGURE A.13: Example results from ISM code showing multiple cascades arising from 30 keV

Ga ions entering silicon at the origin. Left coloured by energy, Right coloured by generation of

knock-on.

detailed pictures of the intermediate calculations, see Figure A.13.

A.3.3.2 Curved surfaces

Sputter yield enhancement for Ga+ at 30 keV into silicon was studied on half-cylinder and half-

sphere solids of various radii, see Figures A.14 and A.15. This type of simulation is not possible

with SRIM because the surface curves out of the plane, however other work is available [223,

224]. Here we can observe that for half-cylinders the radius of curvature does not affect the sputter

yield as the angle of incidence is tilted along the axis of the cylinder. When the curvature rivals the

interaction volume there is more sputter yield at all angles. For hemispheres, the mean (shown)

and standard deviation (not shown) peak at different angles, the sputter peak shifts to lower angles

as the hemisphere shrinks and that sputter is enhanced by 30% for even some larger hemispheres.

Finally, the largest hemisphere is most similar to the half-space (an infinite flat plane). These

results indicate successfully running code and trends, but deviate grossly from experimental data

see [225].
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FIGURE A.14: ISM results of sputter yields from hemicylinders at different radii of curvature.

Inset Illustration of simulation of interaction volumes on a half-cylinder at various angles.

A.4 Conclusions

A new implementation of a BCA has been written which allows for an arbitrary surface definition,

allowing for simulation of curved and otherwise generalized surfaces. The code, named ISM, has

been verified for flat surfaces against SRIM. Simulations have then been run for curved surfaces,

and produced reasonable results.

This development effort was absolutely necessary in the face of tackling surfaces which defy

conventional (flat) geometries, or surfaces which are evolving in time. The level set method for

representing the surface (see Chapter 3), provides a natural definition which can be used for the
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FIGURE A.15: ISM results of sputter yields from hemispheres at different radii of curvature.

Inset Illustration of simulation of interaction volumes on a half-sphere at various angles.

function isOutsideVolume(). The level set method and the Monte Carlo method can be combined

to produce a simulation of dynamically evolving surfaces in 3D.

An additional benefit is that the code base also can be extended in many directions, e.g., tracking

volumetric changes (as does TRIDYN), as well as adding channelling or crystalline effects. The

addition of ion generated secondary electrons (iSE) would be of value, as has been accomplished

in IONiSE [226, 227] and EnvizION [228].
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Framework for EBIED / IBIED

adsorbate continuum equations

This appendix takes the best of electron beam induced etching and deposition (EBIED) adsorbate

continuum models, generalizes and frames it for reuse in wider situations. This is accomplished

by defining a mathematical framework for modelling EBIED adsorbate kinetics which:

1. lists various “elemental” surface processes which affect adsorbate concentration,

2. gathers these different physical processes into three main groups, and,

3. organizes them into a square system of partial differential equations.

By mathematically grounding the EBIED adsorbates kinetics with this approach, the ion beam

induced etching and deposition (IBIED) situation is recognized to be largely the same with only

the addition of sputtering and redeposition. This framework then forms a full “template” to guide

the modelling of any EBIED / IBIED system.

In EBIED work, a number of phenomena have been identified and studied in isolation, either not

modelled at all or focused to model one effect and ignoring others, leaving it unrealistic, and

consequently unphysical. There has been no unified framework. The situation is even worse in

IBIED, where only a few effects have even been modelled (sputtering, redeposition), despite the

fact that all the same chemical mechanisms of precursor and substrate exist. IBIED is essentially
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a superset of the physics going on in EBIED. It adds sputtering, redeposition, damage and also

implantation, but the adsorbate kinetics must follow the same rules.

The following sections generalize and clarify the EBIED and IBIED precursor kinetics into a uni-

fied model. This proceeds first by fundamental definitions of a species i (Section B.1), a concen-

tration N (Section B.2), and electron/ion/neutral flux (Section B.3). Then a list of the non-three

body processes 1 is made, and grouped into transport (Section B.4), addition (Section B.5) and

removal (Section B.6), as in Figure B.1.

