
FACULTY OF ENGINEERING AND INFORMATION 

TECHNOLOGY 
 
 
 
 

Multilevel Decision Making 
for Supply Chain 

Management 
 
 
 

Jialin Han 
 
 
 

A thesis submitted for the Degree of 

Doctor of Philosophy 

 

University of Technology Sydney 

February, 2016



i 

CERTIFICATE OF AUTHORSHIP/ORIGINALITY 

This thesis is the result of a research candidature conducted jointly with another 

University as part of a collaborative Doctoral degree. I certify that the work in this 

thesis has not previously been submitted for a degree nor has it been submitted as part 

of requirements for a degree except as part of the collaborative doctoral degree and/or 

fully acknowledged within the text. 

I also certify that the thesis has been written by me. Any help that I have received in 

my research work and the preparation of the thesis itself has been acknowledged. In 

addition, I certify that all information sources and literature used are indicated in the 

thesis. 

Signature of Candidate 



ii 

ACKNOWLEDGEMENTS 

I wish to express my deep and sincere gratitude to my supervisors, Professor Jie 

Lu and Professor Guangquan Zhang. It has been a great gift and pleasure to be their 

student. Their comprehensive guidance has covered all aspects of my PhD study, 

including research topic selection, research methodology and academic writing skills. 

Their critical comments and suggestions have strengthened my study significantly. 

Their respective rigorous academic skills and excellent work ethic have been an 

inspiration over the course of my PhD study and I will draw upon the example they 

have set throughout my future research career. Without their high order supervision 

and continuous encouragement, this research could not have been completed on time. 

Moreover, they have also kindly provided me with sincere help and advice when I 

have sought it. 

I am grateful to all members of the Decision Systems and e-Service Intelligent 

(DeSI) Lab in the Center for Quantum Computation and Intelligent Systems (QCIS) 

for their careful participation in my presentation and valuable comments for my 

research. I would like also to thank Ms. Sue Felix and Dr. Shale Preston for helping 

me to correct English presentation problems in my publications and this thesis. 

I wish to express my appreciation for the financial support I received for my study. 

Special thanks go to the China Scholarship Council (CSC) and the University of 

Technology Sydney (UTS). 

Last but not least, I would like to express my heartfelt appreciation to my family. 

Thanks to my mother and father for their continuous encouragement and generous 

support. 



iii 

ABSTRACT 

Multilevel decision-making techniques aim to handle decentralized decision 

problems that feature multiple decision entities distributed throughout a hierarchical 

organization. Decision entities at the upper level and the lower level are respectively 

termed the leader and the follower. Three challenges have appeared in the current 

developments in multilevel decision-making: (1) large-scale - multilevel decision 

problems become large-scale owing to high-dimensional decision variables; (2) 

uncertainty - uncertain information makes related decision parameters and conditions 

imprecisely or ambiguously known to decision entities; (3) diversification - multiple 

decision entities that have a variety of relationships with one another may exist at 

each decision level. However, existing decision models or solution approaches cannot 

completely and effectively handle these large-scale, uncertain and diversified 

multilevel decision problems. 

To overcome these three challenges, this thesis addresses theoretical techniques 

for handling three categories of unsolved multilevel decision problems and applies the 

proposed techniques to deal with real-world problems in supply chain management 

(SCM). First, the thesis presents a heuristics-based particle swarm optimization (PSO) 

algorithm for solving large-scale nonlinear bi-level decision problems and then 

extends the bi-level PSO algorithm to solve tri-level decision problems. Second, 

based on a commonly used fuzzy number ranking method, the thesis develops a 

compromise-based PSO algorithm for solving fuzzy nonlinear bi-level decision 

problems. Third, to handle tri-level decision problems with multiple followers at the 

middle and bottom levels, the thesis provides different tri-level multi-follower (TLMF) 

decision models to describe various relationships between multiple followers and 
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develops a TLMF Kth-Best algorithm; moreover, an evaluation method based on 

fuzzy programming is proposed to assess the satisfaction of decision entities towards 

the obtained solution. Lastly, these proposed multilevel decision-making techniques 

are applied to handle decentralized production and inventory operational problems in 

SCM. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 
Multilevel decision-making techniques, motivated by Stackelberg game theory 

(Stackelberg 1952), have been developed to address compromises between the 

interactive decision entities that are distributed throughout a hierarchical organization 

(Zhang, Lu & Gao 2015). In a multilevel decision-making process, decision entities at 

the upper level and the lower level are respectively termed the leader and the follower 

(Bard 1998), and make their individual decisions in sequence, from the leader to the 

follower, with the aim of optimizing their respective objectives. This decision-making 

process means that the leader has priority in making its own decision and the follower 

reacts after and in full knowledge of the leader's decision; however, the leader's 

decision is implicitly affected by the follower's reaction. 

Bi-level decision problems and tri-level decision problems are the typical cases of 

multi-level decision-making, which have motivated a number of significant efforts in 

decision models, solution approaches and applications in areas of both 

mathematics/computer science and business (Bard 1998; Dempe 2002; Zhang, Lu & 

Gao 2015). To achieve a quick understanding of multilevel decision problems, a 

tri-level decision-making case in relation to the hierarchical production-inventory 

planning in a conglomerate enterprise can be taken as an example. The conglomerate 

is composed of a sales company, a logistics center and a manufacturing factory, which 

are distributed throughout a three-stage supply chain. To fully satisfy market demand 

and shorten time-to-market, the sales company and the logistics center have to hold a 

certain amount of inventory using their respective warehouses but both of them 

nonetheless seek to minimize their individual inventory holding costs. When making 
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the production-inventory plan within a stable sales cycle, the sales company (the 

leader) takes the lead in developing an optimal inventory plan which considers the 

current market demand and implicit reactions of other decision entities. The logistics 

center (the middle-level follower) then makes an optimal inventory plan according to 

the decision given by the sales company and considers the implicit production 

planning of the manufacturing factory (the bottom-level follower). Lastly, the 

manufacturing factory makes the production plan to minimize its own cost of 

production in light of the fixed inventory plans. The decision process will not stop 

until each decision entity is unwilling to change its decision; which implies that a 

compromised result or the equilibrium between the decision entities is achieved. The 

example describes a typical tri-level decision problem in which decisions are 

sequentially and repeatedly executed with all decision entities seeking to optimize 

their individual objectives until the equilibrium between them is achieved. 

Nowadays, multilevel decision problems have increasingly appeared in 

decentralized management situations in the real world and have become highly 

complicated, particularly with the development of economic integration and in the 

current age of big data. For example, business firms usually work in a decentralized 

manner in a complex supply chain network comprised of suppliers, manufacturers, 

logistics companies, customers and other specialized service functions. The latest 

developments of multilevel decision-making manifest three typical features: (1) 

large-scale - multilevel decision problems become large-scale because of 

high-dimensional decision variables; (2) uncertainty - related decision parameters and 

conditions always involve uncertain information that is imprecisely or ambiguously 

known to decision entities; (3) diversification - there may exist multiple decision 

entities at each decision level, in which multiple decision entities at the same level 

have a variety of relationships with one another. 

In general, there are two fundamental issues in supporting a multilevel 

decision-making process: one is how to develop a multilevel decision model to 

describe such a hierarchical decision-making process, and the other is how to find an 
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optimal solution to the resulting decision model (Lu, Shi & Zhang 2006). However, 

existing decision models or solution approaches cannot completely and effectively 

handle large-scale, uncertain and diversified multilevel decision problems, which: (1) 

are still time-consuming or almost impossible for solving large-scale nonlinear 

bi-level and tri-level decision problems; (2) are limited to solving linear bi-level 

decision problems with special uncertainty, e.g. triangular fuzzy numbers; (3) are not 

applied to deal with tri-level decision problems involving multiple decision entities at 

each decision level. Moreover, for the sake of handling real-world cases that appear in 

highly complex decision situations, e.g. where there is uncertainty in data or multiple 

decision entities are involved at each decision level, it is crucial to investigate much 

more practical decision models together with solution approaches. 

To support large-scale, uncertain and diversified multilevel decision-making, this 

thesis addresses theoretical techniques for handling three categories of unsolved 

multilevel decision problems, involving large-scale nonlinear bi-level and tri-level 

decision problems, fuzzy nonlinear bi-level decision problems, and tri-level decision 

problems with multiple decision entities at the middle and bottom levels; moreover, 

the proposed multilevel decision-making techniques are applied to handle 

decentralized management problems in supply chain management (SCM). 

1.2 RESEARCH QUESTIONS AND OBJECTIVES 
This research aims to present practical decision models and effective solution 

approaches for handling large-scale, uncertain and diversified multilevel decision 

problems. The research questions are summarized as follows: 

Question 1. How to solve large-scale nonlinear bi-level decision problems using an 

effective algorithm and extend the algorithm to solve tri-level decision problems? 

Question 2. How to solve uncertain bi-level decision problems with general fuzzy 

parameters, known as fuzzy bi-level decision problems? 
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Question 3. How to model and solve tri-level decision problems with multiple 

decision entities at the middle and bottom levels? 

Question 4. How to apply the proposed multilevel decision-making techniques to 

handle decentralized decision problems in applications? 

This research aims to achieve the following objectives, which are expected to 

answer the above research questions: 

Objective 1. To develop an effective particle swarm optimization (PSO) algorithm for 

solving nonlinear and large-scale bi-level decision problems. Moreover, the PSO 

algorithm can be extended to solve tri-level decision problems. 

This objective corresponds to research Question 1. PSO is a heuristic global 

optimization algorithm first proposed by Kennedy and Eberhart (1995) which is 

inspired by the social behavior of organisms such as fish schooling and bird flocking. 

As PSO requires only primitive mathematical operators, and is computationally 

inexpensive in terms of both memory requirements and speed (Eberhart & Kennedy 

1995), it has a good convergence performance and has been successfully applied in 

many fields. Multilevel decision problems have been proved to be NP-hard (Bard 

1991; Ben-Aved & Blair 1990). Since traditional exact algorithmic approaches lack 

universality and efficiency, this study will develop a heuristics-based PSO algorithm 

for solving nonlinear and large-scale bi-level decision problems and it will extend the 

bi-level PSO algorithm to solve tri-level decision problems. 

Objective 2. To handle general fuzzy parameters and develop a compromise-based 

PSO algorithm for solving fuzzy bi-level decision problems. 

This objective corresponds to research Question 2. Fuzzy parameters involved in a 

fuzzy bi-level decision problem are always characterized by fuzzy numbers (Zhang, 

Lu & Gao 2015). A commonly used fuzzy number ranking method will be adopted to 

handle fuzzy numbers, which can transform the fuzzy problem to a crisp problem for 

ease of solving. However, the crisp problem keeps features of uncertainty, which are 
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determined by different understanding and identification of the leader and the 

follower in relation to the uncertain decision situation. For the sake of solving the 

crisp problem, the leader and the follower between themselves need to achieve a 

compromised selection of uncertain decision conditions. The bi-level PSO algorithm 

proposed above can be extended to solve the crisp problem. 

Objective 3. To develop tri-level multi-follower (TLMF) decision models with 

various relationships between multiple followers at the same level. 

This objective corresponds to research Question 3. In a tri-level decision problem, 

multiple decision entities are often involved at the middle and bottom levels; these 

multiple decision entities are called multiple followers. Moreover, multiple followers 

at the same level may have a variety of relationships with one another. For example, 

followers may control their decisions independently without any information 

exchange, which is called the uncooperative relationship; may make decisions 

cooperatively with each other in line with the shared information, which is called the 

cooperative relationship, may consider the actions of their counterparts for reference, 

known as the reference-based relationship; or may be confronted with a hybrid 

situation of some of the above relationships. Such diversified situations make the 

decision problem complex and generate different decision processes. This category of 

tri-level decision problems is known as the tri-level multi-follower (TLMF) decision 

problem. This study will carefully analyze the various relationships and describe 

related decision processes using different TLMF decision models. 

Objective 4. To develop an effective TLMF Kth-Best algorithm for solving TLMF 

decision problems and present an evaluation method to assess the solution 

obtained. 

This objective corresponds to research Question 3. This study will discuss 

theoretical properties of TLMF decision problems in relation to the existence and 

optimality of solutions. Based on related theoretical properties, a TLMF Kth-Best 

algorithm will be developed. Moreover, Since the TLMF decision problem involve 
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multiple followers with various relationships, the solution, known as the final decision 

result, cannot completely reflect the operations of the complex decision-making 

process in applications. To assess the satisfaction of decision entities towards the 

solution obtained, a solution evaluation method needs to be proposed. 

Objective 5. To apply the proposed multilevel decision-making techniques to handle 

decentralized production and inventory operational problems in SCM. 

This objective corresponds to research Question 4. Driven by a new round of 

industrial revolution, business firms are always distributed in a hierarchical and 

networked supply chain, and it becomes very difficult for a company to be 

competitive without working in close collaboration with external partners (Aguezzoul 

2014). When making decisions in relation to SCM, each decision entity has to 

consider decision reactions of its upstream and downstream decision entities. In this 

situation, it is reasonable to apply multilevel decision-making techniques to handle 

such decentralized SCM problems. This research will focus on how to model and 

solve decentralized production and inventory operational problems in SCM using 

multilevel decision-making techniques. 

1.3 RESEARCH SIGNIFICANCE 
The significance of this research work can be summarized from the following 

aspects. 

Significance 1: the research develops a novel PSO algorithm for solving 

large-scale nonlinear multilevel decision problems. 

A big challenge in solving nonlinear and large-scale multilevel decision problems 

is how to handle high-dimensional decision variables, nonlinear objective functions 

and complex constraint conditions. In contrast to existing PSO algorithms that are 

limited to solving linear or small scale bi-level decision problems, the novel PSO 

algorithm is able to overcome the challenge effectively. The PSO algorithm not only 
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provides a practical way to solve large-scale nonlinear bi-level decision problems, but 

also can be extended to solve tri-level decision problems. 

Significance 2: the research develops a compromise-based PSO algorithm for 

solving fuzzy nonlinear bi-level decision problems. 

Within the compromise-based PSO algorithm, the leader and follower are able to 

choose acceptable decision conditions based on rules of compromise due to 

uncertainty, which can provide not only better solutions to benchmarks under the 

specific decision situation but also different solution options due to various decision 

environments. Whereas existing solution approaches are limited to handling linear 

problems with special fuzzy numbers, the compromise-based PSO algorithm aims to 

solve nonlinear bi-level decision problems with general fuzzy numbers. 

Significance 3: the research develops theoretical techniques for handling TLMF 

decision problems. 

There still lack effective theoretical techniques for handling TLMF decision 

problems. Accordingly, the research first proposes different TLMF decision models 

that can be used to describe various relationships between multiple followers at the 

same level. Second, a TLMF Kth-Best algorithm is developed to solve TLMF 

decision problems, which can be also used to solve large-scale problems in reasonable 

computing time. Moreover, a fuzzy programming approach is proposed to evaluate 

the satisfaction of decision entities towards the solution obtained. The evaluation 

method of solutions can quantitatively analyze the operation of a decision-making 

process due to the changing decision environment. The above techniques provide the 

theoretical foundation for TLMF decision-making research and overcomes the lack of 

solution algorithms for solving TLMF decision problems. 

Significance 4: the proposed multilevel decision-making techniques provide a 

practical way to handle decentralized decision problems in applications. 
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Many decentralized decision problems have increasingly appeared in highly 

complex decision situations in the real world, e.g. where there is uncertainty in data or 

multiple followers are involved. The proposed multilevel decision-making techniques 

can provide much more practical decision models and solution approaches for 

handling these real world cases. Specifically, this research displays how to handle 

decentralized production and inventory operational problems in SCM using multilevel 

decision-making techniques. 

1.4 RESEARCH METHODOLOGY AND PROCESS 
Research methodology is the “collections of problem solving methods governed 

by a set of principles and a common philosophy for solving targeted problems” 

(Gallupe 2007). This research belongs to the information system domain. A number 

of research methodologies have been proposed and applied in the information system 

domain, such as case study, field study, design research, archival research, field 

experiment, laboratory experiment, survey and action research (Niu 2009; Shambour 

2012; Vaishnavi & Kuechler Jr 2007). 

1.4.1 RESEARCH METHODOLOGY 

In this study, design research is utilized as the research methodology according to 

the analysis of the research questions and objectives. Design research focuses on 

crafting and analyzing artifacts in order to gain insights into research problems. 

Examples of the artifacts include physical product prototypes, computer-based 

information systems and human-computer interfaces. The methodology of design 

research is illustrated in Figure 1.1. Generally speaking, a design research effort 

includes five basic steps (Vaishnavi & Kuechler Jr 2007). 
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Figure 1.1 Reasoning in the general design cycle (Vaishnavi & Kuechler Jr 2007) 

1) Awareness of problem 

This is the starting point of a design research, at which limitations of existing 

research are examined and meaningful research problems are identified. The research 

problems reflect a gap between existing research and the expected status. The 

awareness of problems can come from different sources: industry experience, 

observations on practical applications and literature review. The corresponding output 

of this step is a research proposal (Vaishnavi & Kuechler Jr 2007). 

2) Suggestion 

This step follows the identification of research problems, and a tentative design is 

suggested. The tentative design describes what the prospective artifacts will be and 

how they can be developed. Suggestion is a creative process during which new 

concepts, models and approaches of artifacts are demonstrated. The resulting tentative 

design of this step is usually one part of the research proposal. Thus, the output of the 
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suggestion step is feedback to the first step, so that the research proposal can be 

revised (Vaishnavi & Kuechler Jr 2007). 

3) Development 

In this step, artifacts are actually built based on the suggested design. The 

development of artifacts can testify to the reasonability and feasibility of the original 

design and improve the original design. As a result, the development of artifacts is 

often an iterative process in which an initial prototype is first built and this then 

evolves when the researcher gains a deeper understanding of the research problems. 

The knowledge obtained in this step is fed back to the previous two steps, which helps 

researchers revise the design and the proposal (Vaishnavi & Kuechler Jr 2007). 

4) Evaluation 

This step considers the evaluation of the developed artifacts. The performance of 

artifacts can be evaluated according to criteria defined in the research proposal and 

the suggested design. The evaluation results, which might or might not meet the 

expectations, are fed back to the first two steps. Thus, the proposal and design might 

be revised and the artifacts might be improved (Vaishnavi & Kuechler Jr 2007). 

5) Conclusion 

This is the final step of a design research effort. A conclusion or end is reached as 

a result of satisfaction with the evaluation results of the developed artifacts. There 

might still be deviations between the suggested proposal and the artifacts that are 

actually developed. However, a design research effort concludes as long as the 

developed artifacts are considered as “good enough” (Vaishnavi & Kuechler Jr 2007). 

1.4.2 RESEARCH PROCESS 

This research was planned according to the methodology of design research. First, 

a subject of multilevel decision-making was chosen as a very broad research topic of 

this research. A literature review of previous research in the topic area was conducted, 
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and existing literature was retrieved and critically reviewed. The results of the 

literature review helped to identify specific research questions to be directly addressed 

in this research. As the research questions grew clearer and more definite, more 

literature closely related to the research questions was reviewed. Because the existing 

work in the literature lacks the ability to deal with large-scale, uncertain and 

diversified multilevel decision problems, this research proposed theoretical techniques 

involving decision models and solution approaches for solving such problems. The 

proposed models and approaches were implemented and evaluated by numerical 

experiments and/or real-world cases. According to the methodology of design 

research, this research is an iterative process. As indicated in Figure 1.1, the output of 

each research step might be fed back to its previous step when deviations between 

expectations and evaluation results are found. Through the feedback, research 

outcomes are progressively improved until satisfying results are drawn from 

evaluations. Finally, writing up the PhD thesis is done at the end of the research. 

1.5 THESIS STRUCTURE 
This thesis contains seven chapters. Chapter 1 presents the research background, 

research questions, objectives, significance, research methodology and process, and 

the thesis structure. Chapter 2 reviews the literature relevant to this study, including 

bi-level decision-making, tri-level decision-making, fuzzy multilevel decision-making, 

and the applications of multilevel decision-making techniques. Chapter 3 presents a 

PSO algorithm for solving large-scale nonlinear bi-level decision problems, which 

can be also extended to solve tri-level decision problems. Chapters 4 addresses related 

theoretical properties of fuzzy nonlinear decision problems and develops a 

compromise-based PSO algorithm. Chapter 5 proposes different TLMF decision 

models to describe various relationships between multiple followers at the same level; 

also, an effective solution algorithm is given. Chapter 6 applies these multilevel 

decision-making techniques to handle decentralized production and inventory 
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operational problems in SCM. Chapter 7 provides conclusions and recommendations 

for further study. The structure of the thesis is shown in Figure 1.2. 

Chapter 1. Introduction

Chapter 2. Literature review

Chapter 6.
Application in decentralized
vendor managed inventory

Chapter 3.
Large-scale nonlinear

multilevel decision
making

Chapter 4.
Compromise-based
fuzzy nonlinear bi-

level decision making

Chapter 7. Conclusions and Further
Study

Chapter 5.
Tri-level multi-

follower decision
making

 

Figure 1.2 Thesis structure 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews the research on multilevel decision-making involving 

theoretical research results and applications, which are clustered into four categories: 

bi-level decision-making, tri-level decision-making, fuzzy multilevel decision-making, 

and applications of multilevel decision-making techniques. In Section 2.1, the bi-level 

decision-making models and solution approaches are reviewed and analyzed. Section 

2.2 presents the tri-level decision-making models and solution approaches. Section 

2.3 addresses fuzzy multilevel (including bi-level and tri-level) decision-making 

techniques. Section 2.4 discusses the applications of multilevel decision-making 

techniques. A summary is given in Section 2.5. 

2.1 BI-LEVEL DECISION-MAKING 
This section first reviews the development of techniques for solving basic bi-level 

decision-making problems. It then addresses the developments of bi-level 

decision-making with multiple optima involving bi-level multi-objective 

decision-making, bi-level multi-leader decision-making and bi-level multi-follower 

decision-making. 

2.1.1 BASIC BI-LEVEL DECISION-MAKING 

Basic bi-level decision-making, as found in a bi-level programming situation, has 

only one decision entity attempting to optimize a unique objective at each decision 

level. The general formulation for basic bi-level decision-making is described by a 

bi-level program as Definition 2.1. 
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Definition 2.1 (Bard 1998) For pRXx , qRYy , a general bi-level 

decision problem is defined as: 

),(min yxF
Xx

                 (Leader)                           (2.1a) 

s.t. 0),( yxG ,                                                (2.1b) 

    where, for each x given by the leader, y solves problem (2.1c-2.1d) 

),(min yxf
Yy

              (Follower)                         (2.1c) 

s.t. 0),( yxg ,                                            (2.1d) 

where x, y are the decision variables of the leader and the follower respectively; 

1:, RRRfF qp  are the objective functions of the leader and the follower 

respectively; mqp RRRG : , nqp RRRg :  are the constraint conditions of 

the leader and the follower respectively. The sets X and Y place additional restrictions 

on the decision variables, such as upper and lower bounds or integrality requirements 

(Bard 1998). 

It can be seen from Definition 2.1 that, for each value of x is given by the leader, 

the follower will choose the value of its decision variable y under the constraint 

condition (2.1d) with the aim of optimizing the objective function (2.1c); also, the 

selected value of y will affect the leader's objective function (2.1a). Thus, the leader 

needs to consider the implicit reaction y of the follower when making its own 

decisions; that is, the follower's decision problem (2.1c-2.1d) can be considered as the 

constraint condition of the leader's decision problem. It is clear that the constraint 

domain associated with a bi-level decision problem is implicitly determined by two 

optimization problems that must be solved in a predetermined sequence from the 

leader to the follower. Although the basic bi-level decision problem has been proved 

to be NP-hard by Ben-Aved and Blair (1990) and Bard (1991), many 

methods/algorithms have been developed for solving linear, nonlinear and discrete 
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bi-level decision problems. This section reviews the research of these three categories 

of basic bi-level decision-making techniques. 

2.1.1.1 LINEAR BI-LEVEL DECISION-MAKING 

Definition 2.2 (Bard 1998) Based on Definition 2.1, for pRXx , 

qRYy , and 1:, RRRfF qp , the linear bi-level decision problem can be 

written as follows: 

ydxcyxF
Xx 11),(min                  (Leader)                  (2.2a) 

s.t. 111 byBxA ,                                             (2.2b) 

     where, for each x given by the leader, y solves problem (2.2c-2.2d) 

ydxcyxf
Yy 22),(min              (Follower)                (2.2c) 

s.t. 222 byBxA ,                                        (2.2d) 

where pRcc 21, , qRdd 21, , mRb1 , nRb2 , pmRA1 , qmRB1 , 

pnRA2 , qnRB2 . 

In terms of solving linear bi-level decision problems, the traditional algorithms 

can be classified into three main categories: the vertex enumeration approaches 

(Bialas & Karwan 1984; Candler & Townsley 1982; Shi, Lu & Zhang 2005; Tuy, 

Migdalas & Värbrand 1993) based on an important characteristic of bi-level 

programming whereby an optimal solution occurs at a vertex of the constraint region; 

the Kuhn-Tucker approaches involving branch and bound algorithms (Bard & Falk 

1982; Bard & Moore 1990; Fortuny-Amat & McCarl 1981; Shi et al. 2006) and 

complementary pivot algorithms (Bialas & Karwan 1984; Júdice & Faustino 1992; 

Önal 1993), in which the upper-level problem includes the lower-level’s optimality 

conditions as extra constraints; and the penalty function approaches (Anandalingam & 
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White 1990; White & Anandalingam 1993) which append a penalty term of the 

lower-level problem to the objective function of the upper-level problem. 

In recent years, Audet, Haddad and Savard (2007) proposed a disjunctive cuts 

method for a linear bi-level decision problem with continuous variables. Audet, 

Savard and Zghal (2007) considered the equivalences between linear mixed 0-1 

integer programming problems and linear bi-level decision problems, and proposed a 

finite and exact branch-and-cut algorithm for solving such problems. Glackin, Ecker 

and Kupferschmid (2009) addressed the relationship between linear multi-objective 

programs and linear bi-level programs and presented an algorithm for solving linear 

bi-level programs that uses simplex pivots on an expanded tableau. Calvete and Galé 

(2012) addressed linear bi-level programs in which the coefficients of both objective 

functions are interval numbers and developed two algorithms based on ranking 

extreme points to solve such problems. Ren and Wang (2014) proposed a cutting 

plane method to solve the linear bi-level decision problem with interval coefficients in 

both objective functions. 

A range of heuristic algorithms have been also developed to solve bi-level 

decision problems. Gendreau, Marcotte and Savard (1996) used an adaptive search 

method related to the tabu search meta-heuristic to solve the linear bi-level decision 

problem. Hejazi et al. (2002) proposed a method based on genetic algorithm for 

solving linear bi-level decision problems. Lan et al. (2007) proposed a hybrid 

algorithm that combines neural network and tabu search for solving linear bi-level 

decision problems. Calvete, Galee and Mateo (2008) developed a genetic algorithm 

for solving a class of linear bi-level decision problems in which both objective 

functions are linear and the common constraint region is a polyhedron; the authors 

also presented a method for the test set construction of linear bi-level decision 

problems especially for generating large-scale problems, which can be employed to 

assess the efficiency performance of related algorithms. Kuo and Huang (2009) 

developed a particle swarm optimization (PSO) algorithm with swarm intelligence to 
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solve linear bi-level decision problems. Hu et al. (2010) presented a neural network 

approach for solving linear bi-level decision problems.  

2.1.1.2 NONLINEAR BI-LEVEL DECISION-MAKING 

With respect to Definition 2.1, if the objective functions ),( yxF , ),( yxf  or the 

constraint conditions 0),( yxG , 0),( yxg  are nonlinear formulations, the 

bi-level program is known as a nonlinear bi-level decision problem, which is much 

more difficult to solve than linear versions. 

In early research in solving nonlinear bi-level decision problems, Bard (1988) 

extended the traditional branch and bound algorithm to solve nonlinear convex 

bi-level decision problems. Edmunds and Bard (1991) used a branch-and-bound 

algorithm and a cutting-plane algorithm to solve various versions of nonlinear bi-level 

decision problems when certain convexity conditions hold. Al-Khayyal, Horst and 

Pardalos (1992) developed a branch and bound algorithm and a piecewise linear 

approximation method to find the global minimum for a class of nonlinear bi-level 

decision problems based on an equivalent system of convex and separable quadratic 

constraints. Vicente and Calamai (1994) introduced two descent methods for a special 

instance of bi-level programs where the second-level problem is strictly convex 

quadratic. 

In recent years, Tuy, Migdalas and Hoai-Phuong (2007) showed that a nonlinear 

bi-level decision problem can be transformed into a monotonic optimization problem 

which can then be solved by a branch-reduce-and-bound method using monotonicity 

cuts. Mitsos, Lemonidis and Barton (2008) presented a bounding algorithm for the 

global solution of nonlinear bi-level programs involving nonconvex objective 

functions in both decision levels. Mersha and Dempe (2011) studied the application of 

a class of direct search methods and solved bi-level decision problems containing 

convex lower level problems with strongly stable optimal solutions. 
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In regard to related heuristic algorithms, Wang, Jiao and Li (2005) transformed a 

special nonlinear bi-level decision problem into an equivalent single objective 

nonlinear programming problem that can be solved by an evolutionary algorithm. 

Wan, Wang and Sun (2013) presented a hybrid intelligent algorithm of PSO and 

chaos searching technique for solving nonlinear bi-level decision problems. Wan, 

Mao and Wang (2014) also developed a novel evolutionary algorithm, called the 

estimation of distribution algorithm, for solving a special class of nonlinear bi-level 

decision problems in which the lower-level problem is a convex program for each 

given upper-level decision. Lv et al. (2008), Lv, Chen and Wan (2010) and He et al. 

(2014) proposed neural network methods for solving nonlinear bi-level decision 

problems. It is notable that Sinha, Malo and Deb (2014) proposed a procedure for 

designing the test set of nonlinear bi-level decision problems and presented the 

corresponding computational results for these test problems using a nested bi-level 

evolutionary algorithm. Researchers can consider these test problems as the 

benchmark for examining the effectiveness of their own algorithms. 

2.1.1.3 DISCRETE BI-LEVEL DECISION-MAKING 

In many bi-level decision-making problems, a subset of the variables is restricted 

to take on discrete values (Bard 1998). A problem can be considered to be a general 

discrete bi-level decision problem when the decision variables in Definition 2.1 are 

discrete, e.g. integer programming. Clearly, if the decision variables are discrete 

rather than continuous, the linear bi-level decision problem (2.2) will become a 

discrete linear bi-level program. 

Discrete variables can complicate bi-level decision problems by several orders of 

magnitude and render all but the smallest instances unsolvable (Bard 1998). Wen and 

Yang (1990), Moore and Bard (1990), and Bard and Moore (1992) therefore proposed 

traditional branch and bound algorithms for finding solutions to integer linear bi-level 

decision-making problems. Edmunds and Bard (1992) developed a branch and bound 

algorithm to solve a mixed-integer nonlinear bi-level decision problem. Vicente, 
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Savard and Judice (1996) designed penalty function methods for solving discrete 

linear bi-level decision problems. 

Recently, Faísca, Dua, et al. (2007) proposed a global optimization approach to 

solve quadratic bi-level and mixed integer linear bi-level problems, with or without 

right-hand-side uncertainty. Mitsos (2010) presented an algorithm based on the 

research by Mitsos, Lemonidis and Barton (2008) for the global optimization of 

nonlinear bi-level mixed-integer programs, which relies on a convergent lower bound 

and an optional upper bound. Köppe, Queyranne and Ryan (2010) proposed a 

parametric integer programming algorithm for solving a mixed integer linear bi-level 

decision problem where the follower solves an integer program with a fixed number 

of variables. Domínguez and Pistikopoulos (2010) addressed two algorithms using 

multiparametric programming techniques respectively for solving two categories of 

integer bi-level decision problems: one category consists of pure integer problems 

where integer variables of the first level appear in the linear or polynomial problem of 

the second level, and the other consists of mixed-integer problems where integer and 

continuous variables of the first level appear in the linear or polynomial problem of 

the second level. Xu and Wang (2014) solved a mixed integer linear bi-level decision 

problem using an exact algorithm. The algorithm relies on three simplifying 

assumptions, explicitly considers finite optimal, infeasible and unbounded cases, and 

is proved to terminate finitely and correctly. Sharma, Dahiya and Verma (2014) 

discussed an integer bi-level decision problem with bounded variables in which the 

objective function of the first level is linear fractional, the objective function of the 

second level is linear and the common constraint region is a polyhedron. They 

proposed an iterative algorithm to find an optimal solution to the problem.  

In relation to heuristic algorithms for solving discrete bi-level decision problems, 

Wen and Huang (1996) reported a mixed-integer linear bi-level decision-making 

formulation in which zero-one decision variables are controlled by the first level and 

real-value decision variables are controlled by the second level. An algorithm based 

on the short term memory component of tabu search, called simple tabu search, was 
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developed to solve the problem. Nishizaki and Sakawa (2005) presented a method 

using genetic algorithms for obtaining optimal solutions to integer bi-level decision 

problems. 

2.1.2 BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING 

When multiple conflicting objectives for each decision entity exist in a bi-level 

decision problem, this is known as a bi-level multi-objective (BLMO) decision 

problem. 

Definition 2.3 (Deb & Sinha 2010) For pRXx , qRYy , a general 

BLMO decision problem is formulated as: 

)),(,),,(),,((),(min 21 yxFyxFyxFyxF MXx
          (Leader)        (2.3a) 

s.t. 0),( yxG ,                                               (2.3b) 

     where, for each x given by the leader, y solves problem (2.3c-2.3d) 

)),(,),,(),,((),(min 21 yxfyxfyxfyxf NYy
      (Follower)      (2.3c) 

s.t. 0),( yxg ,                                           (2.3d) 

where x, y are the decision variables of the leader and the follower respectively; 

1:, RRRfF qp
ji , Mi ,,2,1 , Nj ,,2,1  are the conflicting objective 

functions of the leader and the follower respectively; mqp RRRG : , 

nqp RRRg :  are the constraint conditions of the leader and the follower 

respectively. The sets X and Y place additional restrictions on the decision variables, 

such as upper and lower bounds or integrality requirements. 

Many algorithms have been developed to solve bi-level multi-objective (BLMO) 

decision problems in various versions. Ankhili and Mansouri (2009) addressed a class 

of linear bi-level programs where the upper level is a linear scalar optimization 

problem and the lower level is a linear multi-objective optimization problem; they 
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approached the problems via an exact penalty method. Calvete and Galé (2010) 

presented a number of methods of computing efficient solutions to solve linear 

bi-level decision problems with multiple objectives at the upper level; all the methods 

result in solving linear bi-level problems with a single objective function at each level 

based on both weighted sum scalarization and scalarization techniques. Eichfelder 

(2010) discussed a nonlinear nonconvex BLMO decision problem using an optimistic 

approach in which the feasible points of the upper-level objective function can be 

expressed as the set of minimal solutions of a single-level multi-objective 

optimization problem. The BLMO decision problem is then solved by an iterative 

process, again using sensitivity theorems. Emam (2013) proposed an interactive 

approach for solving bi-level integer fractional multi-objective decision problems. 

From the aspect of using heuristic algorithms for solving BLMO decision 

problems, Deb and Sinha (2010) proposed a viable and hybrid 

evolutionary-cum-local-search based algorithm for solving BLMO decision problems. 

Note that Deb and Sinha (2009) also presented a method for constructing the test set 

of BLMO decision problems. Calvete and Galé (2011) developed an exact algorithm 

and a metaheuristic algorithm to solve linear bi-level decision problems with multiple 

objectives at the lower level. Zhang et al. (2013) proposed a hybrid PSO algorithm 

with crossover operator to solve high dimensional bi-level multi-objective decision 

problems. Alves and Costa (2014) presented an improved PSO algorithm to solve 

linear bi-level decision problems with multiple objectives at the upper level. 

2.1.3 BI-LEVEL MULTI-LEADER AND/OR 

MULTI-FOLLOWER DECISION-MAKING 

In a bi-level decision problem, multiple decision entities may exist at each level, 

and this is known as a bi-level multi-leader and/or multi-follower decision problem. A 

general bi-level multi-leader (BLML) decision problem can be defined as Definition 

2.4. 
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Definition 2.4 (Zhang, Lu & Gao 2015) For ip
ii RXx , qRYy , 

Li ,,2,1 , a general BLML decision problem in which L leaders and one follower 

are involved can be described as: 

),(min yxFiXx ii
                 (Leader i)                         (2.4a) 

s.t. 0),( yxGi ,                                               (2.4b) 

     where, for each x given by the leaders, y solves problem (2.4c-2.4d) 

),(min yxf
Yy

              (Follower)                        (2.4c) 

s.t. 0),( yxg ,                                           (2.4d) 

where ),,,( 21 Lxxxx , xi and y are the decision variables of the ith leader and the 

follower respectively; 11:, RRRRfF qpp
i

L  are the objective functions of 

the ith leader and the follower respectively; iL mqpp
i RRRRG 1: ,

nqpp RRRRg L1:  are the constraint conditions of the ith leader and the 

follower respectively. The sets X and Y place additional restrictions on the decision 

variables, such as upper and lower bounds or integrality requirements. It is clear in 

Definition 2.4 that, when leaders make their individual decisions, they need to not 

only take into account the implicit reaction of the follower but also consider the 

decision results given by their counterparts at the first level. 

In relation to research on bi-level multi-leader decision-making, DeMiguel and 

Huifu (2009) studied a stochastic BLML decision model and proposed a 

computational approach to find a Stochastic Multiple-leader 

Stackelberg-Nash-Cournot (SMS) equilibrium based on the sample average 

approximation method. Zhang, Lu and Gao (2015) introduced a framework for the 

bi-level multi-leader (BLML) decision problem, in which they presented different 

BLML decision models in line with various relationships between multiple leaders. 
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The authors also proposed a PSO algorithm to find a solution for BLML decision 

problems based on the related solution concepts. 

In contrast to the limited discussion on BLML decision-making, researchers have 

paid considerably more attention to bi-level multi-follower (BLMF) decision-making. 

A general BLMF decision problem in which one leader and k followers are involved 

can be defined as Definition 2.5. 

Definition 2.5 (Zhang, Lu & Gao 2015) For pRXx , iq
ii RYy , 

ki ,,2,1 , a general BLMF decision problem in which one leader and k followers 

are involved can be written as: 

),(min yxF
Xx

                 (Leader)                           (2.5a) 

s.t. 0),( yxG ,                                                (2.5b) 

    where, for each x given by the leader, yi solves problem (2.5c-2.5d) 

),(min yxfiYy ii

              (Follower i)                        (2.5c) 

s.t. 0),( yxgi ,                                            (2.5d) 

where ),,,( 21 kyyyy , x and yi are the decision variables of the leader and the ith 

follower respectively; 11:, RRRRfF kqqp
i  are the objective functions of 

the leader and the ith follower respectively; mqqp RRRRG k1: ,

ik nqqp
i RRRRg 1:  are the constraint conditions of the leader and the ith 

follower respectively. The sets X and Y place additional restrictions on the decision 

variables, such as upper and lower bounds or integrality requirements. It can be seen 

in Definition 2.5 that followers need to consider the decision results of their 

counterparts as references when making their individual decisions in view of the 

decision given by the leader. 
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Anandalingam and Apprey (1991) first presented a linear BLMF decision model, 

known as a linear bi-level multi-agent system, and developed a penalty function 

approach to solve the problem. Liu (1998) designed a genetic algorithm for solving 

Stackelberg-Nash equilibrium of nonlinear BLMF decision problems in which there 

might be an information exchange between the followers. Based on previous research, 

Lu, Shi and Zhang (2006) proposed a general framework of BLMF decision-making 

that considers three main relationships between multiple followers: the uncooperative 

relationship, the referential-uncooperative relationship, and the partial-cooperative 

relationship. The research on BLMF decision-making after Lu, Shi and Zhang (2006) 

was structured on the general framework. Calvete and Galé (2007) subsequently 

presented a approach for solving the linear BLMF decision problem with 

uncooperative followers, which converted the BLMF problem to a bi-level problem 

with one leader and one follower. Shi, Zhang and Lu (2005) and Shi et al. (2007) 

extended the Kth-Best algorithm to solve linear BLMF decision problems with 

uncooperative and partial-cooperative relationships respectively between followers. 

Lu et al. (2007) and Lu and Shi (2007) respectively adopted the extended 

Kuhn-Tucker algorithm and the extended branch and bound algorithm to solve the 

referential-uncooperative linear BLMF decision problem. 

Nie (2011) developed and characterized discrete-time dynamic bi-level 

multi-leader and multi-follower (BLMLMF) games with leaders in turn, and a 

dynamic programming algorithm was employed to solve this problem. Gao (2010) 

developed PSO-based algorithms to solve BLML, BLMF and BLMLMF decision 

problems. Sinha et al. (2014) used a computationally intensive nested evolutionary 

algorithm to find an optimal solution for a multi-period BLMLMF decision problem 

with nonlinear and discrete variables. 
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2.2 TRI-LEVEL DECISION-MAKING 
Decentralized decision-making problems within a hierarchical system are often 

comprised of more than two levels in many applications, which is known as tri-level 

and multilevel decision-making. 

Definition 2.6 (Faísca, Saraiva, et al. 2007) For pRXx , qRYy , 

rRZz , a general tri-level decision problem is defined as: 

),,(min 1 zyxf
Xx

                 (Leader)                         (2.6a) 

s.t. 0),,(1 zyxg ,                                             (2.6b) 

where, for each x given by the leader, (y, z) solves the problems (2.6c-2.6f) 

of the middle-level and bottom-level followers: 

),,(min 2 zyxf
Yy

             (Middle-level follower)             (2.6c) 

s.t. 0),,(2 zyxg ,                                         (2.6d) 

where, for each (x, y) given by the leader and the middle-level follower, 

z solves the problem (2.6e-2.6f) of the bottom-level follower: 

),,(min 3 zyxf
Zz

         (Bottom-level follower)             (2.6c) 

s.t. 0),,(3 zyxg ,                                     (2.6d) 

where x, y, z are the decision variables of the leader, the middle-level follower and the 

bottom-level follower respectively; 1
321 :,, RRRRfff rqp  are the objective 

functions of the three decision entities respectively; 3,2,1,: iRRRRg ikrqp
i  

are the constraint conditions of the three decision entities respectively. 

While the majority of studies on multilevel decision-making have focused on 

bi-level decision-making, research on tri-level decision problems has increasingly 
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attracted investigations into solution approaches since tri-level decision-making can 

be applied to handle many decentralized decision problems in the real world (Lu et al. 

2012). Bard (1984) first presented an investigation into linear tri-level 

decision-making and designed a cutting plane algorithm to solve such problems, 

based on which White (1997) proposed a penalty function approach for linear tri-level 

decision problems. Anandalingam (1988) and Sinha (2001) developed Kuhn-Tucker 

transformation methods to find local optimal solutions for linear tri-level decision 

problems. Ruan et al. (2004) discussed the optimality conditions and related 

geometric properties of a linear tri-level decision problem with dominated objective 

functions. Faísca, Saraiva, et al. (2007) studied a multi-parametric programming 

approach to solve tri-level hierarchical and decentralized optimization problems based 

on parametric global optimization for bi-level decision-making (Faísca, Dua, et al. 

2007). Zhang et al. (2010) developed a tri-level Kth-Best algorithm to solve linear 

tri-level decision problems. 

A category of approaches based on fuzzy programming has been also developed 

to solve multilevel decision problems involving bi-level and tri-level programs. Lai 

(1996) first proposed a fuzzy approach to find a satisfactory solution to the linear 

multilevel decision problem using concepts of membership functions of individual 

optimality and the satisfactory degree of individual decision power. Shih, Lai and Lee 

(1996) extended Lai’s concepts and adopted tolerance membership functions and 

multiple objective optimization to develop a fuzzy approach for solving the above 

problems. Sakawa, Nishizaki and Uemura (1998) presented an interactive fuzzy 

programming approach for linear multilevel decision problems by updating the 

satisfactory degrees of decision entities at the upper level with considerations of 

overall satisfactory balance between all levels. Their interactive fuzzy programming 

approach overcomes the inconsistency between the fuzzy goals of objectives and 

decision variables that existed in the research developed by Lai (1996) and Shih, Lai 

and Lee (1996). Sinha (2003a, 2003b) developed an alternative multilevel decision 

technique based on fuzzy mathematical programming, which considered a sequential 
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order of the multilevel hierarchy and took into account the preference of the decision 

entity at each level. Pramanik and Roy (2007) and Arora and Gupta (2009) each 

proposed a fuzzy goal programming approach to solve linear multilevel decision 

problems using definitions of tolerance membership functions and satisfactory degree 

of decision entities. 

To solve tri-level decision-making problems with multiple optima, Shih, Lai and 

Lee (1996) proposed a tri-level decision model with multiple followers and developed 

a fuzzy approach to solve the model. Lu et al. (2012) presented a framework for 

tri-level multi-follower (TLMF) decision-making research and discussed various 

relationships between multiple followers. 

2.3 FUZZY MULTILEVEL DECISION-MAKING 
A multilevel decision problem in which the parameters are described by fuzzy 

values, often characterized by fuzzy numbers, is called a fuzzy multilevel decision 

problem (Zhang & Lu 2007; Zhang, Lu & Gao 2015). For the sake of simplicity, this 

section presents a general fuzzy linear bi-level decision problem based on Definition 

2.2, described as Definition 2.7. 

Definition 2.7 (Zhang & Lu 2005; Zhang, Lu & Gao 2015) For pRXx , 

qRYy , and )(:, RFRRfF qp , a general fuzzy linear bi-level decision 

problem can be written as follows: 

ydxcyxF
Xx 11

~~),(min                  (Leader)                  (2.7a) 

s.t. 111
~~~ byBxA ,                                             (2.7b) 

     where, for each x given by the leader, y solves problem (2.7c-2.7d) 

ydxcyxf
Yy 22

~~),(min              (Follower)                (2.7c) 

s.t. 222
~~~ byBxA ,                                        (2.7d) 
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where )(~,~
21 RFcc p , )(~,~

21 RFdd q , )(~
1 RFb m , )(~

2 RFb n , )(~
1 RFA pm , 

)(~
1 RFB qm , )(~

2 RFA pn , )(~
2 RFB qn , F(R) is the set of all finite fuzzy 

numbers. 

Like multilevel decision-making under certainty, the majority of the research on 

fuzzy multilevel decision-making has focused on bi-level versions that have 

motivated numerous solution approaches (Zhang, Lu & Gao 2015). Zhang and Lu 

(2005) proposed a general fuzzy linear bi-level decision problem and developed an 

approximation Kuhn-Tucker approach to solve this problem. They also presented an 

approximation Kth-Best algorithm to solve the fuzzy linear bi-level decision problem 

(Zhang & Lu 2007). Gao et al. (2008) proposed a programmable λ-cut approximation 

algorithm to solve a λ-cut set based fuzzy goal bi-level decision problem. Budnitzki 

(2013) used the selection function approach and a modified version of the Kth-Best 

algorithm to solve a fuzzy linear bi-level decision problem. Sakawa, Nishizaki and 

Uemura (2000a) proposed an interactive fuzzy programming approach to find a 

satisfactory solution to a fuzzy linear bi-level decision problem. Pramanik (2012) 

adopted a fuzzy goal programming approach to solve fuzzy linear bi-level decision 

problems. 

Fuzzy bi-level decision-making with multiple optima has attracted numerous 

studies. Zhang, Lu and Dillon (2007a) developed an approximation branch-and-bound 

algorithm to solve a fuzzy linear BLMO decision problem. Gao et al. (2010) proposed 

a λ-cut and goal-programming-based algorithm to solve fuzzy linear BLMO decision 

problems. Gao, Zhang and Lu (2009) focused on the fuzzy linear bi-level decision 

problem with multiple followers who share the common constraints and developed a 

PSO algorithm to solve the problem. Gao and Liu (2005) integrated fuzzy simulation, 

neural network and genetic algorithm to produce a hybrid intelligent algorithm for 

solving a fuzzy nonlinear bi-level decision problem with multiple followers. Zhang, 

Lu and Dillon (2007b) proposed a set of fuzzy linear bi-level multi-objective 

multi-follower (BLMOMF) decision models and developed an extended branch and 
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bound algorithm to solve such problems. Zhang and Lu (2010) developed an 

approximation Kth-Best algorithm to solve fuzzy linear BLMOMF decision problems 

with a cooperative relationship among multiple followers. Zhang, Lu and Gao (2008) 

developed an approximation branch-and-bound algorithm to solve a fuzzy linear 

BLMOMF decision problem with a partial cooperative relationship among multiple 

followers. 

In terms of the discussion about fuzzy tri-level and multilevel decision-making, 

Sakawa, Nishizaki and Uemura (2000a) extended their bi-level interactive fuzzy 

programming approach to solve fuzzy linear multilevel decision problems. They also 

extended the fuzzy approach to solve fuzzy linear multilevel fractional decision 

problems (Sakawa, Nishizaki & Uemura 2000b), fuzzy multilevel 0-1 decision 

problems (Sakawa, Nishizaki & Hitaka 2001) and fuzzy multilevel non-convex 

decision problems (Sakawa & Nishizaki 2002). Based on interactive fuzzy 

programming approaches, Osman et al. (2004) studied a fuzzy non-linear tri-level 

decision problem with multiple objectives. 

2.4 APPLICATIONS OF MULTILEVEL 

DECISION-MAKING TECHNIQUES 
Multilevel decision-making techniques have been widely applied to handle 

decentralized decision problems in the real world, in particular in the last five years. 

These applications largely fall into the following four areas: (1) supply chain 

management; (2) traffic and transportation network design; (3) energy management; 

and (4) safety and accident management. 

2.4.1 SUPPLY CHAIN MANAGEMENT 

Supply chain management (SCM) requires decentralized decisions to be made at 

several stages in a complex hierarchical system which includes the location of 

business firms, the acquisition of raw materials, production planning and operations, 
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inventory control, and the delivery and pricing of commodities. It is increasingly 

important to develop an efficient and easily-applicable decision-making methodology 

to handle conflict coordination and the decentralized nature of SCM (Li & Cruz Jr 

2009; Sana 2011). In recognition of this, multilevel decision-making techniques have 

been applied to deal with many of the decentralized decision-making problems found 

in SCM. 

Multilevel decision-making techniques in SCM have largely been applied to deal 

with the competitive location of facilities, production planning and operations, 

commodities distribution and pricing. With respect to the competitive location of 

facilities in SCM, Plastria and Vanhaverbeke (2008) used bi-level programs to adapt 

the competitive location model based on maximal covering to include the knowledge 

that a competitor will eventually enter the market with a single new facility. 

Küçükaydin, Aras and Kuban Altınel (2011) studied a problem in which a firm or 

franchise enters a market by locating new facilities near existing facilities belonging 

to a competitor and formulated the problem as a mixed-integer nonlinear bi-level 

decision model in which the firm entering the market is the leader and the competitor 

is the follower. Rider et al. (2013) presented a bi-level decision model for determining 

optimal location and contract pricing of distributed generation in radial distribution 

systems where the upper-level optimization determines the allocation and contract 

prices of the distributed generation units, whereas the lower-level optimization 

models the reaction of the distribution company. Gang et al. (2015) proposed a 

bi-level multi-objective optimization model for a stone industrial park location 

problem with a hierarchical structure consisting of a local government and several 

stone enterprises in a random environment. The problem was solved using a bi-level 

interactive method based on a satisfactory solution and adaptive chaotic PSO. 

For decentralized production planning and operations, Lukač, Šorić and 

Rosenzweig (2008) designed a mixed 0-1 integer bi-level decision model for a 

production planning problem with sequence dependent setups, in which the objective 

of the leader is to assign the products to the machines in order to minimize the total 



PHD Thesis, UTS  Chapter 2 

33 

sequence dependent setup time, while the objective of the follower is to minimize the 

production, storage and setup cost of the machine. They developed a heuristic 

algorithm based on tabu search to solve the problem. Calvete, Galé and Oliveros 

(2011) proposed a bi-level program to model a hierarchical production-distribution 

planning problem in which two decision makers respectively controlling the 

production process and the distribution process do not cooperate because of different 

optimization strategies. An ant colony optimization approach was developed to solve 

the bi-level model. Kasemset and Kachitvichyanukul (2012) presented a bi-level 

multi-objective mathematical model for a TOC (theory of constraints)-based job-shop 

scheduling problem and developed a PSO algorithm to solve the problem. 

In terms of using multilevel decision-making techniques to handle commodities 

distribution and pricing problems in SCM, Gao et al. (2011) established two bi-level 

pricing models for pricing problems between the vendor and the buyer, designated as 

the leader and the follower respectively, in a two-echelon supply chain. They 

developed a PSO-based algorithm to solve problems defined by these bi-level pricing 

models. Kuo and Han (2011) applied linear bi-level programming to model a supply 

chain distribution problem and developed an efficient method based on a hybrid of the 

genetic algorithm and PSO algorithm to solve the resulting decision model. Kis and 

Kovács (2013) studied an extension of the classical uncapacitated lot-sizing problem 

with backlogs, in which two autonomous and self-interested decision makers 

constitute a two-echelon supply chain. Qiu and Huang (2013) presented a bi-level 

decision model and an enumerative algorithm to describe and solve a SCM problem 

in which a supply hub in an industrial park and manufacturers interact to make their 

decisions on pricing, replenishment and delivery. Calvete, Galé and Iranzo (2014) 

addressed a mixed integer bi-level optimization model for the planning of a 

decentralized distribution network consisting of manufacturing plants, depots and 

customers, and a metaheuristic approach based on evolutionary algorithms was 

developed to solve the optimization model. Ma, Wang and Zhu (2014) considered a 

two-echelon supply chain system with one manufacturer and one retailer, in which the 
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manufacturer first purchases raw materials from the supplier; following production 

and processing by the manufacturer, the end products are sold to the retailer. By 

switching the leader and follower roles between the manufacturer and the retailer, the 

authors established two bi-level decision models for joint pricing and lot-sizing and 

developed a PSO algorithm to solve the resulting models. 

A number of researchers have applied multilevel decision-making techniques to 

handle product design, raw materials supply and inventory control problems in SCM. 

Yang et al. (2015) formulated a mixed 0-1 nonlinear bi-level decision model for the 

joint optimization of product family configuration and scaling design, in which a 

bi-level decision structure reveals coupled decision making between module 

configuration and parameter scaling. Based on a conditional value-at-risk (CVaR) 

measure of risk management, Xu, Meng and Shen (2013) proposed a tri-level decision 

model for the three-echelon SCM in which the material supplier and the manufacturer 

maximize their own profit while the retailer maximizes its CVaR of the expected 

profit. The authors showed that the proposed tri-level decision model can be 

transformed into a bi-level decision model that can be solved by existing methods. 

2.4.2 TRAFFIC AND TRANSPORTATION NETWORK 

DESIGN 

Severe traffic and transportation delays are incurred in most road networks as a 

result of continuously growing travel demand, increasing traffic congestion, 

transportation allocation problems between supply and demand nodes, and optimal 

transportation route problems. The rapid growth of overload in traffic and 

transportation networks has motivated decision makers to apply multilevel 

decision-making techniques to cope with the related decision-making and 

optimization problems in decentralized situations. 

Extensive research on the basis of multilevel decision-making has been devoted to 

road network design problems as a result of insufficient provision of link capacity for 
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travel demand surges. Cao et al. (2007) used a discrete bi-level decision model to 

describe the relationship of the benefit-cost of the traffic flow guidance system (TFGS) 

and the equilibrium of users, and presented an arithmetic based on sensitivity analysis. 

In a system which allows buses of different sizes to be assigned to public transport 

routes, dell’Olio, Ibeas and Ruisánchez (2012) addressed a discrete bi-level 

optimization model with constraints on bus capacity to size buses and set frequencies 

on each route in an attempt to optimize the headways on each route in accordance 

with observed levels of demand. Ukkusuri, Doan and Aziz (2013) formulated a 

combined dynamic user equilibrium and traffic signal control problem as a discrete 

bi-level optimization model and solved the problem using a solution technique based 

on the iterative optimization and assignment method. Wang, Meng and Yang (2013) 

addressed a discrete network design problem with multiple capacity levels which 

determines the optimal number of lanes to add to each candidate link in a road 

network. They formulated the problem as a bi-level decision model, where the upper 

level aims to minimize the total travel time by adding new lanes to candidate links 

and the lower level is a traditional Wardrop user equilibrium (UE) problem. Han et al. 

(2015) proposed a nonlinear bi-level decision model for traffic network signal control, 

which was formulated as a dynamic Stackelberg game and solved as a mathematical 

program with equilibrium constraints. Angulo et al. (2014) proposed a nonlinear 

bi-level decision model for the expansion of a highway network by adding several 

highway corridors within a geographical region, in which the upper level problem 

determines the location of the highway corridors by taking into account budgetary and 

technological restrictions, while the lower level problem models user behavior in the 

located transport network (choice of route and transport system). Fontaine and Minner 

(2014) designed a linear bi-level decision model for the discrete network design 

problem which adds arcs to an existing road network at the leader stage and 

anticipates traffic equilibrium for the follower stage. They proposed a new fast 

solution method for the resulting model with binary leader and continuous follower 

variables under the assumption of partial cooperation. 
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In regard to solving transportation planning and scheduling, origin-destination 

allocation and routing optimization problems, Chiou (2009) proposed a nonlinear 

bi-level decision model for a logistics network design problem with system-optimized 

flows and developed a novel solution algorithm to efficiently solve the problem. Ge, 

Chen and Wang (2013) established a discrete bi-level decision model to analyze an 

integrated inventory-transportation optimization problem and adopted a layer-iterative 

algorithm to solve the resulting model. Liu, Zheng and Cai (2013) presented a novel 

real-time path planning approach for unmanned aerial vehicles, in which the planning 

problem is described as a nonlinear bi-level decision model. In particular, a 

discretization solution algorithm embedded with five heuristic optimization strategies 

was designed to speed up the planning. Konur and Golias (2013) studied the 

scheduling of inbound trucks at the inbound doors of a cross-dock facility under truck 

arrival time uncertainty and formulated this problem as a pessimistic and optimistic 

discrete bi-level decision problem respectively. They developed a genetic algorithm to 

solve the bi-level formulations of the pessimistic and the optimistic approaches. 

Hajibabai, Bai and Ouyang (2014) studied an integrated facility location problem that 

simultaneously considers traffic routing under congestion and pavement rehabilitation 

under deterioration and formulated this problem as a nonlinear mixed-integer bi-level 

program with facility location, freight shipment routing and pavement rehabilitation 

decisions in the upper level and traffic equilibrium in the lower level. 

Researchers have also applied multilevel decision-making techniques to handle 

traffic and transportation problems under uncertainty. For example, Chiou (2015) 

developed a bi-level decision support system for a normative road network design 

with uncertain travel demand in order to simultaneously reduce travel delay to road 

users and mitigate the vulnerability of the road network. Xu and Gang (2013) 

investigated a transportation scheduling problem in a large-scale construction project 

under a fuzzy random environment and formulated this problem as a fuzzy and 

random bi-level multi-objective optimization model which was solved by a PSO 

algorithm. Shao et al. (2014) proposed a nonlinear bi-level optimization model to 
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estimate the variation in peak hour origin-destination traffic demand from day-to-day 

hourly traffic counts throughout the whole year. A heuristic iterative 

estimation-assignment algorithm for solving the bi-level optimization problem was 

proposed. 

2.4.3 ENERGY MANAGEMENT 

Growing environmental concerns have motivated worldwide attention to energy 

management. Multilevel decision-making techniques have been applied to handle 

many energy management problems, such as energy transmission and marketing, 

reducing pollution and promoting cleaner production. 

In relation to the transmission and marketing of natural gas, Dempe, Kalashnikov 

and Rı́os -Mercado (2005) presented a mathematical framework for the problem of 

minimizing the cash-out penalties of a natural gas shipper and modeled the problem 

as a mixed-integer bi-level decision problem having one Boolean variable in the 

lower level problem, in which the decision making process for the shipper (leader) is 

to determine how to carry out its daily imbalances to minimize the penalty that will be 

imposed by the pipeline (follower). For the sake of justifying the daily imbalance 

swings made by the gas shipper as result of variations in the selling price of gas, 

Kalashnikov, Pérez and Kalashnykova (2010) extended the model presented by 

Dempe, Kalashnikov and Rı́os -Mercado (2005) to another bi-level optimization 

model, in which the upper level objective function includes additional terms that 

account for the gas shipping company’s daily actions with the aim of taking 

advantage of the price variations. Dempe et al. (2011) also adopted a linear bi-level 

decision model to describe a natural gas cash-out problem between a natural gas 

shipping company and a pipeline operator and a penalty function method was 

developed to solve the model. 

To handle marketing problems in electricity markets, Zhang et al. (2009) built a 

nonlinear bi-level optimization model for a strategic bidding problem in competitive 
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day-ahead electricity markets and developed a PSO algorithm for solving the resulting 

model. Also, Zhang et al. (2011) presented a general nonlinear bi-level multi-leader 

one-follower decision model for strategic bidding optimization in day-ahead 

electricity markets. The resulting model allows each generating company to choose its 

biddings to maximize its individual profit; while a market operator can find its 

minimized purchase electricity fare, which is determined by the output power of each 

unit and the uniform marginal prices. The authors then developed a PSO algorithm to 

solve the problem. Garcés et al . (2009) presented a bi-level multi-follower decision 

model for electricity transmission expansion planning within a market environment. 

The upper-level problem represents the decisions to be made by the transmission 

planner with the target of deciding transmission investments while maximizing 

average social welfare and minimizing investment cost. The lower-level problems 

represent a market clearing for each market scenario and consider known investment 

decisions. Using duality theory, the proposed bi-level model was recast as a 

mixed-integer linear programming problem, which was solvable by branch-and-cut 

solvers. Fernandez-Blanco, Arroyo and Alguacil (2014) discussed an alternative 

day-ahead auction based on consumer payment minimization for pool-based 

electricity markets and solved this problem by discrete bi-level optimization. In the 

upper-level optimization, generation is scheduled with the goal of minimizing the 

total consumer payment while taking into account the fact that locational marginal 

prices are determined by a multiperiod optimal power flow in the lower level. 

Hesamzadeh and Yazdani (2014) proposed a mixed-integer linear bi-level 

multi-follower decision model for transmission planning in an environment where 

there is imperfect competition in the electricity supply industry, and the problem was 

solved using Kuhn-Tucker optimality conditions and a binary mapping approach. 

Street, Moreira and Arroyo (2014) developed a tri-level decision model for energy 

reserve scheduling in electricity markets with transmission flow limits and found a 

solution using a Benders decomposition approach. Fernandez-Blanco, Arroyo and 

Alguacil (2012) presented a nonlinear mixed-integer bi-level decision-making 
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formulation for alternative market-clearing procedures in restructured power systems 

that are dependent on market-clearing prices rather than on offers. Taha, Hachem and 

Panchal (2014) presented a nonlinear bi-level optimization formulation for 

Quasi-Feed-In-Tariff (QFIT) policy which integrates the physical characteristics of 

the power-grid, in which the upper-level problem corresponds to the policy makers, 

whereas the lower-level decisions are made by generation companies. 

Multilevel decision-making techniques have been also applied to handle water 

exchange problems in relation to the consumption of water resources and the 

generation of waste. Aviso et al. (2010) developed a fuzzy bi-level optimization 

model to explore the effect of charging fees for the purchase of freshwater and the 

treatment of wastewater in optimizing the water exchange network of plants in an 

eco-industrial park (EIP). Tan et al. (2011) extended the optimization model 

developed by Aviso et al. (2010) to a fuzzy bi-level decision model by modifying the 

role of the EIP authority to include water regeneration and redistribution via a 

centralized hub and found a reasonable compromise between the EIP authority's 

desire to minimize fresh water usage, and the participating companies' desire to 

minimize costs. Skulovich, Perelman and Ostfeld (2014) presented a discrete bi-level 

optimization approach for the placement and sizing of closed surge tanks in the water 

distribution system subjected to transient events. Based on the optimization of 

comprehensive social, economic, agricultural, environment and groundwater 

preservation benefits, Guo et al. (2014) presented a bi-level multi-objective 

optimization model that allocates water resources rationally between all sectors and 

prevents over-exploitation. 

2.4.4 SAFETY AND ACCIDENT MANAGEMENT 

Safety and accident management has increasingly attracted concern in relation to 

man-made disasters such as terrorist attacks and hazmat leakage, and natural disasters 

such as hurricanes and earthquakes. Multilevel decision-making techniques have been 

widely applied to assist authorities in making decisions associated with safety and 
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accident management, e.g. electric power network defense, hazmat transportation, 

pollution abatement and emergency evacuation. 

From the aspect of the prevention and defense of man-made and natural disaster, 

Yao et al. (2007) built a tri-level optimization model for resource allocation in electric 

power network defense which identifies the most critical network components to 

defend against possible terrorist attacks, and a decomposition approach was proposed 

to find an optimal solution to the resulting model. Alguacil, Delgadillo and Arroyo 

(2014) applied a tri-level decision model to describe an electric grid defense planning 

problem and solved it using a novel two-stage solution approach. Erkut and Gzara 

(2008) proposed a discrete bi-level decision model for the problem of network design 

for hazardous material transportation where the government designates a network and 

the carriers choose the routes on the network. The authors developed a heuristic 

solution method that always finds a stable solution. Bianco, Caramia and Giordani 

(2009) proposed a linear bi-level decision model for a hazmat transportation network 

design problem which was then transformed into a single-level mixed integer linear 

program by Kuhn-Tucker conditions for finding an optimal solution. Scaparra and 

Church (2008) developed a mixed-integer bi-level program for critical infrastructure 

protection planning in which the upper-level problem involves the decisions about 

which facilities to fortify to minimize the worst-case efficiency reduction due to the 

loss of unprotected facilities, whereas worst-case scenario losses are modeled in the 

lower-level interdiction problem. He, Huang and Lu (2011) presented two mixed 

integer bi-level decision-making models for integrated municipal solid waste 

management and greenhouse gas emissions control. Shih et al. (2012) applied 

nonlinear bi-level programming to determine a subsidy rate for Taiwan's domestic 

glass recycling industry. Hajinassiry, Amjady and Sharifzadeh (2014) presented a 

new adaptive discrete bi-level optimization approach to solve a short-term 

hydrothermal coordination problem with AC (alternating current) network constraints. 

To achieve emergency evacuation and provide rapid aid after a catastrophic 

disaster, Lv et al. (2010) proposed a bi-level optimization model to reduce traffic 
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congestion of the transportation network while evacuating people to safe shelters 

during disasters or special events, in which the upper level aims to minimize the total 

evacuation time, while the lower level functions on the basis of user equilibrium 

assignment. A solution method based on discrete PSO and the Frank-Wolfe algorithm 

was employed to solve the bi-level optimization problem. Camacho-Vallejo et al. 

(2014) proposed a linear bi-level decision model for humanitarian logistics to 

optimize decisions related to the distribution of international aid after a catastrophic 

disaster. Apivatanagul, Davidson and Nozick (2012) introduced nonlinear bi-level 

optimization for risk-based regional hurricane evacuation planning where the upper 

level develops an evacuation plan to minimize both risk and travel time while the 

lower level is a dynamic user equilibrium traffic assignment model. Ren et al. (2013) 

proposed a bi-level bi-objective decision model based on the concept of robust 

optimization for determining flows on emergency evacuation routes and traffic 

signals at intersections in the presence of uncertain background travel demands. A 

non-dominated sorting genetic algorithm was employed to determine the Pareto 

solutions of this optimization problem. 

2.5 SUMMARY 
Although multilevel decision-making techniques have been the subject of great 

developments in decision models, solution approaches and practical applications, 

several challenges still require further research. 

(1) A number of solution approaches involving exact algorithms and heuristic 

algorithms have been developed for solving a variety of bi-level decision problems. 

Nevertheless, these algorithms are still time-consuming for solving nonlinear and 

large-scale bi-level decision problems. Also, it is difficult and sometimes almost 

impossible to extend these algorithms to solve tri-level decision problems. 

(2) Although research on tri-level decision problems has increasingly attracted 

investigations into solution approaches, there are three noticeable drawbacks to 



PHD Thesis, UTS  Chapter 2 

42 

adopting these approaches to solve tri-level decision problems. First, the existing 

approaches are limited to solving tri-level decision problems in linear format or in a 

special situation where all decision entities from different levels share the same 

constraint conditions. Second, the fuzzy approaches for solving tri-level decision 

problems can only be used to find satisfactory solutions rather than optimal solutions, 

because cooperation is inhibited in classical multilevel decision-making problems, as 

has been commented on by Dempe (2011). Lastly, there still lack effective decision 

models and solution approaches for handling TLMF decision problems. 

(3) Although solution approaches have been developed to solve a range of fuzzy 

bi-level decision problems. However, these solution approaches are limited to 

handling linear problems with special fuzzy numbers, e.g. triangular fuzzy numbers. 

In particular, these interactive fuzzy approaches can only solve fuzzy bi-level decision 

problems in which decision entities from different levels share the same constraint 

conditions and prefer to cooperate with one another; under this special situation, the 

fuzzy approaches aim to find satisfactory solutions rather than optimal solutions. 

(4) Multilevel decision-making techniques have been widely applied to handle 

real-world problems. However, the majority of these application research uses basic 

bi-level decision-making techniques. Since many real-world cases appear in highly 

complex decision situations, e.g. where there is uncertainty in data or multiple 

followers are involved, it is necessary to handle these problems using much more 

practical decision models and solution approaches. 

To overcome these issues, this study first develops a PSO algorithm for solving 

large-scale nonlinear bi-level decision problems; moreover, this algorithm is extended 

to solve tri-level decision problems. Second, based on fuzzy set theory, this study 

presents a compromise-based PSO algorithm to solve fuzzy nonlinear bi-level 

decision problems involving general fuzzy numbers. Third, for the sake of handling 

TLMF decision problems, different TLMF decision models are proposed to describe 

various relationships between multiple followers at the same level; also, a TLMF 
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Kth-Best algorithm is developed to find an optimal solution. Lastly, this study applies 

these multilevel decision-making techniques to handle decentralized production and 

inventory operational problems in SCM. 
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CHAPTER 3 LARGE-SCALE NONLINEAR 

MULTILEVEL DECISION MAKING 

3.1 INTRODUCTION 
The multilevel decision problem is strongly NP-hard and traditional exact 

algorithmic approaches lack efficiency and universality in solving such problems, 

thus, heuristics-based PSO algorithms have been used to generate an alternative for 

solving such problems. However, the existing PSO algorithms are limited to solving 

linear or small-scale bi-level decision problems. 

Nowadays, large-scale and nonlinear features have increasingly appeared in 

multilevel decision problems. For example, business firms usually work in a 

decentralized manner in a complex supply chain network, thus, high-dimensional 

decision variables and nonlinear objectives/constraints are often involved when 

handling related multilevel decision problems. This chapter first aims to develop a 

novel PSO algorithm to solve bi-level programs involving nonlinear and large-scale 

problems, called the bi-level PSO algorithm. It then extends the bi-level PSO 

algorithm to a tri-level PSO algorithm for solving tri-level decision problems. Lastly, 

for the sake of exploring the algorithms' performance, the proposed bi-level/tri-level 

PSO algorithms are applied to solve 62 benchmark problems from references and 810 

large-scale problems which are randomly constructed. 

This chapter is organized as follows. Following the introduction, Section 3.2 

presents the bi-level PSO algorithm for solving bi-level decision problems. In Section 

3.3, the tri-level PSO algorithm is developed to solve tri-level decision problems. In 
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Section 3.4, the proposed bi-level/tri-level PSO algorithms are applied to solve 62 

benchmark problems and 810 large-scale problems. A summary is given in Section 

3.5. 

3.2 BI-LEVEL PSO ALGORITHM 
This section first proposes a general bi-level decision problem and presents related 

solution concepts. Second, a bi-level PSO algorithm is developed for solving the 

bi-level decision problem. 

3.2.1 GENERAL BI-LEVEL DECISION PROBLEM AND 

SOLUTION CONCEPTS 

The general bi-level decision problem presented by Bard (1998) is defined as 

follows. 

Definition 3.1 (Bard 1998) For pRXx , qRYy , a general bi-level 

decision problem is defined as: 

),(min yxF
Xx

                   (Leader)                         (3.1a) 

s.t. 0),( yxG ,                                                (3.1b) 

    where y, for each x fixed, solves the follower's problem (3.1c-3.1d) 

),(min yxf
Yy

                (Follower)                       (3.1c) 

s.t. 0),( yxg ,                                            (3.1d) 

where x, y are the decision variables of the leader and the follower respectively; 

1:, RRRfF qp  are the objective functions of the leader and the follower 

respectively; mqp RRRG : , nqp RRRg :  are the constraint conditions of the 

leader and the follower respectively. 



PHD Thesis, UTS  Chapter 3 

46 

To find an optimal solution for the bi-level decision problem (3.1), solution 

concepts in relation to operations of the decision-making process are presented as 

follows. 

Definition 3.2 (Bard 1998) 

(1) The constraint region of the bi-level decision problem (3.1): 

}.0),(,0),(:),{( yxgyxGYXyxS  

(2) The feasible set of the follower for each fixed x: 

}.0),(:{)( yxgYyxS  

(3) The rational reaction set of the follower: 

)]}(:),(min[arg:{)( xSyyxfyYyxP . 

(4) The inducible region (IR) of the bi-level decision problem (3.1): 

)}.(,),(:),{( xPySyxyxIR  

(5) The optimal solution set of the bi-level decision problem (3.1): 

]}.),(:),(min[arg),(:),{( IRyxyxFyxyxOS  

It is clear from Definition 3.2 that the constraint domain associated with a bi-level 

decision problem is implicitly determined by two optimization problems which must 

be solved in a predetermined sequence from the leader to the follower (Kalashnikov 

& Ríos-Mercado 2006). To ensure the bi-level decision problem is well posed in 

respect to the existence of solutions, the following assumptions based on Definition 

3.2 are commonly made. 

Assumption 3.1 gGfF ,,,  are continuous functions, while gf ,  are 

continuously differentiable. 
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Assumption 3.2 f  is strictly convex in y for )(xSy  where S(x) is a compact 

convex set. 

Assumption 3.3 F  is continuous convex in x and y. 

Under Assumptions 3.1 and 3.2, the rational reaction set of the follower P(x) is a 

point-to-point map and closed; this implies that the IR is compact. Thus, under the 

Assumption 3.3, solving the bi-level decision problem (3.1) is equivalent to 

optimizing the leader's continuous function F over the compact set IR. It is well 

known that the solution to such a problem is guaranteed to exist. A bi-level PSO 

algorithm is thereby developed for the purposes of finding a solution for the bi-level 

decision problem (3.1). 

3.2.2 THE BI-LEVEL PSO ALGORITHM DESCRIPTION 

PSO is a category of the population-based heuristic algorithm that is motivated by 

the social behavior of organisms such as fish schooling and bird flocking. The 

population of PSO is known as a swarm, while each element in the swarm is termed a 

particle. In a swarm with the size N, the position vector of each particle with index 

),,2,1( Nii is denoted as ),( t
i

t
i

t
i yxX  at iteration t, which represents a potential 

solution to the problem (3.1). For the sake of convenient discussion, let 

),(),( 21
t
i

t
i

t
i

t
i

t
i xxyxX . At iteration t, each particle i moves from t

iX  to 1t
iX  in 

the search space at a velocity ),( 1
2

1
1

1 t
i

t
i

t
i vvV  along each dimension. Each particle 

keeps track of its coordinates in hyperspace which are associated with the best 

solution (fitness), called pbest solution ( ),( 21 iii ppp ), it has achieved so far; while 

the PSO algorithm is divided into two versions, respectively known as the GBEST 

version and the LBEST version, due to different definitions of the global best solution 

(Eberhart & Kennedy 1995). In the GBEST version, the particle swarm optimizer 

keeps track of the overall best value, called gbest solution ( ),( 21 ggg ppp ), and its 

location obtained thus far by any particle in the population, known as the global 



PHD Thesis, UTS  Chapter 3 

48 

neighborhood. For the LBEST version, particles only contain their own and their 

nearest array neighbors’ best information within a local topological neighborhood, 

rather than that of the entire group. However, in either PSO version, the PSO concept , 

at each iteration, always consists of an aggregated acceleration of each particle 

towards its pbest and gbest position. In this study, the GBEST version of PSO is 

followed, and in this section, detailed procedures for solving the problem (3.1) are 

developed based on Definition 3.2. 

(1) Initial population 

In an initial population of particles with the number N, each particle 

),,2,1( Nii  can be represented as ),(),( 0
2

0
1

000
iiiii xxyxX . As an initial 

population needs to be randomly constructed for the bi-level PSO algorithm, a 

random method is proposed to construct an initial population with the size N. 

First, the required number of the leader's decision variables 0
ix ),,2,1( Ni  is 

randomly generate. Second, the existing simplex method or interior point method is 

adopted (in MATLAB) to solve the follower's decision problem 

}0),(:),({min yxgyxf
Yy

 under 0
ixx  and obtain the corresponding solution 0

iy . 

In this way, the construction of the initial population is completed and 

),(),( 0
2

0
1

000
iiiii xxyxX . 

Nevertheless, a number of particles of the initial population may occur outside the 

constraint region S particularly in relation to solving large-scale problems with 

complex constraints. To ensure many more particles of the initial population occur in 

the constraint region, another construction method is proposed to supplement part 

particles to the initial population. 
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First, obtain two solutions ),( minminmin yxX  and ),( maxmaxmax yxX  

respectively for solving the problems }),(:),(min{ SyxyxF  and 

}),(:),(max{ SyxyxF . 

Second, a formula is defined to construct the initial population: 

])(,)[(),(),( 2
minmax

1
minmaxminmin00 ryyrxxyxyx ii , where Ni ,,2,1 , 

r1 and r2 are random numbers uniformly distributed between 0 and 1. 

The second method provides more particles occurring in the constraint region. 

Even though the particles may be not uniformly distributed throughout the constraint 

region only using the second method, all particles gathered by both methods will be 

uniformly distributed in the search space. Consequently, when the bi-level PSO 

algorithm is performed for solving small-scale problems, the first method can be only 

used to construct the initial population; whereas both methods mentioned are able to 

be combined to construct the initial population for solving large-scale problems. 

Moreover, the percentage of the population generated by the second method should 

goes up with the increase in the problem size. Although some particles of the initial 

population still occur outside the constraint region S using these above construction 

methods, the particles will be tugged to return towards the constraint region S at the 

following iterations if there exist better solutions in S (Eberhart & Kennedy 1995); 

this is an advantage of the PSO algorithm in constructing the initial population. 

(2) The updating rules of particles 

In the bi-level PSO algorithm, each particle i moves toward 

),(),( 1
2

1
1

111 t
i

t
i

t
i

t
i

t
i xxyxX  in the search space at a velocity ),( 1

2
1

1
1 t

i
t
i

t
i vvV at 

each iteration t. In this study, the velocity and position of each particle i are updated 

as follows for Nij ,,2,1,2,1  based on related definitions proposed by Shi and 

Eberhart (1998): 
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)()( 2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv ,                 (3.2) 

11 t
ij

t
ij

t
ij vxx .                                      (3.3) 

The selection of parameters involved in the formula (3.2) need to be determined. 

For the updating velocity, there are usually maximum and minimum velocity levels 

maxv  and minv . If the current velocity max
1 vvt

ij , set max
1 vvt

ij ; while min
1 vvt

ij  

if min
1 vvt

ij . In the beginning, set max
0 vvij . 

w  is inertia weight, which controls the impact of the previous velocities on the 

current velocity. The inclusion of the inertia weight involves two definitions proposed 

by Shi and Eberhart (1998): a fixed constant and a decreasing function with time. 

Since some particles of the initial population may occur outside the constraint region 

S, large inertia weight is needed to enhance the search ability of the bi-level PSO 

algorithm at the beginning of iterations for the sake of tugging such particles to return 

towards the constraint region S. In contrast, small inertia weight can improve the 

convergence ability of the bi-level PSO algorithm later on in the search for finding a 

convergent solution quickly. Thus, the decreasing inertia weight with time is used in 

the bi-level PSO algorithm. The inertia weight is represented as: 

t
Iter

wwww
max_

minmax
max ,                         (3.4) 

where maxw and minw  are the upper and lower bounds on the inertia weight, which 

are determined by the practical problem; Iter_max is the maximum number of 

iterations while t represents the current iteration number. 

1c  and 2c  are known as learning factors or acceleration coefficients, which 

control the maximum step size that the particle can do. A recommended choice for 

constant 1c  and 2c  is integer 2 as proposed by Kennedy and Eberhart (1995). 
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1r  and 2r  are uniform random numbers between 0 and 1. 

(3) Fitness evaluation 

For each particle i at the iteration t ),( t
i

t
i

t
i yxX , adopt the existing simplex 

method or interior point method to solve the problem }0),(:),({min yxgyxf
Yy

 

under t
ixx  and obtain the solution ),( yxt

i  where )( t
ixPy . If the solution 

Syxt
i ),( , update ),(),( yxyxX t

i
t
i

t
i

t
i . Note that )( t

ixPy  and Syxt
i ),(  

mean IRyxt
i ),(  based on Definition 3.2, that is, ),( yxt

i  is a feasible solution 

for the bi-level decision problem (3.1). The pbest solution is ),(),( 21
t
i

t
iiii yxppp , 

if ),(),( 21 ii
t
i

t
i ppFyxF  where ),(),( 00

21 iiiii yxppp  and ),( 00
ii yxF  are 

set at the beginning. The global best solution gbest of the swarm at the iteration t is 

),( 21 ggg ppp  where },,2,1),,(min{),( 2121 NippFppF iigg . 

(4) Termination criterion 

The bi-level PSO algorithm will be terminated after a maximum number of 

iterations Iter_max or when it achieves a maximum CPU time. 

(5) Computational procedures of the bi-level PSO algorithm 

Based on the theoretical basis proposed above, the complete computational 

procedures of the bi-level PSO algorithm are presented for solving the bi-level 

decision problem (3.1). 

Algorithm 3.1: Bi-level PSO algorithm 

[Begin] 

Step 1: Initialization. 
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a) Construct the population size N and generate the initial population of particles 

NiyxX iii ,,2,1),,( 000 ; 

b) Initialize the pbest solution as ),(),( 00
21 iiiii yxppp  and the fitness 

),( 00
ii yxF ; 

c) Set the maximum and minimum velocity levels maxv  and minv , and initialize 

max
0 vvij ; 

d) Set the upper and lower bounds on the inertia weight maxw and minw , 

acceleration coefficients 1c  and 2c , and the maximum iteration number Iter_max; 

e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest solution for each particle. Set 

i=1 and go to Step 2.1. 

Step 2.1: Under t
ixx , solve the problem }0),(:),({min yxgyxf

Yy
 and obtain 

the solution ),( yxt
i . Go to Step 2.2. 

Step 2.2: If the solution Syxt
i ),( , update ),(),( yxyxX t

i
t
i

t
i

t
i ; otherwise, 

set ),( t
i

t
i yxF . Go to Step 2.3. 

Step 2.3: If ),(),( 21 ii
t
i

t
i ppFyxF  or ),(),( 21 ii

t
i

t
i ppfyxf  under 

),(),( 21 ii
t
i

t
i ppFyxF , update ),(),( 21

t
i

t
iiii yxppp . If i<N, set i=i+1 and go to 

Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),( 21 ggg ppp  where 

},,2,1),,(min{),( 2121 NippFppF iigg . Go to Step 4. 
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Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and 

),( 21 ggg ppp  is a solution for the bi-level decision problem (3.1). 

Step 5: Update the inertia weight, and the velocity and the position of each particle 

by the formulas (3.2), (3.3) and (3.4). If the current velocity max
1 vvt

ij , set 

max
1 vvt

ij ; while min
1 vvt

ij  if min
1 vvt

ij . Set t=t+1 and go to Step 2. 

[End] 

3.3 TRI-LEVEL PSO ALGORITHM 
In this section, the proposed bi-level PSO algorithm is extended to a tri-level PSO 

algorithm for solving tri-level decision problems. 

3.3.1 GENERAL TRI-LEVEL DECISION PROBLEM AND 

RELATED THEORETICAL PROPERTIES 

The general tri-level decision problem presented by Faísca, Saraiva, et al. (2007) 

is defined as follows. 

Definition 3.3 (Faísca, Saraiva, et al. 2007) For pRXx , qRYy , 

rRZz , a general tri-level decision problem is defined as: 

),,(min 1 zyxf
Xx

                 (Leader)                         (3.5a) 

s.t. ,0),,(1 zyxg                                               (3.5b) 

    where (y, z), for each x fixed, solves the problems (3.5c-3.5f) 

),,(min 2 zyxf
Yy

              (Middle-level follower)             (3.5c) 

s.t. ,0),,(2 zyxg                                           (3.5d) 

        where z, for each (x, y) fixed, solves the problem (3.5e-3.5f) 
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),,(min 3 zyxf
Yy

          (Bottom-level follower)             (3.5e) 

s.t. ,0),,(3 zyxg                                        (3.5f) 

where x, y, z are the decision variables of the leader, the middle-level follower and the 

bottom-level follower respectively; RRRRfff rqp:,, 321  are the objective 

functions of the three decision entities respectively; 3,2,1,: iRRRRg ikrqp
i  

are the constraint conditions of the three decision entities respectively. 

To find an optimal solution for the tri-level decision problem (3.5), relevant 

solution concepts in relation to operations of the tri-level decision-making process are 

presented as follows. 

Definition 3.4 (Faísca, Saraiva, et al. 2007) 

(1) The constraint region of the tri-level decision problem (3.5): 

}3,2,1,0),,(:),,{( izyxgZYXzyxS i . 

(2) The feasible set of the middle-level follower for each fixed x: 

}0),,(,0),,(:),{()( 32 zyxgzyxgZYzyxS . 

(3) The feasible set of the bottom-level follower for each fixed (x, y): 

}0),,(:{),( 3 zyxgZzyxS . 

(4) The rational reaction set of the bottom-level follower: 

)]},(:),,(min[arg:{),( 3 yxSzzyxfzZzyxP . 

(5) The rational reaction set of the middle-level follower: 

)]},(),(),(:),,(min[arg),(:),{()( 2 yxPzxSzyzyxfzyZYzyxP . 
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(6) The inducible region of the tri-level decision problem (3.5): 

)}(),(,),,(:),,{( xPzySzyxzyxIR . 

(7) The optimal solution set of the tri-level decision problem (3.5): 

]}),,(:),,(min[arg),,(:),,{( 1 IRzyxzyxfzyxzyxOS . 

For the sake of developing an effective algorithm to solve the tri-level decision 

problem (3.5), the geometry of the solution space and related theoretical properties 

need to be explored. To ensure the problem (3.5) is well posed in respect to the 

existence of solutions, it is common to make the following assumptions based on 

Definition 3.4. 

Assumption 3.4 321321 ,,,,, gggfff  are continuous functions, whereas 32 , ff ,

32, gg  are continuously differentiable. 

Assumption 3.5 3f  is strictly convex in z for ),( yxSz  where S(x, y) is a 

compact convex set, while 2f  is strictly convex in (y, z) for )(),( xSzy  where 

S(x) is a compact convex set. 

Assumption 3.6 1f  is continuous convex in x, y, and z. 