B.1 Species i

The surface has material upon it that we distinguish by species. The term species carries the

traditional meaning, i.e., a molecule or atomic adsorbate, such as H2O or XeF2. But additionally,

in our model, it distinguishes the type of bond with the surface (i.e., identical molecules can still

be classified as different species depending upon whether they are chemisorbed or physisorbed).

Notationally, we identify the species by the index i. If it is necessary to distinguish between two

species we use i and j. If there is only one species in an equation, we will drop the subscript i.

B.2 Species concentration N

Consider an adsorbate species concentration, N , on the surface. The change in concentration of

N on the surface with time, ∂N
∂t , is governed simply by a sum of fluxes (units of [particles time−1

length−2]). These fluxes are: the additional material arriving or being created, A, the material

being removed or destroyed, R, and the material diffusion2 along the surface, D.

∂N

∂t
= D +A−R (B.1)

There is implicit dependence in all variables on (x, y, z, t).

1Throughout, three body processes are excluded as low probability.
2Later diffusion is recognized as a form of transport and is subsumed in T
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FIGURE B.1: Processes included in the precursor kinetics model that can take place on the

surface. Three-body processes are excluded as low probability. Any thermal process may also be

activated (stimulated) by an energetic particle (electron, ion, neutral) or photon.



96 Appendix B

Multiple species yield a set of equations of the form of (B.1) indexed by i. Fragments from

adsorbates are included in this index. Species which have more than one type of surface interaction

(physisorbed or chemisorbed) are treated distinctly by this index as well.

It is worth noting that (B.1) is a reaction-diffusion equation, where +A−R account for the reaction

component. This hints at the possibility of exploring nanopattering by chemical effects driven by

the charged particle beam.

Addition, removal, and diffusion themselves consist of component fluxes from different processes,

see Figure B.1. These categories are itemized and expanded below.

B.3 Flux of electrons, ions, and neutrals

Some processes acting on surface species populations are strongly affected by electrons (and ions

and neutrals) passing the surface boundary in either direction (bulk to vacuum, or vacuum to bulk.)

Photons are not included here, although they can affect surface species, as can be seen in examples

of laser induced etching and deposition [229–231].

Dissociation or fragmentation by a flux of particles through the surface requires some bookkeep-

ing. The electrons interacting with the surface have a distribution of energies. E.g. primary elec-

trons have a narrow range of high energies, while secondary electrons have a broad range of lower

energies. We define the flux distribution of electrons as fe and note that it is comprised of primary,

secondary and backscattered electrons

fe = fPE + fBSE + fSE1 + fSE2 (B.2)

Implicitly, these flux distributions all vary with energy of the particle, f = f(E), and they have

units [particles time−1 energy−1 length−2]. A flux would be given by integrating over energy

fdE, and a number of electrons by further integrating over an area fdEdA.

Similarly, we define the flux of neutral atoms/molecules as the sum of the backscattered ions

(which are all assumed to be neutral after first interaction with the surface), sputtered material
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(typically neutral [232] such that α ≈ 0.95 ), and redepositing atoms

fneutral = fBS + αfS + fR (B.3)

and the ion flux as the primary ion beam, and

fion = fPI + (1− α)fS (B.4)

where ion and neutral must be replaced with the specific ion, atom or molecule, e.g., fGa+ or fSi

or fXeF2 .

These fluxes are evaluated with an effective cross-section σ of units [length2], yielding a rate

distribution over energy. This follows notation used in the literature, originally by Allen in 1988

[233], and then by Utke [25], Botman [234] and Dorp [22]. The total number of interactions for a

species depends on the concentration N and integrated over energy

N

∫ ∞

0
f(E)σ(E)dE (B.5)

The cross-section is specific to the species, type of flux, type of process (desorption or fragmenta-

tion). In relations below, we will not notate the cross-section with all three, but only with mecha-

nism, since the species and flux will be obvious from surrounding terms. E.g., we will later write

for the electron desorption cross-section,

Resd = Ni

∫ ∞

0
feσddE (B.6)

understanding from context this is specific to electron flux with species i, rather than the more

cumbersome triply sub-scripted σi,e,d. This form assumes that each electron can contribute to

every electron-induced process (i.e., all dissociation and desorption processes). Thus there is no

bookkeeping done to prevent a single electron (or ion or neutral) from contributing to multiple

pathways.