Under the Assumptions 3.4 and 3.5, the rational reaction sets of the bottom-level 

follower and the middle-level follower P(x, y) and P(x) are point-to-point maps and 

closed, which implies that IR is compact. Thus, under the Assumption 3.6, solving the 

tri-level decision problem (3.5) is equivalent to optimizing the leader's continuous 

function 1f  over the compact set IR. It is well known that the solution to such a 

problem is guaranteed to exist. 

It is noticeable that, if the bottom-level follower's problem is a convex parametric 

programming problem that satisfies the Manasarian-Fromowitz constraint 

qualification (MFCQ) for each fixed (x, y) (Bard 1998; Dempe 2002), the 
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bottom-level follower's problem is equivalent to the following Kuhn-Tucker 

conditions (3.6-3.9): 

),,,(),,(),,,( 33 zyxguzyxfuzyxL zzz                (3.6) 

,0),,(3 zyxug                                        (3.7) 

,0),,(3 zyxg                                         (3.8) 

,0u                                                (3.9) 

where ),,(),,(),,,( 33 zyxugzyxfuzyxL is the Lagrangian function of the 

bottom-level follower, ),,,( uzyxLz  denotes the gradient of the function 

),,,( uzyxL  with respect to z, and u is the vector of Lagrangian multipliers. 

Theorem 3.1 (Dempe 2002) A necessary and sufficient condition that 

)(),( xPzy  is that the row vector u  exists such that (x, y, z, u) satisfies the 

Kuhn-Tucker conditions (3.6-3.9). 

Based on Theorem 3.1, the tri-level decision problem (3.5) can be transformed 

into the bi-level decision problem (3.10) by replacing the bottom-level follower's 

problem with the Kuhn-Tucker conditions (3.6-3.9). 

),,(min 1 zyxf
x

                     (Leader)                    (3.10a) 

s.t. ,0),,(1 zyxg                                             (3.10b) 

     where (y, z), for the given x, solves the follower's problem (3.10c-3.10h)  

),,(min 2,,
zyxf

uzy
                 (Follower)                  (3.10c) 

     s.t. ,0),,(2 zyxg                                         (3.10d) 

        ,0),,(),,( 33 zyxguzyxf zz                          (3.10e) 
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        ,0),,(3 zyxug                                        (3.10f) 

        ,0),,(3 zyxg                                        (3.10g) 

        .0u                                               (3.10h) 

Therefore, the following theorem is obtained. 

Theorem 3.2 (x, y, z) solves the tri-level decision problem (3.5) if and only if (x, y, 

z, u) solves the bi-level decision problem (3.10). 

In this study, the bi-level PSO algorithm is extended to a tri-level PSO algorithm 

for finding a solution (x, y, z) for the tri-level decision problem (3.5) based on 

Theorems 3.1 and 3.2. 

3.3.2 THE TRI-LEVEL PSO ALGORITHM DESCRIPTION 

In a swarm with the size N, the position vector of each particle with index i 

),,2,1( Ni  is denoted as ),,( t
i

t
i

t
i

t
i zyxX  at iteration t, which represents a 

potential solution to the problem (3.5). For the sake of accessibility, let 

),,(),,( 321
t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX . At iteration t, each particle i moves from t

iX  to 

1t
iX  in the search space at a velocity ),,( 1

3
1

2
1

1
1 t

i
t
i

t
i

t
i vvvV  along each dimension. 

Also, set the pbest solution ),,( 321 iiii pppp  and gbest solution 

),,( 321 gggg pppp . Based on Theorems 3.1 and 3.2, the tri-level PSO algorithm for 

solving the tri-level decision problem (3.5) is developed in this section. 

1) Initial population 

The method of constructing the initial population is similar to the bi-level PSO 

algorithm. First, the required number of the leader's decision variables 0
ix

),,2,1( Ni  is randomly generated. Second, solve the following problem (3.11) 
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under 0
ixx  using the branch and bound algorithm (Bard 1998) or interior point 

method and obtain the corresponding solution ),,( 000
iii uzy . In this way, the 

construction of the initial population is completed and 

),,(),,( 0
3

0
2

0
1

0000
iiiiiii xxxzyxX , Ni ,,2,1 . 

),,(min 2,,
zyxf

uzy
                                          (3.11a) 

s.t. ,0),,(2 zyxg                                       (3.11b) 

,0),,(),,( 33 zyxguzyxf zz                        (3.11c) 

,0),,(3 zyxug                                      (3.11d) 

,0),,(3 zyxg                                       (3.11e) 

.0u                                              (3.11f) 

2) The updating rules of particles 

Within the tri-level PSO algorithm, each particle i moves toward 

),,(),,( 1
3

1
2

1
1

1111 t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  in the search space at a velocity 

),,( 1
3

1
2

1
1

1 t
i

t
i

t
i

t
i vvvV  at each iteration t. The velocity and position of each particle i 

are updated as well as the bi-level PSO algorithm developed in Section 3.2.2 by the 

formulas (3.2), (3.3) and (3.4). 

3) Fitness evaluation 

For each particle i at the iteration t ),,( t
i

t
i

t
i

t
i zyxX , solve the problem (3.11) 

under t
ixx  using the branch and bound algorithm (Bard 1998) or interior point 

method and obtain the solution ),,,( uzyxt
i . If the solution Szyxt

i ),,( , 
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update ),,(),,( zyxzyxX t
i

t
i

t
i

t
i

t
i . The pbest solution is 

),,(),,( 321
t
i

t
i

t
iiiii zyxpppp , if ),,(),,( 32111 iii

t
i

t
i

t
i pppfzyxf  where 

),,(),,( 000
321 iiiiiii zyxpppp  and ),,( 000

1 iii zyxf  are set at the beginning. The 

global best solution gbest of the swarm at the iteration t is ),,( 321 gggg pppp  

where },,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg . 

4) Termination criterion 

The tri-level PSO algorithm will be terminated after a maximum number of 

iterations Iter_max or when it achieves a maximum CPU time. 

5) Computational procedures of the tri-level PSO algorithm 

Based on the bi-level PSO algorithm and the theoretical basis proposed above, the 

complete computational procedures of the tri-level PSO algorithm are presented. 

Algorithm 3.2: Tri-level PSO algorithm 

[Begin] 

Step 1: Initialization. 

a) Construct the population size N and generate the initial population of particles 

NizyxX iiii ,,2,1),,,( 0000  by solving the problem (3.11); 

b) Initialize the pbest solution as ),,(),,( 000
321 iiiiiii zyxpppp  and the fitness 

),,( 000
1 iii zyxf ; 

c) Set the maximum and minimum velocity levels maxv  and minv , and initialize 

max
0 vvij ; 
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d) Set the upper and lower bounds on the inertia weight maxw and minw , 

acceleration coefficients 1c  and 2c , and the maximum iteration number Iter_max; 

e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest solution for each particle. Set 

i=1 and go to Step 2.1. 

Step 2.1: Under t
ixx , solve the problem (3.11) using the branch and bound 

algorithm or interior point method and obtain the solution ),,,( uzyxt
i . Go to Step 

2.2. 

Step 2.2: If the solution Szyxt
i ),,( , update ),,(),,( zyxzyxX t

i
t
i

t
i

t
i

t
i ; 

otherwise, set ),,(1
t
i

t
i

t
i zyxf . Go to Step 2.3. 

Step 2.3: If ),,(),,( 32111 iii
t
i

t
i

t
i pppfzyxf , update ),,(),,( 321

t
i

t
i

t
iiiii zyxpppp . 

If i<N, set i=i+1 and go to Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),,( 321 gggg pppp  where 

},,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg . Go to Step 4. 

Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and 

),,( 321 gggg pppp  is a solution for the tri-level decision problem (3.5). 

Step 5: Update the inertia weight, and the velocity and the position of each particle 

by the formulas (3.2), (3.3) and (3.4) for Nij ,,2,1,3,2,1 . If the current 

velocity max
1 vvt

ij , set max
1 vvt

ij ; while min
1 vvt

ij  if min
1 vvt

ij . Set t=t+1 and 

go to Step 2. 

[End] 
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3.4 COMPUTATIONAL STUDY 
A completed computational study is conducted to show the performance of the 

proposed bi-level/tri-level PSO algorithms. First, the bi-level/tri-level PSO algorithms 

are applied to solve 25 bi-level and 8 tri-level benchmark problems involving linear 

and nonlinear versions. Second, the bi-level PSO algorithm is applied to solve 29 

large-scale nonlinear bi-level benchmark problems. Lastly, for the sake of exploring 

the algorithm performance in depth, 810 large-scale bi-level decision problems are 

generated using the random method proposed by Calvete, Galé and Mateo (2008). It 

is noticeable that the objective value of the upper level is put in a prior position when 

comparing the computational results with other algorithms. These computational 

experiments are operated in MATLAB(2014a) programs performed on a 3.47GHz 

Inter Xeon W3690 CPU with 12G of RAM under a Red Hat Enterprise Linux 

Workstation. Also, these large-scale problems are randomly generated using the 

MATLAB(2014a) environment. 

3.4.1 SMALL-SCALE BENCHMARK PROBLEMS 

In this section, the bi-level/tri-level PSO algorithms are applied to solve 25 

bi-level and 8 tri-level benchmark problems involving linear and nonlinear versions. 

Moreover, the computational results respectively obtained by the bi-level/tri-level 

PSO algorithms and other algorithms are compared. The benchmark problems and 

their related sources are listed in Table 3.1. 

To solve the benchmark problems 1-33, related parameters involved in the 

bi-level/tri-level PSO algorithms are chosen in Table 3.2. Under the parameters in 

Table 3.2, the PSO algorithms are performed in 20 independent runs on each of the 

above 33 benchmark problems. The computational results for bi-level decision 

problems 1-25 are shown in Table 3.3. In Table 3.3, the solution and the 

corresponding objective values obtained by the bi-level PSO algorithm are 
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respectively denoted by ),( yx  and ),( fF , while the values obtained by other 

algorithms are respectively denoted by ),( yx  and ),( fF . 

Table 3.1 Benchmark problems and their related sources 

Problems Sources 

1-14 Problems 1-14 (Wan, Wang & Sun 2013) 

15 Ex 1. (Wan, Mao & Wang 2014) 

16 Ex 3. (Wan, Mao & Wang 2014) 

17 Ex 5. (Wan, Mao & Wang 2014) 

18 Ex 7. (Wan, Mao & Wang 2014) 

19-20 Problems 1-2 (Wang, Jiao & Li 2005) 

21-25 Problems 5-9 (Wang, Jiao & Li 2005) 

26 Example 1 (Bard 1984) 

27 The tri-level numerical illustration (Anandalingam 1988) 
Example 1 (Sinha 2001) 
The tri-level example (Lai 1996) 
Example 3 (Shih, Lai & Lee 1996) 

28 Example 2 (Sinha 2001) 
Example 1 (Sinha 2003b) 
Example 1 (Sinha 2003a) 
Example 1 (Pramanik & Roy 2007) 

29 Example 2 (Sinha 2003a) 

30 Example 4.1 (Ruan et al. 2004) 
Illustrative example 1 (Faísca, Saraiva, et al. 2007) 

31 Example 4.2 (Ruan et al. 2004) 

32 The numerical example (Zhang et al. 2010) 

33 The case study (Zhang et al. 2010) 

It can be seen from Table 3.3 that for problems 4, 6-8, 15-16, 18-20 and 24, the 

solutions obtained by the bi-level PSO algorithm are equal or extremely close to those 

found by the PSO-CST (particle swarm optimization with chaos searching technique) 

algorithm (Wan, Wang & Sun 2013) and the evolutionary algorithm in (Wang, Jiao & 

Li 2005). In terms of problems 1, 3, 5, 9-11, 13-14, 17, 23 and 25, the solutions 

obtained by the bi-level PSO algorithm are better or much better than those found by 

the compared algorithms in (Wan, Mao & Wang 2014; Wang, Jiao & Li 2005). In 
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particular for problems 9-11, 23 and 25, the objective values of the leader respectively 

obtained by the bi-level PSO algorithm and the compared algorithm are extremely 

close to one another under different solutions, which implies that there exist multiple 

solutions for problems 9-11, 23 and 25. Under this situation, using the bi-level PSO 

algorithm can achieve better or much better objective values for the follower than the 

compared PSO-CST algorithm and evolutionary algorithm. 

Table 3.2 Parameters employed in the bi-level/tri-level PSO algorithms for solving problems 1-33 

Problems N vmax vmin wmax wmin c1 c2 Iter_max 
1 30 1.0 -1.0 0.5 0.01 2.0 2.0 100 

2 30 1.0 -1.0 0.5 0.01 2.0 2.0 150 

3 20 1.0 -1.0 0.5 0.01 2.0 2.0 60 

4 50 1.0 -1.0 0.5 0.01 2.0 2.0 100 

5 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

6 50 1.0 -1.0 1.0 0.01 2.0 2.0 150 

7 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

8 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

9 60 0.5 -0.5 0.5 0.01 2.0 2.0 100 

10 60 1.0 -1.0 0.5 0.01 2.0 2.0 80 

11 60 1.0 -1.0 0.5 0.01 2.0 2.0 80 

12 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

13 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

14 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

15 50 1.0 -1.0 0.5 0.01 2.0 2.0 150 

16 80 1.0 -1.0 1.0 0.01 2.0 2.0 100 

17 20 1.0 -1.0 0.5 0.01 2.0 2.0 50 

18 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

19 20 1.0 -1.0 0.5 0.01 2.0 2.0 60 

20 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

21 50 1.0 -1.0 1.0 0.01 2.0 2.0 150 

22 60 0.5 -0.5 0.5 0.01 2.0 2.0 100 

23 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

24 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 
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25 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

26 20 1.0 -1.0 1.0 0.01 2.0 2.0 30 

27 20 1.0 -1.0 1.0 0.01 2.0 2.0 30 

28 30 1.0 -1.0 1.0 0.01 2.0 2.0 40 

29 30 1.5 -1.5 1.0 0.01 2.0 2.0 40 

30 20 1.0 -1.0 0.5 0.01 2.0 2.0 30 

31 20 1.0 -1.0 0.5 0.01 2.0 2.0 20 

32 30 2.0 -2.0 1.0 0.01 2.0 2.0 40 

33 30 3.0 -3.0 1.0 0.01 2.0 2.0 40 

In relation to problems 2, 12 and 21-22, it seems in Table 3.3 that the solutions 

found by the bi-level PSO algorithm are worse than those obtained by the compared 

algorithm. With respect to problem 2, the follower will choose y=(y1, y2, y3)=(0, 0, 0) 

to achieve an optimal objective value 4832.0f  (better than 3641.2f ) in view 

of )1754.0,1324.0(),( 21 xxx . Clearly, the solution ),,( 321 yyyy

)2273.0,7327.0,6935.0(  given by the PSO-CST algorithm in (Wan, Wang & Sun 

2013) occurs outside the rational reaction set P(x), which implies that 

.2273)5,0.7327,01754,0.693(0.1324,0.),( yx  is not a feasible solution for problem 

2 according to Definition 3.2 in Section 3.2. Similarly, the solution 

)3188.0,4599.1,8606.0(),( yx  given by the evolutionary algorithm in (Wang, Jiao 

& Li 2005) is not a feasible solution for problem 12, because the follower will choose 

y=(y1, y2)=(1.5382, 0.2166) to achieve an optimal objective value 4980.2f  (better 

than 5621.2f ) in view of x=0.8606. Clearly, the algorithms in (Wan, Wang & Sun 

2013; Wang, Jiao & Li 2005) cannot find an optimal solution for problems 2 and 12. 

In addition, the objective values of the leader for problems 21 and 22 are 

9087.8F  and 5766.7F  respectively under the solutions 

)79.1,59.2,097.3,03.1(),( yx  and )036.1,34.2,49.0,27.0(),( yx , thus, the 

computational results given in (Wang, Jiao & Li 2005) are wrong and the bi-level 
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PSO solutions are better than the compared algorithm for problems 21 and 22. In 

general, the bi-level PSO algorithm performance better than the compared algorithms 

in (Wan, Wang & Sun 2013; Wang, Jiao & Li 2005) in terms of solving problems 2, 

12 and 21-22. 

Table 3.4 reports the computational results for tri-level decision problems 26-33. 

The solution and the corresponding objective values obtained by the tri-level PSO 

algorithm are respectively denoted by ),,( zyx  and ),,( 321 fff , while the values 

obtained by other solution approaches are denoted by ),,( zyx  and ),,( 321 fff . 

Table 3.4 clearly shows that the tri-level PSO algorithm can find the same solutions as 

the compared approaches or much better solutions. Note ),,( zyx  that ),( zy  

denotes the best reactions of the middle-level follower and the bottom-level follower 

in the light of x  determined by the leader. According to Definition 3.4, 

),,(),,( zyxzyx  under Szyx ),,(  means the solution IRzyx ),,( , which 

implies that ),,( zyx  is a feasible solution for the tri-level decision problem; 

otherwise, ),,( zyx  is not a feasible solution. Thus, it can be seen from Table 3.4 

that the solutions ),,( zyx  in (Bard 1984) for problem 26, in (Lai 1996) for problem 

27, in (Pramanik & Roy 2007; Sinha 2003a, 2003b) for problem 28, in (Faísca, 

Saraiva, et al. 2007) for problem 30 and in (Zhang et al. 2010) for problem 33 are not 

feasible solutions. In addition, although the solutions ),,( zyx  in (Anandalingam 

1988; Shih, Lai & Lee 1996) for problem 27, in (Pramanik & Roy 2007; Sinha 2001) 

for problem 28 and in (Sinha 2003a) for problem 29 occurs over IR, they can be only 

considered as local optimal solutions since the tri-level PSO algorithm can find much 

better solutions for such problems. Thus, the tri-level PSO algorithm provides a better 

way to solve tri-level decision problems. 
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Table 3.3 The computational results for bi-level decision problems 1-25 

Problems ),( yx  ),( fF  ),( yx  ),( fF  

1 (0, 2, 1.875, 0.9063) (-18.6787, -1.0156) (0.3844, 1.6124, 1.8690, 0.8041) (-14.7772, -0.2316) 

2 (0, 0.9, 0, 0.6, 0.4) (-29.2, 3.2) (0.1324, 0.1754, 0.6935, 0.7327, 0.2273) (-29.2064, 2.3641) 

3 (0, 1, 0) (1000, 1) (0.1511, 0.6256, 0.369) (640.7139, 0.9946) 

4 (9.9998, 9.9998) (99.996, 0) (10.0020, 9.9961) (100.0393, 0) 

5 (2.0345, 0.8838, 0) (-1.2312, 7.7818) (1.8602, 0.9073, 0.005) (-1.1660, 7.4441) 

6 (7.0696, 7.0696, 6.9279, 6.9278) (1.98, -1.98) (7.0321, 6.84204, 5.9071, 6.8312) (1.9816, -1.9816) 

7 (20.0282, 14.8381, 0.0282, -5.1619) (0, 0) (17.5039, 29.8906, -2.4994, 9.8894) (0.0527, 0) 

8 (17.8377, 20.1712, -2.1623, 0.1712) (0, 0) (12.4124, 19.3109, -7.5859, -0.6899) (0.0004, 0) 

9 (20, 5, 10, 5) (0, 100) (17.2024, 7.4665, 7.2189, 2.4251) (0.0075, 125.0854) 

10 (10.9317, 9.6004, 10, 9.6004) (0, 0.868) (0.1946, 14.9870, 6.1019, 7.9628) (0, 84.2367) 

11 (6.4462, 11.9941, 6.4462, 10) (0, 3.9763) (10.6084, 10.0550, 9.4545, 5.1257) (0.0001, 25.6292) 

12 (1.8888, 0.889, 0) (0, 7.6167) (0.8606, 1.4599, 0.3138) (0.0082, 2.5621) 

13 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9099, 1.5294, 0.1762) (0.0374, 2.6969) 

14 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9233, 1.5083, 0.1899) (0.0337, 2.7442) 

15 (4, 15, 9.2, 2) (41.2, -9.2) (4.000517, 14.999931, 9.199862, 2) (41.199207, -9.198828) 

16 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 

17 (1, 0) (1, 0) (10, 0) (82, 0) 

18 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 
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19 (20, 5, 10, 5) (225, 100) (20, 5, 10, 5) (225, 100) 

20 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 

21 (1.0312, 3.0978, 2.597, 1.7929) (-8.9172, -6.136) (1.03, 3.097, 2.59, 1.79) (-8.92, -6.14) 

22 (0.281, 0.4754, 2.3437, 1.0328) (-7.5774, -0.5777) (0.27, 0.49, 2.34, 1.036) (-7.58, -0.574) 

23 (38.0907, 60.5204, 2.9985, 2.9985) (-11.9985, -219.2618) (12.47, 67.511, 2.999, 2.999) (-11.999, -163.42) 

24 (2, 0, 2, 0) (-3.6, -2) (2, -2.84e-8, 2, 0) (-3.6, -2) 

25 (-0.4009, 0.8023, 1.9998, 0) (-3.9194, -2.0109) (-0.381, 0.8095, 2, 0) (-3.92, -2) 
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Table 3.4 The computational results for tri-level decision problems 26-33 

Problems ),,( zyx  ),,( 321 fff  ),,( zyx  ),,( 321 fff  ),,( zyx  

26 (6.6667, 8, 0) (-10.6667, -8, 0) (4.6667, 1, 0) (Bard 1984) (-16.6667, -1, 0) (Bard 1984) (4.6667, 6.5, 4.5) 

27 (1.5, 0, 0.5) (8.5, 0, 0.5) (0.5, 1, 0.5) (Anandalingam 1988) (4.5,1,0.5) (Anandalingam 1988) (0.5, 1, 0.5) 

(1.5, 0, 0.5) (Sinha 2001) (8.5, 0, 0.5) (Sinha 2001) (1.5, 0, 0.5) 

(1.66, 1, 0.34) (Lai 1996) (13.26, 1, 0.34) (Lai 1996) No solution 

(0.92, 0.58, 0.5) (Shih, Lai & Lee 1996) (6.18, 0.58, 0.5) (Shih, Lai & Lee 1996) (0.92, 0.58, 0.5) 

28 (2.3329, 0.0006,0.3335, 0) (14.9979, 1.0012, 5.0) (0.86, 1.86, 0, 0.71) (Sinha 2001) (13, 4.7, 4.29) (Sinha 2001) (0.86, 1.86, 0, 0.71) 

(1.59,1.08,0.62,0.06) (Sinha 2003a, 2003b) (12.01,3.18,4.94) (Sinha 2003a, 2003b) (1.59, 1.08, 0.705, 0) 

(1.106, 1.525, 0, 0.631) (Pramanik & Roy 2007) (13.58, 4.05, 4.37) (Pramanik & Roy 2007) (1.106, 1.525, 0.581, 0.244) 

(0.857, 1.857, 0, 0.714) (Pramanik & Roy 2007) (13, 4.71, 4.28) (Pramanik & Roy 2007) (0.857, 1.857, 0, 0.714) 

29 (1, 2, 0, 2, 0) (14, 2, 8) (2, 1.99, 1.004, 0, 0.009) (Sinha 2003a) (12.964,5.001,10.188) (Sinha 2003a) (2, 1.99, 1.01, 0, 0.02) 

30 (0.5, 1, 1) (4.5, -2, 1) (0.5, 1, 1) (Ruan et al. 2004) (4.5, -2, 1) (Ruan et al. 2004) (0.5, 1, 1) 

(1, 0.5, 1) (Faísca, Saraiva, et al. 2007) (5, -2, 1) (Faísca, Saraiva, et al. 2007) (1, 1, 0.5) 

31 )0,0,2(x  (0, 0, 0) )0,0,2(x  (Ruan et al. 2004) (0, 0, 0) (Ruan et al. 2004) )0,0,2(x  

32 (4, 6, 0) (-20, 10, -8) (4, 6, 0) (Zhang et al. 2010) (-20, 10, -8) (Zhang et al. 2010) (4, 6, 0) 

33 No solution --- (10, 28.33, 11.66) (Zhang et al. 2010) (146.6667,176.6,343.3) (Zhang et al. 2010) Unbounded solution 
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3.4.2 LARGE-SCALE BENCHMARK PROBLEMS 

In this section, the bi-level PSO algorithm is applied to solve the large-scale 

nonlinear bi-level decision problems 34-62. The sources of the benchmark problems 

34-57 are the problems SMD1-SMD12 with five and 10 dimensions constructed by 

Sinha, Malo and Deb (2014), while the problems 58-62 with 20 dimensions are cited 

from the problems (Exs.12-16) solved in (Wan, Mao & Wang 2014). When solving 

the problems 34-57, the population size and iteration number are chosen as N=30, 

Iter_max=60 and N=50, Iter_max=100 respectively for solving five-dimensional and 

10-dimensional problems. The other parameters in the bi-level PSO algorithm are 

chosen as follows: vmax=1.0, vmin=-1.0, c1=c2=2, wmax=0.5, wmin=0.01. In response to 

solving problems 58-62, the related parameters are chosen as vmax=0.5, vmin=-0.5, 

c1=c2=2, wmax=0.5, wmin=0.01, N=30, Iter_max=100. 

The computational results for the problems 34-45 and problems 46-57 are 

respectively provided in Tables 3.5 and 3.6. In Tables 3.5 and 3.6, the solution and the 

corresponding objective values obtained by the bi-level PSO algorithm are 

respectively denoted by ),( yx  and ),( fF , while the objective values obtained 

by the nested bi-level evolutionary algorithm developed in (Sinha, Malo & Deb 2014) 

are denoted by ),( fF . Let ),( fF  be the objective values under the exact solution. 

|)||,(|),( ffFFfF  and |)||,(|),( ffFFfF  are adopted to 

reflect the accuracy of the solution respectively obtained by both of the algorithms. 

The smaller number of ),( fF and ),( fF  means the higher accuracy of the 

solution obtained. It can be seen from Tables 3.5 and 3.6 that the bi-level PSO 

algorithm is able to find a more accurate solution than the nested bi-level evolutionary 

algorithm. 
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Table 3.5 The computational results for five-dimensional test problems 34(SMD1) - 45(SMD12) 

Problems ),( yx  ),( fF  ),( fF  ),( fF  

34 (SMD1) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000114, 0.000087) 

35 (SMD2) (-9.1024e-11, 1.3609e-10, -6.4516e-09, 1.0) (-9.3916e-17, 9.3952e-17) (9.3916e-17, 9.3952e-17) (0.000073, 0.000016) 

36 (SMD3) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000054, 0.000055) 

37 (SMD4) (-6.3714e-06, 2.7123e-06, -1.2107e-08, 1.3537e-08, 4.1916e-04) (-1.7330e-07, 1.7339e-07) (1.7330e-07, 1.7339e-07) (0.000023, 0.000057) 

38 (SMD5) (-6.0842e-08, -3.3604e-06, 1.0, 1.0, 0.0039) (-1.2665e-10, 1.3795e-10) (1.2665e-10, 1.3795e-10) (0.000002, 0.000009) 

39 (SMD6) (-3.4925e-08, 2.5489e-05, 4.4706e-06,  4.4706e-06, 2.5474e-05) (6.8968e-10, 1.4570e-15) (6.8968e-10, 1.4570e-15) (0.000108, 0.000061) 

40 (SMD7) (3.8445e-09, -1.1977e-11, -6.4516e-09, -6.4516e-09, 1.0) (-9.3943e-17, 9.3943e-17) (9.3943e-17, 9.3943e-17) (0.000016, 0.000177) 

41 (SMD8) (4.2671e-11, 2.4561e-09, 1.0, 1.0, 0.0233) (8.8549e-12, 2.0450e-10) (8.8549e-12, 2.0450e-10) (0.000174, 0.000027) 

42 (SMD9) (3.2473e-05, -2.7497e-07, -1.6235e-04, -1.6235e-04, 5.1978e-04) (-3.2198e-07, 3.2409e-07) (3.2198e-07, 3.2409e-07) (0.000017, 0.000054) 

43 (SMD10) (1.0, 1.0, 1.0, 1.0, 0.7854) (4.0, 3.0) (0, 0) (0.034759, 0.018510) 

44 (SMD11) (8.2462e-06, -6.2919e-04, 1.0379e-07, 1.0379e-07, 2.7166) (-1.0, 1.0) (0, 0) (0.0131643, 0.129893) 

45 (SMD12) (1.0, 1.0, 1.0, 1.0, 0.7849) (4.9990, 3.0) (0.001, 0) (0.032372, 0.000206) 
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Table 3.6 The computational results for 10-dimensional test problems 46(SMD1) - 57(SMD12) 

Problems ),( yx  ),( fF  ),( fF  ),( fF  

46 (SMD1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000332, 0.000018) 

47 (SMD2) (1.6899e-08, -3.0972e-08, 8.2156e-08, -2.1181e-07, 2.5143e-07, 
-6.4507e-09, -6.4507e-09, -6.4507e-09, 1.0, 1.0) 

(1.1593e-13, 8.1410e-15) (1.1593e-13, 8.1410e-15) (0.000066, 0.000011) 

48 (SMD3) (1.4331e-06, -1.0599e-06, -1.4075e-06, -4.3816e-07, 3.8293e-06, 
-3.7340e-09, -3.7340e-09, 5.1703e-09, 1.3951e-08, 1.3951e-08) 

(2.0014e-11, 5.1590e-12) (2.0014e-11, 5.1590e-12) (0.000359, 0.000033) 

49 (SMD4) (2.3924e-07, 4.5629e-08, 3.7434e-07, 1.0472e-06, 1.6518e-07, 
-1.4097e-08, -1.4097e-08, -1.4097e-08, 3.1005e-04, 3.0963e-04) 

(-1.9119e-07, 1.9119e-07) (1.9119e-07, 1.9119e-07) (0.000286, 0.000027) 

50 (SMD5) (2.4397e-05, -3.1364e-06, -5.7256e-06, -2.1074e-05, -4.7159e-06, 1.0, 1.0, 
1.0, 0.0040, 0.0038) 

(9.9401e-10, 7.4795e-10) (9.9401e-10, 7.4795e-10) (0.000052, 0.000009) 

51 (SMD6) (-8.7492e-06, -7.0808e-06, 7.6839e-05, 4.9603e-05, 5.0376e-05, 
1.6532e-08, 5.3412e-05, 5.3412e-05, 4.9566e-05, 5.0338e-05) 

(1.6735e-08, 6.0309e-09) (1.6735e-08, 6.0309e-09) (0.001435, 0.000082) 

52 (SMD7) (-1.9409e-09, 1.4642e-08, 1.4642e-08, -7.3262e-09, -7.1216e-09, 
-6.4688e-09, -6.4688e-09, 1.1635e-04, 1.0, 1.0) 

(-2.6032e-08, 1.0577e-16) (2.6032e-08, 1.0577e-16) (0.006263, 0.000127) 

53 (SMD8) (2.3591e-07, 4.3256e-05, 1.5413e-06, 1.2043e-07, 2.3549e-06, 1.0, 1.0, 
1.0, 0.0320, 0.0324) 

(9.9992e-05, 4.5035e-05) (9.9992e-05, 4.5035e-05) (0.003122, 0.000157) 

54 (SMD9) (0.0012, 3.6938e-04, 3.2828e-05, -2.9128e-04, -3.1246e-04, -9.4424e-04, 
-9.0683e-04, -9.3510e-04, 0.0055, -0.0157) 

(-2.7495e-04, 2.7829e-04) (2.7495e-04, 2.7829e-04) --- 

55 (SMD10) (0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.4636, 0.4636) (12.0, 7.50) (0, 0) --- 

56 (SMD11) (-1.8430e-06, 4.6479e-08, -6.4905e-07, -3.6628e-07, 1.6103e-06, 
6.6159e-08, 6.6159e-08, 6.6159e-08, 2.0281, 2.0281) 

(-1.0, 1.0) (0, 0) --- 

57 (SMD12) --- --- --- --- 
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Table 3.7 The computational results for 20-dimensional test problems 58-62 

Problems ),( yx  ),( fF  ),( yx  ),( fF  

58 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 

59 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 

60 (-0.0859,-0.6008,0.2454,-0.1412,-1.2518, 
-0.1978,-0.9856,-0.1297,-0.7022,-5, 0,0,0,0,0,0,0,0,0,0) 

(1.2388e-6,1) (1.149034,0.08833383,1.254797,1.182997, 2.130051, 
 1.742112,0.3082794, 1.591319,1.409942,-0.2195419, 
 0,0,0,0,0,0,0,0,0,0) 

(4.64e-6,1) 

61 (0.8882,0.7552,5,4.3309,-0.5017,0.8485, 
-1.2183,2.2813,-1.5316,0.6639, 0,0,0,0,0,0,0,0,0,0) 

(1.7316e-7,1) (-1.275612,0.4240169,-1.292204,-0.57017, 
1.238698,2.83057,1.313386, 0.65589,-2.799304,-1.467915) 

(1.12e-5,1) 

62 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 
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Table 3.7 displays the computational results for problems 58-62 with 20 

dimensions. As shown in Table 3.7, the solutions found by the bi-level PSO algorithm 

are equal to those obtained by the compared algorithm in (Wan, Mao & Wang 2014) 

for problems 58-59 and 62. With regard to problems 60-61, the bi-level PSO 

algorithm can achieve little better in terms of objective values. Also, it can be found 

from Table 3.7 that problems 60-61 have multiple solutions that can achieve objective 

values extremely close to each other. To conclude, the results indicate that the bi-level 

PSO algorithm can find the same solutions as the compared algorithm or better 

solutions for 20-dimensional nonlinear bi-level problems. 

3.4.3 ASSESSING THE EFFICIENCY PERFORMANCE OF 

THE BI-LEVEL PSO ALGORITHM 

This section aims to assess the efficiency performance of the proposed bi-level 

PSO algorithm in relation to solve large-scale problems. In Section 3.4.2, the related 

parameters employed in the bi-level PSO algorithm are provided for solving 

large-scale nonlinear benchmark problems. Much less iterations need to be executed 

by the bi-level PSO algorithm than the evolutionary algorithm (Sinha, Malo & Deb 

2014) that needs 330 and 678 iterations at least respectively for solving 

five-dimensional and 10-dimensional problems. Clearly, the bi-level PSO algorithm 

has a better convergence and efficiency performance than the evolutionary algorithm 

in solving large-scale nonlinear bi-level decision problems. However, the increase in 

the number of decision variables (e.g. more than 20 dimensions) may result in bi-level 

problems having no solutions apart from some special versions (Sinha, Malo & Deb 

2014); thus, there are not sufficient benchmark nonlinear problems in the existing 

research that can be used to explore the algorithm efficiency. In this study, to explore 

the algorithm efficiency in solving much larger-scale (e.g. 20 dimensions or much 

more) problems, the bi-level PSO algorithm is applied to solve sufficient large-scale 

(40, 60 and 100 dimensions) linear bi-level problems that can be randomly generated. 
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Sufficient large-scale linear bi-level decision problems are randomly generated 

using the method proposed by Calvete, Galé and Mateo (2008). The problems are 

constructed by the following formulation format: 

ydxcyxF
x 110

),(min     (Leader) 

  ydxcyxf
y 220

),(m i n     (Follower) 

                 s.t. bByAx . 

Table 3.8 Test problem dimensions 

G1: n=40 G2: n=60 G3: n=100 

n1 n2 m n1 n2 m n1 n2 m 

28 12 12 42 18 18 70 30 30 

28 12 20 42 18 30 70 30 50 

28 12 32 42 18 48 70 30 80 

20 20 12 30 30 18 50 50 30 

20 20 20 30 30 30 50 50 50 

20 20 32 3 30 48 50 50 80 

8 32 12 12 48 18 20 80 30 

8 32 20 12 48 30 20 80 50 

8 32 32 12 48 48 20 80 80 

The objective functions' coefficients (c1, d1, c2, d2) of both decision entities are 

randomly generated from the uniform distribution on [-10, 10]. For the sake of 

ensuring the problem is well posed, the coefficients of one constraint condition are 

chosen from uniform random numbers between 0 and 10, whereas the remainder 

elements of the coefficient matrix are uniformly distributed between -10 and 10. The 

right-hand side of each constraint condition is the sum of the absolute value of the 

coefficients in the constraint condition. According to the construction method by 

Calvete, Galé and Mateo (2008), the test problems are classified into three groups (G1, 

G2 and G3) by the number n of decision variables of the bi-level decision problem, 

shown in Table 3.8. n1 and n2 respectively denote the number of decision variables of 

the leader and the follower, while m denotes the number of constraint conditions of 
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the bi-level problem. It can be seen from Table 3.8 that there are nine problem types 

in each test problem group by different combinations of n1, n2 and m. In this 

computational study, 30 test problems are randomly constructed within each problem 

type; thus, there are 8103930  bi-level problems randomly generated in total 

within three test problem groups. 

Within the bi-level PSO algorithm, the key parameters involve the inertia weight 

w, the population size N and the maximum number of iterations Iter_max. To explore 

the influence of the three parameters on the performance of the bi-level PSO 

algorithm, each test problem is solved under six kinds of parameter combinations of 

the bi-level PSO algorithm, which involve C1 (wmax=1.0, N=100, Iter_max=300), C2 

(wmax=0.75, N=100, Iter_max=300), C3 (wmax=0.50, N=100, Iter_max=300) , C4 

(wmax=1.0, N=50, Iter_max=500), C5 (wmax=0.75, N=50, Iter_max=500) and C6 

(wmax=0.50, N=50, Iter_max=500). In addition, other parameters within the bi-level 

PSO algorithm are set as follows: vmax=5.0, vmin=-5.0, wmin=0.01, c1=c2=2. For 810 

test problems, each of them is carried out 16 runs under each parameter combination. 

In terms of each test problem, minF  is defined as the best objective value of the 

leader obtained from all parameter combinations; if the best objective value F of the 

leader obtained from 16 runs under each parameter combination equals to minF , it 

can be considered that the bi-level PSO algorithm can find a solution for the test 

problem under the parameter combination. Table 3.9 displays the number of test 

problems successfully solved under each parameter combination. 
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Table 3.9 The number of test problems successfully solved under each parameter combination 

G1: n=40 G2: n=60 G3: n=100 

n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6 

28-12-12 5 17 23 18 27 28 42-18-18 3 10 15 7 20 26 70-30-30 8 9 17 8 16 25 

28-12-20 3 16 20 13 27 29 42-18-30 2 7 18 6 22 26 70-30-50 10 13 22 6 18 23 

28-12-32 8 18 22 12 26 30 42-18-48 2 5 14 4 21 28 70-30-80 11 15 22 9 19 24 

20-20-12 13 22 25 21 24 29 30-30-18 5 14 19 17 26 27 50-50-30 1 7 17 7 16 26 

20-20-20 13 21 27 23 27 28 30-30-30 2 16 24 17 27 29 50-50-50 2 4 15 7 18 27 

20-20-32 16 26 29 28 30 30 30-30-48 5 20 26 15 28 30 50-50-80 6 12 17 11 25 25 

 8-32-12 19 20 23 20 21 29 12-48-18 23 25 26 22 27 30 20-80-30 10 18 22 14 21 28 

 8-32-20 26 27 29 27 28 29 12-48-30 28 28 29 28 29 30 20-80-50 10 25 28 18 26 29 

 8-32-32 29 30 30 29 30 30 12-48-48 27 29 29 30 30 30 20-80-80 13 23 29 21 28 30 

Total 132 197 228 191 240 262 Total 97 154 200 146 230 256 Total 71 126 189 101 187 237 
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Table 3.9 clearly shows that different combinations of the inertia weight w, the 

population size N and the maximum number of iterations Iter_max have significant 

influences on the performance of the bi-level PSO algorithm. As shown in Table 3.9, 

most test problems are successfully solved under the parameter combination C6 within 

each problem group, which means that the bi-level PSO algorithm shows higher 

performance under C6 than other parameter combinations. However, the algorithm 

performance under C1 - C5 becomes more and more close to that under C6 following 

the decline of the number n1 of the leader's decision variables, in particular in groups 

G1 and G2; Figure 3.1 clearly presents these results, which display the total number of 

test problems that have the same number of the leader's decision variables 

successfully solved under C1 - C6. Also, it is clear in Figure 3.1 that the algorithm 

performance under each parameter combination experiences a noticeable upward 

trend along with a decrease in the number n1 of the leader's decision variables within 

groups G1 and G2. In terms of problem group G3, it is noticeable that the number of 

test problems with n1=70 successfully solved exceeds that with n1=50, which implies 

that the increase in the population size of the bi-level PSO algorithm is able to 

improve its performance in solving these problems when much more decision 

variables of the leader are involved. 

To explore more in depth, the algorithm efficiency of the bi-level PSO algorithm 

is compared with that of the genetic algorithm based on bases (GABB) developed by 

Calvete, Galé and Mateo (2008) for solving these test problems randomly constructed. 

The convergent CPU time and the total CPU time of all iterations completed for both 

algorithms are examined in Table 3.10. Table 3.10 shows the average of the 

convergent CPU time (in seconds) and the total CPU time (in seconds) for each 

problem type using both algorithms. Note that the computational results of the 

bi-level PSO algorithm are obtained under the parameter combination C6, while the 

GABB is performed under its best related parameter combination presented by 

Calvete, Galé and Mateo (2008). 
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(a) Group G1 

 
(b) Group G2 

 
(c) Group G3 

Figure 3.1 The performance of the bi-level PSO algorithm following different parameter combinations 
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Table 3.10 The computational results respectively obtained by the bi-level PSO algorithm and GABB 

Test Problems PSO GABB 

Group n1-n2-m Convergent iteration number Convergent time (s) Total time (s) Convergent time (s) Total time (s) 

G1 28-12-12 356.03 45.34 74.22 4.92 27.32 

 28-12-20 376.38 49.28 64.48 10.49 33.65 

 28-12-32 344.50 59.35 84.90 13.85 41.26 

 20-20-12 360.97 47.21 66.92 7.31 39.25 

 20-20-20 365.39 52.28 72.57 11.58 51.36 

 20-20-32 353.80 60.82 87.52 20.29 67.35 

 8-32-12 265.48 72.58 136.15 13.75 72.10 

 8-32-20 240.28 68.97 137.76 19.34 82.65 

 8-32-32 237.50 80.64 169.46 38.52 110.65 

G2 42-18-18 365.38 47.54 63.58 12.68 56.38 

 42-18-30 370.81 51.27 69.68 20.96 71.84 

 42-18-48 397.96 60.49 74.36 32.29 95.43 

 30-30-18 366.52 54.18 73.87 21.03 105.57 

 30-30-30 368.03 53.69 73.09 38.35 128.64 

 30-30-48 383.47 62.36 81.26 59.31 169.91 

 12-48-18 351.53 92.03 129.38 68.62 284.05 

 12-48-30 358.03 95.11 135.48 108.24 361.54 
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 12-48-48 324.50 116.66 180.28 179.35 440.72 

G3 70-30-30 318.96 48.83 76.69 54.69 115.20 

 70-30-50 328.52 51.32 78.05 83.61 159.61 

 70-30-80 337.29 67.33 99.80 145.37 231.49 

 50-50-30 368.65 56.69 77.16 134.29 331.85 

 50-50-50 340.52 75.70 107.85 221.89 428.96 

 50-50-80 344.32 71.54 103.76 410.36 630.87 

 20-80-30 339.29 86.84 128.72 771.59 1652.19 

 20-80-50 396.31 132.91 168.76 1299.76 2238.47 

 20-80-80 427.47 200.41 234.34 1684.53 2489.63 
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(a) Group G1 

 
(b) Group G2 

 

(c) Group G3 

Figure 3.2 The average of the convergent CPU time 
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(a) Group G1 

 

(b) Group G2 

 
(c) Group G3 

Figure 3.3 The average of the total CPU time of all iterations completed 
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It can be seen from Table 3.10 that the bi-level PSO algorithm spends more CPU 

times obtaining the best solution and completing all iterations for solving problem 

group G1, however, both CPU times of the bi-level PSO algorithm become less and 

less than GABB following the increase in the number of decision variables within 

problem groups G2 and G3; Figure 3.2 and Figure 3.3 display much more evident 

results. Figure 3.2 and Figure 3.3 clearly show that both the convergent and total CPU 

times of GABB increase steeply with the increase in the size of the test problems. In 

particular in group G3, GABB takes much more CPU times than the bi-level PSO 

algorithm to converge to the best solution and complete all the iterations, which 

implies that the bi-level PSO algorithm has a significant advantage in solving 

larger-scale problems. 