To refer to all fluxes with their attendant cross-sections we will use the • notation as a “wildcard”,

so that

R•sd = Resd +Rnsd +Risd (B.7)
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where n and i represent neutral and ion.3

Finally, it should be noted that shot noise in the electron or ion beam may be a significant source

of surface roughening. Adding this noise to the flux term f may restrict simulation numerically,

requiring the timestep resolution to be small. It would be challenging to simulate but could indicate

how the physics acts.

B.4 Transport T

The main mechanism of transport is diffusion, though there are other processes that can be beam

driven, such as momentum transfer [33]. Diffusion acts to equalize concentrations over the surface

[75]. When the diffusion coefficient D is constant over surface it allows Fick’s second law to yield

D∇2N .

D = Di∇2Ni (B.8)

Here (B.8) contains a second order spatial derivative (the Laplacian ∇2 ≡ ) which takes care of

the local surface curvature and will vary with coordinate system. When implementing a simulation

of surface evolution, the discretization of the diffusion must be performed carefully.

The diffusion speed of each species will vary based on natural diffusion rates. A species which has

chemisorbed to the surface will have a higher activation barrier than a physisorbed molecule, but

can still diffuse. If different species interact, this will influence the diffusion, causing it to depart

from “free” diffusion. In more complex situations, the diffusion of one species may compete with

another, and hence may depend on the total coverage, Di = Di(Θ).

Transport speeds are critical to interesting behaviour. Turing [235] observed that the only necessity

for patterns to arise in Reaction-Diffusion systems (RD systems) is that the diffusion rates of

different species differ.

3Note that this briefly introduces a naming collision, but the intent should be clear from the context. Only with

processes will we specify i for “ion”, and in the majority of the chapter uses i for species.
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Addition A Removal R

i

adsorption

i

thermal desorption

i
e−

stimulated desorption

i i

associative desorption

j i i

thermal dissociation

i i j

fragment combination

j
e−

i i

stimulated dissociation

j j i

fragment combination

i j j

thermal dissociation

i
e−

j j

stimulated dissociation

FIGURE B.2: Schematics of elemental surface interactions with respect to species i, arranged

to reveal their symmetry. Three body interactions are excluded as low probability (e.g., there is

no “stimulated associative desorption”, as it would require two adsorbates and an electron.) Any

process that can happen thermally can also be stimulated. “Stimulation” may come from flux of

(e−, i+, n).
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Addition A Removal R

j i

thermal chemisorption (deposition)

j
e−

i

stimulated chemisorption (deposition)

i

thermal etching

i
e−

stimulated etching

i

thermal chemisorption (deposition)

i
e−

stimulated chemisorption (deposition)

redeposition sputtering

FIGURE B.3: Schematics of elemental surface interactions (continued).

B.5 Addition A

Addition of material on the surface comes from a sum of flux terms each illustrated in Figures B.2

and B.3. Each process is explained in a subsection below.

B.5.1 Adsorption

Flux of adsorbates, Aa, attaching to surface sites depends on the models for gas flux and coverage.
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The gas flux, F , might be modelled as simply as a constant uniform pressure (constant flux), or

might include a distribution based on gas nozzle effects, or a trajectory model based on a clear

path into a recessed part of the surface (e.g., Clausing model into an etch pit [26]). The sticking

coefficient s in the range 0 to 1, is combined with gas flux to yield the flux of sticking particles

sF .

The surface coverage, Θ, is the fraction of adsorption sites occupied and is given by the area of

adsorption site multiplied by the concentration of the adsorbate AN . When multiple species are

present, the total coverage is calculated by summing over all species,

Θ =
∑
i

Θi =
∑
i

AiNi (B.9)

A choice of surface coverage model determines the adsorption isotherm. Specifying that only one

monolayer (ML) adsorbs is a common choice, which specifies the Langmuir isotherm. In this case

we calculate Aa as

Aa = sF (1−Θ) (B.10)

Different isotherms can be specified, for example, specifying that molecules can form multiple

layers is treated by the Brunauer–Emmett–Teller (BET) isotherm.