3.5 SUMMARY 
In this chapter, a bi-level PSO algorithm is developed to solve nonlinear and 

large-scale bi-level decision problems, whereas the algorithm is then extended to a 

tri-level PSO algorithm for solving tri-level decision problems. In the proposed 

bi-level/tri-level PSO algorithms, the leader's problem and the follower's problem are 

separated based on related solution concepts for solving conveniently. To handle the 

complexity of the constraint region of nonlinear and large-scale problems, two 

methods for constructing the initial population are given. Moreover, the decreasing 

inertia weight with time is used to control the velocity of particles in the search space 

at different stages, which aims to improve both search and convergence abilities of 

the bi-level/tri-level PSO algorithms. 

To illustrate the effectiveness of the proposed bi-level/tri-level PSO algorithms, 

the algorithms are applied to solve 62 benchmark problems from references and 810 

large-scale problems which are randomly constructed. The computational results are 

compared with those obtained by the existing PSO-CST algorithm (Wan, Wang & 

Sun 2013), evolutionary algorithms (Sinha, Malo & Deb 2014; Wan, Mao & Wang 

2014; Wang, Jiao & Li 2005) and genetic algorithm (Calvete, Galé & Mateo 2008). 
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On the one hand, the computational results of these benchmark bi-level and tri-level 

decision problems report that the bi-level/tri-level PSO algorithms are able to find 

much better solutions than the compared algorithms. On the other hand, the 

computational results of these large-scale problems clearly indicate that the bi-level 

PSO algorithm shows much better performance in terms of efficiency than the 

compared algorithms following the problem size becoming larger and larger. In 

conclusion, the proposed bi-level PSO algorithm provides a practical way to solve 

nonlinear and large-scale bi-level decision problems; also, it can be extended to a 

tri-level PSO algorithm for solving tri-level decision problems. 
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CHAPTER 4 COMPROMISE-BASED 

FUZZY NONLINEAR BI-LEVEL 

DECISION MAKING 

4.1 INTRODUCTION 
An important issue in modeling and solving a bi-level decision problem is that 

parameters involved are sometimes obtained through experiments or experts' 

understanding of the nature of the parameters, which are often imprecisely or 

ambiguously known to decision entities; clearly, it is not reasonable to describe these 

parameters by precise values (Zhang, Lu & Gao 2015). With this observation, it 

would be certainly more appropriate to interpret the experts' understanding of such 

parameters as fuzzy numerical data that can be represented by means of fuzzy set 

theory. A bi-level decision problem in which the parameters are described by fuzzy 

values, often characterized by fuzzy numbers, is called a fuzzy bi-level decision 

problem (Zhang & Lu 2007). 

Although numerous solution approaches have been developed to solve fuzzy 

bi-level decision problems, these solution approaches have the following limitations: 

(1) limited to handling linear problems involving special fuzzy numbers, such as 

triangular fuzzy number; (2) limited to solving fuzzy linear decision problems in a 

special situation where all of the decision entities share the same constraint conditions. 

Consequently, further investigation into solution approaches is necessary for solving 

nonlinear bi-level decision problems involving general fuzzy numbers. 
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This chapter aims to provide an effective algorithm for solving fuzzy nonlinear 

bi-level decision problems. It first presents a general fuzzy bi-level decision problem 

which can be transformed into a crisp problem by a commonly used fuzzy number 

ranking method proposed by Jiménez (1996). The solution to the crisp problem varies 

with different identifications of fuzzy decision conditions by the leader and follower; 

in this situation, the leader and follower need to achieve a compromised selection of 

fuzzy decision conditions to obtain an acceptable optimal solution. Based on rules of 

compromise between the leader and the follower under fuzziness, the bi-level PSO 

algorithm in Chapter 3 is then extended to solve the proposed fuzzy nonlinear bi-level 

decision problem, called the compromise-based PSO algorithm. Lastly, numerical 

examples are used to illustrate the effectiveness of the proposed solution approach. 

This chapter is organized as follows. Following the introduction, Section 4.2 

presents related preliminaries of fuzzy set theory which are used in this chapter. In 

Section 4.3, a general fuzzy nonlinear bi-level decision problem and related 

theoretical properties are proposed. In Section 4.4, the compromise-based PSO 

algorithm is developed. The proposed PSO algorithm is used to solve numerical 

examples in Section 4.5. A summary is given in Section 4.6. 

4.2 PRELIMINARIES OF FUZZY SET THEORY 
This section presents related notations and definitions of fuzzy set theory that are 

used in the subsequent sections. 

Definition 4.1 (Heilpern 1992) The membership function of a fuzzy number a~

can be described in the following manner: 
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where the function fa and ga are called the left and the right side of a~ , and fa is an 

increasing and ga is a decreasing function. The r-cuts are closed and bounded 

intervals and can be represented by )](),([ 11 rgrfa aar . The membership function 

can be shown as the following piecewise function in Figure 4.1. 

a1 a4a2 a3 x

)(~ xa

0

1.0

 

Figure 4.1 The membership function of fuzzy number a~  

Definition 4.2 (Heilpern 1992) The expected interval and the expected value of a 

continuous fuzzy number a~  are respectively defined as )~(aEI  and )~(aEV : 
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aa EEaEV . 

Definition 4.3 (Jiménez et al. 2007) )~()~()~~( bEIaEIbaEI , 

                             )~()~()~~( bEVaEVbaEV . 

Definition 4.4 (Jiménez 1996) For any pair of fuzzy numbers a~  and b~ , the 

degree in which a~  is bigger than b~  is the following: 
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where ],[ 21
aa EE  and ],[ 21

bb EE  are the expected intervals of a~  and b~ . When 

5.0)~,~( baM , a~  and b~  are indifferent. )~,~( baM  means that a~  is bigger 

than, or equal to b~  at least in a degree  and that can be represented by ba ~~ . 

4.3 GENERAL FUZZY BI-LEVEL DECISION 

PROBLEM AND THEORETICAL PROPERTIES 
In this section, a general fuzzy bi-level decision problem is first presented. Second,  

related theoretical properties are discussed based on the fuzzy number ranking method 

defined by Definition 4.4. 

4.3.1 GENERAL FUZZY BI-LEVEL DECISION PROBLEM 

The general fuzzy bi-level decision problem that is studied in this study is defined 

as follows. 

Definition 4.5 For pRXx , qRYy , a general fuzzy bi-level decision 

problem is defined as: 

),(~),(~min 1 yxFcyxF
Xx

             (Leader)                      (4.1a) 

s.t. 1
~),(~ byxG ,                                               (4.1b) 

     where y, for each x fixed, solves the follower's problem (4.1c-4.1d) 

),(~),(~min 2 yxfcyxf
Yy

        (Follower)                     (4.1c) 

s.t. 2
~),(~ byxg ,                                           (4.1d) 

where x and y are the decision variables of the leader and the follower respectively; 

)(~
1 Rc n , )(~

2 Rc m , )(~
1 Rb s , )(~

2 Rb t , nqp RRRyxF :),( , 
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mqp RRRyxf :),( , )(:),(~ RRRyxF qp , )(:),(~ RRRyxf qp , 

)(:),(~ RRRyxG sqp , )(:),(~ RRRyxg tqp , )(R  is the set of all finite 

fuzzy numbers. 

To find an acceptable optimal solution to the fuzzy bi-level decision problem (4.1), 

solution concepts in relation to operations of the fuzzy bi-level decision-making 

process are presented as follows: 

Definition 4.6 

(1) The constraint region of the fuzzy bi-level decision problem (4.1): 

}~),(~,~),(~:),{( 21 byxgbyxGYXyxS . 

(2) The feasible set of the follower for each fixed x: 

}~),(~:{)( 2byxgYyxS . 

(3) The rational reaction set of the follower: 

)]}(:),(~min[arg:{)( xSyyxfyYyxP . 

(4) The inducible region of the fuzzy bi-level decision problem (4.1): 

)}(,),(:),{( xPySyxyxIR . 

(5) The optimal solution set of the fuzzy bi-level decision problem (4.1): 

]}),(:),(~min[arg),(:),{( IRyxyxFyxyxOS . 

It is clear from Definition 4.6 that the fuzzy bi-level decision-making process 

involves uncertain parameters compared with crisp problems. However, the 

operations of both fuzzy and crisp decision-making process are the same as each 

other. 
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4.3.2 RELATED THEORETICAL PROPERTIES 

To handle fuzzy parameters involved and develop an effective solution algorithm, 

this section discusses related theoretical properties of the fuzzy bi-level decision 

problem (4.1) based on fuzzy set theory. 

Definition 4.7 Given a decision vector ),( yx , it is said to be feasible in a degree 

( -feasible) to the constraint region S if 

))},(~,~()),,(~,~(min{ 21 yxgbyxGb MM .                  (4.2) 

In view of Definition 4.4, the previous expression (4.2) can be written as : 

11
1212 )1()1( bbGG EEEE , 

22
1212 )1()1( bbgg EEEE . 

The -feasible constraint region of the fuzzy bi-level decision problem (4.1) can 

be denoted by 

,)1()1(:),{( 11
1212
bbGG EEEEYXyxS  

})1()1( 22
1212
bbgg EEEE . 

By Definition 4.7, if 21 , then SS
21

. 

In line with Definition 4.7, let LM yxGb )},(~,~(min{ 1  and 

FM yxgb )},(~,~(min{ 2 , thus, },min{ FL . For the fixed x  by the leader, y 

can be said to be F -feasible to the feasible set of the follower S(x) under 

FM yxgb )},(~,~(min{ 2 . Accordingly, the feasible set of the follower in relation to 

all F -feasible decision vectors can be denoted by: 
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})1()1(:{)( 22
1212
b

F
b

F
g

F
g

F EEEEYyxS
F

, 

and the F -feasible rational reaction set of the follower can be written as: 

)]}(:),(~min[arg:{)( xSyyxfyYyxP
FF

.          (4.3) 

Thus, the -feasible inducible region of the fuzzy bi-level problem (4.1) is: 

)}(,),(:),{( xPySyxyxIR
F

. 

Definition 4.8 For each given x by the leader, y  is said to be an acceptable 

optimal solution to the problem )}(:),(~min{ xSyyxf
F

 if it is verified that:  

5.0)),(~),,(~( yxfyxfM  for )(xSy
F

. 

By Definition 4.4, 

),(~),(~
5.0 yxfyxf  for )(xSy

F
                    (4.4) 

can be easily obtained, which means that y  is a better choice of the follower at 

least in degree 0.5 as opposed to the other feasible solutions in )(xS
F

. Using the 

Definition 4.3, the previous expression (4.4) can be written as: 

5.0
)( ),(~

2
),(~

1
),(~

1
),(~

2

),(~

1
),(~

2
yxfyxfyxfyxf

yxfyxf

EEEE
EE  

or 

22

),(~

1
),(~

2
),(~

1
),(~

2
yxfyxfyxfyxf EEEE . 

In view of Definition 4.2 and Definition 4.3, the expression allows us to set the 

following proposition: 
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Proposition 4.1 For each fixed x , y  is an F -acceptable optimal solution to 

the second-level problem )}(:),(~min{ xSyyxf  if it is an optimal solution to the 

following crisp problem: 

)}(:)),(~(min{ xSyyxfEV
F

)}(:),()~(min{ 2 xSyyxfcEV
F

,      (4.5) 

where )()~( 2 RFcEV m  is the expected value of the fuzzy vector 2
~c . 

By Proposition 4.1, the expression (4.3) can be written as

)]}(:),()~(min[arg:{)( 2 xSyyxfcEVyYyxP
FF

. Similarly, the following 

Proposition 4.2 is obtained. 

Proposition 4.2 ),( oo yx  is an -acceptable optimal solution to the fuzzy 

bi-level decision problem (4.1) if it is an optimal solution to the following crisp 

problem: 

}),(:)),(~(min{ IRyxyxFEV }),(:),()~(min{ 1 IRyxyxFcEV ,    (4.6) 

where )()~( 1 RFcEV n  is the expected value of the fuzzy vector 1
~c . 

In the light of the proposed definitions and propositions, an optimal solution to the 

fuzzy bi-level decision problem (4.1) can be found under the minimal feasible degrees 

 and F  respectively preferred by the leader and the follower; the solution 

obtained is considered as at least an -acceptable optimal solution where F . 

However, to find  a solution to the fuzzy bi-level decision problem (4.1), two 

conflicting factors need to be taken into account: the acceptable value for the 

objective functions and the feasible degree for the constraint conditions. On the one 

hand, for each fixed x, the objective value of the follower will become worse 

following the increase in the feasible degree F . On the other hand, for all solutions 
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IRyx ),( , the objective value of the leader also becomes worse with the feasible 

degree  going up. Thus, the optimal solution obtained depends on the selection of 

the minimal feasible degrees  and F .  

4.4 COMPROMISE-BASED PSO ALGORITHM 
Different selections of  and F  by the leader and the follower result to 

changes of the constraint region and inducible region, which will generate different 

solutions and related objective values. It is the fact that different selections of  and 

F  keep the feature of uncertainty of the fuzzy bi-level decision problem, although it 

has been transformed in to a crisp problem using fuzzy set theory. Within the 

decision-making process, decision entities can choose values of  and F  by 

communicating and consulting with one another in line with different decision 

environments; this is called compromise-based rules. Under compromise-based rules, 

decision entities can not only achieve the preferred optimal solution in specific 

decision situations, but also obtain different solutions due to various decision 

environments. 

This section employs compromise-based rules to deal with the selection  and 

F . Also, the bi-level PSO algorithm presented in Chapter 3 is extended to obtain 

optimal solutions in relation to different compromised selections of  and F . 

Note that if the leader and the follower share the same constraint conditions in 

problem (4.1), F  must be made to ensure the leader and the follower having 

the same identification towards the shared constraint conditions. 

In the compromise-based PSO algorithm, related definitions of swarm, particles, 

pbest solution and gbest solution are the same as the bi-level PSO algorithm in 

Chapter 3. In a swarm with the size N, the position vector of each particle with index i 
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),,2,1( Ni  is denoted as ),( t
i

t
i

t
i yxX  at iteration t, which represents a 

potential solution to the problem (4.1). For the sake of convenient discussion, let 

),(),( 21
t
i

t
i

t
i

t
i

t
i xxyxX . At iteration t, each particle i moves from t

iX  to 1t
iX  in 

the search space at a velocity ),( 1
2

1
1

1 t
i

t
i

t
i vvV  along each dimension. Each particle 

keeps track of its coordinates in hyperspace which are associated with the best 

solution (fitness), called pbest solution ( ),( 21 iii ppp ). The particle swarm optimizer 

keeps track of the overall best value, called gbest solution ( ),( 21 ggg ppp ). 

(1) Initial population 

In an initial population of particles with the number N , each particle i 

),,2,1( Ni  can be represented as ),(),( 0
2

0
1

000
iiiii xxyxX . An initial population 

is randomly constructed with the size N, where 0
iX  is randomly generated in S  

by setting 0 . 

(2) The updating rules of particles 

The updating rules of particles in this compromise-based PSO algorithm are the 

same as the rules proposed in Section 3.2.2 of Chapter 3. 

3) Fitness evaluation 

For each particle i at the iteration t ),( t
i

t
i

t
i yxX , adopt the existing simplex 

method or interior point method to solve the problem (4.5) under t
ixx  and 

*
FF  specified by the follower using the existing simplex method or interior 

point method, then obtain the solution ),( yxt
i  where )( t

ixPy
F

 and update 

),(),( yxyxX t
i

t
i

t
i

t
i . If L

t
i

t
iM yxGb )},(~,~(min{ 1  where  is specified 

by the leader, then )( t
i

t
i xPy

F
 and Syx t

i
t
i ),( , which means IRyx t

i
t
i ),( ; 
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that is, ),( t
i

t
i yx  is at least a -acceptable feasible solution to the fuzzy bi-level 

decision problem (4.1). The pbest solution is ),(),( 21
t
i

t
iiii yxppp  and the exact 

feasible degree for the constraint region S is },min{)( FLip , if 

)),(~()),(~( 21 ii
t
i

t
i ppFEVyxFEV  where ),(),( 00

21 iiiii yxppp , 

)),(~( 21 ii ppFEV  and 0)( ip  are set at the beginning. The global best 

solution gbest of the swarm is ),( 21 ggg ppp  and the corresponding feasible 

degree for the constraint region S is )( gp where 

},,2,1)),,(~(min{)),(~( 2121 NippFEVppFEV iigg . 

Clearly, ),( 21 ggg ppp  is an -acceptable optimal solution to the fuzzy 

bi-level problem (4.1). 

(4) Termination criterion 

The compromise-based PSO algorithm will be terminated after a maximum 

number of iterations Iter_max or when it achieves a maximum CPU time. 

(5) Computational procedures of the compromise-based PSO algorithm 

Based on the theoretical basis proposed above, the complete computational 

procedures of the compromise-based PSO algorithm is presented for solving the fuzzy 

bi-level decision problem (4.1). 

Algorithm 4.1: Compromise-based PSO algorithm 

[Begin] 

Step 1: Initialization. 

a) Construct the population size N and generate the initial population of particles 

NiyxX iii ,,2,1),,( 000 ; 
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b) Initialize the pbest solution ),(),( 00
21 iiiii yxppp , the fitness 

))(~( ipFEV  and the feasible degrees for the constraint conditions *
FF , 

 and 0)( ip ; 

c) Set the maximum and minimum velocity levels maxv  and minv , and initialize 

max
0 vvij ; 

d) Set the upper and lower bounds on the inertia weight maxw and minw , 

acceleration coefficients 1c  and 2c , and the maximum iteration number Iter_max; 

e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest solution for each particle. Set 

i=1 and go to Step 2.1. 

Step 2.1: Under t
ixx , solve the problem (4.5) under t

ixx  and *
FF  

using the existing simplex method or interior point method, obtain the solution 

),( yxt
i  and update ),(),( yxyxX t

i
t
i

t
i

t
i . Go to Step 2.2. 

Step 2.2: If L
t
i

t
iM yxGb )},(~,~(min{ 1 , go to Step 2.3; otherwise, go to 

Step 2.4. 

Step 2.3: If )),(~()),(~( 21 ii
t
i

t
i ppFEVyxFEV  or )),(~()),(~( 21 ii

t
i

t
i ppfEVyxfEV  

under )),(~()),(~( 21 ii
t
i

t
i ppFEVyxFEV , update ),(),( 21

t
i

t
iiii yxppp  and 

},min{)( FLip . Go to Step 2.4. 

Step 2.4: If i<N, set i=i+1 and go to Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),( 21 ggg ppp  and )( gp  where

},,2,1)),,(~(min{)),(~( 2121 NippFEVppFEV iigg . Go to Step 4. 
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Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and 

),( 21 ggg ppp  is an -acceptable optimal solution to the fuzzy bi-level decision 

problem (4.1). 

Step 5: Update the inertia weight, and the velocity and the position of each particle 

by the formulas (3.2), (3.3) and (3.4) in Chapter 3. If the current velocity max
1 vvt

ij , 

set max
1 vvt

ij ; while min
1 vvt

ij  if min
1 vvt

ij . Set t=t+1 and go to Step 2. 

[End] 

4.5 NUMERICAL EXAMPLES 
This section first illustrates how the proposed PSO algorithm works through 

solving a fuzzy nonlinear bi-level decision problem in which the fuzzy numbers are 

characterized by nonlinear membership functions. Second, the PSO algorithm is used 

to solve two benchmark problems and the computational results are compared with 

that obtained by the existing algorithms. 

4.5.1 AN ILLUSTRATIVE EXAMPLE 

Consider the following fuzzy nonlinear bi-level decision problem (4.7): 

2
21

2
2

2
1 1~4~3~1~),(~min yyxxyxF

x
         (Leader)              (4.7a) 

s.t. 4~2~1~ 2
2
1 xx ,                                             (4.7b) 

0x ,                                                    (4.7c) 

     where y, for each x fixed, solves the follower's problem (4.7d-4.7g) 

2
2
1

2
1 5~1~2~),(~min yyxyxf

y
           (Follower)            (4.7d) 

s.t. 3~1~2~1~2~1~ 21
2
21

2
1 yyxxx ,                         (4.7e) 
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4~4~3~1~ 212 yyx ,                                     (4.7f) 

0y .                                                (4.7g) 

The membership functions of the coefficients in this example are given as 

follows: 
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Whereas the existing solution approaches cannot be adopted to solve the fuzzy 

nonlinear bi-level decision problem, the compromise-based PSO algorithm is used to 

find acceptable optimal solutions for the problem. Based on the PSO procedures 

developed in Section 4.4, the related parameters involved in the algorithm are 

initialized in Table 4.1. 

Table 4.1 Parameters employed in the compromise-based PSO algorithm for solving problem (4.7) 

N vmax vmin wmax wmin c1 c2 Iter_max 
30 1.0 -1.0 0.5 0.01 2.0 2.0 60 
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Table 4.2 The computational results of problem (4.7) under different compromised conditions 

 F  (x, y) ))
~

(),~(( fEVFEV   Iterations 

0.5 0.5 (0.0014, 1.9669, 1.7003, 0.8241) (-17.7991, -0.9220) 0.5 39 

 0.6 (0.0010, 1.9669, 1.6050, 0.6290) (-17.7309, -0.2933) 0.5 32 

 0.7 (0.0016, 1.9669, 1.5142, 0.4506) (-17.5797, 0.2870) 0.5 35 

 0.8 (0.0002, 1.9669, 1.4276, 0.2872) (-17.3653, 0.8235) 0.5 39 

 0.9 (0.0001, 1.9669, 1.3448, 0.1374) (-17.1032, 1.3202) 0.5 31 

 1.0 (0, 1.9669, 1.2672, 0.0007) (-16.8121, 1.7809) 0.5 38 

0.6 0.6 (0.0003, 1.8307, 1.6050, 0.5952) (-16.2103, -0.1238) 0.6 33 

 0.7 (0.0005, 1.8307, 1.5142, 0.4205) (-16.0423, 0.4381) 0.6 32 

 0.8 (0.0011, 1.8307, 1.4276, 0.2606) (-15.8149, 0.9571) 0.6 44 

 0.9 (0.0009, 1.8307, 1.3448, 0.1141) (-15.5432, 1.4371) 0.6 37 

 1.0 (0.0018, 1.8307, 1.3019, 0) (-15.3852, 1.8832) 0.6 36 

0.7 0.7 (0.0009, 1.7063, 1.5142, 0.3930) (-14.7354, 0.5761) 0.7 46 

 0.8 (0.0039, 1.7063, 1.4276, 0.2363) (-14.4965, 1.0790) 0.7 29 

 0.9 (0.0051, 1.7063, 1.3448, 0.0928) (-14.2162, 1.5438) 0.7 41 

 1.0 (0.0008, 1.7063, 1.3346, 0) (-14.1848, 1.9790) 0.7 47 

0.8 0.8 (0.0004, 1.5924, 1.4276, 0.2140) (-13.3696, 1.1907) 0.8 36 

 0.9 (0.0035, 1.5924, 1.3448, 0.0734) (-13.0817, 1.6414) 0.8 36 

 1.0 (0.0097,1.5924, 1.3646, 0) (-13.1667, 2.0692) 0.8 46 

0.9 0.9 (0.0009, 1.4877, 1.3448, 0.0555) (-12.1071, 1.7313) 0.9 38 

 1.0 (0.0110, 1.4875, 1.3922, 0) (-12.3000,2.1537) 0.9 30 

1.0 1.0 (0.0544, 1.3708, 1.4229, 0) (-11.4164, 2.2556) 1.0 48 

The PSO algorithm is implemented in MATLAB R2014a. The computational 

results under different compromised selections of  and F  are reported in Table 

4.2. In Table 4.2, the first column  and the second column F  are the minimal 

 and F  respectively preferred by the leader and the follower. The fifth column 

 represents the exact feasible degree for constraint conditions under the solution 

),( yx , which indicates that the solution ),( yx  is an -acceptable optimal solution 

to the numerical example. The last column shows the iteration number when the PSO 
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algorithm is convergent. In the real world, decision entities can make free choices of 

their preferred solutions from Table 4.2 in view of various decision situations in 

relation to their decentralized management problems. 

In regard to solving this numerical example (4.7), a pair of  and F  is 

randomly generated in the interval [0.5, 1] and [ , 1]. The computational results 

imply that a convergent solution can be obtained using the PSO algorithm under the 

parameters shown in Table 4.1. For example, the convergence curves of the expected 

objective values of the leader and the follower ))~(),~(( fEVFEV under 

)9386.0,8320.0(),( F  are shown in Figure 4.1. It can be seen from Figure 4.1 

that the expected objective values of the leader and the follower have converged to 

)8508.0,5979.15())~(),~(( fEVFEV  since the 30th iteration. With this observation, 

a gbest solution )2960.0,4499.1,8048.1,0040.0(gp  is obtained for the fuzzy 

nonlinear bi-level decision problem. Clearly, the compromise-based PSO algorithm 

provides a practical way to solve nonlinear bi-level decision problems with fuzzy 

parameters. 

 

Figure 4.2 The convergence curves of the leader's and the follower's expected objective values 
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4.5.2 BENCHMARK EXAMPLES 

In this section, the compromise-based PSO algorithm is applied to solve two 

benchmark problems that respectively appear in (Zhang & Lu 2007) and (Zhang & Lu 

2005). Also, the computational results obtained by the PSO algorithm are compared 

with those provided in (Zhang & Lu 2007) and (Zhang & Lu 2005).  

Table 4.3 Parameters in the PSO algorithm for solving problems in (Zhang & Lu 2005, 2007) 

N vmax vmin wmax wmin c1 c2 Iter_max 
30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

The related parameters involved in the PSO algorithm for solving the problems 

are initialized as the same, shown in Table 4.3. Table 4.4 and Table 4.5 respectively 

display the results for the problems in (Zhang & Lu 2007) and (Zhang & Lu 2005) 

obtained by the PSO algorithm under different compromised  and F . 

Decision entities are able to choose their preferred optimal solution from Table 

4.4 and Table 4.5 in line with different decision situations. It is noticeable that the 

solution provided in (Zhang & Lu 2007) is )25.1,5.0(),( yx  that is the same as the 

solution obtained under the compromised condition 7727.0F . As well, the 

solution reported in (Zhang & Lu 2005) is )5.0,0(),( yx  and 

)50.0,0.1())~(),~(( fEVFEV  that satisfies IRyx ),(  with 8333.0F . 

Under the same decision situation 8333.0F , the PSO algorithm can find a 

better solution )11667,3334.0(),( yx  and )5001.1,0.2())~(),~(( fEVFEV . 

Clearly, the compromise-based PSO algorithm provides not only more options of 

solutions due to different decision environments but also better solutions under the 

same decision situation for the decision entities. 
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Table 4.4 The computational results of the problem in (Zhang & Lu 2007)  

 F  (x, y) ))
~

(),~(( fEVFEV   Iterations 

0.5 0.5 (2.0, 2.0) (5.0, 2.0) 0.5 23 

0.6 0.6 (1.2308, 1.6154) (5.0, 1.6154) 0.6 22 

0.7 0.7 (0.75, 1.375) (5.0, 1.3750) 0.7 29 

0.7727 0.7727 (0.50, 1.25) (5.0, 1.2500) 0.7727 22 

0.8 0.8 (0.421, 1.2105) (5.0, 1.2105) 0.8 21 

0.9 0.9 (0.1818, 1.0909) (5.0, 1.0909) 0.9 21 

1.0 1.0 (0, 1.0) (5.0, 1.0) 1.0 33 

Table 4.5 The computational results of the problem in (Zhang & Lu 2005)   

 F  (x, y) ))
~

(),~(( fEVFEV   Iterations 

0.5 0.5 (2.0, 2.0) (-2.0, 4.0) 0.5 23 

0.6 0.6 (1.2308, 1.6154) (-2.0, 2.8462) 0.6 24 

0.7 0.7 (0.75, 1.375) (-2.0, 2.1250) 0.7 31 

0.8 0.8 (0.421, 1.2105) (-2.0, 1.6315) 0.8 28 

0.8333 0.8333 (0.3334, 1.1667) (-2.0, 1.5001) 0.8333 30 

0.9 0.9 (0.1818, 1.0909) (-2.0, 1.2727) 0.9 25 

1.0 1.0 (0, 1.0) (-2.0, 1.0) 1.0 32 

4.6 SUMMARY 
Existing solution approaches for solving fuzzy bi-level decision problems have 

been limited to two categories of special problems: (1) linear problems involving 

special fuzzy numbers, (2) fuzzy linear decision problems in a special situation where 

all of the decision entities share the same constraint conditions. To overcome these 

issues, this chapter aims to develop a compromise-based PSO algorithm for solving 

nonlinear bi-level decision problems with general fuzzy numbers. In the 

compromise-based PSO algorithm, the leader and follower can choose acceptable 

decision conditions based on rules of compromise due to different decision 

environments, which can result in the preferred solution under individual decision 
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situations. To illustrate the effectiveness of the proposed compromise-based PSO 

algorithm, the algorithm is applied to solve an illustrative example and two 

benchmark examples. The computational results show that, the compromise-based 

PSO algorithm can provide not only better solutions under the specific decision 

situation compared with the existing solution approaches but also different options of 

solutions due to various decision environments. In conclusion, the compromise-based 

PSO algorithm provides an effective approach for solving fuzzy nonlinear bi-level 

decision problems with general fuzzy numbers. 
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CHAPTER 5 TRI-LEVEL 

MULTI-FOLLOWER DECISION 

MAKING 

5.1 INTRODUCTION 
With respect to a tri-level decision problem, multiple decision entities are often 

involved at the middle and bottom levels; these entities are called multiple followers. 

For example, in the tri-level decision-making case presented in Chapter 1, the sales 

company (the leader) may have several subordinate logistics centers (the middle-level 

followers) and there may also be several manufacturing factories (the bottom-level 

followers) attached to each logistics center. Moreover, multiple followers at the same 

level may have a variety of relationships with one another, which will generate 

different decision processes. 

In general, there are two fundamental issues in supporting this category of tri-level 

multi-follower (TLMF) decision problems. One is how to use a model to describe the 

decision-making process, which may manifest different characteristics at the three 

decision levels, and the other is how to find an optimal solution to the problem. In 

addition, the optimal solution means a compromised result for a TLMF decision 

problem, which cannot completely reflect the operations of the complex TLMF 

decision-making process; that is, it is imprecise or ambiguous for decision entities to 

evaluate the solution obtained whether or not they desire to in real-world cases. It is 

necessary to find a practical way to identify the satisfaction of decision entities 

towards the solution obtained. However, existing tri-level decision-making research 
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has been primarily limited to a specific situation in which one single decision entity is 

involved at each level. 

To handle TLMF decision problems, this chapter first introduces various 

relationships between multiple followers, gives linear TLMF decision models in line 

with different relationships, and discusses theoretical properties in relation to the 

existence and optimality of solutions. A TLMF Kth-Best algorithm is then developed 

to find an optimal solution to TLMF decision models. An evaluation method based on 

fuzzy programming is used to assess the satisfaction of decision entities towards the 

obtained solution. Lastly, a detailed case study on production-inventory planning 

illustrates the proposed TLMF decision-making techniques in applications. 

This chapter is organized as follows. Following the introduction, general linear 

TLMF decision models and related theoretical properties are proposed in Section 5.2. 

In Section 5.3, the TLMF Kth-Best algorithm is developed. Section 5.4 presents the 

solution evaluation method based on fuzzy programming. In Section 5.5, the proposed 

TLMF decision-making techniques are applied to handle the real-world problem in 

relation to production-inventory planning. A summary is given in Section 5.6. 

5.2 TLMF DECISION MODELS AND RELATED 

THEORETICAL PROPERTIES 
This section introduces definitions of three basic relationships (known as 

uncooperative, cooperative and reference-based relationships) and their hybrid 

relationships to describe a variety of decision-making situations between multiple 

followers. In line with different relationships, TLMF decision models and their 

solution concepts are given. Moreover, related theoretical properties are discussed, 

which provide the theoretical basis for designing a solution algorithm. 
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5.2.1 TLMF DECISION MODELS AND SOLUTION 

CONCEPTS 

The organizational structure of the TLMF decision-making hierarchy is shown as 

Figure 5.1. In this organizational structure, there are one leader, n middle-level 

followers and im  bottom-level followers attached to the middle-level follower i 

( ni ,,2,1 ). Different TLMF decision models based on uncooperative, cooperative 

and reference-based relationships are respectively defined as follows. 

Leader

Middle-level
follower 1

Middle-level
follower n

Bottom-level
follower 11

Bottom-level
follower

Bottom-level
follower n1

Bottom-level
follower11m nnm

 
Figure 5.1 The organizational structure of the TLMF decision-making hierarchy 

5.2.1.1 UNCOOPERATIVE TLMF DECISION MODEL 

Multiple followers at the same level make their respective decisions 

independently without any information exchange or share; this is known as an 

uncooperative relationship between multiple followers at the same level. For example, 

in the tri-level decision-making case given in Chapter 1 and Section 5.1, if logistics 

centers and manufacturing factories make their respective and individual inventory or 

production decisions without any information exchange or share, this can be called an 

uncooperative relationship between the middle-level followers, as well as the 

bottom-level followers. 

Let kRXx , ik
ii RYy , ijk

ijij RZz  denote the vectors of decision 

variables of the leader, the middle-level follower i, and the bottom-level follower ij 
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respectively where nimj i ,,2,1,,,2,1 . Detailed definitions of the uncooperative 

relationship are given as follows. 

Definition 5.1 (Lu et al. 2012) Apart from the decision variables x and 
iimi zz ,,1  

respectively controlled by the leader and bottom-level followers, if both the objective 

function and constraint conditions of the middle-level follower i only involve its own 

decision variable yi, this is known as the uncooperative relationship between the 

middle-level follower i and other middle-level followers. 

Definition 5.2 (Lu et al. 2012) Apart from the decision variables x and yi 

respectively controlled by the leader and middle-level follower i, if both the objective 

function and constraint conditions of the bottom-level follower ij only involve its own 

decision variable zij, this is known as the uncooperative relationship between the 

bottom-level follower ij and other bottom-level followers attached to the middle-level 

follower i. 

Based on Definitions 5.1 and 5.2, for kRXx , ik
ii RYy , ijk

ijij RZz ,

1
1111

)1(
1

: RZZZYYXf
nnmmn , 1

1
)2( : RZZYXf

iimiii ,

1)3( : RZYXf ijiij , imj ,,2,1 , ni ,,2,1 , a linear TLMF decision model in 

which the uncooperative relationship is involved at both middle and bottom levels is 

defined as follows: 

n

i

m

j
ijij

n

i
iinmnmnXx

i

n
zeydcxzzzzyyxf

1 11
11111

)1( ),,,,,,,,,,(min
1

  (Leader) (5.1a) 

s.t. ,
1 11

bzCyBAx
n

i

m

j
ijij

n

i
ii

i
                                       (5.1b) 

 where ),,,( 1 iimii zzy ),,2,1( ni , for each given x, solves (5.1c-5.1f): 

i

i
ii

m

j
ijijiiiimiiiYy

zhygxczzyxf
1

1
)2( ),,,,(min     (Middle-level follower i) (5.1c) 
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s.t. ,
1

i

m

j
ijijiii bzEyDxA

i
                                     (5.1d) 

 where ijz ),,2,1( imj , for each given (x, yi), solves (5.1e-5.1f): 

ijijiijijijiijZz
zqypxczyxf

ijij

),,(min )3(       (Bottom-level follower ij) (5.1e) 

s.t. ,ijijijiijij bzQyPxA                                   (5.1f) 

where k
iji Rccc ,, , ik

ijii Rpgd ,, , ijk
ijijij Rqhe ,, , ksRA , ks

i
iRA , ks

ij
ijRA , 

iks
i RB , ii ks

i RD , iij ks
ij RP , ijks

ij RC , iji ks
ij RE , ijij ks

ij RQ , sRb , 

is
i Rb , ijs

ij Rb  are matrices of decision coefficients. 

To find an optimal solution to the TLMF decision model (5.1), solution concepts 

in relation to operations of the uncooperative TLMF decision-making process are 

presented as follows: 

Definition 5.3 

(1) Constraint region of the TLMF decision model (5.1): 

:),,,,,,,,,,{(
1 11

11111 1

n

i

m

j
ij

n

i
inmnmn

i

n
ZYXzzzzyyxS  

,,,
11 1 1

ijijijiijiji

m

j
ijijiii

n

i

n

i

m

j
ijijii bzQyPxAbzEyDxAbzCyBAx

ii
 

imj ,,2,1 , ni ,,2,1 }. 

(2) For each x given by the leader, feasible set of the middle-level follower i 

),,2,1( ni  and its bottom-level followers: 

,:),,,{()(
11

1 i

m

j
ijijiii

m

j
ijiimiii bzEyDxAZYzzyxS

ii

i
 

ijijijiijij bzQyPxA , },,2,1 imj . 
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(3) For each (x, yi) given by the leader and the middle-level follower i, feasible 

set of the bottom-level follower ij ),,2,1,,,2,1( nimj i : 

}:{),( ijijijiijijijijiij bzQyPxAZzyxS . 

(4) For each (x, yi) given by the leader and the middle-level follower i, rational 

reaction set of the bottom-level follower ij ( nimj i ,,2,1,,,2,1 ): 

)]},(ˆ:)ˆ,,(min[arg:{),( )3(
iijijijiijijijijiij yxSzzyxfzZzyxP . 

(5) For each x given by the leader, rational reaction set of the middle-level 

follower i ( ni ,,2,1 ) and its bottom-level followers: 

,ˆ,(min[arg),,,(:),,,{()( )2(
1

1
1 iiimii

m

j
ijiimiii yxfzzyZYzzyxP

i

i

i
 

]},,2,1),ˆ,(ˆ),()ˆ,,ˆ,ˆ(:)ˆ,,ˆ 11 iiijijiimiiimi mjyxPzxSzzyzz
ii

. 

(6) Inducible region (IR) of model (5.1): 

,,,,(:),,,,,,,,,,{( 11111 11 nnmnmmn yyxzzzzyyxIR
n

 

},,2,1),(),,,(,),,,,,, 1111 11
nixPzzySzzzz iimiinmnmm in

. 

(7) Optimal solution set of model (5.1): 

,,,,,,,,(:),,,,,,,,,,{(
111 11111111 mnnmnmmn zzyyxzzzzyyxOS

n
 

]}),,,,,,,,,,(:min[arg),,
111 1111

)1( IRzzzzyyxfzz
nn nmnmmnnmnm . 

5.2.1.2 COOPERATIVE TLMF DECISION MODEL 

Multiple followers at the same level share information and make joint decisions 

because of common business needs; this is known as a cooperative relationship 

between multiple followers at the same level. For example, in the tri-level 

decision-making case given in Chapter 1 and Section 5.1, if the logistics centers share 

a warehouse, they need to cooperate with each other for making an inventory solution 
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satisfied by every logistics center; this can be called a cooperative relationship 

between the middle-level followers. 

Let kRXx , ik
i RYy , ijk

iji RZz  denote the vectors of decision variables 

of the leader, the middle-level follower i, and the bottom-level follower ij respectively 

where nimj i ,,2,1,,,2,1 . Detailed definitions of the cooperative relationship are 

given as follows. 

Definition 5.4 (Lu et al. 2012) Apart from the decision variables x and zi 

respectively controlled by the leader and bottom-level followers, if both the objective 

function and constraint conditions of the middle-level follower i involve the decision 

variable y shared with other middle-level followers, this is known as the cooperative 

relationship between the middle-level follower i and other middle-level followers. 

Definition 5.5 (Lu et al. 2012) Apart from the decision variables x and y 

respectively controlled by the leader and the middle-level follower i, if both the 

objective function and constraint conditions of the bottom-level follower ij involve 

the decision variable zi shared with other bottom-level followers attached to the 

middle-level follower i, this is known as the cooperative relationship between the 

bottom-level follower ij and other bottom-level followers attached to the middle-level 

follower i. 

Based on Definitions 5.4 and 5.5, for kRXx , ik
i RYy , nYYY 1 , 

0kRYy , ijk
iji RZz , 

iimii ZZZ 1 , 0ik
ii RZz , 1)1( : RZZYXf ni , 

1)2( : RZYXf iii , 1)3( : RZYXf ijiij , imj ,,2,1 , ni ,,2,1 , a linear 

TLMF decision model in which the cooperative relationship is involved at both 

middle and bottom levels is defined as follows: 

n

i
iinXx

zedycxzzyxf
1

1
)1( ),,,,(min                           (Leader) (5.2a) 
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s.t. bzCByAx
n

i
ii

1
,                                            (5.2b) 

  where ),( izy ),,2,1( ni , for each given x, solves (5.2c-5.2f): 

iiiiiiYy
zgydxczyxf

i

),,(min )2(             (Middle-level follower i) (5.2c) 

s.t. iiiii bzDyBxA ,                                       (5.2d) 

  where iz ),,2,1( imj , for each given (x, y), solves (5.2e-5.2f): 

iijijijiijZz
zhydxczyxf

iji

),,(min )3(          (Bottom-level follower ij) (5.2e) 

s.t. ijiijijij bzEyBxA ,                                 (5.2f) 

where k
iji Rccc ,, , 0,, k

iji Rddd , 0,, ik
ijii Rhge , ksRA , ks

i
iRA , ks

ij
ijRA , 

0ksRB , 0ks
i

iRB , 0ks
ij

ijRB , 0iks
i RC , 0ii ks

i RD , 0iij ks
ij RE , sRb , 

is
i Rb , ijs

ij Rb  are matrices of decision coefficients. 

To find an optimal solution to the TLMF decision model (5.2), solution concepts 

in relation to operations of the cooperative TLMF decision-making process are 

presented as follows: 

Definition 5.6 

(1) Constraint region of the TLMF decision model (5.2): 

,:),,,,{(
11

1 bzCByAxZYXzzyxS
n

i
ii

n

i
in  

,, ijiijijijiiiii bzEyBxAbzDyBxA imj ,,2,1 , ni ,,2,1 }. 

(2) For each x given by the leader, feasible set of the middle-level follower i 

),,2,1( ni  and its bottom-level followers: 

},,2,1,,:),{()( iijiijijijiiiiiiii mjbzEyBxAbzDyBxAZYzyxS . 
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(3) For each (x, y) given by the leader and the middle-level follower i, feasible set 

of the bottom-level follower ij ),,2,1,,,2,1( nimj i : 

}:{),( ijiijijijiiij bzEyBxAZzyxS . 

(4) For each (x, y) given by the leader and the middle-level follower i, rational 

reaction set of the bottom-level follower ij ( nimj i ,,2,1,,,2,1 ): 

)]},(ˆ:)ˆ,,(min[arg:{),( )3(
iijiiijiiiij yxSzzyxfzZzyxP . 

(5) For each x given by the leader, rational reaction set of the middle-level 

follower i ( ni ,,2,1 ) and its bottom-level followers: 

:)ˆ,ˆ,(min[arg),(:),{()( )2(
iiiiii zyxfzyZYzyxP  

]},,2,1),ˆ,(ˆ),()ˆ,ˆ( iijiii mjyxPzxSzy . 

(6) Inducible region (IR) of model (5.2): 

},,2,1),(),(,),,,,(:),,,,{( 11 nixPzySzzyxzzyxIR iinn . 