Adsorbate-adsorbate interaction may be accounted for in the diffusion terms, but can be excluded

here as it requires a higher than 2-body interaction at the time of landing. After landing onto the

surface, the diffusion process can account for adsorbate-adsorbate interactions.

Finally, there may be more than one adsorbate per gas molecule, as in the case of dissociative

chemisorption (observed for H2 onto Cu(111)) [236].

B.5.2 Thermal dissociation

If a species on the surface, j, thermally dissociates into one or more of the species of interest i,

then we have

Atd = nij
Nj

τtd
(B.11)
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E1

E2
k1

k2

FIGURE B.4: A reaction-coordinate diagram showing the different energies E1 and E2 needed

to cross a barrier and the transition rates k1 = A1e
−E1/kBT (moving from the lower to higher

energy level) and k2 = A2e
−E2/kBT (higher to lower). Heat or energetic particles can drive this

reaction either way.

where nij is the number of fragments of i which come from j. This can also be expressed as a rate

k = 1/τ , whichever is more relevant to experiment. The rate factor k is typically assumed to be

of an Arrhenius form, describing a transition between two energy levels over a barrier, see Figure

B.4.

B.5.3 Stimulated dissociation

If the species i under consideration is a long-lived fragment of a parent molecule j, then it does not

arrive at the surface by adsoprtion at all, but is only created by (say, electron) dissociation of the

“parent” molecule j under by electron flux. This dissociation is a product of the flux distribution

and the cross-section for the probability of occurring,

Aesd = nijNj

∫ ∞

0
feσsddE (B.12)

where nij is the number of fragments of i which come from j. Of course, generally, this activation

may also arise from ion or neutral atom, as described in Section B.3

Aisd = nijNj

∫ ∞

0
fionσsddE (B.13)

Ansd = nijNj

∫ ∞

0
fneutralσsddE (B.14)

incorporating all terms that are stimulated by a particle • requires a sum so that

A•sd = Aesd +Aisd +Ansd (B.15)
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B.5.4 Fragment combination

If the species of adsorbate i, can be fragmented into another species j, on the surface by the flux

of energy, these fragments spontaneously recombine with half-life, τr, yielding another “source”

term

Afc =
1

nj

Nj

τr
(B.16)

where nj is the number of molecules of type j that must combine.

B.5.5 Thermal chemisorption

If the species interacting with the surface allows for a chemisorbed state, i, as well as a physisorbed

state, j, then instead of only arriving from the gas phase, it might also arrive from the physisorbed

state. A particle physisorbed to the surface may become chemisorbed with some rate

Atc = ktcNi (B.17)

We neglect the complementary process “thermal physisorption” as the probability of the precise

energy to leave the deep potential well of chemisorption, with not too much energy to also leave

physisorption, is negligible.

B.5.6 Stimulated chemisorption

This physisorption to chemisorption transition may also be activated (or “stimulated”) by a passing

electron,

Aesc = Nj

∫ ∞

0
feσacdE (B.18)

As before (Section B.5.3) this activation may be by electron, ion or neutral particles, so we reuse

the notation introduced in Section B.3 for the term A•sc. As above, we neglect the complementary

process of “stimulated physisorption”.
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B.5.7 Redeposition of sputtered material

In the case of the focused ion beam (FIB), material will be sputtered from surfaces under the

beam, and redeposit elsewhere on the surface. This is the main non-local aspect introduced by

FIB. Redeposition is a non-linear process [237] involving the geometry of the whole surface, and

must be computed by an external model. We denote this flux by AR.

B.5.8 Volume evolution

Volume evolution can happen specifically with the ion beam, as the ion species is implanted over

time into the substrate. Milling away top layers can expose this evolved volume to the surface,

and contribute to the concentration of a species on the surface. Milling can also induce a stoichio-

metric imbalance by driving different species deeper into the bulk, or preferentially milling other

species. When ions are implanted under the surface, they may eventually contribute to a surface

species if the volume above is sputtered away, or if the implanted species migrate to the surface.

Additionally, a stoichiometric imbalance can be generated in situations where preferential sputter-

ing occurs, or the ion frees up certain species more than others, as in the recently studied growth

of GaF pillars [35]. These situations involve models of volume evolution, with no simple analytic

form. A model must couple with the species tracker and we represent it by AV E .

B.5.9 Total addition

Finally the total addition term A can be expressed as the sum of the possible components

A = Aa +Atd +A•sd +Afc +Atc +A•sc +AR +AV E (B.19)

B.6 Removal R

Removal of material on the surface comes from a sum of flux terms each illustrated in Figures B.2

and B.3. Each process is explained in a subsection below.
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B.6.1 Thermal desorption

The adsorbate can desorb from the surface through several mechanisms; thermal desorption, as-

sociated desorption, exothermic desorption, and stimulated desorption. Thermal desorption, Rt,

acts at a rate specified by kt, and is given by

Rt = ktNi (B.20)

Thermal desorption promoted by exothermicity of reaction may also occur as in the XeF2 reaction

with Si [238].

B.6.2 Stimulated desorption

Electron stimulated desorption, as previously described by (B.6), is

Resd = Ni

∫ ∞

0
feσddE (B.21)

while neutral stimulated desorption takes the atomic Z dependent form

Rnsd = Ni

∫ ∞

0
fneutralσddE (B.22)

and ion stimulated desorption takes the atomic Z dependent form

Risd = Ni

∫ ∞

0
fionσddE (B.23)

As before (Section B.3) we sum these terms into R•sd = Resd +Rnsd +Risd.

B.6.3 Associative desorption

The associative desorption mechanism requires two adsorbates to meet, kinetically overcome an

energy barrier to bond, and desorb. This takes the form of the energetic probability condition k

times the positional probability condition NiΘi

Ra = kaNiΘi = kaNi(AiNi) (B.24)
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and we neglect three body associations as too small to occur.

B.6.4 Fragment combination

If there are associative mechanisms other than desorption, they also represent a negative flux on

the adsorbate species under consideration. The form is just the same as above in Section B.5.4,

Rfc =
Nj

τr
(B.25)

and this is the “sink” term for the “source” term (and so mass is conserved).

B.6.5 Thermal dissociation

It is possible for a species i to spontaneously dissociate on the surface (into one or more js). This

is given by

Rtdi =
Ni

τtdi
(B.26)

B.6.6 Stimulated dissociation

The contribution to removal of adsorbates by electron, ion, neutral dissociation parallels stimulated

desorption and is treated as before (see Section B.6.2). It is given by R•sdi.

B.6.7 Thermal etching

A species i on the surface may spontaneously alter the surface by chemisorbing and volatilizing a

part of the surface (a.k.a. etching). In both cases the species is removed from the model and the

surface geometry is incrementally updated accordingly. The term for thermal modification of the

surface is

Rte = kteNi (B.27)
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B.6.8 Stimulated etching

Etching of the surface can be stimulated as well, and is given by the summation term R•se.

B.6.9 Thermal chemisorption

In exactly the same process as in Section B.5.5 we might “lose” concentration to chemisorption.

A species i is removed from the model and the surface geometry is incrementally updated accord-

ingly. The term for thermal chemisorption is

Rtc = ktcNi (B.28)

B.6.10 Stimulated chemisorption

This process can be stimulated as well, and complementary to Section B.5.6, is given by the

summation term R•sc.

B.6.11 Sputtering

Material given enough momentum can overcome the surface’s binding energy, and can exit the

bulk as sputter. This is most commonly seen as a FIB-specific process, although it is possible for

carbon and most other atoms to be sputtered in a high energy transmission electron microscope

(TEM) [239]. Sputter can be computed in detail by models like binary collision algorithms (BCA),

such as TRIM, or molecular dynamics simulations (MD). We term this component RS .