(7) Optimal solution set of model (5.2): 

]}),,,,(:min[arg),,,,(:),,,,{( 1
)1(

11 IRzzyxfzzyxzzyxOS nnn . 

5.2.1.3 REFERENCE-BASED TLMF DECISION MODEL 

Multiple followers at the same level make their individual decisions 

independently but exchange information between themselves, which implies that 

followers consider the decision results of their counterparts as references when 

making their individual decisions; this situation is known as a reference-based 

relationship. For example, in the tri-level decision-making case given in Chapter 1 

and Section 5.1, the logistics centers and manufacturing factories may reference 

inventory or production plans determined by their counterparts at the same level when 

making their individual inventory or production decisions; this can be called a 
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reference-based relationship between the middle-level followers, as well as the 

bottom-level followers. 

Let kRXx , ik
ii RYy , ijk

ijij RZz  denote the vectors of decision 

variables of the leader, the middle-level follower i, and the bottom-level follower ij 

respectively where imj ,,2,1 , ni ,,2,1 . Detailed definitions of the 

reference-based relationship are given as follows. 

Definition 5.7 (Lu et al. 2012) Apart from its own decision variable iy  and the 

decision variables 
iimi zzx ,,, 1  determined by the leader and the bottom-level 

followers, if both the objective function and constraint conditions of the middle-level 

follower i  involve the decision variables nii yyyy ,,,,, 111  controlled by other 

middle-level followers, this is known as the reference-based relationship between the 

middle-level follower i and other middle-level followers. 

Definition 5.8 (Lu et al. 2012) Apart from its own decision variable ijz  and the 

decision variables x  and iy  respectively determined by the leader and the 

middle-level follower i, if both the objective function and constraint conditions of the 

bottom-level follower ij  involve the decision variables 
iimjijii zzzz ,,,,, )1()1(1  

controlled other bottom-level followers attached to the same middle-level follower i, 

this is known as the reference-based relationship between the bottom-level follower ij 

and other bottom-level followers attached to the middle-level follower i. 

Based on Definitions 5.7 and 5.8, for kRXx , ik
ii RYy , ijk

ijij RZz , 

1
1111

)1(
1

: RZZZYYXf
nnmmn , 1

11
)2( : RZZYYXf

iimini , 

1
1

)3( : RZZYXf
iimiiij , imj ,,2,1 , ni ,,2,1 , a linear TLMF decision 

model in which the reference-based relationship is involved at both middle and 

bottom levels is defined as follows: 
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i                                        (5.3b) 

where ),,,( 1 iimii zzy ),,2,1( ni , for each given ),,,,,,( 111 nii yyyyx , 

solves (5.3c-5.3f): 
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)2( ),,,,,,(min (Middle-level follower i) (5.3c) 

s.t. ,
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ijij
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s
sisi bzEyDxA

i                                   (5.3d) 

where ijz ),,2,1( imj , for each given ),,,,,,,( )1()1(1 iimjijiii zzzzyx , 

solves (5.3e-5.3f): 
i

i
ijij

m

t
itijtiijijimiiijZz

zqypxczzyxf
1

1
)3( ),,,,(min (Bottom-level follower ij) (5.3e) 

s.t. ,
1

ij

m

t
itijtiijij bzQyPxA

i
                                (5.3f) 

where k
iji Rccc ,, , ik

iji Rpd , , sk
is Rg , ijk

ijij Rhe , , itk
ijt Rq , krRA , 

kr
i

iRA , kr
ij

ijRA , ikr
i RB , si kr

is RD , iij kr
ij RP , ijkr

ij RC , iji kr
ij RE , 

itij kr
ijt RQ , rRb , ir

i Rb , ijr
ij Rb  are matrices of decision coefficients, 

imt ,,2,1 , ns ,,2,1 . 

To find an optimal solution to the TLMF decision model (5.3), solution concepts 

in relation to operations of the reference-based TLMF decision-making process are 

presented as follows: 

Definition 5.9 

(1) Constraint region of the TLMF decision model (5.3): 

:),,,,,,,,,,{(
1 11

11111 1
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itijtiijij mjbzQyPxA
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,,2,1,
1

, ni ,,2,1 }. 

(2) For each ),,,,,,( 111 nii yyyyx  given by the leader and other 

middle-level followers, feasible set of the middle-level follower i 

),,2,1( ni  and its bottom-level followers: 

:),,,{(),,,,,,(
1

1111
i

i

m

j
ijiimiiniii ZYzzyyyyyxS  

},,2,1,,
111

iij

m

t
itijtiijiji

m

j
ijij

n

s
sisi mjbzQyPxAbzEyDxA

ii
. 

(3) For each ),,,,,,,( )1()1(1 iimjijiii zzzzyx  given by the leader, the 

middle-level follower i and bottom-level followers, feasible set of the 

bottom-level follower ij ),,2,1,,,2,1( nimj i : 

}:{),,,,,,,(
1

)1()1(1 ij

m

t
itijtiijijijijimjijiiiij bzQyPxAZzzzzzyxS

i

i
. 

(4) For each ),,,,,,,( )1()1(1 iimjijiii zzzzyx  given by the leader, the 

middle-level follower i and bottom-level followers, rational reaction set of the 

bottom-level follower ij ( nimj i ,,2,1,,,2,1 ): 

:{),,,,,,,( )1()1(1 ijijimjijiiiij ZzzzzzyxP
i

 

),,,,ˆ,,,,,(min[arg )1()1(1
)3(

iimjiijjiiiijij zzzzzyxfz  

)]},,,,,,,(ˆ )1()1(1 iimjijiiiijij zzzzyxSz . 
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(5) For each ),,,,,,( 111 nii yyyyx  given by the leader and other 

middle-level followers, rational reaction set of the middle-level follower i 

( ni ,,2,1 ) and its bottom-level followers: 

:),,,{(),,,,,,(
1

1111
i

i

m

j
ijiimiiniii ZYzzyyyyyxP  

:)ˆ,,ˆ,,,,ˆ,,,,(min[arg),,,( 1111
)2(

1 ii iminiiiiimii zzyyyyyxfzzy  

),,,,,,,()ˆ,,ˆ,ˆ( 1111 niiiimii yyyyxSzzy
i

 

]},,2,1),ˆ,,ˆ,ˆ,,ˆ,ˆ,(ˆ )1()1(1 iimjijiiiijij mjzzzzyxPz
i

. 

(6) Inducible region (IR) of model (5.3): 

:),,,,,,,,,,{(
111111 nnmnmmn zzzzyyxIR  

,),,,,,,,,,,(
111111 Szzzzyyx

nnmnmmn  

},,2,1),,,,,,,(),,,( 1111 niyyyyxPzzy niiiimii i
. 

(7) Optimal solution set of model (5.3): 

,,,,,,,,(:),,,,,,,,,,{(
111 11111111 mnnmnmmn zzyyxzzzzyyxOS

n
 

]}),,,,,,,,,,(:min[arg),,
111 1111

)1( IRzzzzyyxfzz
nn nmnmmnnmnm . 

In summary, this study presents three categories of TLMF decision models in line 

with uncooperative, cooperative and reference-based relationships. Apart from these 

three categories of basic decision models, a new category of decision models can be 

established based on the hybrid of three aforementioned relationships. Decision 

models based on hybrid relationships can be clustered into two main categories. One 

is that there exist different relationships at different decision levels. For example, in 

the tri-level decision-making case given in Chapter 1 and Section 5.1, the logistics 

centers at the middle level have the cooperative relationship whereas there is the 
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uncooperative relationship between the manufacturing factories at the bottom level. 

The relevant TLMF decision model can be built based on Definitions 4.4 and 4.2. The 

other is that there exist different relationships at the same decision level. For example, 

there exist both the uncooperative and cooperative relationships between the logistics 

centers at the middle level, which implies that the objective function and constraint 

conditions involve not only individual decision variables but also decision variables 

shared by multiple logistics centers. Since the modeling process based on hybrid 

relationships is similar to the TLMF decision models (5.1-5.3), this chapter will not 

present hybrid-relationship-based TLMF decision models in detail. 

In addition, it can be seen from solution concepts of TLMF decision models 

(5.1-5.3) that the reference-based TLMF decision model (5.3) is the most complex 

and representative model, thus, this study consider this model as a general TLMF 

decision model. This chapter will discuss related theoretical properties of the 

reference-based TLMF model (5.3) and develop a solution algorithm for solving this 

model. 

5.2.2 RELATED THEORETICAL PROPERTIES 

To develop an effective solution algorithm for solving the reference-based TLMF 

decision model (5.3), this section discusses related theoretical properties based on 

Definition 5.9. 

Based on related solution concepts, it can be concluded that the reference-based 

TLMF decision model (5.3) has the following features: 

(1) The leader has the priority to determine its decision variable x to optimize its 

objective function under the constraint region S. 

(2) The middle-level follower i then determines its individual decision variable 

iy  under the feasible set ),,,,,,( 111 niii yyyyxS  to react to the given decision 

),,,,,,( 111 nii yyyyx  from the leader and other middle-level followers. 
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(3) The bottom-level follower ij determines its decision variable ijz  under its 

feasible set ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxS  to respond to the decision 

),,,,,,,( )1()1(1 iimjijiii zzzzyx  made by the leader, the middle-level follower 

i and other bottom-level followers attached to the middle-level follower i. 

(4) Since each decision entity seeks to optimize its own objective function, the 

decision variable selection of the bottom-level follower ij must be involved in its 

rational reaction set ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxP , which ensures an 

optimal solution to problem (5.3e-5.3f) under the given decision 

),,,,,,,( )1()1(1 iimjijiii zzzzyx . 

(5) Under the given decision (x, yi) by the leader and the middle-level follower i, 

an optimal solution ),,( 1 iimi zz  to all the bottom-level followers attached to the 

middle-level follower i must be involved in 

),,,,,,,,(:),,{(),( )1()1(1
1

1 i

i

i imjijiiiijij

m

j
ijimiii zzzzyxPzZzzyxP  

},,2,1 imj . 

(6) As the decision of the middle-level follower i is affected by actions of its 

bottom-level followers, it must consider implicit reactions of its bottom-level 

followers when making its own decisions, thus, an optimal solution 

),,,( 1 iimii zzy  to the middle-level follower i and its bottom-level followers must 

occur in their rational reaction set ),,,,,,( 111 niii yyyyxP , which can also be 

considered as an optimal solution to problem (5.3c-5.3f) under the given decision 

),,,,,,( 111 nii yyyyx .  

(7) An optimal solution to all the followers under the given x by the leader must 

be involved in  
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),,,,,,,(),,,(:),,,,,,,,,{()( 111111111 1 niiiimiinmnmn yyyyxPzzyzzzzyyxP
in

 

},,2,1 ni . 

(8) As the leader should consider implicit reactions of all the followers when 

making its own decisions, an optimal solution to model (5.3) must occur over the IR 

and the optimal solution set is expressed by OS. 

To ensure that the model (5.3) is well posed, it is necessary to make the following 

assumptions as the basis for the existence of solutions. 

Assumption 5.1 S is nonempty and compact. 

Assumption 5.2 IR is nonempty. 

Assumption 5.3 ),( ii yxP  and )(xP  have at most one solution respectively for 

each parameter ),( iyx  and x, where ni ,,2,1 . 

Theorem 5.1 If the above Assumptions 5.1-5.3 hold, there exists an optimal 

solution to the TLMF decision model (5.3). 

Proof. Since both S and IR are not empty, there is at least one parameter value x  

and )(xP . Consider a sequence ,,,,,,,,,,{( 11111 1

t
n

t
m

tt
n

tt zzzyyx  

IRz t
t
nmn 1)}  converging to ,,,,,,,,(

11111 mn zzyyx  ),,1 nnmn zz . Then, 

since )(),,,,,,,,,( 11111 1

tt
nm

t
n

t
m

tt
n

t xPzzzzyy
n

, let ,,,,,()( 1110
tt

n
tt zyyxP  

),,,, 11 1

t
nm

t
n

t
m n

zzz  and )()(0
tt xPxP . Because of the continuity properties of 

linear parametric optimization proposed in (Dempe 2002) and *lim xxt

t
, 

)()(lim *
00 xPxP t

t
 is obtained. Since ),,,,,,,,,()(lim 111110 1 nnmnmn

t

t
zzzzyyxP  

and )()( **
0 xPxP , )(),,,,,,,,,( 11111 1

xPzzzzyy
nnmnmn . Hence, IR is 

closed. Also, IR is bounded by SIR  and Assumption 5.1. Therefore, the inducible 

region IR is a nonempty and compact set. Furthermore, by Assumption 5.3, the 
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solution ),,( 1 iimi zz  to the bottom-level followers attached to the middle-level 

follower i ( ni ,,2,1 ) and the solution ),,,,,,,,,( 11111 1 nnmnmn zzzzyy  to 

all the followers are uniquely determined respectively for the given value ),( iyx  

and x , which implies that the leader must optimize its objective over IR. According 

to the optimal solution set OS in Definition 5.9, finding an optimal solution to model 

(5.3) is equivalent to solving the following problem: 

:),,,,,,,,,,(min{ 11111
)1(

1 nnmnmn zzzzyyxf  

}.),,,,,,,,,,( 11111 1
IRzzzzyyx

nnmnmn            (5.4) 

Clearly, problem (5.4) consists of minimizing a continuous function over a nonempty 

and compact set IR, which implies that there exists an optimal solution to the problem 

(5.4) that is also an optimal solution to the TLMF decision model (5.3). □ 

It is noticeable from the Theorem 2.1 that if the followers have multiple optimal 

solutions to respond to the parameter value x of the leader, it will be difficult for the 

leader to realize its objective function value prior to the determination of the optimal 

solution taken by the followers (Mersha & Dempe 2006). In this case, if the followers 

cannot select the solution preferred by the leader, the leader may achieve its optimal 

solution outside IR, which implies that the TLMF decision model (5.3) may not have 

an optimal solution. Therefore, to avoid this situation in the presentation of solution 

algorithms, the Assumption 5.3 is necessary. 

Theorem 5.2 The IR can be expressed equivalently as a piecewise linear equality 

constraint comprised of supporting hyperplanes of S. 

Proof. First, for nimj i ,,2,1,,,2,1 , define 

),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF  

)},,,,,,,,(:min{ )1()1(1 iimjijiiiijijijijj zzzzyxSzzq  
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),,,,,,( 111 niii yyyyxF  

),,,,,,,()ˆ,,ˆ,ˆ(:ˆˆmin{ 1111
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niiiimii

m

j
ijijiii yyyyxSzzyzhyg

i

i  

      }.,,2,1),ˆ,,ˆ,ˆ,,ˆ,ˆ,(ˆ )1()1(1 iimjijiiiijijijj mjzzzzyxFzq
i

 

Since ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF  can be seen as a linear programming 

problem with parameters iyx,  and 
iimjijii zzzz ,,,,, )1()1(1 , the dual problem of 

),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF  can be written as: 

.,,2,1,,,2,1},0,:)max{(
,1

nimjuquQubzQyPxA iijijjijijjijij

m

jtt
itijtiijij

i  (5.5) 

If both ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF  and problem (5.5) have feasible 

solutions, according to the dual theorem of linear programming, both of them have 

optimal solutions and the same optimal objective function value. A solution to 

problem (5.5) occurs at a vertex of its constraint region

}0,:{( ijijjijijjijij uquQuU . Adopting ijk
ijijij uuu ,,, 21  to express all the vertices 

of ijU , problem (5.5) can be written as: 

:)max{(
,1

ijij

m

jtt
itijtiijij ubzQyPxA

i
 

.,,2,1,,,2,1},,,,{ 21 nimjuuuu i
k
ijijijij

ij              (5.6) 

Clearly, ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF  is a piecewise linear function 

according to problem (5.6). 

In the next step, ),,,,,,( 111 niii yyyyxF  needs to be proved to be a 

piecewise linear function. Suppose that ),,,(,),,,,( 21
11

2
1
1

i
i

ii
i

s
im

s
i

s
iimii zzzzzz  are 

solutions to the problem },,2,1),,,,,,,,({ )1()1(1 iimjijiiiij mjzzzzyxF
i

 for all 

ni ,,2,1 . For each fixed i and a solution ),,,( 21
i

i
ii t

im
t
i

t
i zzz  where ii st ,,2,1 ,
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),,,,,,( 111 niii yyyyxF  becomes a programming problem with parameters 

nii yyyyx ,,,,,, 111  and ),,,( 21
i

i
ii t

im
t
i

t
i zzz , and there are is  parameterized 

programming problems such as ,,|),,,,,,( ),,,(111 11
2

1
1 iimii zzzniii yyyyxF

),,,(111
21

|),,,,,,( is
iim

is
i

is
i zzzniii yyyyxF . Considering different combinations of 

),,,( 21
i

i
ii t

im
t
i

t
i zzz for all ni ,,2,1 , therefore, there are 

n

i
is

1
 parameterized 

programming problems 
),,,(111

21
|),,,,,,( it

iim
it

i
it

i zzzniii yyyyxF . Similarly, 

),,,(111
21

|),,,,,,( it
iim

it
i

it
i zzzniii yyyyxF  is also a piecewise linear function as 

),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF . Lastly, according to the above definition of 

),,,,,,( 111 niii yyyyxF , the IR can be rewritten as: 

i
in

n
n

m

j

t
ijijiii

t
nm

t
n

t
m

t
n zhygSzzzzyyxIR

1
11111 :),,,,,,,,,,{( 1

1
1  

},,2,1,,,2,1,|),,,,,,(
),,,(111

21
nistyyyyxF iizzzniii it

iim
it

i
it

i
 

iii
t
nm

t
n

t
m

t
n ygSzzzzyyx n

n
n :),,,,,,,,,,{( 11111

1
1

1  

},,,2,1,,,2,1,0|),,,,,,(
1),,,(111

21
nistzhyyyyxF ii

m

j

t
ijijzzzniii

i
i

it
iim

it
i

it
i

 (5.7) 

and it can be seen as a piecewise linear equality constraint for problem (5.4). □ 

In line with Theorem 5.2, the Corollary 5.1 is easily obtained. 

Corollary 5.1 The TLMF decision model (5.3) is equivalent to optimizing )1(f  

over a feasible region comprised of a piecewise linear equality constraint. 

Corollary 5.2 An optimal solution to the TLMF decision model (5.3) occurs at a 

vertex of IR. 
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Proof. According to the equivalent form (5.4) of the TLMF decision model (5.3) 

and since ),,,,,,,,,,( 11111
)1(

1 nnmnmn zzzzyyxf  is linear, an optimal solution 

to the problem must occur at a vertex of IR if it exists. □ 

Theorem 5.3 An optimal solution ),,,,,,,,,,( 11111 1 nnmnmn zzzzyyx  to 

the TLMF decision model (5.3) occurs at a vertex of S. 

Proof. Let ),,,,,,,,,,(,),,,,,,,,,,,( 11111
11

1
1
1

1
11

11
1

1
11

t
nm

t
n

t
m

tt
n

tt
nmnmn nn

zzzzyyxzzzzyyx  

express the distinct vertices of S. Since any point in S can be written as a convex 

combination of these vertices, 
t

r

r
nm

r
n

r
m

rr
n

rr
rnmnmn nn

zzzzyyxzzzzyyx
1

1111111111 ),,,,,,,,,,(),,,,,,,,,,(
11

 

is obtained, where 
t

r
r

1
,1  ,0r  tr ,,2,1  and tt . By the convexity of 

),,,,,,( 111 niii yyyyxF , let us write the constraints of model (5.3) in the 

piecewise linear form (5.7) discussed in Theorem 5.2: 

  
i

iimii

m

j
ijijiiizzzniii zhygyyyyxF

1
),,,(111

21
|),,,,,,(0  

   )(|)),,,,,,((
111

),,,(
1

111
21

t

r

r
ijr

m

j
ij

t

r

r
iriizzz

t

r

r
n

r
i

r
i

rr
ri zhygyyyyxF

i

iimii
 

   )(|),,,,,,(
111

),,,(111
1 21

i

iimii

m

j

r
ijij

t

r
r

t

r

r
iiirzzz

r
n

r
i

r
i

rr
i

t

r
r zhygyyyyxF  

.,,2,1),|),,,,,,((
1

),,,(111
1 21

nizhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i

t

r
r  (5.8) 

By the definition of 
),,,(111

21
|),,,,,,( is

iim
is

i
is

i zzzniii yyyyxF , 

),,,(111
21

|),,,,,,(
iimii zzz

r
n

r
i

r
i

rr
i yyyyxF  

.,,2,1,,,2,1,)min(
11

nitrzhygzhyg
ii

i
m

j

r
ijij

r
iii

m

j

t
ijijiii  
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Thus, 

.,,2,1,,,2,1,0|),,,,,,(
1

),,,(111
21

nitrzhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i  

Because the preceding expression (5.8) must be held with 0r , tr ,,2,1 , there 

must exist ,,,2,1,0|),,,,,,(
1

),,,(111
21

trzhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i  

ni ,,2,1 . These statements imply that ,),,,,,,,,,,( 11111 1
IRzzzzyyx r

nm
r
n

r
m

rr
n

rr
n

tr ,,2,1 , and that ),,,,,,,,,,( 11111 1 nnmnmn zzzzyyx  can be denoted as a 

convex combination of the points in the IR. Since 

),,,,,,,,,,( 11111 1 nnmnmn zzzzyyx  is a vertex of the IR according to Corollary 5.2, 

there must exist 1t , which implies that ),,,,,,,,,,( 11111 1 nnmnmn zzzzyyx  is a 

vertex of S. □ 

Corollary 5.3 If ),,,,,,,,,,( 11111 1 nnmnmn zzzzyyx  is a vertex of the IR, 

it is also a vertex of S. 

5.3 TLMF KTH-BEST ALGORITHM AND A 

NUMERICAL EXAMPLE 
This section first presents the TLMF Kth-Best algorithm for solving the TLMF 

decision model (5.3) based on related theoretical properties. A numerical example is 

then used to illustrate how the TLMF Kth-Best algorithm works. 

5.3.1 TLMF KTH-BEST ALGORITHM DESCRIPTION 

Theorem 5.3 and Corollary 5.3 imply that an optimal solution to the TLMF 

decision model (5.3) can be found by enumerating vertices (also called extreme points) 

of the constraint region S, which clearly provide an appropriate way to develop the 

following TLMF Kth-Best algorithm to solve the problem. According to the notations 
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and theoretical foundation respectively defined and demonstrated in Section 5.2, the 

main principle of the TLMF Kth-Best algorithm is proposed as follows. 

To begin, consider the following linear programming problem: 

}.),,,,,,,,,,(:min{ 11111
1 11

1
Szzzzyyxzeydcx

n

i

nmnmn

n

i

m

j
ijij

n

i
ii       (5.9) 

Let the vertices  

),,,,,,,,,,(,),,,,,,,,,,,( 11111
11

1
1
1

1
11

11
1

1
11

N
nm

N
n

N
m

NN
n

NN
nmnmn nn

zzzzyyxzzzzyyx  

of the constraint region S denote the N-ranked basic feasible solutions to problem 

(5.9), such that 

1,,2,1,
1 1

1

1

11

1 11
Nkzeydcxzeydcx

n

i

m

j

k
ijij

n

i

k
ii

k
n

i

m

j

k
ijij

n

i

k
ii

k ii . 

Solving the equivalent problem (5.4) of model (5.3) is then equivalent to finding the 

index 

,,,,,,,,(:},,2,1{min{
11111

k
m

kk
n

kk zzyyxNkK }),,1 IRzz k
nm

k
n n

, 

which ensures that ),,,,,,,,,,( 11111 1

K
nm

K
n

K
m

KK
n

KK
n

zzzzyyx  is an optimal 

solution to model (5.3). Therefore, it needs to be verified that whether or not 

IRzzzzyyx K
nm

K
n

K
m

KK
n

KK
n
),,,,,,,,,,( 11111 1

 under the condition ,,,,( 1
K
n

KK yyx

Szzzz K
nm

K
n

K
m

K
n
),,,,,, 1111 1

. If ),,,,,,(),,,( 1111
K
n

K
i

K
i

KK
i

K
im

K
i

K
i yyyyxPzzy

i
 

for all ni ,,2,1  that means ),,,( 1
K
im

K
i

K
i i

zzy  is an optimal solution to the 

problem (5.3c-5.3f) under the fixed ,,,, 1111
K
ii

KK yyyyxx  

K
nn

K
ii yyyy ,,11  for ni ,,2,1 , there exists ,,,,,,,(

11111
K
m

KK
n

K zzyy

)(),,1
KK

nm
K
n xPzz

n
, thus, IRzzzzyyx K

nm
K
n

K
m

KK
n

KK
n
),,,,,,,,,,( 11111 1

 by Definition 

5.9. As this requires finding the K th best vertex of S to obtain an optimal solution 

to model (5.3), the algorithm is named the TLMF Kth-Best algorithm. 
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Second, it needs to be verified that whether or not ,(),,,( 1
K

i
K
im

K
i

K
i xPzzy

i

),,,,, 111
K
n

K
i

K
i

K yyyy  through solving problem (5.3c-5.3f). For ni ,,2,1  and 

fixing the given ,,,, 1111
K
ii

KK yyyyxx K
nn

K
ii yyyy ,,11 , problem 

(5.3c-5.3f) can be seen as the problem (5.10) by Definition 5.9: 

)}.,,,,,,(),,,(:min{ 1111
11

niiiimii

m

j
ijij

n

s
sisi yyyyxPzzyzhygxc

i

i
   (5.10) 

For the given ,,,, 1111
K
ii

KK yyyyxx K
nn

K
ii yyyy ,,11 , consider the 

following linear programming problem (5.11): 

)},,,,,,(),,,(:min{ 1111
11

niiiimii

m

j
ijij

n

s
sisi yyyyxSzzyzhygxc

i

i
   (5.11) 

and the vertices ),,,(,),,,,( 1
11

1
1 i

i
ii

i

N
im

N
i

N
iimii zzyzzy  of ),,,,,,( 111 niii yyyyxS  

become the ranked basic feasible solutions to problem (5.11), such that 

i
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m

j

k
ijij

k
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K
sis

K
i zhygygxc

1,1
,

1

11

,1

i
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k
ijij

k
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s

K
sis

K
i zhygygxc  

,1,,2,1 ii Nk ni ,,2,1 . 

Solving problem (5.10) is then equivalent to finding the index 

)},,,,,,(),,,(:},,2,1{min{ 1111
K
n

K
i

K
i

KK
i

k
im

k
i

k
iiii yyyyxPzzyNkK i

i
ii , which ensures 

that ),,,( 11
i
i

ii K
im

K
i

K zzy  is an optimal solution to (5.3c-5.3f) where i=1,2,...,n. If 

),,,(),,,( 111
K
im

K
i

K
i

K
im

K
i

K
i

i
i

ii zzyzzy , ),,,,,,(),,,( 1111
K
n

K
i

K
i

KK
i

K
im

K
i

K
i yyyyxPzzy

i
 

is obtained. 

Before the detailed procedures of the TLMF Kth-Best algorithm are presented, the 

notations used in the algorithm are explained in Table 5.1. 

 

 



PHD Thesis, UTS  Chapter 5 

127 

Table 5.1 Notations used in the TLMF Kth-Best algorithm 

Notation Explanation 

k Current iteration number for solving the TLMF decision model (5.3) 

T The feasible vertices set of S that has been searched for solving model (5.3) 

W The feasible vertices set of S that needs to be searched for solving model (5.3) 

i The ith middle-level follower 

n The total number of middle-level followers 

kW  The adjacent vertices set of the current vertex ),,,,,,,,,,( 111111
k

nnm
k
n

k
m

kk
n

kk zzzzyyx  over S 

K  The iteration number when finding an optimal solution to model (5.3) 

ik  Current iteration number for solving problem (5.3c-5.3f) involving the ith middle-level 
follower and its bottom-level followers 

iT  
The feasible vertices set of ),,,,,,( 111 niii yyyyxS  that has been searched for solving 

problem (5.3c-5.3f) 

iW  The feasible vertices set of ),,,,,,( 111 niii yyyyxS  that needs to be searched for solving 

problem (5.3c-5.3f) 

j The jth bottom-level follower attached to the ith middle-level follower 

im  The total number of bottom-level followers attached to the ith middle-level follower 

ikW  The adjacent vertices set of the vertex ),,,( 1
iik
iim

iik
i

iik
i zzy  over ),,,,,,( 111 niii yyyyxS  

iK  The iteration number when finding an optimal solution to problem (5.3c-5.3f) 

Algorithm 5.1: TLMF Kth-Best algorithm  

[Begin] 

Step 1: Set k=1, adopt the simplex method to obtain an optimal solution 

),,,,,,,,,,( 11
1

1
1

1
11

11
1

1
1 nnmnmn zzzzyyx  to the linear programming problem 

(5.9). Let T  and )},,,,,,,,,,{( 11
1

1
1

1
11

11
1

1
1 nnmnmn zzzzyyxW . Set i=1 and 

go to Step 2. 

Step 2: Put k
nn

k
ii

k
ii

kk yyyyyyyyxx ,,,,,, 111111 , solve the 

problem (5.3c-5.3f) or problem (5.10) and obtain an optimal solution 

)ˆ,,ˆ,ˆ( 1 iimii zzy  using the following subroutine Step 2.1-Step 2.5. Then go to 

Step 3. 
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Step 2.1: Set kxx  and 1ik , adopt the simplex method to obtain the 

optimal solution ),,,( 11
1

1 i
im

i
i

i
i i

zzy  to the linear programming 

problem (5.11). Within the subroutine, let iT  and 

)},,,{( 11
1

1
1

i
im

i
i

i
i i

zzyW . Set j=1 and go to Step 2.2. 

Step 2.2: Put ,,,,,,, )1()1()1()1(11
iiii ik
jiji

ik
jiji

ik
ii

ik
ii

k zzzzzzyyxx

i
ii

ik
imim zz  and adopt the simplex method to solve the problem 

(5.12): 

:min{
1

im

t
itijtiijij zqypxc  

)},,,,,,,( )1()1(1 iimjijiiiijij zzzzyxSz      (5.12) 

and obtain the optimal solution ijz~ . 

Step 2.3: If iik
ijij zz~ , go to Step 2.4. If iik

ijij zz~  and imj , set j=j+1 and 

go to Step 2.2. If iik
ijij zz~  and imj , stop the subroutine, 

ii kK  and go to Step 2 with ),,,()ˆ,,ˆ,ˆ( 11
i
i

ii
i

ik
im

ik
i

ik
iimii zzyzzy . 

Step 2.4: Let 
ikW  denote the set of adjacent vertices of ),,,( 1

i
i

ii ik
im

ik
i

ik
i zzy  that 

ii kimii Wzzy ),,,( 1  implies 

i
ii

i m

j

ik
ijij

ik
iii

n

is
s

k
sis

k
i

m

j
ijijiii

n

is
s

k
sis

k
i zhygygxczhygygxc

1,11,1
. 

Let )},,,{( 1
i

i

ii ik
im

ik
i

ik
iii zzyTT  and ikii TWWW

i
\)( . Go to Step 2.5. 

Step 2.5: Set 1ii kk and choose ),,,( 1
i
i

ii ik
im

ik
i

ik
i zzy  such that 

i
ii

m

j

ik
ijij

ik
iii

n

is
s

k
sis

k
i zhygygxc

1,1
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}.),,,(:min{ 1
1,1

iimii

m

j
ijijiii

n
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s

k
sis

k
i Wzzyzhygygxc

i

i
 

Set j=1 and go to Step 2.2. 

Step 3: If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy , go to Step 4. If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy  

and ni , set i=i+1 and go to Step 2. If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy  and 

ni , stop and ),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk
n

zzzzyyx  is an optimal solution 

to the TLMF decision model (5.3) and kK . 

Step 4: Let kW  denote the set of adjacent vertices of 

),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk
n

zzzzyyx  such that ,,,,,,,,(
11111 mn zzyyx

knmn Wzz
n
),,1  implies 

n

i

m

j

k
ijij

n

i

k
ii

k
n

i

m

j
ijij

n

i
ii

ii

zeydcxzeydcx
1 111 11

. 

Let )},,,,,,,,,,{( 11111 1

k
nm

k
n

k
m

kk
n

kk
n

zzzzyyxTT  and TWWW k \)( . Go 

to Step 5. 

Step 5: Set k=k+1 and choose ),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk
n

zzzzyyx  such that 

n

i

m

j

k
ijij

n

i

k
ii

k i
zeydcx

1 11
 

}.),,,,,,,,,,(:min{ 11111
1 11

1
Wzzzzyyxzeydcx

n

i

nmnmn

n

i

m

j
ijij

n

i
ii  

Set i=1 and go to Step 2. 

[End] 

Within the TLMF Kth-Best algorithm, Step 2 and its subroutine (Step 2.1-2.5) are 

adopted to obtain an optimal solution to problem (5.3c-5.3f) of the ith middle-level 

follower and its bottom-level followers under the given decision 
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),,,,,,( 111 nii yyyyx  from the leader and other middle-level followers. Step 3 is 

repeatedly performed to see whether or not the current vertex is an element involved 

in the IR. If the current vertex occurs outside IR, the algorithm will go to Step 4 in 

which the adjacent vertices of the current vertex will be found and added to the 

vertices set W that needs to be searched. Step 5 is developed to choose a vertex from 

the vertices set W to optimize the objective function of problem (5.9) and prepare for 

the next iteration to verify whether or not the vertex is an element of the IR. 

5.3.2 A NUMERICAL EXAMPLE 

A simple numerical example is used to illustrate how the TLMF Kth-Best 

algorithm works. Consider that the example involves one leader, two middle-level 

followers and two bottom-level followers attached to each middle-level follower, 

which means that 2n , 221 mm  in model (5.3). For }0:{ xxX , 

}0:{ iii yyY , }0:{ ijijij zzZ , ,2,1j 2,1i , coefficients of the decision 

variables in model (5.3) are shown in Table 5.2. 

Table 5.2 Coefficients of model (5.3) 

Decision 
entity 

Coefficients of model (5.3) 

Coefficients of objective functions Coefficients of constraint conditions 

Leader 
1,1,1

,3,2,1,1

222112

1121

eee
eddc  

TTTT

TTTT

bCCC

CBBA

)5.1,14(,)0,1(,)0,2(,)0,2(

,)0,1(,)0,1(,)0,1(,)1,1(

222112

1121  

Follower 1 1,1,1,1,1 121112111 hhggc  
TT

TTTT

bE

EDDA

)1,5.8(,)0,1(

,)0,1(,)0,1(,)1,1(,)0,2(

112

1112111  

Follower 2 1,1,2,1,1 222122212 hhggc  
TT

TTTT

bE

EDDA

)5.1,3(,)0,1(

,)0,1(,)1,1(,)1,1(,)0,1(

222

2122212  

Follower 11 1,2,1,1 1121111111 qqpc  
TT

TTT

bQ

QPA

)3,10(,)0,2(

,)1,1(,)0,1(,)0,1(

11112

1111111  

Follower 12 1,1,1,2 1221211212 qqpc  
TT

TTT

bQ

QPA

)6,7(,)1,1(

,)1,1(,)0,1(,)1,1(

12122

1211212  

Follower 21 1,3,1,1 2122112121 qqpc  
TT

TTT

bQ

QPA

)5.1,5.5(,)0,2(

,)1,1(,)1,1(,)0,1(

21212

2112121  

Follower 22 1,2,2,1 2222212222 qqpc  
TT

TTT

bQ

QPA

)5.2,4(,)1,1(

,)1,1(,)0,1(,)0,1(

22222

2212222  
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Detailed procedures of the TLMF Kth-Best algorithm that are executed to solve 

the numerical example are shown as follows. 

Iteration 1 

Step 1: Set k=1 and adopt the simplex method to obtain an optimal solution to the 

following linear programming problem (5.13) in the format (5.9): 

}.),,,,,,(:min{ 2221121121

2

1

2

1

2

1
Szzzzyyxzeydcx

i j
ijij

i
ii             (5.13) 

The optimal solution to problem (5.13) is ),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx  

)2,0,5.4,5.0,5.0,1,1(  and now T , W={(1,1,0.5,0.5,4.5,0,2)}. Set i=1 and go to 

Step 2. 

Step 2: Put 11xx , 5.01
22 yy  and solve the problem (5.14) of the 

middle-level follower i(=1) and its bottom-level followers in the format (5.10): 

)}.,(),,(:min{ 2112111

2

1
11

2

1
11 yxPzzyzhygxc

j
jj

s
ss                (5.14) 

An optimal solution (1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  can be obtained by Steps 2.1-2.5 of the 

TLMF Kth-Best algorithm and go to Step 3. 

Step 3: ),,()ˆ,ˆ,ˆ( 1
12

1
11

1
112111 zzyzzy  and go to Step 4. 

Step 4: Find the set 1W of adjacent vertices of ),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx  and 

now ,5.0,1,0(),2,0,5.3,5.2,5.1,1,0(),2,0,3,2,5.0,1,1(),5.1,1,3,2,5.0,1,1(),5.2,0,4,1,5.0,1,1{(1W

)}5.2,0,4,2 , )}2,0,5.4,5.0,5.0,1,1{()}2,0,5.4,5.0,5.0,1,1{(TT , 11 \ WTWWW . 

Go to Step 5. 

Step 5: Set k=k+1=2 and choose )5.2,0,4,1,5.0,1,1(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx

from the vertices set W such that 
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},),,,,,,(:min{

),,,,,,(

2221121121

2

1

2

1

2

1

2
22

2
21

2
12

2
11

2
2

2
1

2)1(

Wzzzzyyxzeydcx

zzzzyyxf

i j
ijij

i
ii

 

set i=1 and go to Step 2, and the second iteration will begin. 

Iteration 2 

Step 2: Put 12xx , 5.02
22 yy  and solve the problem (5.14). An 

optimal solution (1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  can be obtained by Steps 2.1-2.5 of the TLMF 

Kth-Best algorithm and go to Step 3. 

Step 3: ),,()ˆ,ˆ,ˆ( 2
12

2
11

2
112111 zzyzzy  and go to Step 4. 

Step 4: Find the set 2W of adjacent vertices of ),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx  and 

now )}5.2,0,3,3,5.1,1,0(),5.2,0,3,2,5.0,1,1{(2W , )}5.2,0,4,1,5.0,1,1{(TT  

)}5.2,0,4,1,5.0,1,1(),2,0,5.4,5.0,5.0,1,1{( , ),2,0,3,2,5.0,1,1(),5.1,1,3,2,5.0,1,1{(\2 TWWW  

)}5.2,0,3,3,5.1,1,0(),5.2,0,3,2,5.0,1,1(),5.2,0,4,2,5.0,1,0(),2,0,5.3,5.2,5.1,1,0( . Go to Step 5. 

Step 5: Set k=k+1=3 and choose )5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx  from 

the vertices set W such that 

       ),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3)1( zzzzyyxf  

       },),,,,,,(:min{ 2221121121

2

1

2

1

2

1
Wzzzzyyxzeydcx

i j
ijij

i
ii  

set i=1 and go to Step 2, and the third iteration will begin. 

Iteration 3 

Step 2: Put 13xx , 5.03
22 yy and solve the problem (5.14). An optimal 

solution (1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  is obtained by Steps 2.1-2.5 of the TLMF Kth-Best 

algorithm and go to Step 3. 
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Step 3: Clearly, (1,2,3) =),,()ˆ,ˆ,ˆ( 3
12

3
11

3
112111 zzyzzy  , and ni , set i=i+1=2 and go 

to Step 2. 

Step 2: Put 13xx , 13
11 yy and solve the problem (5.15) of the 

middle-level follower i(=2) and its bottom-level followers in the format (5.10): 

)}.,(),,(:min{ 1222211

2

1
22

2

1
22 yxPzzyzhygxc

j
jj

s
ss               (5.15) 

An optimal solution )(0.5,1,1.5=)ˆ,ˆ,ˆ( 22212 zzy  is obtained by Steps 2.1-2.5 of the 

TLMF Kth-Best algorithm and go to Step 3. 

Step 3: )5.1,1,5.0(),,()ˆ,ˆ,ˆ( 3
22

3
21

3
222212 zzyzzy  and i=n=2, stop and 

)5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx  is an optimal solution to the Example 5.1 

and the iteration number 3kK . 

An optimal solution is finally obtained to the numerical example through three 

iterations, which means that three vertices are enumerated to get an optimal solution. 

The objective function values of all decision entities are 5.5)1(f , 5.5)2(
1f , 

5.3)2(
2f , 0.9)3(

11f , 0.8)3(
12f , 0)3(

21f , 5.2)3(
22f . Thus, the TLMF Kth-Best 

algorithm provides a convenient way to solve linear TLMF decision problems.  

5.4 SOLUTION EVALUATION 
The proposed TLMF Kth-Best algorithm is able to find an optimal solution to the 

TLMF decision model (5.3). However, it is difficult to illustrate the operations of the 

complex TLMF decision-making process by the optimal solution defined by 

Definition 5.9 because the solution only represents the decision result rather than the 

decision-making process. In this section, a fuzzy programming approach is used to 

evaluate the solution obtained and illustrate why decision entities have to achieve and 

accept the final result during the TLMF decision-making process. 
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Within a TLMF decision-making process, each decision entity seeks to optimize 

its own objective but its decision is affected by actions of others, thus, decision 

entities achieve a compromised result with a possible relaxation rather than their 

individual best solutions as desired. Since it is imprecise or ambiguous for decision 

entities to identify a compromised result whether or not they desire it, the objective 

functions can be transformed into fuzzy goals using an imprecise aspiration level. 

minf  and maxf  are used to denote the individual best and worst results respectively 

that a decision entity may achieve. Finally, the compromised objective value of the 

decision entity must be involved in the interval ],[ maxmin ff . Therefore, membership 

functions )( f  can be elicited to characterize fuzzy goals over the domain 

],[ maxmin ff  for the objective functions, which can also be adopted to describe the 

satisfactory degree of decision entities towards a solution or an objective value. For 

example, a decision entity specifies the objective value 0f  such that the satisfactory 

degree is 0, that is 0)( 0f , while the value 1f  of the objective function such 

that 1)( 1f  means that the satisfactory degree is 1. Clearly, if an objective value 

f  is undesired (larger) than 0f , it is defined that 0)( f ; whereas 1)( f  if 

an objective value f  is desired (smaller) than 1f . In this study, for the sake of 

simplicity, 0f  and 1f  are specified as max0 ff  and min1 ff , and that the 

membership functions are linear versions shown as Figure 5.2 although they do not 

always need to be linear. Also, note that in this research the satisfactory degree 

1)( f  if there exists maxmin ff . 
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0

μ(f)

1.0

1f 0f  
Figure 5.2 Linear membership function 

(1) The membership function of the leader 

The individual best objective value of the leader is: 

:),,,,,,,,,,(min{ 11111
)1(min1

1 nnmnmn zzzzyyxfff  

}.),,,,,,,,,,( 11111 1
Szzzzyyx

nnmnmn  

The individual worst objective value is: 

:),,,,,,,,,,(max{ 11111
)1(max0

1 nnmnmn zzzzyyxfff  

}.),,,,,,,,,,( 11111 1
Szzzzyyx

nnmnmn  

The corresponding linear membership function )( )1(f  is defined as: 

.
,

,
,

,1

,0

)(
1)1(

0)1(1

0)1(

01

0)1(
)1(

ff
fff

ff

ff
fff                 (5.16) 

)( )1(f  can be used to denote the satisfactory degree of the leader towards an 

objective value )1(f . 0)( 0f  implies that the satisfactory degree of the leader is 

0 when the objective value 0)1( ff , while the objective value 1)1( ff  such that 

1)( 1f  means that the satisfactory degree of the leader becomes 1. 
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(2) The membership function of the middle-level follower i 

The middle-level follower i makes its decision under the given decisions 

),,,,,,( 111 nii yyyyx  from the leader and other middle-level followers, thus, its 

individual best objective value is: 

:),,,,,,,,,,(min{ 1111
)2(min1

iiminiiiiii zzyyyyyxfff  

)}.,,,,,,(),,,( 1111 niiiimii yyyyxSzzy
i

 

The individual worst objective value is: 

:),,,,,,,,,,(max{ 1111
)2(max0

iiminiiiiii zzyyyyyxfff  

)}.,,,,,,(),,,( 1111 niiiimii yyyyxSzzy
i

 

The corresponding linear membership function )( )2(
ii f  is defined as: 

.
,

,
,

,1

,0

)(
1)2(

0)2(1

0)2(

01

0)2(
)2(

ii

iii

ii

ii

ii
ii

ff
fff

ff

ff
fff                 (5.17) 

)( )2(
ii f  can be used to denote the satisfactory degree of the middle-level 

follower i towards an objective value )2(
if . 0)( 0

ii f  implies that the satisfactory 

degree of the middle-level follower i is 0 when the objective value 0)2(
ii ff , 

whereas the objective value 1)2(
ii ff  such that 1)( 1

ii f  means that the 

satisfactory degree becomes 1. 
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(3) The membership function of the bottom-level follower ij 

The bottom-level follower ij makes its decision under the given decision 

),,,,,,,( )1()1(1 iimjijiii zzzzyx  from the leader, the middle-level follower i and 

its own counterparts, thus, its individual best objective value is: 

:),,,,,,,,(min{ )1()1(1
)3(min1

iimjiijjiiiijijij zzzzzyxfff  

)}.,,,,,,,( )1()1(1 iimjijiiiijij zzzzyxSz  

The individual worst objective value is: 

:),,,,,,,,(max{ )1()1(1
)3(max0

iimjiijjiiiijijij zzzzzyxfff

)}.,,,,,,,( )1()1(1 iimjijiiiijij zzzzyxSz  

The corresponding linear membership function )( )3(
ijij f  is defined as: 

.
,

,
,

,1

,0

)(
1)3(

0)3(1

0)3(

01

0)3(
)3(

ijij

ijijij

ijij

ijij

ijij
ijij

ff
fff

ff

ff
ff

f             (5.18) 

)( )3(
ijij f  can be used to denote the satisfactory degree of the bottom-level 

follower ij towards an objective value )3(
ijf . 0)( 0

ijij f  implies that the satisfactory 

degree is 0 when the objective value 0)3(
ijij ff , while the objective value 1)3(

ijij ff  

such that 1)( 1
ijij f  means that the satisfactory degree is 1. 

The proposed evaluation method based on fuzzy programming is applied to assess 

the solution to the numerical example in Section 5.3.2. For the leader, 

3)2,0,5.4,5.0,5.0,1,1()1(min1 fff  and 5.9)5.2,0,3,3,5.0,1,0()1(max0 fff , 

thus, by the formula (5.16) the leader’s satisfactory degrees are 1.0, 0.92 and 0.62 

respectively towards the vertices )2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx , 
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)5.2,0,4,1,5.0,1,1(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx  and )5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx . 

By the formulas (5.17) and (5.18), the satisfactory degrees of multiple followers 

towards each solution are presented in Table 5.3. 

Table 5.3 Objective values and corresponding satisfactory degrees of decision entities in Example 5.1 

Vertex 
Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22 

)1(f  )( )1(f  )2(
1f  )( )2(

11 f  )2(
2f  )( )2(

22 f  )3(
11f  )( )3(

1111 f  )3(
12f  )( )3(

1212 f  )3(
21f  )( )3(

2121 f  )3(
22f  )( )3(

2222 f  

(1,1,0.5,0.5,4.5,0,2) 3.0  1.0 5.5  1.0 3.0  1.0 7.5  0.83  8.0  1.0  3.5  0 0   0.80 

(1,1,0.5,1,4,0,2.5) 3.5  0.92 5.5  1.0 3.5  0.67 8.0  0.67  8.0  1.0  4.0  0 -0.5  1.0 

(1,1,0.5,2,3,1,1.5) 5.5  0.62 5.5  1.0 3.5  0.67 9.0  1.0  8.0  1.0  0   1.0 2.5  1.0 

As shown in Table 5.3, the vertex ,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx )2,0,5.4,5.0  

is the individual best solution to the leader such that the satisfactory degree is 1.0, 

thus the leader anticipates that the followers can select 

)2,0,5.4,5.0,5.0,1(),,,,,( 2221121121 zzzzyy  to respond to its own decision 1x . Under 

the decision 1x  given by the leader, the middle-level followers make their 

decisions )5.0,1(),( 21 yy  as desired by the leader, and they also desire that the 

bottom-level followers can react to the given decision )5.0,1,1(),,( 21 yyx  by 

determining )2,0,5.4,5.0(),,,( 22211211 zzzz  because their satisfactory degrees are both 

1.0 under the solution. However, in view of the given decision by the leader and the 

middle-level follower 1, the bottom-level followers 11 and 12 will not choose the 

decision )5.4,5.0(),( 1211 zz  that are desired by the leader and the middle-level 

follower 1 since they still have space to optimize their objectives and improve their 

satisfactory degrees. Thus, )5.4,5.0(),( 1211 zz  is not an optimal solution to the 

bottom-level followers 11 and 12 and they will select )3,2(),( 1211 zz  to achieve the 

highest satisfactory degree 1.0 under the decision made by the leader and the 

middle-level follower 1. Similarly, the bottom-level followers 21 and 22 will make 

the decision )5.1,1(),( 2221 zz  to respond to the leader and the middle-level follower 
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2. The leader and the middle-level followers have to reduce their individual 

satisfactory degrees to bend to the increase in the satisfactory degrees of the 

bottom-level followers throughout the TLMF decision-making process. In this way, 

the decision entities finally achieve an optimal solution 

)5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx , under which the satisfactory degrees of all 

the bottom-level followers go up to 1.0. 

Although the satisfactory degrees of the leader and the middle-level follower 2 

drop to 0.62 and 0.67 respectively, the numbers become the highest satisfactory 

degrees for them under the reference-based relationship between all decision entities. 

In real-world cases, the situation indicates that higher satisfactory degrees of the 

leader and the middle-level follower 2 cannot be achieved under the current decision 

conditions unless they may persuade the bottom-level followers to cooperate with 

them and to reduce the corresponding satisfactory degrees. For example, if the 

bottom-level followers 11, 21 and 22 are willing to accept their respective satisfactory 

degrees 0.83, 0 and 0.80, the solution to the numerical example in Section 5.3.2 

would be )2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx , which ensures that the 

corresponding satisfactory degrees of the leader and the bottom-level follower 2 rise 

up to 1.0. Otherwise, they have to adjust the current decision context through 

changing objective functions or constraint conditions to generate a new round of the 

decision-making process. The evaluation criterion will be applied to deal with a 

production-inventory planning problem in the following Section 5.5. 

5.5 CASE STUDY 
In this section, a case study on production-inventory planning is handled using the 

proposed TLMF decision-making techniques. 
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5.5.1 CASE DESCRIPTION 

Nowadays, manufacturers usually work in a distributed or decentralized manner in 

a complex supply chain network comprising of suppliers, sales and logistics 

companies, customers and other specialized service functions (Chan & Chan 2010). 

Researchers as well as practitioners in manufacturing industries have placed 

importance on developing production and inventory control capabilities to enhance 

their market position in supply chain management (Sana 2011), which demands that 

manufacturing enterprises have to make right decisions on scheduling of their 

production and allocation of inventory to satisfy market requirements, shorten 

delivery time and reduce total production costs (Askin, Baffo & Xia 2014; Chang, Li 

& Chiang 2014; Tan, Lee & Goh 2012). Therefore, it is increasingly important to 

have efficient and easily-applicable models and solution methods to describe and 

solve related production-inventory decision problems (Berling & Marklund 2014; Ho 

& Hsiao 2014) although modeling deception in a real-world conflict situation is 

usually difficult (Li & Cruz Jr 2009). 

In this section, the proposed TLMF decision techniques are applied to handle a 

production-inventory planning problem within a real-world conglomerate enterprise. 

The conglomerate is composed of a sales company, two logistics centers and two 

manufacturing factories attached to each logistics center, which are distributed 

throughout a three-stage hierarchical supply chain. The three-level hierarchical 

structure of the conglomerate is shown in Figure 5.3. Specifically, the sales company 

covers products marketing of the enterprise and has an independent products 

warehouse to satisfy market demand and shorten time-to-market. Both logistics 

centers also hold a certain amount of products inventory to respond to market 

requirements and reduce the inventory pressure of the sales company. According to 

market requirements and the holding inventories of the sales company and the 

logistics centers, the manufacturing factories are responsible for the production 
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organization involving making detailed production plans and executing production 

activities. 

Sales Company

Logistics center 1 Logistics center 2

Factory 11 Factory 12 Factory 21 Factory 22

 
Figure 5.3 Hierarchical structure of the conglomerate enterprise 

The decision-making situation is described as follows. During a peak season of 

products sales, the market requirements exceed the normal supply capacity of the 

enterprise so that four manufacturing factories have to organize overtime production. 

The sum of overtime outputs produced by four factories and safety stocks held by the 

sales company and two logistics centers are demanded to satisfy the exceeded market 

requirements. The more safety stocks imply the fewer overtime production outputs, 

but also mean the more inventory holding costs. Under the given market requirements, 

the decision entities distributed throughout the three-level hierarchy try to minimize 

their individual costs by considering their own constraints and implicit decisions 

made by other decision entities. More specifically, the sales company at the top level 

has the priority to determine its safety stock to minimize its inventory holding cost by 

considering the given market requirements and implicit reactions of other decision 

entities. In view of the decision made by the sales company, the logistics centers at 

the middle level then determine their individual safety stocks to minimize their own 

inventory holding costs by considering their own constraints and implicit reactions of 

their subordinate factories. Finally, each manufacturing factory at the bottom level 

makes overtime production plans in the light of the inventories held by the top and 

middle levels. 

Furthermore, to reduce the total cost of the conglomerate, the conglomerate 

anticipates that decision entities whose inventory holding cost or overtime production 
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cost is lower are able to keep more inventories or manufacture more production 

outputs. Thus, the conglomerate makes some management strategies to intervene and 

reconcile the decision process of its subordinate decision entities. For example, the 

conglomerate claims that each logistics center should take the inventory determined 

by the other logistics center as a reference when making its own decisions. If the 

inventory of a logistics center is less than the other, it means the less inventory 

holding cost but implies that the logistics center is demanded to undertake an 

opportunity cost for its own decision on holding less inventory. Also, each factory 

needs to reference the production plans made by other counterparts attached to the 

same logistics center when making its own production plans. If the production outputs 

of a factory are less than the other, it means the less overtime production costs but 

implies that the factory needs to cover an opportunity cost for its own decision on less 

production outputs. In addition, the sales company is demanded to afford the 

marketing cost and backlogging cost of the conglomerate. However, to reduce the 

total cost to the sales company, the conglomerate demands that both logistics centers 

must share part of the inventory holding cost and compensate for the marketing cost 

of the sales company. Similarly, to reduce the pressure of overtime production, the 

factories at the bottom level are also demanded to compensate the inventory holding 

cost of their superior logistics center to encourage it to keep more safety stocks. 

Therefore, under the current decision situation, the decision entities will try to 

minimize their individual overall costs by making their individual decisions, and the 

decision processes are executed sequentially, interactively and repeatedly within the 

tri-level hierarchy until the equilibrium is achieved among them. 

This case clearly describes a TLMF decision process which includes one leader 

(the sales company), two middle-level followers (the logistics centers) and two 

bottom-level followers (the manufacturing factories) attached to each middle-level 

follower. The leader, the middle-level followers and the bottom-level followers make 

their individual decisions in sequence, and each decision entity cannot control 

decisions of the others but is affected by their reactions. It is noticeable that the 
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multiple middle-level and bottom-level followers also consider decisions made by 

their counterparts as references, which implies the reference-based relationship 

between multiple followers at both the middle and bottom levels. This case can thus 

be considered as a reference-based TLMF decision problem. 

Table 5.4 Notations for decision variables and parameters employed 

Notation Explanation 

x  The safety stock controlled by the sales company 

iy  The independent safety stock determined by the logistics center i 

ijz
 The overtime production plan determined by the factory ij 

iaa,  The inventory holding cost per unit of the sales company and the logistics center i 

ija
 The overtime production cost per unit afforded by the factory ij 

ibb,  The marketing cost per unit of the sales company and the compensation cost per unit that 
the logistics center i has to pay for the marketing cost of the sales company 

c  The products backlogging cost per unit that is paid by the sales company 

iji dd ,  The opportunity cost per unit of the logistics center i and the factory ij 

iji eee ,,
 The proportion of the inventory holding cost of the sales company that is respectively 

shared by the sales company, the logistics center i and the factory ij 
pw

ij
pw

i ee ,  
The proportion of the inventory holding cost of the logistics center i that is respectively 
shared by itself and the factory ij 

p The exceeded products requirements of the market 

q The minimum inventories sum of all safety stocks anticipated by the sales company 

iq  

The logistics center i must hold that the products sum of its own safety stock, the 
overtime production outputs of its lower-level factories and the safety stock of the sales 
company does not exceed iq  

ijq
 The factory ij must satisfy that the products sum comprised of its own and its 

counterparts’ production outputs and the safety stocks of the sales company and the 

logistics center i exceeds ijq  

irr,  The maximum safety stock of the sales company and the logistics center i 

ijr
 The maximum overtime production outputs of the factory ij 

In the light of the above problem description, let n=2 be the number of logistics 

centers, and i be the index for logistics centers, 2,1i ; while let 2im  be the 

number of manufacturing factories attached to the logistics center i, and j be the index 

for manufacturing factories, 2,1j . To model the problem conveniently, related 
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notations of decision variables and some key parameters in the scenario are shown in 

Table 5.4. 

5.5.2 MODEL BUILDING 

Based on the above decision conditions and strategies, the TLMF decision model 

of this case is established as follows in the form of the general model (5.3) proposed 

in Section 5.2.1.3. 

(1) The decision problem of the sales company (top-level leader) 

),,,,,,(min 2221121121
)1( zzzzyyxf

Xx
 

2

1

2

1

2

1

2

1

2

1
)()(

i j
ijii

i j
ij

i
i zybpzyxcbpaex              (5.19a) 

s.t. pzyx
i j

ij
i

i

2

1

2

1

2

1
,                                      (5.19b) 

qyx
i

i

2

1
,                                             (5.19c) 

rx0 .                                                (5.19d) 

The sales company’s objective function (5.19a) involves its safety stock’s 

inventory holding cost aex, the marketing cost bp, the backlogging cost 

)(
2

1

2

1

2

1
pzyxc

i j
ij

i
i  and the minus marketing compensation cost 

2

1

2

1
)(

i j
ijii zyb  derived from the logistics centers. Constraint condition (5.19b) 

means the upper bound of the products sum of all safety stocks and overtime 

production outputs of all manufacturing factories, while constraint condition (5.19c) 

implies the upper bound of the sum of all safety stocks. Constraint condition (5.19d) 

represents the lower and upper limits to the sales company’s safety stock. 
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(2) The decision problem of the logistics center (middle-level follower) i 

)(),,,,(min
2

1
2121

)2(

j
ijiiiiii

pw
iiiiiYy

zybxaeydyeazzyyxf
ii

         (5.19e) 

s.t. i
j

ij
i

i qzyx
2

1

2

1
,                                        (5.19f) 

ii ry0 .                                               (5.19g) 

The objective function (5.19e) of the logistics center i involves its safety stock 

holding cost i
pw
ii yea , the opportunity cost ii yd , the shared inventory holding cost 

xaei  of the sales company’s safety stock and the marketing compensation cost 

)(
2

1j
ijii zyb  paid to the sales company. Note that 121 yyy  and 212 yyy . 

Constraint condition (5.19f) reflects the upper bound of the products sum consisting 

of all safety stocks and the overtime production outputs of the manufacturing factories 

attached to the middle-level follower i. Constraint condition (5.19g) represents the 

lower and upper limits to the safety stock of the logistics center i. 

(3) The decision problem of the manufacturing factory (bottom-level follower) ij 

i
pw
ijiijijijijijiiiijZz

yeaxaezdzazzyxf
ijij

),,,(min 21
)3(                 (5.19h) 

s.t. ij
j

iji qzyx
2

1
,                                         (5.19i) 

ijij rz0 .                                               (5.19j) 

The objective function (5.19h) of the manufacturing factory ij involves its 

overtime production cost ijij za , the opportunity cost ijij zd , and the shared 

inventory holding cost xaeij  and i
pw
iji yea  respectively for the safety stocks of the 

sales company and the logistics center i. Note that 121 iii zzz  and 

212 iii zzz . Constraint condition (5.19i) reflects the upper bound of the products 
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sum consisting of overtime production outputs of the manufacturing factories attached 

to the logistics center i and safety stocks of the sales company and the logistics center 

i. Constraint condition (5.19j) represents the lower and upper limits to the overtime 

production outputs of the manufacturing factory ij. 

This TLMF decision model (5.19) describes the real-world production and 

inventory decision problem which is a concretization of the general model (5.3) 

proposed in Section 5.2.1.3. The TLMF Kth-Best algorithm is then adopted to solve 

the model by a numerical experiment. Also, the fuzzy programming approach is used 

to evaluate the solutions obtained. 

5.5.3 NUMERICAL EXPERIMENT AND RESULTS ANALYSIS 

This section shows the computational results achieved by the proposed TLMF 

Kth-Best algorithm and the fuzzy programming approach. The experimental data 

employed for the model (5.19) is provided in Tables 5.5-5.7. 

Table 5.5 Data for the sales company 

a  b  c  e  p  q  r  

5.0 2.0 2.0 0.20 9.0 3.5 2.5 

 

Table 5.6 Data for the logistics centers 

i  ia  ib  id  ie  pw
ie  iq  ir  

1 4.0 1.0 4.0 0.20 0.50 8.0 1.0 

2 4.0 3.0 4.0 0.20 0.50 6.0 0.50 

 

Table 5.7 Data for the manufacturing factories 

i  j  ija  ijd  ije  pw
ije  ijq  ijr  

1 1 1.0 2.0 0.10 0.25 7.0 3.0 

1 2 3.0 2.0 0.10 0.25 7.0 3.0 

2 1 2.0 3.0 0.10 0.25 4.0 1.0 

2 2 4.0 3.0 0.10 0.25 4.0 2.0 
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The detailed computing process driven by the TLMF Kth-Best algorithm is shown 

in Table 5.8 which includes related data and parameters generated in the computing 

process. Specifically, Table 5.8 presents the vertex ks  that is searched in the current 

iteration k, and the adjacent vertices set kW  of the current vertex ks . T represents 

the set of vertices that have been searched in the past iterations while W is the set of 

vertices that are needed to verify whether or not an optimal solution occurs inside in 

the following iteration. Following procedures of the TLMF Kth-Best algorithm, an 

optimal solution is finally obtained after 12 iterations. Note that 7W , 8W  

and 10W  in Table 5.8 do not mean that adjacent vertices of 7s , 8s  and 10s  

do not exist, but imply that their adjacent vertices have been found in previous 

iterations and have been involved in W. 

Table 5.9 displays the objective values of all decision entities respectively towards 

each solution enumerated by the TLMF Kth-Best algorithm, while Table 5.10 shows 

the corresponding satisfactory degrees that are computed by the formulas (5.16), (5.17) 

and (5.18). It can be seen from Table 5.9 that, under the current decision context 

within the conglomerate enterprise, )2,5.0,3,1,5.0,1,2(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx ,

)2,5.0,1,3,5.0,1,2(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx , ,3,1,5.0,1,2(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx  

)5.1,1  and ,,,( 4
2

4
1

4 yyx )5.1,1,1,3,5.0,1,2(),,, 4
22

4
21

4
12

4
11 zzzz  are the individual best 

solutions to the leader (the sales company), which implies that the leader anticipates 

that the middle-level and bottom-level followers (the logistics centers and 

manufacturing factories) can choose )2,5.0,3,1,5.0,1(),,,,,( 1
22

1
21

1
12

1
11

1
2

1
1 zzzzyy , 

),,,,,( 2
22

2
21

2
12

2
11

2
2

2
1 zzzzyy )2,5.0,1,3,5.0,1( , )5.1,1,3,1,5.0,1(),,,,,( 3

22
3
21

3
12

3
11

3
2

3
1 zzzzyy  or 

),,,,,( 4
22

4
21

4
12

4
11

4
2

4
1 zzzzyy )5.1,1,1,3,5.0,1(  to respond to itself after it determined x=2. 

However, it can be seen from Table 5.10 that the middle-level follower 2 and the 

bottom-level followers 11, 21, and 22 cannot always achieve individual best 

satisfactory degrees if they make the decisions desired by the leader. In the 
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reference-based decision situation, the followers will choose ,,,,,( 12
21

12
12

12
11

12
2

12
1 zzzyy

)5.0,1,1,3,5.0,1()12
22z  to react to the leader’s decision x=2 such that their satisfactory 

degrees all grow up to 1.0. 

Table 5.8 The detailed computing process of the TLMF Kth-Best algorithm 

Iteration k Vertex sk Wk T W 

1 (2,1,0.5,1,3,0.5,2) {(2.5,1,0,0.5,3,0.5,2), 
 (2,1,0.5,1,3,0,2), 

(2.5,1,0.5,0.5,3,0,2), 
(2,1,0.5,3,1,0.5,2), 
(2,1,0.5,1,3,1,1.5), 
(2.5,0.5,0.5,1,3,0.5,2)} 

{s1} 1W  

2 (2,1,0.5,3,1,0.5,2) {(2.5,1,0,3,0.5,0.5,2), 
(2,1,0.5,3,1,0,2), 
(2.5,1,0.5,3,0.5,0,2), 
(2,1,0.5,3,1,1,1.5), 
(2.5,0.5,0.5,3,1,0.5,2)} 

{s1,s2} TWW \)( 2  

3 (2,1,0.5,1,3,1,1.5) {(2.5,1,0,0.5,3,1,1.5), 
(2.5,0.5,0.5,1,3,1,1.5), 
(2.5,1,0.5,0.5,3,1,1), 
(2,1,0.5,1,3,1,0.5)} 

{s1,s2,s3} TWW \)( 3  

4 (2,1,0.5,3,1,1,1.5) {(2.5,1,0,3,0.5,1,1.5), 
(2.5,0.5,0.5,3,1,1,1.5), 
(2.5,1,0.5,3,0.5,1,1), 
(2,1,0.5,3,1,1,0.5)} 

{s1,s2,s3,s4} TWW \)( 4  

5 (2,1,0.5,1,3,0,2) {(2.5,1,0,0.5,3,0,2), 
(2.5,0.5,0.5,1,3,0,2), 
(2,1,0.5,1,3,0,1.5)} 

{s1,s2,s3,s4,s5} TWW \)( 5  

6 (2,1,0.5,3,1,0,2) {(2.5,1,0,3,0.5,0,2), 
(2.5,0.5,0.5,3,1,0,2), 
(2,1,0.5,3,1,0,1.5)} 

{s1,s2,s3,s4,s5,s6} TWW \)( 6  

7 (2.5,0.5,0.5,1,3,0.5,2)  {s1,s2,s3,s4,s5,s6,s7} TWW \)( 7  

8 (2.5,0.5,0.5,3,1,0.5,2)  {s1,s2,s3,s4,s5,s6,s7,s8} TWW \)( 8  

9 (2.5,0.5,0.5,1,3,1,1.5) {(2.5,0.5,0.5,1,3,1,0.5)} {s1,s2,s3,s4,s5,s6,s7,s8,s9} TWW \)( 9  

10 (2,1,0.5,1,3,1,0.5)  {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10} TWW \)( 10  

11 (2.5,0.5,0.5,3,1,1,1.5) {(2.5,0.5,0.5,3,1,1,0.5)} {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11} TWW \)( 11  

12 (2,1,0.5,3,1,1,0.5) --- --- --- 
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Table 5.9 Solutions and objective values of decision entities 

Iteration k Vertex sk )1(f  )2(
1f  )2(

2f  )3(
11f  )3(

12f  )3(
21f  )3(

22f  

1 (2,1,0.5,1,3,0.5,2) 8.0 7.0 14.0 7.0 7.0 7.0 5.0 

2 (2,1,0.5,3,1,0.5,2) 8.0 7.0 14.0 1.0 9.0 7.0 5.0 

3 (2,1,0.5,1,3,1,1.5) 8.0 7.0 14.0 7.0 7.0 5.0 6.0 

4 (2,1,0.5,3,1,1,1.5) 8.0 7.0 14.0 1.0 9.0 5.0 6.0 

5 (2,1,0.5,1,3,0,2) 8.5 7.0 12.5 7.0 7.0 7.5 3.5 

6 (2,1,0.5,3,1,0,2) 8.5 7.0 12.5 1.0 9.0 7.5 3.5 

7 (2.5,0.5,0.5,1,3,0.5,2) 9.0 8.0 12.5 6.75 6.75 7.25 5.25 

8 (2.5,0.5,0.5,3,1,0.5,2) 9.0 8.0 12.5 0.75 8.75 7.25 5.25 

9 (2.5,0.5,0.5,1,3,1,1.5) 9.0 8.0 12.5 6.75 6.75 5.25 6.25 

10 (2,1,0.5,1,3,1,0.5) 9.0 7.0 11.0 7.0 7.0 2.0 5.0 

11 (2.5,0.5,0.5,3,1,1,1.5) 9.0 8.0 12.5 0.75 8.75 5.25 6.25 

12 (2,1,0.5,3,1,1,0.5) 9.0 7.0 11.0 1.0 9.0 2.0 5.0 

More specifically, for the given decision )1,2(),( 1yx  by the leader and the 

middle-level follower 1, the bottom-level followers 11 and 12 achieve a Nash 

equilibrium solution )1,3(),( 1211 zz  to respond to the leader and the middle-level 

follower 1. Similarly, for the given decision )5.0,2(),( 2yx  by the leader and the 

middle-level follower 2, the bottom-level followers 21 and 22 achieve a Nash 

equilibrium solution )5.0,1(),( 2221 zz  to respond to the leader and the 

middle-level follower 2. Therefore, )1,3,1(),,( 12111 zzy  and ),,( 22212 zzy  

)5.0,1,5.0(  are the optimal solutions respectively for the middle-level follower i 

(i=1,2) and its bottom-level followers under the given decision 2x  by the leader. 

Also, for the given decision x=2 by the leader, )5.0,1(),( 21 yy  is the optimal 

solution for the middle-level followers while taking into account implicit reactions of 

their respective bottom-level followers. Therefore, ),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx

)5.0,1,1,3,5.0,1,2(  is an optimal solution to the production-inventory planning problem. 
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Table 5.10 The satisfactory degree of decision entities towards solutions 

Iteration 

k 

Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22 

1f  0f  )( )1(f  1
1f  0

1f  )( )2(
11 f  1

2f  0
2f  )( )2(

22 f  1
11f  0

11f  )( )3(
1111 f  1

12f  0
12f  )( )3(

1212 f  1
21f  0

21f  )( )3(
2121 f  1

22f  0
22f  )( )3(

2222 f  

1 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 5.0 7.0 0 7.0 7.0 1.0 6.5 7.5 0.5 4.0 5.0 0 

2 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 1.0 1.0 1.0 9.0 11.0 1.0 6.5 7.5 0.5 4.0 5.0 0 

3 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 5.0 7.0 0 7.0 7.0 1.0 5.0 6.0 1.0 5.0 6.5 0.33 

4 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 1.0 1.0 1.0 9.0 11.0 1.0 5.0 6.0 1.0 5.0 6.5 0.33 

5 8.0 11.5 0.86 7.0 9.5 1.0 11.0 15.0 0.63 5.0 7.0 0 7.0 7.0 1.0 6.5 7.5 0 3.0 3.5 0 

6 8.0 11.5 0.86 7.0 9.5 1.0 11.0 15.0 0.63 1.0 1.0 1.0 9.0 11.0 1.0 6.5 7.5 0 3.0 3.5 0 

7 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 4.75 6.75 0 6.75 6.75 1.0 6.75 7.75 0.5 3.75 5.25 0 

8 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 0.75 0.75 1.0 8.75 10.75 1.0 6.75 7.75 0.5 3.75 5.25 0 

9 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 4.75 6.75 0 6.75 6.75 1.0 5.25 6.25 1.0 4.75 6.75 0.25 

10 8.0 11.5 0.71 7.0 9.5 1.0 11.0 15.0 1.0 5.0 7.0 0 7.0 7.0 1.0 2.0 2.0 1.0 5.0 6.5 1.0 

11 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 0.75 0.75 1.0 8.75 10.75 1.0 5.25 6.25 1.0 4.75 6.75 0.25 

12 8.0 11.5 0.71 7.0 9.5 1.0 11.0 15.0 1.0 1.0 1.0 1.0 9.0 11.0 1.0 2.0 2.0 1.0 5.0 6.5 1.0 
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Although the leader’s satisfactory degree has dropped to 0.71 under the solution

)5.0,1,1,3,5.0,1,2(),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx , the leader cannot obtain a better 

objective value or a higher satisfactory degree by moving away from the vertex over 

the IR. Therefore, within the real-world case study, the solution 

)5.0,1,1,3,5.0,1,2(),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx  is the optimal solution to the TLMF 

decision model (5.19), which means a final compromised result among all decision 

entities under the current decision context in the conglomerate enterprise. This TLMF 

hierarchical decision situation indicates that the leader may not achieve an individual 

optimal solution under the constraint region even though it has priority in making 

decisions, since its decisions are determined by implicit reactions of the followers. 

Moreover, the decision process and results of an TLMF decision problem are affected 

by the reference-based relationship between multiple followers at the same level. In 

summary, the proposed TLMF decision techniques provide an effective way to model 

and solve real-world TLMF decision problems and to recognize the satisfactory 

degree of decision entities towards solutions. 

Furthermore, by the optimal solution, it can be analyzed that whether or not the 

conglomerate employed practical and effective management strategies to balance the 

production-inventory planning among its subordinate sales company, logistics centers 

and manufacturing factories. Based on the given experimental data in Tables 5.5-5.7, 

the contrastive analysis between the upper limits to the holding inventory or overtime 

production capacity of each decision entity and the final solution is shown as Figure 

5.4. It can be seen from Figure 5.4 that the holding inventories of the logistics centers 

peak at their respective upper limits. Also, the production outputs of the 

manufacturing factories 11 and 21 reach their maximum overtime production 

capacities respectively. In contrast, the holding inventory or overtime production 

outputs of other decision entities are less or much less than their corresponding upper 

limits. These results indicate that decision entities whose inventory holding cost or 

overtime production cost is lower prefer to keep more inventories or manufacture 
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more production outputs under the current decision context, which is exactly desired 

by the conglomerate as presented in Section 5.5.1. Therefore, the current management 

strategy implemented by the conglomerate is an available way to balance the 

production-inventory planning throughout the three-stage supply chain with 

conflicting objectives of decision entities. 

 

Figure 5.4 The contrastive analysis of results 

5.5.4 FURTHER DISCUSSIONS 

This section discusses in depth characteristics of the TLMF Kth-Best algorithm 

and the evaluation criterion defined by fuzzy programming. Also, limitations to this 

research are analyzed. 

Table 5.8 clearly shows that an optimal solution is finally found by completing the 

enumeration of 12 vertices, of which most (8 in 12) are accompanied by the same 

decision made by the leader and the middle-level followers, which implies that the 

search approach of the TLMF Kth-Best algorithm is easily convergent. Also, only a 

few data involving kW , T, and W are necessary to write down within the algorithm 

operation. The features of the algorithm can be also observed through computing 

Example 5.1 in Section 5.3. Thus, the TLMF Kth-Best algorithm can be carried out 
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efficiently because each successive pair of points is adjacent. Moreover, note that the 

other 11 vertices searched, apart from the optimal vertex 12, are all feasible solutions 

to the TLMF decision problem even if they cannot be an optimal solution. The 

property gives us another advantage of the TLMF Kth-Best algorithm in that the 

upper and lower bounds on an optimal solution are generated by the procedure even if 

storage or computational limits are reached before convergence. However, when 

plenty of followers are involved at the middle and bottom levels or a large number of 

decision variables and constraints exist, the execution efficiency of the algorithm may 

experience a steep decline as superabundant vertices need to be completed the search. 

The efficiency performance of the algorithm in solving large-scale TLMF problems 

will be explored through a real-world problem in Chapter 6. 

It is noticeable from Tables 5.9 and 5.10 that the middle-level follower 2 obtains 

the same individual objective value 12.5 at the vertices 5s  and 7s ; however, 

following this, the decision entity achieves two different satisfactory degrees 0.63 and 

0.18 respectively. Also, note Table 5.3 in Section 5.4 that the objective value of the 

bottom-level follower 11 in Example 5.1 becomes worse from 7.5 to 9.0; however, 

following this, the corresponding satisfactory degree increases from 0.83 to 1.0. 

Evidently, it is not a positive correlation between the objective value and the 

corresponding satisfactory degree for followers. In this case study, the situation means 

that the feasible set and the rational set of the middle-level follower 2 are changed as 

the leader and the middle-level follower 1 change their decisions )1,2(),( 1yx  to 

)5.0,5.2(),( 1yx . Therefore, the satisfactory degree can be considered as a relative 

but not an absolute evaluation criterion as individual best and worst objective values 

of each decision entity would vary with the changing externalities determined by 

others, which clearly reflects the characteristic of the TLMF hierarchical 

decision-making process. 
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In this study, the reference-based relationship is considered within a three-stage 

supply chain comprised of one leader and multiple followers. All decision entities 

have to achieve a compromised solution under the current decision conditions. Thus, 

under the decision-making situation, decision entities have to adjust the current 

decision context through changing objective functions or constraint conditions to 

generate a new round of decision-making processes if they desire to improve their 

respective satisfactory degrees. However, all decision entities that are distributed 

throughout a conglomerate enterprise may have chances to cooperate with each other 

and achieve an agreement on their decisions in the real world. For example, if the 

leader desires to improve its own satisfactory degree, it may persuade the 

middle-level follower 2 and the bottom-level follower 22 to react to others’ decisions 

)1,3,1,1,2(),,,,( 2112111 zzzyx  by determining their own decisions )5.1,5.0(),( 222 zy  

such that the leader can achieve its individual best solution, yielding the solution 

),,,,,,( 4
22

4
21

4
12

4
11

4
2

4
1

4 zzzzyyx )5.1,1,3,1,5.0,1,2( . Thus, definitions of the satisfactory 

degree provide a practical way in finding some possibly satisfactory solutions to a 

TLMF decision case in the real world, because the satisfactory degree can be 

considered as an evaluation criterion that can be adopted to recognize a solution 

whether or not decision entities desire it. Also, the evaluation criterion provides an 

available approach to solve a TLMF decision problem without an optimal solution. As 

discussed above, if decision entities are willing to cooperate with each other, a 

satisfactory solution can be found through recognizing the satisfactory degree of 

decision entities. 

5.6 SUMMARY 
To handle TLMF decision problems, this chapter first introduces the definitions of 

relationships between multiple followers at the same level, such as uncooperative, 

cooperative, reference-based relationships and their hybrid relationships; gives linear 

TLMF decision models in line with different decision relationships; analyzes the 
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operations of TLMF decision-making process using solution concepts; and discusses 

related theoretical properties of TLMF decision models. Second, based on theoretical 

properties discussed, this chapter develops a TLMF Kth-Best algorithm for solving 

TLMF decision problems. Moreover, a fuzzy programming approach is proposed to 

evaluate the satisfaction of decision entities towards solutions obtained. Lastly, a 

real-world case study on production-inventory planning in SCM illustrates the 

effectiveness of the proposed TLMF decision techniques in handling such problems in 

applications. In conclusion, this study provides the theoretical foundation for TLMF 

decision-making research and overcomes the lack of solution algorithms for solving 

TLMF decision problems. 
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CHAPTER 6 APPLICATION IN 

DECENTRALIZED 

VENDOR-MANAGED INVENTORY 

6.1 INTRODUCTION 
The operations in supply chain management (SCM) are part of today's most 

important economic activities as they remain to be vital tools for business firms to 

remain competitive. Inventory control, one of the key factors in SCM (Kumar & 

Chandra 2002; Sadeghi et al. 2013), can be considered as the major driver of a supply 

chain owing to its strong influence on supply-chain performance (Chandra & Grabis 

2005; Chopra & Meindl 2007). High or undesirable inventory levels are often the 

result of poor cash flow, the amount of space available to store goods, and the high 

risk of dealing with obsolete goods. In recent years, an increasing number of 

companies in retail business and manufacturing industry have identified the 

vendor-managed inventory (VMI) policy as one strategy for reducing inventory, 

speeding up the supply chain (Holweg et al. 2005) and eliminating the bullwhip effect 

in SCM (Dong, Xu & Dresner 2007). Practical and academic works have implied that 

implementing VMI programs has resulted in significant benefits and cost reduction 

for both vendor and buyer (Dong & Xu 2002), and has increased flexibility in 

production scheduling and decision-making on distribution (Claassen, van Weele & 

van Raaij 2008; Lee & Cho 2014; Ryu et al. 2013). 

VMI is defined as a concept for planning and control of inventory based on the 

fact that the vendor (or supplier) has access to the buyer’s (or retailer’s) demand data 
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and is responsible for maintaining the appropriate inventory level and determining 

replenishment policies (Govindan 2013; Marquès et al. 2010). An important issue in 

designing a VMI system is how to ensure optimal inventory planning, such as 

decision-making at the inventory level and replenishment frequency. The majority of 

research on VMI has been focused on centralized inventory control that features 

inventory decisions only managed from the vendor (Pasandideh, Niaki & Roozbeh 

Nia 2010; Zavanella & Zanoni 2009); for example, this situation often appears in 

consignment and retail business (Gümüş, Jewkes & Bookbinder 2008; Lee & Cho 

2014). However, centralized VMI cannot be applied to handle the inventory 

management in which both the vendor and buyer are manufacturers and try their best 

to achieve the inventory as small as possible or even at zero inventory. Moreover, 

business firms are often distributed throughout a multi-echelon supply chain network 

of three levels or more in today’s global market, in particular with the development of 

third-party logistics (Aguezzoul 2014; Ivanov, Sokolov & Dolgui 2013; Kumar, 

Singh & Kumari 2012; Pal, Sana & Chaudhuri 2013). In this situation, each company 

is usually concerned with its own profit and costs when making inventory decisions, 

thus, VMI coordination becomes a challenging task in SCM. 

This chapter considers a VMI coordination problem in a three-echelon supply 

chain network comprised of one vendor, multiple distributors and multiple buyers, 

which are distributed across three hierarchical levels. In contrast to centralized 

inventory control that features operations managed from a single point, each decision 

entity is given the power to make its own optimal inventory decision based on local 

inventory conditions and decisions (or implicit decisions) of other decision entities 

under this VMI arrangement; this can be therefore regarded as a decentralized VMI 

coordination scenario. 

To identify the optimal inventory level and replenishment frequency under VMI 

coordination, this chapter handles the decentralized VMI scenario using multilevel 

decision-making techniques. This chapter discusses how to improve the individual 

performance of each decision entity and balance the total cost sharing in a 
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decentralized VMI hierarchy. Moreover, it displays how to design a 

manufacturer-manufacturer (vendor-buyer) VMI system where third-party logistics 

are involved, and seeks to show how the vendor and buyers can achieve a minimal to 

zero inventory. 

This chapter is organized as follows. Following the introduction, this chapter 

describes and analyzes this decentralized VMI coordination problem in Section 6.2. In 

Section 6.3, an analytical model is then applied to describe the problem. The resulting 

model is a linear TLMF decision problem addressed in Chapter 5, which allows us to 

examine how the decision entities coordinate with each other on the decentralized 

VMI. Lastly, the TLMF Kth-Best algorithm presented in Chapter 5 is used to solve 

the TLMF decision problem; a computational study is conducted in Section 6.4 to 

illustrate how to apply the multilevel decision-making techniques to handle the VMI 

coordination problem. A summary is given in Section 6.5. 

6.2 PROBLEM STATEMENT 
This study considers a vendor supplying a single product to multiple buyers under 

a VMI arrangement. The buyers are MTO (make-to-order) manufacturing enterprises 

that produce different types of end products but make use of the same raw material, 

which is the product manufactured and supplied by the vendor. Since both the vendor 

and buyers are manufacturing enterprises that consider production-manufacturing to 

be the core competence rather than logistics distribution and inventory management, 

some third-party logistics companies are selected as the distributors responsible for 

the raw material distribution and inventory of the buyers. The raw material 

distribution for buyers that are located in the same industrial park or city is managed 

by the same third-party logistics company. Thus, the VMI system appears in a 

three-echelon supply chain network consisting of one vendor, multiple distributors 

and multiple buyers. To generalize the scenario, The three-echelon supply chain 

consists of one vendor, n distributors and im  buyers attached to the ith distributor, 
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ni ,,2,1 . The hierarchical structure of the three-echelon supply chain network is 

shown in Figure 6.1. 

Vendor

Distributor 1 Distributor n

Buyer 11 Buyer Buyer n1 Buyer
11m nnm

 

Figure 6.1 The organizational structure of the three-echelon supply chain 

Under the VMI system, the vendor and distributors are responsible for raw 

material supply for the buyers by determining appropriate inventory levels and 

replenishment policies. To achieve inventory cost reduction and improved 

responsiveness, each distributor is willing to store the raw material using a VMI hub 

that is geographically close to its downstream buyers. The VMI hub is a private 

warehouse owned by the distributor or a public warehouse hired by the distributor. In 

addition, it is a requirement that the vendor and each buyer must hold a certain 

amount of back-up inventory using their own warehouses in order to reduce stock-out 

risk and respond to fluctuations in their production. It is noticeable that the vendor can 

have access to the buyers' material requirement planning (MRP) information during a 

production period of the buyers. Thus, the vendor controls the total raw material 

quantity every time it replenishes to the supply chain network, which is the total 

inventory held by all decision entities, based on the buyers' MRP information and its 

own production capacity. Clearly, the replenishment quantity determines the 

frequency that the vendor should replenish the raw material to the supply chain 

network during the production period of the buyers. Also, the minimum 

replenishment quantity of the vendor must account for a certain proportion of the 

MRP demanded by the buyers; that is, the replenishment capacity of the vendor can 

be measured by the minimum proportion between the total raw material inventory and 

the MRP demanded by the buyers. 
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In the decision-making process of coordinating the VMI, all decision entities are 

able to determine their respective inventory levels under the agreed replenishment 

policy with the aim of minimizing their individual inventory holding costs. Apart 

from the inventory holding cost, the vendor covers the cost of stock-out risk in the 

VMI supply chain, whereas the distributors bear the raw material transportation cost. 

For the sake of motivating the distributors to hold more inventory of the VMI hubs to 

maintain the raw material supply, the vendor adopts an incentive contract with the 

distributors to reduce its total cost, in which the vendor proportionally shares part of 

the distributors’ transportation cost. In addition, to prevent the high stock-out risk 

caused by insufficient buyer back-up inventory, the distributors use a penalty contract 

with the buyers in which each buyer must compensate for the quantity variance 

between its own back-up inventory and the total inventory of its upstream decision 

entities. 

As a result of information sharing in the VMI system, the vendor has full 

knowledge of the inventory costs, demand data and policies of the distributors and 

buyers, as well as the related production decision of each buyer. When planning the 

VMI, the vendor gives priority to the decision on its inventory level to minimize its 

total cost while still considering the optimal decision-making processes and reactions 

of its downstream decision entities based on the shared information. In the light of the 

decision made by the vendor, the distributors determine their respective optimal hub 

inventory levels taking into account the implicit reactions of their downstream buyers. 