B.6.12 Consumption in surface reactions

The adsorbate can interact with one or more surface sites, creating a volatile species (etching the

surface) or bonding (depositing onto the surface). In either case, the concentration of species i is

depleted at the rate given by

Ri = ki(AiNi)
ζi (B.29)
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where ζi = 1 if the reaction is elementary. Surface modification over time leads to new topography

and influences the diffusion supply rate. The velocity of surface growth, normal to the surface, is

given by

∂x

∂t
= ωViRi (B.30)

where ω = ±1 for deposition or etching, and Vi is the volume of a single molecule removed from

or added to the substrate as a result of a reaction between species i and surface site.

B.6.13 Total removal

Finally the total removal term R can be expressed as the sum of the possible components

R = Rt + R•sd + Ra + Rfc + Rtdi + R•sdi + Rte + R•se + Rtc + R•sc + RS + Ri

(B.31)

B.7 Conclusions

This mathematical model can provide order to the building up of adsorbate continuum equations

for EBIED / IBIED processes. Many physical processes can be included, and many species. The

form of the resulting model will be a linear set of coupled PDE equations, where negligible terms

are zeroed.
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Modelling code

Source code will not be listed in the thesis for brevity, instead, summary statistics are included,

see table C.1. The Julia language [202] was chosen because it is expressive and fast. Powerful

code can be written rapidly. Libraries were available for solving well-known numerical problems

(optimization, root finding, sparse matrix evaluation, etc.). All algorithms below have low cyclo-

matic complexity, making them easy to maintain, and they were profiled for targeted optimizations

[240].

Simulation output in two-dimensions was plotted with the Julia package called Gadfly [220].

Three-dimensional output was analysed and rendered with ParaView [179]. The most difficult

part of implementing the level set method is the fast marching method. The sparse field method

also requires careful bookkeeping to achieve its promised optimizations.

Contact the author alanbahm@gmail.com for questions about the source code.
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Filename # functions # lines size (kB)
GaN pillar simulation

simulate growth.py 2 474 21

fit data.py 1 162 5

load data.py 2 39 2

plot data.py 2 476 18

run model.py 0 116 5

run plot.py 0 24 0.5

9 1291 51.5
BCA simulation

material.jl 2 110 4

scatter.jl 26 428 13

trajectory.jl 7 752 30

trim.jl 10 334 11

48 1624 58
Level set method

levelset 2d.jl 16 826 21

levelset 2d test.jl 20 764 21

levelset 3d.jl 16 991 27

levelset 3d test.jl 13 299 7

sparsefield 2d.jl 9 590 13

sparsefield 2d test.jl 13 448 11

87 3918 100
Closest point method

cpm.jl 4 110 10

cpm 2d.jl 11 706 21

cpm 3d.jl 10 673 19

cpm paraview.jl 2 239 7

27 1728 57
Mass limited transport simulation

mtl deposition 2d.jl 7 639 29

mtl deposition 3d.jl 12 630 27

19 1269 56

TABLE C.1: Statistics on the simulation code written for this thesis. The primary language was

Julia, and python was also used. The expressiveness of these languages and available libraries

allowed the total code sizes to be quite small.
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Arrhenius form

The presence of the Arrhenius form in physical reactions is not surprising as it can be arrived at

by several natural steps.

1. Assuming symmetry of space

2. Equipartitioning of energy in system

3. Boltzmann distribution ρ = Axe−x2/B (not symmetric about maximum, see Figure D.1)

4. Assume a threshold Ea for activation of something to happen

5. Integrate ρ as
∫∞
Ea

ρ(E)dE for probability to activate

6. Yields an Arrhenius form k = koe
−Ea/kT

x

y

y =
√

2
π
x2e−x2/(2a2)

a3

FIGURE D.1: Example of Maxwell-Boltzmann distributions which govern the amount of parti-

cles with a given energy (or velocity). Three different “temperatures” are shown.
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simulations of the Bosch process”. In: Journal of Materials Research 27.05 (Dec. 2012),

pp. 793–798. DOI: 10.1557/jmr.2011.416.
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