Lastly, the buyers make the best possible decisions to respond to the decisions made 

by the upstream decision entities. In this way, the decision entities distributed 

throughout the tri-level hierarchical VMI system make their decisions on inventory 

planning in sequence with the aim of minimizing their individual total costs; however, 

the decision-making process of upstream decision entities must take into account the 

implicit reactions of downstream decision entities. 
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Table 6.1 Notations of decision variables and parameters employed 

Notation Explanation 

xij The inventory controlled by the vendor that will be distributed to the buyer ij 

yij The independent VMI-hub inventory determined by the distributor i that will be distributed 
to the buyer ij 

zij The independent inventory respectively determined by the buyer ij 

a The transportation cost per unit of the raw material 

bij The risk cost per unit of the raw material stock-out for the buyer ij 

c The raw material inventory holding cost per unit of the vendor 

ci The raw material inventory holding cost per unit of the hired VMI-hub by the distributor i 

cij The raw material inventory holding cost per unit of the buyer ij 

d The upper limit to the inventory controlled by the vendor 

di The upper limit to the inventory controlled by the distributor i 

dij
 The upper limit to the inventory controlled by the buyer ij 

eij The raw material demand of the buyer ij according to its production capacity 

pi The proportion of the ith distributor’s transportation cost covered by the vendor in the 
incentive contract 

r The lower limit to the proportion between the raw material supply and the MRP demanded 
by the buyers 

rVD The lower limit to the proportion between the inventory sum of the vendor and distributors 
and the MRP demanded by the buyers 

ri The upper limit to the proportion between the raw material supply and the MRP demanded 
by the buyers attached to the distributor i 

rij The lower limit to the proportion between the raw material supply and the MRP demanded 
by the buyer ij 

sij The penalty cost per unit by which the buyer ij must compensate its upstream distributor i 
for quantity variance between its own inventory and the total inventory of its upstream 
decision entities 

According to the relevant background of multilevel decision-making, this problem 

can be recognized as a tri-level decision problem that includes one leader (vendor), n 

middle-level followers (distributors) and im  bottom-level followers (buyers) 

attached to the ith middle-level follower. In the light of the above problem description, 

let n be the number of distributors, and i be the index for distributors, ni ,,2,1 ; 

while let im  be the number of buyers attached to the distributor i, and j be the index 

for buyers, imj ,,2,1 . To model the problem conveniently, related notations of 
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decision variables and key parameters in the scenario are shown in Table 6.1. It can 

be easily found in Table 6.1 that xij ( ,,,2,1 ni imj ,,2,1 ) are the decision 

variables controlled by the vendor; yij ( imj ,,2,1 ) are the decision variables 

controlled by the distributor i ( ni ,,2,1 ); and zij is the decision variable controlled 

by the buyer ij ( ,,,2,1 ni imj ,,2,1 ). For the sake of convenient argument in 

the following sections, let ),,,,,,( 1111 1 nnmnm xxxxx  denote the vector of the 

vendor's decision variables, whereas let ),,( 1 iimii xyy  be the vector of decision 

variables controlled by the distributor i for ni ,,2,1 . 

6.3 ANALYTICAL MODEL 
Based on the above problem statement and related notations, the tri-level decision 

model for the decentralized VMI coordination scenario is established as follows. 
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where, for each ),,( 1 iimii xxx  given, ),,,( 1 iimii zzy  solve the problem

 (6.1e-6.1j): 

  
),,,,,,(m i n 11

)2(

, ii
ii

imiiimiiYy
zzyxxf  

iii m

j
ijijijij

m

j
ijiji

m

j
iji zyxszypayc

111
)()()1(     (Distributor i) (6.1e) 



PHD Thesis, UTS  Chapter 6 

163 

s.t. ,)(
11

ii m

j
iji

m

j
ijijij erzyx                                    (6.1f) 

,0
1

i

m

j
ij dy

i
                                            (6.1g) 

           where, for each ),( ijij yx  given, ijz  solves the problem (6.1h-6.1j): 
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The vendor’s objective function (6.1a) involves the inventory and transportation 

cost 
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transportation cost, and the risk cost 
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constraint condition (6.1b) implies that the lower limit to the total inventory of the 

VMI system must satisfy the proportion r of the raw material demand of all buyers, 

which reflects the replenishment policy anticipated by the vendor. (6.1c) implies that 

the lower limit to the total inventory of the vendor and the distributors is 
n

i

m

j
ij

VDi

er
1 1

. 

(6.1d) represents the lower and upper limits to the inventory holding capacity of the 

vendor. 

The objective function (6.1e) of the distributor i involves the raw material 

inventory holding cost 
im

j
iji yc

1
 of its hired VMI hub, the transportation cost 

im

j
ijiji zypa

1
)()1(  and the subtractive penalty term 

im

j
ijijijij zyxs

1
)(  derived 

from its downstream buyers’ compensation payments for the inventory variance. The 

constraint condition (6.1f) means the replenishment policy anticipated by the 
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distributor i. (6.1g) reflects the lower and upper limits to the inventory holding 

capacity of the distributor i. 

The buyer’s objective function (6.1h) involves the raw material inventory holding 

cost ijij zc  and the penalty cost )( ijijijij zyxs  paid to its upstream distributor. 

The constraint condition (6.1i) represents the desired replenishment policy by the 

buyer ij. (6.1j) means the lower and upper limits to the inventory of the buyer ij. 

According to the organizational structure of the VMI system, the analytical model 

(6.1) can be considered as a tri-level decision problem with multiple followers at the 

middle and bottom levels, which is called a tri-level multi-follower (TLMF) problem 

as proposed in Chapter 5. In the TLMF problem (6.1), the priority of the vendor is to 

optimize its objective function (6.1a) under the constraint region S comprised of the 

constraint conditions (6.1b-6.1d), (6.1f-6.1g), and (6.1i-6.1j) with 

nimj i ,,2,1,,,2,1 . For each fixed ),,( 1 iimii xxx  by the vendor, the 

distributor i aims to optimize its objective function (6.1e) under the feasible set 

)( ii xS  consisting of the constraint conditions (6.1f-6.1g) together with problem 

(6.1h-6.1j) and imj ,,2,1 . In view of the given ),( ijij yx  from the upstream 

vendor and distributor, each buyer optimizes its objective function (6.1h) under the 

feasible set ),( ijijij yxS  consisting of the constraint conditions (6.1i-6.1j). The 

optimal sets (or the rational reaction sets) of the buyer ij and the distributor i for the 

fixed ),( ijij yx  and ix  are therefore respectively defined as 

)}},(:min{arg:{),( )3(
ijijijijijijijijijij yxSzfzzyxP , 

)}}.(),,,(:min{arg),,,(:),,,{()( 1
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Thus, the inducible region of the TLMF problem (6.1) can be written as 
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.        (6.2) 

The TLMF problem (6.1) can be equivalently formulated as 

}),,,,,,,,,,(:min{
111111

)1( IRzzzzyyxf
nnmnmmn .          (6.3) 

This decision problem (6.1) can be considered as a concretization of the TLMF 

models (5.1) and (5.3) proposed in Chapter 5. Consequently, the TLMF Kth-Best 

algorithm presented in Chapter 5 is able to be adopted to solve the problem (6.1). 

6.4 COMPUTATIONAL STUDY 
In this section, detailed computational experiments are implemented to illustrate 

how the proposed multilevel decision-making approach works, and to conduct the 

sensitivity analysis for key parameters and evaluate their influence on the VMI 

arrangement. Moreover, the efficiency performance of the TLMF Kth-Best algorithm 

is examined by solving 540 large-scale instances. All numerical experiments in this 

study are operated in Java programs performed on a 3.47GHz Inter Xeon W3690 

CPU with 12G of RAM under Red Hat Enterprise Linux Workstation. 

6.4.1 AN ILLUSTRATIVE INSTANCE 

This section adopts an illustrative instance to show how the TLMF Kth-Best 

algorithm works on the TLMF problem (6.1). This study considers a decentralized 

VMI system consisting of one vendor, two distributors and two buyers attached to 

each distributor as the illustrative instance, which means that 2,2 21 mmn  in the 

TLMF problem (6.1). Some related parameters involved in the problem are shown in 

Tables 6.2-6.4 as the experimental data. 

From the experimental data, it can be derived that the main features of this 

instance are as follows: (1) the inventory costs per unit of both the vendor and buyers 

are higher than that of the distributors; (2) the lower limit to the replenishment 

capacity of the vendor is r=50.0% of the total demand of the whole supply chain 
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network; (3) the vendor adopts an incentive contract with the first distributor 

( %1001p ) while the vendor does not use an incentive contract with the second 

distributor ( 02p ); (4) both distributors use a penalty contract with their respective 

downstream buyers and the penalty cost ( 50.0ijs ) is much smaller than the 

inventory holding cost. 

Table 6.2 Data for the vendor 

a  c  d  r  VDr  

1.0 3.0 25 50.0% 35% 

Table 6.3 Data for the distributors 

i  ic  id  ip  ir  

1 2.0 50 100% 90.0% 

2 2.0 50 0 80.0% 

Table 6.4 Data for the buyers 

i  j  ijb  ijc  ijd  ije  ijr  ijs  

1 1 2.0 3.0 10 50 80.0% 0.50 

 2 2.0 3.0 20 50 80.0% 0.50 

2 1 2.0 3.0 10 50 70.0% 0.50 

 2 2.0 3.0 15 50 70.0% 0.50 

The TLMF Kth-Best algorithm is used to solve the problem and the detailed 

computing process is shown in Table 6.5 which includes related data and parameters 

generated in the computing process. Table 6.5 presents the vertex 

),,,,,,( 2221121121
kkkkkkkk zzzzyyxs  that is searched in the current iteration k, and the 

adjacent vertices set kW  of the current vertex ks . T represents the set of vertices 

that have been searched in past iterations while W is the set of vertices that are 

required to verify whether or not an optimal solution occurs inside in the following 

iteration. Following the procedures of the TLMF Kth-Best algorithm, an optimal 

solution is finally obtained after five iterations. Note that kW  in Table 6.5 does not 
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involve the adjacent vertices of ks  that have been found in previous iterations and 

have been involved in W. 

Table 6.5 The detailed computing process of the TLMF Kth-Best algorithm 

Iteration 
k 

Vertex sk Wk T W 

1 (0,0,0,0,30,20,30,20,10,20,10,15) {(0,0,5,0,30,20,30,20,10,20,10,15), 
 (0,0,0,5,30,20,35,15,10,20,10,15), 

(0,0,0,0,30,20,25,20,10,20,10,15), 
(0,0,0,0,30,20,30,20,10,20,5,15), 
(0,0,0,0,30,20,25,25,10,20,10,10), 
(0,0,0,0,30,20,25,25,10,20,10,15)} 

{s1} 1W  

2 (0,0,0,0,30,20,25,25,10,20,10,15) {(0,0,5,0,30,20,20,30,10,20,10,15), 
(0,0,0,5,30,20,25,25,10,20,10,15)} 

{s1,s2} TWW \)( 2  

3 (0,0,5,0,30,20,30,20,10,20,10,15) {(0,0,15,0,30,20,30,20,10,20,0,15), 
(0,0,20,0,30,20,15,35,10,20,10,0), 

 (0,0,25,0,30,20,10,20,10,20,10,15)} 

{s1,s2,s3} TWW \)( 3  

4 (0,0,0,5,30,20,35,15,10,20,10,15) {(0,0,0,15,30,20,45,5,10,20,0,15), 
(0,0,0,20,30,20,35,0,10,20,10,15), 

 (0,0,0,20,30,20,35,15,10,20,10,0)} 

{s1,s2,s3,s4} TWW \)( 4  

5 (0,0,0,0,30,20,25,20,10,20,10,15) --- -- --- 

Table 6.6 displays the objective values of all decision entities respectively towards 

each solution enumerated by the TLMF Kth-Best algorithm. As it can be seen from 

Table 6.6, under the current VMI decision-making context in the supply chain 

network, )15,10,20,10,20,30,20,30,0,0,0,0(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

11 zzzzyyxs  is the 

individual best solution to the vendor, which implies that the vendor anticipates that 

the distributors and buyers can choose ,20,10,20,30,20,30(),,,,,( 1
22

1
21

1
12

1
11

1
2

1
1 zzzzyy

)15,10  to respond to the vendor after it has determined x=(0,0,0,0). However, the 

distributors and buyers prefer to choose ,10,10,20,25,20,30(),,,,,( 5
22

5
21

5
12

5
11

5
2

5
1 zzzzyy

)15,10  to respond to the vendor to optimize their own objective functions. For the 

fixed decision x=(0,0,0,0) by the vendor, )20,30(1y  and )20,25(2y  are the best 

solution for the first and second distributor respectively while considering the implicit 
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reactions of their downstream buyers. In view of the given decision )30,0(),( 1111 yx  

and )20,0(),( 1212 yx  from the vendor and the first distributor, buyer 11 and buyer 

12 achieve an optimal solution )20,10(),( 1211 zz  to respond to the vendor and the 

first distributor. Similarly, for the given decision )25,0(),( 2121 yx  and 

)20,0(),( 2222 yx  from the vendor and the second distributor, buyer 21 and buyer 22 

achieve an optimal solution )15,10(),( 2221 zz  to respond to the vendor and the 

second distributor. Clearly, )20,10,20,30(),,,( 12111211 zzyy  and ),,,( 22212221 zzyy

)15,10,20,25(  are the best solutions respectively for the distributor i(i=1,2) and its 

buyers to react to the given decision x=(0,0,0,0) by the vendor. Therefore, 

)15,10,10,10,20,25,20,30,0,0,0,0(),,,,,,( 5
22

5
21

5
12

5
11

5
2

5
1

5 zzzzyyx  is an optimal solution to 

the decentralized VMI coordination problem. 

Table 6.6 Solutions and objective values of decision entities 

Iteration k Vertex sk )1(f  )2(
1f  )2(

2f  )3(
11f  )3(

12f  )3(
21f  )3(

22f  

1 (0,0,0,0,30,20,30,20,10,20,10,15) 170.0 90.0 162.5 40.0 60.0 40.0 47.5 

2 (0,0,0,0,30,20,25,25,10,20,10,15) 170.0 90.0 162.5 40.0 60.0 37.5 50.0 

3 (0,0,5,0,30,20,30,20,10,20,10,15) 180.0 90.0 160.0 40.0 60.0 42.5 47.5 

4 (0,0,0,5,30,20,35,15,10,20,10,15) 180.0 90.0 160.0 40.0 60.0 42.5 47.5 

5 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 150.0 40.0 60.0 37.5 47.5 

Although the vendor’s total cost has become worse by increasing from 170.0 to 

180.0 during the decision process from 1s  to 5s , the vendor cannot obtain a better 

objective value by moving away from the vertex over the IR, because some 

individuals try to obtain better results for themselves under the VMI coordination, 

yielding the solution 5s . Therefore, the vertex 5s  is an optimal solution to the VMI 

planning problem, which means a final coordinated result for decision entities in the 

current VMI decision context. The coordinated result indicates that the vendor may 

not achieve its individual optimal solution under the constraint region even though it 
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has priority in making decisions, since its decisions are implicitly determined by 

reactions of its downstream decision entities. Clearly, the TLMF Kth-Best algorithm 

provides a practical way to solve the TLMF optimization problem (6.1). The optimal 

solution to the TLMF problem (6.1) means a compromised equilibrium under VMI 

coordination. 

6.4.2 SENSITIVITY ANALYSIS 

In this section, the sensitivity analysis is conducted for key parameters of the VMI 

system involving the distributor’s and buyer's inventory upper limits, the distributor’s 

transportation cost, and the incentive and penalty mechanism. This section analyzes 

their influence on the coordinated VMI results and the individual performance of each 

decision entity. 

6.4.2.1 EFFECT OF THE DISTRIBUTOR’S AND BUYER'S 

INVENTORY UPPER LIMITS 

This section conducts one group of numerical experiments to analyze the effect of 

the distributor’s and buyer's inventory upper limits on the VMI performance while 

considering the illustrative instance in Section 6.4.1 as the base problem. Under VMI 

coordination, with the upper limits to the first distributor’s inventory and its first 

buyer's inventory respectively increasing from 30 to 60 and decreasing from 10 to 0, 

the corresponding optimal solutions and coordinated results are given in Table 6.7. 

It can be seen from Table 6.7 that the vendor prefers to reduce its own inventory 

when the distributor's inventory upper limit increases under certain inventory upper 

limit of the buyers. The cost of the distributor increases while that of the vendor 

declines during the period. The much higher upper limit to the distributor’s inventory 

will not result in an extended reduction of the vendor’s inventory until the vendor's 

inventory equals to zero. Table 6.7 also shows that the distributor will increase its 

inventory level following the decrease in its downstream buyer's inventory upper limit. 
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After the distributor's inventory upper limit is full filled, the vendor will keep higher 

inventory level to maintain the raw material supply for the buyer. The buyer's cost 

experiences a downward trend following the decrease in its own inventory, while that 

of the vendor grows gradually. However, the experiment is performed in which the 

number 11d  is set smaller than 5 under 301d  such that an optimal solution to the 

TLMF problem (6.1) cannot be found, which implies that the much smaller upper 

limit to the buyer's inventory is not permitted in the VMI system if the vendor and the 

distributor do not possess sufficient inventory upper limit. In contrast, it is noticeable 

in case 10 that, if the distributor’s inventory upper limit is large enough, both the 

vendor and the buyer are able to reduce their own inventory level to zero; meanwhile, 

their costs both decreases. Thus, for the sake of achieving zero inventory, the vendor 

and buyers, as the manufacturing enterprises, should try to persuade the distributors to 

improve their individual inventory upper limits when making the VMI contract. 
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Table 6.7 The experimental results based on the distributor’s and buyer's inventory upper limits changes 

Experiments The optimal solutions and coordinated results Computational performance 

Case d1 d11 ),,,,,,( 2221121121 zzzzyyx  )1(f  )2(
1f  )2(

2f  )3(
11f  )3(

12f  )3(
21f  )3(

22f  Iteration Time (s) 

1 30 10 (0,20,0,0,30,0,25,20,10,20,10,15) 240.0 50.0 150.0 40.0 60.0 37.5 47.5 6 0.221 

2  5 (5,20,0,0,30,0,25,20,5,20,10,15) 255.0 45.0 150.0 30.0 60.0 37.5 47.5 5 0.159 

3  0 Not Applicable        0 0.015 

4 40 10 (0,10,0,0,30,10,25,20,10,20,10,15) 210.0 70.0 150.0 40.0 60.0 37.5 47.5 7 0.236 

5  5 (0,15,0,0,35,5,25,20,5,20,10,15) 225.0 65.0 150.0 30.0 60.0 37.5 47.5 8 0. 251 

6  0 (0,20,0,0,40,0,25,20,0,20,10,15) 240.0 60.0 150.0 20.0 60.0 37.5 47.5 6 0.189 

7 50 10 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 150.0 40.0 60.0 37.5 47.5 5 0.144 

8  5 (0,5,0,0,35,15,25,20,5,20,10,15) 195.0 85.0 150.0 30.0 60.0 37.5 47.5 7 0.236 

9  0 (0,10,0,0,40,10,25,20,0,20,10,15) 210.0 80.0 150.0 20.0 60.0 37.5 47.5 7 0.235 

10 60 10 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 150.0 40.0 60.0 37.5 47.5 7 0.285 

11  5 (0,0,0,0,35,20,25,20,5,20,10,15) 180.0 95.0 150.0 30.0 60.0 37.5 47.5 7 0.208 

12  0 (0,0,0,0,40,20,25,20,0,20,10,15) 180.0 100.0 150.0 20.0 60.0 37.5 47.5 7 0.220 
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6.4.2.2 EFFECT OF THE PENALTY MECHANISM 

To identify the effect of the penalty mechanism between each distributor and its 

downstream buyers, this section analyzes the coordinated results for the penalty cost 

of the second buyer attached to the second distributor (called buyer 22) increasing 

from 0 to 4.0. The experimental results, which consider case 7 in the above section as 

the basic problem, are shown in Table 6.8. 

As shown in Table 6.8, when the penalty cost is smaller (e.g. 022s , 5.022s  

and 0.122s ), the second distributor’s cost amounts is higher in value. In this 

situation, the second distributor does not prefer to increase its inventory level and 

buyer 22 has to keep a certain amount of back-up inventory to service the production 

demand. With the penalty cost increasing from 1.5 to 3.0, the second distributor is 

willing to increase its inventory to its upper limit to reduce its total cost while the 

buyer 22 need not to keep so many inventory but has to compensate the higher 

penalty cost for the second distributor. However, when the penalty cost is higher than 

the inventory cost (e.g. 5.322s  and 0.422s ), buyer 22 will increase its holding 

inventory to reduce the penalty cost, even though the second distributor prefers to 

hold the largest inventory. Table 6.8 also clearly shows that the total cost of the 

second distributor reaches the bottom when the penalty cost is equal to the inventory 

cost. Thus, the second distributor can price the penalty cost at 0.322s  in designing 

the penalty VMI contract with the buyer. During the same period, the vendor's cost 

decreases from 180.0 to 170.0, which means that the vendor can persuade distributors 

to increase the penalty cost with the buyers in order to motivate the buyers to hold 

more inventory if the vendor seeks to improve its individual performance. 
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Table 6.8 The experimental results based on the penalty cost changes 

Experiments The optimal solutions and coordinated results Computational performance 

Case s22 ),,,,,,( 2221121121 zzzzyyx  )1(f  )2(
1f  )2(

2f  )3(
11f  )3(

12f  )3(
21f  )3(

22f  Iteration Time (s) 

13 0 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 152.5 40.0 60.0 37.5 45.0 5 0.149 

7 0.5 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 150.0 40.0 60.0 37.5 47.5 5 0.144 

14 1.0 (0,0,0,0,30,20,25,20,10,20,10,15) 180.0 90.0 147.5 40.0 60.0 37.5 50.0 5 0.143 

15 1.5 (0,0,0,0,30,20,25,25,10,20,10,10) 180.0 90.0 140.0 40.0 60.0 37.5 52.5 7 0.221 

16 2.0 (0,0,0,0,30,20,25,25,10,20,10,10) 180.0 90.0 132.5 40.0 60.0 37.5 60.0 7 0.212 

17 2.5 (0,0,0,0,30,20,25,25,10,20,10,10) 180.0 90.0 125.0 40.0 60.0 37.5 67.5 7 0.225 

18 3.0 (0,0,0,0,30,20,25,25,10,20,10,10) 180.0 90.0 117.5 40.0 60.0 37.5 75.0 7 0.220 

19 3.5 (0,0,0,0,30,20,25,25,10,20,10,15) 170.0 90.0 132.5 40.0 60.0 37.5 80.0 2 0.063 

20 4.0 (0,0,0,0,30,20,25,25,10,20,10,15) 170.0 90.0 127.5 40.0 60.0 37.5 85.0 2 0.047 
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Table 6.9 The experimental results based on the distributor’s transportation cost changes 

Experiments The optimal solutions and coordinated results Computational performance 

Case p2 a ),,,,,,( 2221121121 zzzzyyx  )1(f  )2(
1f  )2(

2f  )3(
11f  )3(

12f  )3(
21f  )3(

22f  Iteration Time (s) 

17 0 1.0 (0,0,0,0,30,20,25,25,10,20,10,10) 180.0 90.0 125.0 40.0 60.0 37.5 67.5 7 0.225 

21  1.5 (0,0,0,0,30,20,25,20,10,20,10,15) 220.0 90.0 160.0 40.0 60.0 37.5 67.5 5 0.159 

22  2.0 (0,0,0,0,30,20,25,20,10,20,10,15) 260.0 90.0 195.0 40.0 60.0 37.5 67.5 5 0.172 

23  2.5 (0,0,0,0,30,20,25,20,10,20,10,15) 300.0 90.0 230.0 40.0 60.0 37.5 67.5 5 0.126 

24 100% 1.0 (0,0,0,0,30,20,25,25,10,20,10,10) 250.0 90.0 55.0 40.0 60.0 37.5 67.5 5 0. 134 

25  1.5 (0,0,0,0,30,20,25,25,10,20,10,10) 325.0 90.0 55.0 40.0 60.0 37.5 67.5 5 0.141 

26  2.0 (0,0,0,0,30,20,25,25,10,20,10,10) 400.0 90.0 55.0 40.0 60.0 37.5 67.5 3 0.078 

27  2.5 (0,0,0,0,30,20,25,25,10,20,10,10) 475.0 90.0 55.0 40.0 60.0 37.5 67.5 3 0.078 
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6.4.2.3 EFFECT OF THE TRANSPORTATION COST AND THE 

INCENTIVE MECHANISM 

In this section, case 17 is considered as the basic problem based on the related 

discussion in Section 6.4.2.2 to ensure that the reaction space of the distributors is 

well positioned. The experimental results for the transportation cost ranging from 1.0 

to 2.5 are reported in Table 6.9 and can be classified into two groups according to 

whether or not the incentive mechanism by 02p  and %1002p  is considered 

between the vendor and the second distributor. 

The obtained results in Table 6.9 without considering the incentive mechanism 

( 02p ) show that, when the transportation cost is increased, the second distributor's 

inventory decreases during the same period while the inventory of buyer 22 increases. 

Since the buyer will react to the decrease in the second distributor’s inventory by 

improving its own inventory level, the second distributor anticipates the reduction in 

its transportation cost by reducing its own inventory level. In contrast, when the 

incentive contract is considered ( %0102p ), the inventory of the second distributor 

remains stable at a higher level. The results imply that the increase in the 

transportation cost results in the inventory reduction of the distributor when the 

incentive contract is not considered. 

Table 6.9 reports that the vendor’s and the second distributor’s costs respectively 

experience an upward trend without the incentive mechanism, while the first 

distributor’s cost remains stable at 90.0 because of the incentive mechanism. When 

the incentive contract is considered, the total cost of the vendor is higher than the 

same number under 02p , while the second distributor’s cost becomes smaller than 

the same number under 02p . In addition, following the transportation cost 

increasing under %1002p , the cost of the second distributor remains stable as does 
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that of the first distributor, and only the total cost of the vendor increases. The above 

analysis reflects that the incentive mechanism contributes to a better individual 

performance of the distributor during the period that the transportation cost rises up, 

thus, the vendor can use a incentive contract to encourage the distributor to keep more 

inventory for maintaining the raw material supply following the increase in the 

transportation cost. The results also imply that the upstream decision entities should 

take into account the implicit reactions of its downstream decision entities when 

making its own decisions under VMI coordination. 

6.4.3 ASSESSING THE EFFICIENCY PERFORMANCE OF 

THE TLMF KTH-BEST ALGORITHM 

The experimental results in Tables 6.7-6.9 show that very little computing time is 

spent on solving each experimental case, which implies that the TLMF Kth-Best 

algorithm can be carried out efficiently. However, those previously mentioned cases 

1-27 are considered as small-scale instances. The efficiency performance of the 

algorithm may declines rapidly with the increase in the mass of distributors and 

buyers. To assess the algorithm performance in depth, the proposed TLMF Kth-Best 

algorithm is used to solve large-scale instances in this section. 

The TLMF decision techniques for modeling decentralized VMI coordination 

problem have not been considered in literatures, therefore, there are no benchmark 

instances. In this study, large-scale instances are randomly generated to cover a wide 

range of problem structures based on the sensitivity analysis in Section 6.4.2. The test 

instances are classified into 18 different problem sets following the number of 

distributors and buyers becoming larger and larger, which are displayed in Table 6.10. 

As shown in Table 6.10, n and m are the number of distributors and buyers 

respectively, whereas the number (mi) of buyers that are attached to the same 

distributor i ( ni ,,2,1 ) is randomly determined under mm
n

i
i

1
 and 0im . 

Table 6.10 also shows the numbers of decision variables and constraint conditions, 
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respectively known as Num(v) and Num(con). It can be seen from model (6.1) that 

Num(v) is determined by the number of buyers, whereas Num(con) is determined by 

the total number of distributors and buyers. In this computational study, 30 test 

problems are randomly constructed within each problem set; thus, there are 

5401830  different instances randomly generated as a whole within 18 test 

problem sets. 

Table 6.10 Test instances randomly generated 

Problem set n m Num(v) Num(con) Problem set n m Num(v) Num(con) 

P01 2 8 24 23 P10 10 30 90 83 

P02 4 8 24 27 P11 15 30 90 93 

P03 6 8 24 31 P12 20 30 90 103 

P04 4 15 45 41 P13 15 40 120 113 

P05 6 15 45 45 P14 20 40 120 123 

P06 10 15 45 53 P15 30 40 120 143 

P07 6 20 60 55 P16 20 50 150 143 

P08 10 20 60 63 P17 30 50 150 163 

P09 15 20 60 73 P18 50 50 150 203 

In terms of parameters in model (6.1), buyer demand eij is randomly chosen from 

the uniform distribution on [40, 60], and buyer inventory upper limit dij is generated 

from uniform random numbers between 5 and 20. For the sake of ensuring the 

problem is well posed, distributor inventory upper limit di is randomly chosen from 

the interval ]10)(,10)([
11

ii m

j
ijijij

m

j
ijijij dredre , whereas vendor inventory upper 

limit d is uniformly distributed on ]10))((,))(([
,1 1,1 1

n

sii
i

m

j
ijijij

n

sii
i

m

j
ijijij ddreddre

ii  

where 0)(
1

s

m

j
sjsjsj ddre

s
. The remainder parameters in model (6.1) keep the 

same as those in Section 6.4.1 apart from setting %100ip , %90ir , %80ijr  

and 5.1ijs . 
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Table 6.11 The experimental results of the randomly generated test problems 

Problem set n-m-Num(v)-Num(con) Num(best) Iteration Time (s) Problem set n-m-Num(v)-Num(con) Num(best) Iteration Time (s) 

P01 2-8-24-23 30 17.77 17.953 P10 10-30-90-83 27 579.52 387.541 

P02 4-8-24-27 30 36.57 23.117 P11 15-30-90-93 26 558.81 401.259 

P03 6-8-24-31 30 32.50 24.812 P12 20-30-90-103 27 564.67 431.524 

P04 4-15-45-41 30 147.27 39.798 P13 15-40-120-113 22 768.82 694.258 

P05 6-15-45-45 30 196.40 57.814 P14 20-40-120-123 20 737.05 729.654 

P06 10-15-45-53 30 164.53 65.237 P15 30-40-120-143 24 727.50 758.216 

P07 6-20-60-55 29 491.69 185.642 P16 20-50-150-143 19 873.53 991.852 

P08 10-20-60-63 28 427.82 208.858 P17 30-50-150-163 22 843.45 1036.248 

P09 15-20-60-73 30 383.23 221.341 P18 50-50-150-203 18 819.00 1123.982 
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The TLMF Kth-Best algorithm is used to solve these 540 test problems randomly 

generated. In terms of solving each problem, the maximal iteration number is 1000 

and each problem is carried out 10 runs to collect the computing CPU time. If the 

algorithm can find an optimal solution for a problem within 1000 iterations, it is 

considered as successful computation. Table 6.11 shows the number of test problems 

successfully solved within each problem set, denoted by Num(best). Table 6.11 also 

displays the average of the iteration number and the computing CPU time (in seconds) 

for each problem set. 

It is clear in Table 6.11 that the number of problems successfully solved becomes 

smaller following the increase in the number of distributors and buyers. The reason is 

that more and more test problems have no solutions or the computational iterations 

exceeds 1000 during the experimental process. To explore more in depth, the 

algorithm efficiency is examined, shown as the iterations and computing time in 

Table 6.11. As shown in Table 6.11, both the number of iterations and computing 

time experience a sharp rise with the problem size being larger and larger. Notice that, 

when the number of buyers remains stable, the number of problems successfully 

solved, as well as the algorithm efficiency, does not shows substantial change with the 

number of distributors increasing. Thus, the number of buyers has a significant 

influence on the performance of the TLMF Kth-Best algorithm; Figure 6.2 displays 

much more evident results. The results mean that the number of decision variables, 

rather than constraint conditions, determines the characteristics of the TLMF problem 

(6.1) and the efficiency performance of the TLMF Kth-Best algorithm. 

Since the TLMF problems have not been solved by other algorithms in literatures, 

the algorithm performance cannot be compared with others. In this study, the 

efficiency performance of the TLMF Kth-Best algorithm is assessed using the growth 

trend of the computing CPU time for solving these test problems. It can be found in 

Figure 6.3 that the growth trend of CPU time coincides with a fitted quadratic 

polynomial curve rather than a exponential curve. Clearly, although the computational 

load of the TLMF Kth-Best experiences a steep upward trend in response to the 
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problem size becoming larger, these test problems can be solved by the algorithm in a 

quadratic polynomial time, which is a reasonable computing time for solving NP-hard 

problems. Therefore, the TLMF Kth-Best algorithm can be considered as a feasible 

and an effective approach for solving the proposed decentralized VMI coordination 

problems. 

 
Figure 6.2 The average of iterations and CPU time for solving the test problems 

 

Figure 6.3 The fitted curve of CPU time following the number of buyers change 
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6.5 SUMMARY 
This chapter considers a decentralized VMI coordination problem in a 

three-echelon hierarchical supply chain network consisting of a vendor, multiple 

third-party logistics companies as distributors, and multiple buyers. To deal with the 

inventory coordination among the decision entities, this chapter first proposes a linear 

TLMF decision model to describe the VMI problem. The TLMF Kth-Best algorithm 

developed in Chapter 5 is then used to solve the resulting TLMF decision model. The 

sensitivity analysis for key VMI parameters is conducted to examine the operations 

multilevel decision-making process in which decision entities coordinate with one 

another on the decentralized VMI. 

The computational results imply that an optimal solution to the proposed VMI 

problem results in a compromised equilibrium for decision entities under inventory 

coordination; it may not be the best solution in respect to the vendor, although it has 

priority in making decisions. The sensitivity analysis reports that decision entities can 

achieve different coordinated results by adjusting related VMI parameters, which 

have different influences on the individual performance of each decision entity. The 

experimental results also clearly show that the performance improvement of one 

individual does not mean the cost reduction of all decision entities, which implies that 

decision entities are only concerned with their own cost reduction rather than the 

performance improvement of others under VMI coordination. Under VMI 

coordination, decision entities should prefer to cooperate with one another in 

designing a VMI contract, if they seek to improve their individual performances; for 

example, the vendor may persuade distributors to increase their inventory upper limits 

to improve the VMI performance, as well, the incentive and penalty mechanism can 

be adopted to balance the total cost sharing between decision entities. Moreover, the 

computational study shows that large-scale problems can be solved in a reasonable 

computing time using the proposed TLMF Kth-Best algorithm. 
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In conclusion, this chapter provides a practical way to handle the decentralized 

VMI coordination problem in a three-echelon supply chain network. This chapter 

shows how to improve the individual performance of each decision entity and balance 

the total cost sharing in a decentralized VMI hierarchy. Of particular importance, this 

chapter displays how to design a manufacturer-manufacturer (vendor-buyer) VMI 

system where third-party logistics are involved, and through which the vendor and 

buyers can achieve their holding inventory as small as possible or even at zero 

inventory. 
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CHAPTER 7 CONCLUSIONS AND 

FURTHER STUDY 

This chapter concludes the whole thesis and provides some further research 

directions for the topic. 

7.1 CONCLUSIONS 
Multilevel decision-making techniques have been widely applied to handle 

decentralized decision problems in the real world. The latest developments of 

multilevel decision-making typically display three features: (1) large-scale - 

high-dimensional decision variables make multilevel decision problems large-scale; 

(2) uncertainty - uncertain information is always involved in related decision 

parameters and conditions, which become imprecisely or ambiguously known to 

decision entities; (3) diversification - there may exist multiple decision entities at each 

decision level, in which multiple decision entities at the same level have a variety of 

relationships with one another. To support large-scale, uncertain and diversified 

multilevel decision-making, this research develops related decision models and/or 

solution approaches to handle three categories of unsolved multilevel decision 

problems, involving large-scale nonlinear bi-level and tri-level decision problems, 

fuzzy nonlinear bi-level decision problems and TLMF decision problems. Moreover, 

these proposed multilevel decision-making techniques are applied to deal with 

decentralized production and inventory operational problems in SCM. 

The main contributions of this study are as follows: 
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1) It proposes a bi-level PSO algorithm to solve large-scale nonlinear bi-level 

decision problems; the bi-level PSO algorithm is then extended to a tri-level PSO 

algorithm for solving tri-level decision problems. (To achieve Objective 1) 

In the proposed bi-level/tri-level PSO algorithms, the leader's problem and the 

follower's problem are separated based on related solution concepts for convenient 

solving. To handle the complexity of the constraint region of nonlinear and 

large-scale problems, two methods for constructing the initial population are given. 

Moreover, the decreasing inertia weight with time is used to control the velocity of 

particles in the search space at different stages, which can improve both the search 

and convergence abilities of the bi-level/tri-level PSO algorithms. The computational 

results report that the bi-level/tri-level PSO algorithms are able to find much better 

solutions than other algorithms and show much better performance in terms of 

efficiency than other algorithms which follow the problem size by becoming larger 

and larger. Consequently, the proposed bi-level PSO algorithm provides a practical 

way to solve large-scale nonlinear bi-level decision problems; moreover, it can be 

extended to a tri-level PSO algorithm for solving tri-level decision problems. 

2) It proposes a compromise-based PSO algorithm for solving fuzzy nonlinear 

bi-level decision problems. (To achieve Objective 2) 

The compromise-based PSO algorithm can be used to solve nonlinear bi-level 

decision problems with general fuzzy numbers. With regard to the compromise-based 

PSO algorithm, the leader and follower can choose acceptable decision conditions 

based on rules of compromise due to uncertain decision environments, which can 

result in the preferred solution under individual decision situations. The 

computational results show that the compromise-based PSO algorithm can not only 

provide better solutions to the specific decision situation compared with the existing 

solution approaches but also present different options in terms of solutions due to 

uncertain decision environments. 
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3) It proposes different TLMF decision models to describe various relationships 

between multiple followers at the same level, and discusses theoretical properties 

in relation to the existence and optimality of solutions. (To achieve Objective 3) 

The TLMF decision models can be applied to describe different decision-making 

processes motivated by various relationships between multiple followers at the same 

level. Related solution concepts analyze the operations of the TLMF decision-making 

process. The theoretical properties give sufficient conditions for the optimal solution 

existence and the geometry of the solution space, which provides the theoretical 

foundation for designing an effective solution algorithm for solving TLMF decision 

problems. 

4) It proposes a TLMF Kth-Best algorithm for solving TLMF decision problems and 

a evaluation method to assess the solution obtained. (To achieve Objective 4) 

The TLMF Kth-Best algorithm ranks the vertices of the constraint region by the 

leader's objective value and verifies these vertices in sequence whether or not each 

vertex is an optimal solution. The algorithm is not terminated until the Kth vertex is 

found that can be considered as an optimal solution. This algorithm can find an 

optimal solution to TLMF decision problems; moreover, it is able to solve large-scale 

problems in a reasonable and an acceptable time. The TLMF Kth-Best algorithm 

overcomes the lack of solution algorithms for solving TLMF decision problems. 

Since it is imprecise or ambiguous for decision entities to identify a solution whether 

or not they desire it, the solution evaluation method can assess the satisfaction of 

decision entities by transforming the objective functions into fuzzy goals. The 

solution evaluation method, as a relative criterion, can be applied to analyze how the 

TLMF decision-making process varies with changing decision externalities and 

provide decision support for decision entities. 

5) It applies multilevel decision-making techniques to handle a decentralized VMI 

coordination problem in SCM. (To achieve Objective 5) 
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The decentralized VMI coordination problem is modeled as a TLMF decision 

problem, which examines how the decision entities coordinate with each other on the 

decentralized VMI. The TLMF Kth-Best algorithm developed in Chapter 5 is then 

used to solve the resulting TLMF decision model. The computational results indicate 

that this research provides a practical way to handle the decentralized VMI 

coordination problem in a three-echelon supply chain network. This research shows 

how to improve the individual performance of each decision entity and balance the 

total cost sharing in a decentralized VMI hierarchy. Even more important, this 

research displays how to design a manufacturer-manufacturer (vendor-buyer) VMI 

system where third-party logistics are involved, and through which the vendor and 

buyers can achieve their holding inventory as low as possible or even at zero 

inventory. 

7.2 FURTHER STUDY 
There are still some limitations in relation to the current study: 

1) Many multilevel decision problems may have no optimal solutions based on 

existing solution concepts. How to find a usable or satisfactory solution to these 

multilevel decision problems is an emerging research topic with respect to 

computational complexity. 

2) The fully fuzzy bi-level decision problems, in which both coefficients and 

variables are characterized by fuzzy numbers, is also an emerging research topic 

and need to be examined in depth. 

3) Multilevel decision problems nowadays often appear in highly complex and 

diversified decision environments where decision makers sometimes need to make 

an optimal or a wise decision from big data with uncertainty. This requires further 

research on how to wisely model such problems and implement data-driven 

decision-making in the current age of big data by means of a multilevel decision 

support system. 
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4) Multilevel decision-making techniques are mainly limited to mathematical 

programming modeling and solving. However, many multilevel decision 

problems in the real world cannot be modeled as mathematical programming 

formulations. It is another challenge to break through mathematical programs and 

integrate the principle of multilevel decision-making with other decision-making 

techniques to handle a much wider range of decision problems. 

 



PHD Thesis, UTS  References 

188 

REFERENCES 

Aguezzoul, A. 2014, 'Third-party logistics selection problem: A literature review on 

criteria and methods', Omega, vol. 49, no. 0, pp. 69-78. 

Al-Khayyal, F., Horst, R. & Pardalos, P. 1992, 'Global optimization of concave 

functions subject to quadratic constraints: An application in nonlinear bilevel 

programming', Annals of Operations Research, vol. 34, no. 1, pp. 125-47. 

Alguacil, N., Delgadillo, A. & Arroyo, J.M. 2014, 'A trilevel programming approach 

for electric grid defense planning', Computers & Operations Research, vol. 41, 

no. 0, pp. 282-90. 

Alves, M.J. & Costa, J.P. 2014, 'An algorithm based on particle swarm optimization 

for multiobjective bilevel linear problems', Applied Mathematics and 

Computation, vol. 247, no. 0, pp. 547-61. 

Anandalingam, G. 1988, 'A mathematical programming model of decentralized 

multi-level systems', Journal of the Operational Research Society, vol. 39, no. 

11, pp. 1021-33. 

Anandalingam, G. & Apprey, V. 1991, 'Multi-level programming and conflict 

resolution', European Journal of Operational Research, vol. 51, no. 2, pp. 

233-47. 

Anandalingam, G. & White, D.J. 1990, 'A solution method for the linear static 

Stackelberg problem using penalty functions', IEEE Transactions on 

Automatic Control, vol. 35, no. 10, pp. 1170-3. 



PHD Thesis, UTS  References 

189 

Angulo, E., Castillo, E., García-Ródenas, R. & Sánchez-Vizcaíno, J. 2014, 'A 

continuous bi-level model for the expansion of highway networks', Computers 

& Operations Research, vol. 41, no. 0, pp. 262-76. 

Ankhili, Z. & Mansouri, A. 2009, 'An exact penalty on bilevel programs with linear 

vector optimization lower level', European Journal of Operational Research, 

vol. 197, no. 1, pp. 36-41. 

Apivatanagul, P., Davidson, R. & Nozick, L. 2012, 'Bi-level optimization for 

risk-based regional hurricane evacuation planning', Natural Hazards, vol. 60, 

no. 2, pp. 567-88. 

Arora, S.R. & Gupta, R. 2009, 'Interactive fuzzy goal programming approach for 

bilevel programming problem', European Journal of Operational Research, 

vol. 194, no. 2, pp. 368-76. 

Askin, R.G., Baffo, I. & Xia, M. 2014, 'Multi-commodity warehouse location and 

distribution planning with inventory consideration', International Journal of 

Production Research, vol. 52, no. 7, pp. 1897-910. 

Audet, C., Haddad, J. & Savard, G. 2007, 'Disjunctive cuts for continuous linear 

bilevel programming', Optimization Letters, vol. 1, no. 3, pp. 259-67. 

Audet, C., Savard, G. & Zghal, W. 2007, 'New Branch-and-Cut Algorithm for Bilevel 

Linear Programming', Journal of Optimization Theory and Applications, vol. 

134, no. 2, pp. 353-70. 

Aviso, K.B., Tan, R.R., Culaba, A.B. & Cruz Jr, J.B. 2010, 'Bi-level fuzzy 

optimization approach for water exchange in eco-industrial parks', Process 

Safety & Environmental Protection: Transactions of the Institution of 

Chemical Engineers Part B, vol. 88, no. 1, pp. 31-40. 

Bard, J. 1988, 'Convex two-level optimization', Mathematical Programming, vol. 40, 



PHD Thesis, UTS  References 

190 

no. 1-3, pp. 15-27. 

Bard, J.F. 1984, 'An investigation of the linear three level programming problem', 

IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-14, no. 5, pp. 

711-7. 

Bard, J.F. 1991, 'Some properties of the bilevel programming problem', Journal of 

Optimization Theory and Applications, vol. 68, no. 2, pp. 371-8. 

Bard, J.F. 1998, Practical Bilevel Optimization: Algorithms and Applications, Kluwer 

Academic Publishers, Dordrecht, The Netherlands. 

Bard, J.F. & Falk, J.E. 1982, 'An explicit solution to the multi-level programming 

problem', Computers & Operations Research, vol. 9, no. 1, pp. 77-100. 

Bard, J.F. & Moore, J.T. 1990, 'A branch and bound algorithm for the bilevel 

programming problem', SIAM Journal on Scientific and Statistical Computing, 

vol. 11, no. 2, pp. 281-92. 

Bard, J.F. & Moore, J.T. 1992, 'An algorithm for the discrete bilevel programming 

problem', Naval Research Logistics (NRL), vol. 39, no. 3, pp. 419-35. 

Ben-Aved, O. & Blair, C.E. 1990, 'Computational difficulties of bilevel linear 

programming', Operations Research, vol. 38, no. 3, pp. 556-60. 

Berling, P. & Marklund, J. 2014, 'Multi-echelon inventory control: an adjusted normal 

demand model for implementation in practice', International Journal of 

Production Research, pp. 1-17. 

Bialas, W. & Karwan, M.H. 1984, 'Two-level linear programming', Management 

Science, vol. 30, pp. 1004-20. 

Bianco, L., Caramia, M. & Giordani, S. 2009, 'A bilevel flow model for hazmat 

transportation network design', Transportation Research Part C: Emerging 



PHD Thesis, UTS  References 

191 

Technologies, vol. 17, no. 2, pp. 175-96. 

Budnitzki, A. 2013, 'The solution approach to linear fuzzy bilevel optimization 

problems', Optimization, pp. 1-15. 

Calvete, H.I. & Galé, C. 2007, 'Linear bilevel multi-follower programming with 

independent followers', Journal of Global Optimization, vol. 39, no. 3, pp. 

409-17. 

Calvete, H.I. & Galé, C. 2010, 'Linear bilevel programs with multiple objectives at 

the upper level', Journal of Computational and Applied Mathematics, vol. 234, 

no. 4, pp. 950-9. 

Calvete, H.I. & Galé, C. 2011, 'On linear bilevel problems with multiple objectives at 

the lower level', Omega, vol. 39, no. 1, pp. 33-40. 

Calvete, H.I. & Galé, C. 2012, 'Linear bilevel programming with interval coefficients', 

Journal of Computational and Applied Mathematics, vol. 236, no. 15, pp. 

3751-62. 

Calvete, H.I., Galé, C. & Iranzo, J.A. 2014, 'Planning of a decentralized distribution 

network using bilevel optimization', Omega, vol. 49, no. 0, pp. 30-41. 

Calvete, H.I., Galé, C. & Mateo, P.M. 2008, 'A new approach for solving linear 

bilevel problems using genetic algorithms', European Journal of Operational 

Research, vol. 188, no. 1, pp. 14-28. 

Calvete, H.I., Galé, C. & Oliveros, M.-J. 2011, 'Bilevel model for 

production–distribution planning solved by using ant colony optimization', 

Computers & Operations Research, vol. 38, no. 1, pp. 320-7. 

Calvete, H.I., Galee, C. & Mateo, P.M. 2008, 'A new approach for solving linear 

bilevel problems using genetic algorithms', European Journal of Operational 

Research, vol. 188, no. 1, pp. 14-28. 



PHD Thesis, UTS  References 

192 

Camacho-Vallejo, J.-F., González-Rodríguez, E., Almaguer, F.J. & González-Ramírez, 

R.G. 2014, 'A bi-level optimization model for aid distribution after the 

occurrence of a disaster', Journal of Cleaner Production, vol. In Press. 

Candler, W. & Townsley, R. 1982, 'A linear two-level programming problem', 

Computers & Operations Research, vol. 9, no. 1, pp. 59-76. 

Cao, S., Yuan, Z., Li, Y. & Wu, X. 2007, 'Model for road network stochastic user 

equilibrium based on bi-level programming under the action of the traffic flow 

guidance system', Journal of Transportation Systems Engineering and 

Information Technology, vol. 7, no. 4, pp. 36-42. 

Chan, H.K. & Chan, F.T.S. 2010, 'Comparative study of adaptability and flexibility in 

distributed manufacturing supply chains', Decision Support Systems, vol. 48, 

no. 2, pp. 331-41. 

Chandra, C. & Grabis, J. 2005, 'Application of multi-steps forecasting for restraining 

the bullwhip effect and improving inventory performance under autoregressive 

demand', European Journal of Operational Research, vol. 166, no. 2, pp. 

337-50. 

Chang, Y.-C., Li, V.C. & Chiang, C.-J. 2014, 'An ant colony optimization heuristic for 

an integrated production and distribution scheduling problem', Engineering 

Optimization, vol. 46, no. 4, pp. 503-20. 

Chiou, S.-W. 2009, 'A bi-level programming for logistics network design with 

system-optimized flows', Information Sciences, vol. 179, no. 14, pp. 2434-41. 

Chiou, S.-W. 2015, 'A bi-level decision support system for uncertain network design 

with equilibrium flow', Decision Support Systems, vol. 69, no. 0, pp. 50-8. 

Chopra, S. & Meindl, P. 2007, Supply Chain Management Strategy, Planning and 

Operation, 3rd edn, Pearson/Prentice Hall, Upper Saddle River, N.J. 



PHD Thesis, UTS  References 

193 

Claassen, M.J.T., van Weele, A.J. & van Raaij, E.M. 2008, 'Performance outcomes 

and success factors of vendor managed inventory (VMI)', Supply Chain 

Management: An International Journal, vol. 13, no. 6, pp. 406-14. 

Deb, K. & Sinha, A. 2009, 'Constructing test problems for bilevel evolutionary 

multi-objective optimization', IEEE Congress on Evolutionary Computation, 

pp. 1153-60. 

Deb, K. & Sinha, A. 2010, 'An efficient and accurate solution methodology for bilevel 

multi-objective programming problems using a hybrid 

evolutionary-local-search algorithm', Evolutionary Computation, vol. 18, no. 3, 

pp. 403-49. 

dell’Olio, L., Ibeas, A. & Ruisánchez, F. 2012, 'Optimizing bus-size and headway in 

transit networks', Transportation, vol. 39, no. 2, pp. 449-64. 

DeMiguel, V. & Huifu, X. 2009, 'A stochastic multiple-leader Stackelberg model: 

Analysis, computation, and application', Operations Research, vol. 57, no. 5, 

pp. 1220-35. 

Dempe, S. 2002, Foundations of Bilevel Programming, Kluwer Academic Publishers, 

Dordrecht, The Netherlands. 

Dempe, S. 2011, 'Comment to “interactive fuzzy goal programming approach for 

bilevel programming problem” by S.R. Arora and R. Gupta', European 

Journal of Operational Research, vol. 212, no. 2, pp. 429-31. 

Dempe, S., Kalashnikov, V. & Rı́os-Mercado, R.Z. 2005, 'Discrete bilevel 

programming: Application to a natural gas cash-out problem', European 

Journal of Operational Research, vol. 166, no. 2, pp. 469-88. 

Dempe, S., Kalashnikov, V.V., Pérez-Valdés, G.A. & Kalashnykova, N.I. 2011, 

'Natural gas bilevel cash-out problem: Convergence of a penalty function 



PHD Thesis, UTS  References 

194 

method', European Journal of Operational Research, vol. 215, no. 3, pp. 

532-8. 

Domínguez, L.F. & Pistikopoulos, E.N. 2010, 'Multiparametric programming based 

algorithms for pure integer and mixed-integer bilevel programming problems', 

Computers & Chemical Engineering, vol. 34, no. 12, pp. 2097-106. 

Dong, Y. & Xu, K. 2002, 'A supply chain model of vendor managed inventory', 

Transportation Research Part E: Logistics and Transportation Review, vol. 38, 

no. 2, pp. 75-95. 

Dong, Y., Xu, K. & Dresner, M. 2007, 'Environmental determinants of VMI adoption: 

An exploratory analysis', Transportation Research Part E: Logistics and 

Transportation Review, vol. 43, no. 4, pp. 355-69. 

Eberhart, R. & Kennedy, J. 1995, 'A new optimizer using particle swarm theory', 

Proceedings of the 6th International Symposium on Micro Machine and 

Human Science, pp. 4-6. 

Edmunds, T. & Bard, J. 1992, 'An algorithm for the mixed-integer nonlinear bilevel 

programming problem', Annals of Operations Research, vol. 34, no. 1, pp. 

149-62. 

Edmunds, T.A. & Bard, J.F. 1991, 'Algorithms for nonlinear bilevel mathematical 

programs', IEEE Transactions on Systems, Man and Cybernetics, vol. 21, no. 

1, pp. 83-9. 

Eichfelder, G. 2010, 'Multiobjective bilevel optimization', Mathematical 

Programming, vol. 123, no. 2, pp. 419-49. 

Emam, O.E. 2013, 'Interactive approach to bi-level integer multi-objective fractional 

programming problem', Applied Mathematics and Computation, vol. 223, no. 

0, pp. 17-24. 



PHD Thesis, UTS  References 

195 

Erkut, E. & Gzara, F. 2008, 'Solving the hazmat transport network design problem', 

Computers & Operations Research, vol. 35, no. 7, pp. 2234-47. 

Faísca, N.P., Dua, V., Rustem, B., Saraiva, P. & Pistikopoulos, E. 2007, 'Parametric 

global optimisation for bilevel programming', Journal of Global Optimization, 

vol. 38, no. 4, pp. 609-23. 

Faísca, N.P., Saraiva, P.M., Rustem, B. & Pistikopoulos, E.N. 2007, 'A 

multi-parametric programming approach for multilevel hierarchical and 

decentralised optimisation problems', Computational Management Science, 

vol. 6, no. 4, pp. 377-97. 

Fernandez-Blanco, R., Arroyo, J.M. & Alguacil, N. 2012, 'A unified bilevel 

programming framework for price-based market clearing under marginal 

pricing', IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 517-25. 

Fernandez-Blanco, R., Arroyo, J.M. & Alguacil, N. 2014, 'Network-constrained 

day-ahead auction for consumer payment minimization', IEEE Transactions 

on Power Systems, vol. 29, no. 2, pp. 526-36. 

Fontaine, P. & Minner, S. 2014, 'Benders decomposition for discrete–continuous 

linear bilevel problems with application to traffic network design', 

Transportation Research Part B: Methodological, vol. 70, no. 0, pp. 163-72. 

Fortuny-Amat, J. & McCarl, B. 1981, 'A Representation and Economic Interpretation 

of a Two-Level Programming Problem', The Journal of the Operational 

Research Society, vol. 32, no. 9, pp. 783-92. 

Gümüş, M., Jewkes, E.M. & Bookbinder, J.H. 2008, 'Impact of consignment 

inventory and vendor-managed inventory for a two-party supply chain', 

International Journal of Production Economics, vol. 113, no. 2, pp. 502-17. 

Gallupe, R.B. 2007, 'The tyranny of methodologies in information systems research', 



PHD Thesis, UTS  References 

196 

SIGMIS Database, vol. 38, no. 3, pp. 20-8. 

Gang, J., Tu, Y., Lev, B., Xu, J., Shen, W. & Yao, L. 2015, 'A multi-objective bi-level 

location planning problem for stone industrial parks', Computers & 

Operations Research, vol. 56, no. 0, pp. 8-21. 

Gao, J. & Liu, B. 2005, 'Fuzzy multilevel programming with a hybrid intelligent 

algorithm', Computers & Mathematics with Applications, vol. 49, no. 9–10, pp. 

1539-48. 

Gao, Y. 2010, 'Bi-level decision making with fuzzy sets and particle swarm 

optimisation', Ph.D thesis, University of Technology Sydney. 

Gao, Y., Zhang, G. & Lu, J. 2009, 'A particle swarm optimization based algorithm for 

fuzzy bilevel decision making with constraints-shared followers', Proceedings 

of the ACM symposium on Applied Computing, pp. 1075-9. 

Gao, Y., Zhang, G., Lu, J., Dillon, T. & Zeng, X. 2008, 'A λ-cut-approximate 

algorithm for goal-based bilevel risk management systems', International 

Journal of Information Technology and Decision Making, vol. 7, no. 4, pp. 

589-610. 

Gao, Y., Zhang, G., Lu, J. & Wee, H.M. 2011, 'Particle swarm optimization for 

bi-level pricing problems in supply chains', Journal of Global Optimization, 

vol. 51, no. 2, pp. 245-54. 

Gao, Y., Zhang, G., Ma, J. & Lu, J. 2010, 'A λ-cut and goal programming based 

algorithm for fuzzy linear multiple objective bi-level optimization', IEEE 

Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 1-13. 

Garcés, L.P., Conejo, A.J., Garcia-Bertrand, R. & Romero, R. 2009, 'A bilevel 

approach to transmission expansion planning within a market environment', 

IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1513-22. 



PHD Thesis, UTS  References 

197 

Ge, X., Chen, Y. & Wang, W. 2013, 'Model and algorithm for inventory-transportation 

integrated optimization based on bi-level programming', International Journal 

of Advancements in Computing Technology, vol. 5, no. 5, pp. 460-8. 

Gendreau, M., Marcotte, P. & Savard, G. 1996, 'A hybrid Tabu-ascent algorithm for 

the linear Bilevel Programming Problem', Journal of Global Optimization, vol. 

8, no. 3, pp. 217-33. 

Glackin, J., Ecker, J.G. & Kupferschmid, M. 2009, 'Solving bilevel linear programs 

using multiple objective linear programming', Journal of Optimization Theory 

and Applications, vol. 140, no. 2, pp. 197-212. 

Govindan, K. 2013, 'Vendor-managed inventory: a review based on dimensions', 

International Journal of Production Research, vol. 51, no. 13, pp. 3808-35. 

Guo, Z., Chang, J., Huang, Q., Xu, L., Da, C. & Wu, H. 2014, 'Bi-level optimization 

allocation model of water resources for different water industries', Water 

Science & Technology: Water Supply, vol. 14, no. 3, pp. 470-7. 

Hajibabai, L., Bai, Y. & Ouyang, Y. 2014, 'Joint optimization of freight facility 

location and pavement infrastructure rehabilitation under network traffic 

equilibrium', Transportation Research Part B: Methodological, vol. 63, no. 0, 

pp. 38-52. 

Hajinassiry, M., Amjady, N. & Sharifzadeh, H. 2014, 'Hydrothermal coordination by 

bi-level optimization and composite constraint handling method', International 

Journal of Electrical Power & Energy Systems, vol. 62, no. 0, pp. 476-89. 

Han, K., Sun, Y., Liu, H., Friesz, T.L. & Yao, T. 2015, 'A bi-level model of dynamic 

traffic signal control with continuum approximation', Transportation Research 

Part C: Emerging Technologies, vol. 55, no. 0, pp. 409-31. 

He, L., Huang, G.H. & Lu, H. 2011, 'Greenhouse gas emissions control in integrated 



PHD Thesis, UTS  References 

198 

municipal solid waste management through mixed integer bilevel 

decision-making', Journal of Hazardous Materials, vol. 193, no. 0, pp. 112-9. 

He, X., Li, C., Huang, T. & Li, C. 2014, 'Neural network for solving convex quadratic 

bilevel programming problems', Neural Networks, vol. 51, no. 0, pp. 17-25. 

Heilpern, S. 1992, 'The expected value of a fuzzy number', Fuzzy Sets and Systems, 

vol. 47, no. 1, pp. 81-6. 

Hejazi, S.R., Memariani, A., Jahanshahloo, G. & Sepehri, M.M. 2002, 'Linear bilevel 

programming solution by genetic algorithm', Computers & Operations 

Research, vol. 29, no. 13, pp. 1913-25. 

Hesamzadeh, M.R. & Yazdani, M. 2014, 'Transmission capacity expansion in 

imperfectly competitive power markets', IEEE Transactions on Power Systems, 

vol. 29, no. 1, pp. 62-71. 

Ho, W.-T. & Hsiao, Y.-C. 2014, 'An integrated production and inventory model for a 

system comprising an assembly supply chain and a distribution network', 

International Journal of Systems Science, vol. 45, no. 5, pp. 841-57. 

Holweg, M., Disney, S., Holmström, J. & Småros, J. 2005, 'Supply Chain 

Collaboration:: Making Sense of the Strategy Continuum', European 

Management Journal, vol. 23, no. 2, pp. 170-81. 

Hu, T., Guo, X., Fu, X. & Lv, Y. 2010, 'A neural network approach for solving linear 

bilevel programming problem', Knowledge-Based Systems, vol. 23, no. 3, pp. 

239-42. 

Ivanov, D., Sokolov, B. & Dolgui, A. 2013, 'Multi-stage supply chain scheduling with 

non-preemptive continuous operations and execution control', International 

Journal of Production Research, vol. 52, no. 13, pp. 4059-77. 

Júdice, J.J. & Faustino, A.M. 1992, 'A sequential LCP method for bilevel linear 



PHD Thesis, UTS  References 

199 

programming', Annals of Operations Research, vol. 34, no. 1, pp. 89-106. 

Jiménez, M. 1996, 'Ranking fuzzy numbers through the comparison of its expected 

intervals', International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, vol. 04, no. 04, pp. 379-88. 

Jiménez, M., Arenas, M., Bilbao, A. & Rodrı´guez, M.V. 2007, 'Linear programming 

with fuzzy parameters: An interactive method resolution', European Journal of 

Operational Research, vol. 177, no. 3, pp. 1599-609. 

Küçükaydin, H., Aras, N. & Kuban Altınel, I. 2011, 'Competitive facility location 

problem with attractiveness adjustment of the follower: A bilevel 

programming model and its solution', European Journal of Operational 

Research, vol. 208, no. 3, pp. 206-20. 

Köppe, M., Queyranne, M. & Ryan, C.T. 2010, 'Parametric integer programming 

algorithm for bilevel mixed integer programs', Journal of Optimization Theory 

and Applications, vol. 146, no. 1, pp. 137-50. 

Kalashnikov, V., Pérez, G. & Kalashnykova, N. 2010, 'A linearization approach to 

solve the natural gas cash-out bilevel problem', Annals of Operations Research, 

vol. 181, no. 1, pp. 423-42. 

Kalashnikov, V. & Ríos-Mercado, R. 2006, 'A natural gas cash-out problem: A bilevel 

programming framework and a penalty function method', Optimization and 

Engineering, vol. 7, no. 4, pp. 403-20. 

Kasemset, C. & Kachitvichyanukul, V. 2012, 'A PSO-based procedure for a bi-level 

multi-objective TOC-based job-shop scheduling problem', International 

Journal of Operational Research, vol. 14, no. 1, pp. 50-69. 

Kennedy, J. & Eberhart, R. 1995, 'Particle swarm optimization', Proceedings of The 

1995 IEEE International Conference on Neural Networks, pp. 1942-8. 



PHD Thesis, UTS  References 

200 

Kis, T. & Kovács, A. 2013, 'Exact solution approaches for bilevel lot-sizing', 

European Journal of Operational Research, vol. 226, no. 2, pp. 237-45. 

Konur, D. & Golias, M.M. 2013, 'Analysis of different approaches to cross-dock truck 

scheduling with truck arrival time uncertainty', Computers & Industrial 

Engineering, vol. 65, no. 4, pp. 663-72. 

Kumar, N., Singh, S.R. & Kumari, R. 2012, 'Three echelon supply chain inventory 

model for deteriorating items with limited storage facility and lead–time under 

inflation', International Journal of Services and Operations Management, vol. 

13, no. 1, pp. 98-118. 

Kumar, S. & Chandra, C. 2002, 'Managing multi-item common vendor inventory 

system with random demands', International Journal of Physical Distribution 

& Logistics Management, vol. 32, no. 3, pp. 188-202. 

Kuo, R.J. & Han, Y.S. 2011, 'A hybrid of genetic algorithm and particle swarm 

optimization for solving bi-level linear programming problem: A case study on 

supply chain model', Applied Mathematical Modelling, vol. 35, no. 8, pp. 

3905-17. 

Kuo, R.J. & Huang, C.C. 2009, 'Application of particle swarm optimization algorithm 

for solving bi-level linear programming problem', Computers & Mathematics 

with Applications, vol. 58, no. 4, pp. 678-85. 

Lai, Y.-J. 1996, 'Hierarchical optimization: A satisfactory solution', Fuzzy Sets and 

Systems, vol. 77, no. 3, pp. 321-35. 

Lan, K.-M., Wen, U.-P., Shih, H.-S. & Lee, E.S. 2007, 'A hybrid neural network 

approach to bilevel programming problems', Applied Mathematics Letters, vol. 

20, no. 8, pp. 880-4. 

Lee, J.-Y. & Cho, R.K. 2014, 'Contracting for vendor-managed inventory with 



PHD Thesis, UTS  References 

201 

consignment stock and stockout-cost sharing', International Journal of 

Production Economics, vol. 151, no. 0, pp. 158-73. 

Li, D. & Cruz Jr, J.B. 2009, 'Information, decision-making and deception in games', 

Decision Support Systems, vol. 47, no. 4, pp. 518-27. 

Liu, B. 1998, 'Stackelberg-Nash equilibrium for multilevel programming with 

multiple followers using genetic algorithms', Computers & Mathematics with 

Applications, vol. 36, no. 7, pp. 79-89. 

Liu, W., Zheng, Z. & Cai, K.-Y. 2013, 'Bi-level programming based real-time path 

planning for unmanned aerial vehicles', Knowledge-Based Systems, vol. 44, no. 

0, pp. 34-47. 

Lu, J. & Shi, C. 2007, 'An extended branch and bound algorithm for bilevel 

multi-follower decision making in a referential-uncooperative situation', 

International Journal of Information Technology and Decision Making, vol. 6, 

no. 2, pp. 371-88. 

Lu, J., Shi, C. & Zhang, G. 2006, 'On bilevel multi-follower decision making: General 

framework and solutions', Information Sciences, vol. 176, no. 11, pp. 1607-27. 

Lu, J., Shi, C., Zhang, G. & Dillon, T. 2007, 'Model and extended Kuhn-Tucker 

approach for bilevel multi-follower decision making in a 

referential-uncooperative situation', Journal of Global Optimization, vol. 38, 

no. 4, pp. 597-608. 

Lu, J., Zhang, G., Montero, J. & Garmendia, L. 2012, 'Multifollower trilevel decision 

making models and system', IEEE Transactions on Industrial Informatics, vol. 

8, no. 4, pp. 974-85. 

Lukač, Z., Šorić, K. & Rosenzweig, V.V. 2008, 'Production planning problem with 

sequence dependent setups as a bilevel programming problem', European 



PHD Thesis, UTS  References 

202 

Journal of Operational Research, vol. 187, no. 3, pp. 1504-12. 

Lv, N., Yan, X., Xu, K. & Wu, C. 2010, 'Bi-level programming based contra flow 

optimization for evacuation events', Kybernetes, vol. 39, no. 8, pp. 1227-34. 

Lv, Y., Chen, Z. & Wan, Z. 2010, 'A neural network for solving a convex quadratic 

bilevel programming problem', Journal of Computational and Applied 

Mathematics, vol. 234, no. 2, pp. 505-11. 

Lv, Y., Hu, T., Wang, G. & Wan, Z. 2008, 'A neural network approach for solving 

nonlinear bilevel programming problem', Computers & Mathematics with 

Applications, vol. 55, no. 12, pp. 2823-9. 

Ma, W., Wang, M. & Zhu, X. 2014, 'Improved particle swarm optimization based 

approach for bilevel programming problem: An application on supply chain 

model', International Journal of Machine Learning and Cybernetics, vol. 5, no. 

2, pp. 281-92. 

Marquès, G., Thierry, C., Lamothe, J. & Gourc, D. 2010, 'A review of Vendor 

Managed Inventory (VMI): from concept to processes', Production Planning 

& Control, vol. 21, no. 6, pp. 547-61. 

Mersha, A. & Dempe, S. 2011, 'Direct search algorithm for bilevel programming 

problems', Computational Optimization and Applications, vol. 49, no. 1, pp. 

1-15. 

Mersha, A.G. & Dempe, S. 2006, 'Linear bilevel programming with upper level 

constraints depending on the lower level solution', Applied Mathematics and 

Computation, vol. 180, no. 1, pp. 247-54. 

Mitsos, A. 2010, 'Global solution of nonlinear mixed-integer bilevel programs', 

Journal of Global Optimization, vol. 47, no. 4, pp. 557-82. 

Mitsos, A., Lemonidis, P. & Barton, P. 2008, 'Global solution of bilevel programs with 



PHD Thesis, UTS  References 

203 

a nonconvex inner program', Journal of Global Optimization, vol. 42, no. 4, 

pp. 475-513. 

Moore, J.T. & Bard, J.F. 1990, 'The mixed integer linear bilevel programming 

problem', Operations Research, vol. 38, no. 5, p. 911. 

Nie, P.-y. 2011, 'Dynamic discrete-time multi-leader–follower games with leaders in 

turn', Computers & Mathematics with Applications, vol. 61, no. 8, pp. 

2039-43. 

Nishizaki, I. & Sakawa, M. 2005, 'Computational methods through genetic algorithms 

for obtaining Stackelberg solutions to two-level integer programming 

problems', Cybernetics and Systems, vol. 36, no. 6, pp. 565-79. 

Niu, L. 2009, 'The cognition-driven decision process for business intelligence: a 

model and techniques', Ph.D thesis, University of Technology, Sydney. 

Önal, H. 1993, 'A modified simplex approach for solving bilevel linear programming 

problems', European Journal of Operational Research, vol. 67, no. 1, pp. 

126-35. 

Osman, M.S., Abo-Sinna, M.A., Amer, A.H. & Emam, O.E. 2004, 'A multi-level 

non-linear multi-objective decision-making under fuzziness', Applied 

Mathematics and Computation, vol. 153, no. 1, pp. 239-52. 

Pal, B., Sana, S.S. & Chaudhuri, K. 2013, 'Three stage trade credit policy in a 

three-layer supply chain–a production-inventory model', International Journal 

of Systems Science, vol. 45, no. 9, pp. 1844-68. 

Pasandideh, S., Niaki, S. & Roozbeh Nia, A. 2010, 'An investigation of 

vendor-managed inventory application in supply chain: the EOQ model with 

shortage', The International Journal of Advanced Manufacturing Technology, 

vol. 49, no. 1-4, pp. 329-39. 



PHD Thesis, UTS  References 

204 

Plastria, F. & Vanhaverbeke, L. 2008, 'Discrete models for competitive location with 

foresight', Computers & Operations Research, vol. 35, no. 3, pp. 683-700. 

Pramanik, S. 2012, 'Bilevel programming problem with fuzzy parameters: a fuzzy 

goal programing approach', Journal of Applied Quantitative Methods, vol. 7, p. 

9-24. 

Pramanik, S. & Roy, T.K. 2007, 'Fuzzy goal programming approach to multilevel 

programming problems', European Journal of Operational Research, vol. 176, 

no. 2, pp. 1151-66. 

Qiu, X. & Huang, G.Q. 2013, 'Storage pricing, replenishment, and delivery schedules 

in a supply hub in industrial park: A bilevel programming approach', 

International Journal of Production Research, vol. 51, no. 23-24, pp. 6950-71. 

Ren, A. & Wang, Y. 2014, 'A cutting plane method for bilevel linear programming 

with interval coefficients', Annals of Operations Research, vol. 223, no. 1, pp. 

355-78. 

Ren, G., Huang, Z., Cheng, Y., Zhao, X. & Zhang, Y. 2013, 'An integrated model for 

evacuation routing and traffic signal optimization with background demand 

uncertainty', Journal of Advanced Transportation, vol. 47, no. 1, pp. 4-27. 

Rider, M.J., López-Lezama, J.M., Contreras, J. & Padilha-Feltrin, A. 2013, 'Bilevel 

approach for optimal location and contract pricing of distributed generation in 

radial distribution systems using mixed-integer linear programming', IET 

Generation, Transmission & Distribution, vol. 7, no. 7, pp. 724-34. 

Ruan, G.Z., Wang, S.Y., Yamamoto, Y. & Zhu, S.S. 2004, 'Optimality conditions and 

geometric properties of a linear multilevel programming problem with 

dominated objective functions', Journal of Optimization Theory and 

Applications, vol. 123, no. 2, pp. 409-29. 



PHD Thesis, UTS  References 

205 

Ryu, K., Moon, I., Oh, S. & Jung, M. 2013, 'A fractal echelon approach for inventory 

management in supply chain networks', International Journal of Production 

Economics, vol. 143, no. 2, pp. 316-26. 

Sadeghi, J., Mousavi, S.M., Niaki, S.T.A. & Sadeghi, S. 2013, 'Optimizing a 

multi-vendor multi-retailer vendor managed inventory problem: Two tuned 

meta-heuristic algorithms', Knowledge-Based Systems, vol. 50, no. 0, pp. 

159-70. 

Sakawa, M. & Nishizaki, I. 2002, 'Interactive fuzzy programming for two-level 

nonconvex programming problems with fuzzy parameters through genetic 

algorithms', Fuzzy Sets and Systems, vol. 127, pp. 185-97. 

Sakawa, M., Nishizaki, I. & Hitaka, M. 2001, 'Interactive fuzzy programming for 

multi-level 0-1 programming problems with fuzzy parameters through genetic 

algorithms', Fuzzy Sets and Systems, vol. 117, no. 1, pp. 95-111. 

Sakawa, M., Nishizaki, I. & Uemura, Y. 1998, 'Interactive fuzzy programming for 

multilevel linear programming problems', Computers & Mathematics with 

Applications, vol. 36, no. 2, pp. 71-86. 

Sakawa, M., Nishizaki, I. & Uemura, Y. 2000a, 'Interactive fuzzy programming for 

multi-level linear programming problems with fuzzy parameters', Fuzzy Sets 

and Systems, vol. 109, no. 1, pp. 3-19. 

Sakawa, M., Nishizaki, I. & Uemura, Y. 2000b, 'Interactive fuzzy programming for 

two-level linear fractional programming problems with fuzzy parameters', 

Fuzzy Sets and Systems, vol. 115, pp. 93-103. 

Sana, S.S. 2011, 'A production-inventory model of imperfect quality products in a 

three-layer supply chain', Decision Support Systems, vol. 50, no. 2, pp. 

539-47. 



PHD Thesis, UTS  References 

206 

Scaparra, M.P. & Church, R.L. 2008, 'A bilevel mixed-integer program for critical 

infrastructure protection planning', Computers & Operations Research, vol. 35, 

no. 6, pp. 1905-23. 

Shambour, Q.Y. 2012, 'Hybrid recommender systems for personalized 

government-to-business e-services', Ph.D thesis, University of Technology, 

Sydney. 

Shao, H., Lam, W.H.K., Sumalee, A., Chen, A. & Hazelton, M.L. 2014, 'Estimation of 

mean and covariance of peak hour origin–destination demands from 

day-to-day traffic counts', Transportation Research Part B: Methodological, 

vol. 68, no. 0, pp. 52-75. 

Sharma, V., Dahiya, K. & Verma, V. 2014, 'A class of integer linear fractional bilevel 

programming problems', Optimization, vol. 63, no. 10, pp. 1565-81. 

Shi, C. & Eberhart, R. 1998, 'A modified particle swarm optimizer', Proceedings of 

The 1998 IEEE International Conference on Evolutionary Computation, pp. 

4-9. 

Shi, C., Lu, J. & Zhang, G. 2005, 'An extended Kth-best approach for linear bilevel 

programming', Applied Mathematics and Computation, vol. 164, no. 3, pp. 

843-55. 

Shi, C., Lu, J., Zhang, G. & Zhou, H. 2006, 'An extended branch and bound algorithm 

for linear bilevel programming', Applied Mathematics and Computation, vol. 

180, no. 2, pp. 529-37. 

Shi, C., Zhang, G. & Lu, J. 2005, 'The Kth-Best Approach for Linear Bilevel 

Multi-follower Programming', Journal of Global Optimization, vol. 33, no. 4, 

pp. 563-78. 

Shi, C., Zhou, H., Lu, J., Zhang, G. & Zhang, Z. 2007, 'The Kth-best approach for 



PHD Thesis, UTS  References 

207 

linear bilevel multifollower programming with partial shared variables among 

followers', Applied Mathematics and Computation, vol. 188, no. 2, pp. 

1686-98. 

Shih, H.-S., Lai, Y.-J. & Lee, E.S. 1996, 'Fuzzy approach for multi-level programming 

problems', Computers & Operations Research, vol. 23, no. 1, pp. 73-91. 

Shih, H.s., Cheng, C.b., Wen, U.p., Huang, Y.c. & Peng, M.y. 2012, 'Determining a 

subsidy rate for Taiwan's recycling glass industry: An application of bi-level 

programming', The Journal of the Operational Research Society, vol. 63, no. 1, 

pp. 28-37. 

Sinha, A., Malo, P. & Deb, K. 2014, 'Test problem construction for single-objective 

bilevel optimization', Evoluation Computation, vol. 22, no. 3, pp. 439-77. 

Sinha, A., Malo, P., Frantsev, A. & Deb, K. 2014, 'Finding optimal strategies in a 

multi-period multi-leader–follower Stackelberg game using an evolutionary 

algorithm', Computers & Operations Research, vol. 41, no. 0, pp. 374-85. 

Sinha, S. 2001, 'A comment on Anandalingam (1988). A mathematical programming 

model of decentralized multi-level systems. J Opl Res Soc 39: 1021-1033', 

Journal of the Operational Research Society, vol. 52, no. 5, pp. 594-6. 

Sinha, S. 2003a, 'Fuzzy mathematical programming applied to multi-level 

programming problems', Computers & Operations Research, vol. 30, no. 9, pp. 

1259-68. 

Sinha, S. 2003b, 'Fuzzy programming approach to multi-level programming problems', 

Fuzzy Sets and Systems, vol. 136, no. 2, pp. 189-202. 

Skulovich, O., Perelman, L. & Ostfeld, A. 2014, 'Bi-level optimization of closed surge 

tanks placement and sizing in water distribution system subjected to transient 

events', Procedia Engineering, vol. 89, no. 0, pp. 1329-35. 



PHD Thesis, UTS  References 

208 

Stackelberg, H.V. 1952, The Theory of Market Economy, Oxford University Press, 

Oxford. 

Street, A., Moreira, A. & Arroyo, J.M. 2014, 'Energy and reserve scheduling under a 

joint generation and transmission security criterion: An adjustable robust 

optimization approach', IEEE Transactions on Power Systems, vol. 29, no. 1, 

pp. 3-14. 

Taha, A.F., Hachem, N.A. & Panchal, J.H. 2014, 'A Quasi-Feed-In-Tariff policy 

formulation in micro-grids: A bi-level multi-period approach', Energy Policy, 

vol. 71, no. 0, pp. 63-75. 

Tan, P.S., Lee, S.S.G. & Goh, A.E.S. 2012, 'Multi-criteria decision techniques for 

context-aware B2B collaboration in supply chains', Decision Support Systems, 

vol. 52, no. 4, pp. 779-89. 

Tan, R.R., Aviso, K.B., Cruz Jr, J.B. & Culaba, A.B. 2011, 'A note on an extended 

fuzzy bi-level optimization approach for water exchange in eco-industrial 

parks with hub topology', Process Safety & Environmental Protection: 

Transactions of the Institution of Chemical Engineers Part B, vol. 89, no. 2, 

pp. 106-11. 

Tuy, H., Migdalas, A. & Hoai-Phuong, N.T. 2007, 'A novel approach to Bilevel 

nonlinear programming', Journal of Global Optimization, vol. 38, no. 4, pp. 

527-54. 

Tuy, H., Migdalas, A. & Värbrand, P. 1993, 'A global optimization approach for the 

linear two-level program', Journal of Global Optimization, vol. 3, no. 1, pp. 

1-23. 

Ukkusuri, S., Doan, K. & Aziz, H.M.A. 2013, 'A bi-level formulation for the 

combined dynamic equilibrium based traffic signal control', Procedia - Social 

and Behavioral Sciences, vol. 80, no. 0, pp. 729-52. 



PHD Thesis, UTS  References 

209 

Vaishnavi, V.K. & Kuechler Jr, W. 2007, Design Science Research Methods and 

Patterns: Innovating Information and Communication Technology, CRC 

Press. 

Vicente, L. & Calamai, P. 1994, 'Bilevel and multilevel programming: A bibliography 

review', Journal of Global Optimization, vol. 5, no. 3, pp. 291-306. 

Vicente, L., Savard, G. & Judice, J. 1996, 'Discrete linear bilevel programming 

problem', Journal of Optimization Theory and Applications, vol. 89, no. 3, pp. 

597-614. 

Wan, Z., Mao, L. & Wang, G. 2014, 'Estimation of distribution algorithm for a class 

of nonlinear bilevel programming problems', Information Sciences, vol. 256, 

no. 0, pp. 184-96. 

Wan, Z., Wang, G. & Sun, B. 2013, 'A hybrid intelligent algorithm by combining 

particle swarm optimization with chaos searching technique for solving 

nonlinear bilevel programming problems', Swarm and Evolutionary 

Computation, vol. 8, no. 0, pp. 26-32. 

Wang, S., Meng, Q. & Yang, H. 2013, 'Global optimization methods for the discrete 

network design problem', Transportation Research Part B: Methodological, 

vol. 50, no. 0, pp. 42-60. 

Wang, Y., Jiao, Y.-C. & Li, H. 2005, 'An evolutionary algorithm for solving nonlinear 

bilevel programming based on a new constraint-handling scheme', IEEE 

Transactions on Systems, Man, and Cybernetics, Part C: Applications and 

Reviews, vol. 35, no. 2, pp. 221-32. 

Wen, U.P. & Huang, A.D. 1996, 'A simple Tabu Search method to solve the 

mixed-integer linear bilevel programming problem', European Journal of 

Operational Research, vol. 88, no. 3, pp. 563-71. 



PHD Thesis, UTS  References 

210 

Wen, U.P. & Yang, Y.H. 1990, 'Algorithms for solving the mixed integer two-level 

linear programming problem', Computers & Operations Research, vol. 17, no. 

2, pp. 133-42. 

White, D.J. 1997, 'Penalty function approach to linear trilevel programming', Journal 

of Optimization Theory and Applications, vol. 93, no. 1, pp. 183-97. 

White, D.J. & Anandalingam, G. 1993, 'A penalty function approach for solving 

bi-level linear programs', Journal of Global Optimization, vol. 3, no. 4, pp. 

397-419. 

Xu, J. & Gang, J. 2013, 'Multi-objective bilevel construction material transportation 

scheduling in large-scale construction projects under a fuzzy random 

environment', Transportation Planning and Technology, vol. 36, no. 4, pp. 

352-76. 

Xu, P. & Wang, L. 2014, 'An exact algorithm for the bilevel mixed integer linear 

programming problem under three simplifying assumptions', Computers & 

Operations Research, vol. 41, no. 0, pp. 309-18. 

Xu, X., Meng, Z. & Shen, R. 2013, 'A tri-level programming model based on 

Conditional Value-at-Risk for three-stage supply chain management', 

Computers & Industrial Engineering, vol. 66, no. 2, pp. 470-5. 

Yang, D., Jiao, J., Ji, Y., Du, G., Helo, P. & Valente, A. 2015, 'Joint optimization for 

coordinated configuration of product families and supply chains by a 

leader-follower Stackelberg game', European Journal of Operational Research, 

vol. In Press. 

Yao, Y., Edmunds, T., Papageorgiou, D. & Alvarez, R. 2007, 'Trilevel optimization in 

power network defense', IEEE Transactions on Systems, Man, and 

Cybernetics, vol. 37, no. 4, pp. 712-8. 



PHD Thesis, UTS  References 

211 

Zavanella, L. & Zanoni, S. 2009, 'A one-vendor multi-buyer integrated 

production-inventory model: The ‘Consignment Stock’ case', International 

Journal of Production Economics, vol. 118, no. 1, pp. 225-32. 

Zhang, G. & Lu, J. 2005, 'The definition of optimal solution and an extended 

Kuhn-Tucker approach for fuzzy linear bi-level programming', IEEE 

Computational Intelligence Bulletin, vol. 2, no. 5, pp. 1-7. 

Zhang, G. & Lu, J. 2007, 'Model and approach of fuzzy bi-level decision making for 

logistics planning problem', Journal of Enterprise Information Management, 

vol. 20, pp. 178-97. 

Zhang, G. & Lu, J. 2010, 'Fuzzy bilevel programming with multiple objectives and 

cooperative multiple followers', Journal of Global Optimization vol. 47, no. 3, 

pp. 403-19. 

Zhang, G., Lu, J. & Dillon, T. 2007a, 'Decentralized multi-objective bilevel decision 

making with fuzzy demands', Knowledge-Based Systems, vol. 20, no. 5, pp. 

495-507. 

Zhang, G., Lu, J. & Dillon, T. 2007b, 'Models and algorithm for fuzzy multi-objective 

multi-follower linear bilevel programming', IEEE International Fuzzy Systems 

Conference, pp. 1-6. 

Zhang, G., Lu, J. & Gao, Y. 2008, 'An algorithm for fuzzy multi-objective 

multi-follower partial cooperative bilevel programming', Journal of Intelligent 

& Fuzzy Systems, vol. 19, no. 4-5, pp. 303-19. 

Zhang, G., Lu, J. & Gao, Y. 2015, Multi-Level Decision Making: Models, Methods 

and Applications, Springer, Berlin. 

Zhang, G., Lu, J., Montero, J. & Zeng, Y. 2010, 'Model, Solution concept and the 

Kth-best algorithm for linear tri-level programming', Information Sciences, vol. 



PHD Thesis, UTS  References 

212 

180, no. 4, pp. 481-92. 

Zhang, G., Zhang, G., Gao, Y. & Lu, J. 2009, 'A bilevel optimization model and a 

PSO-based algorithm in day-ahead electricity markets', IEEE International 

Conference on Systems, Man and Cybernetics, San Antonio, TX, pp. 617-22. 

Zhang, G., Zhang, G., Gao, Y. & Lu, J. 2011, 'Competitive strategic bidding 

optimization in electricity markets using bilevel programming and swarm 

technique', IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 

2138-46. 

Zhang, T., Hu, T., Guo, X., Chen, Z. & Zheng, Y. 2013, 'Solving high dimensional 

bilevel multiobjective programming problem using a hybrid particle swarm 

optimization algorithm with crossover operator', Knowledge-Based Systems, 

vol. 53, no. 0, pp. 13-9. 

 

 
 



PHD Thesis, UTS  Abbreviations 

213 

Abbreviations 

AC Alternating current 

BLMF Bi-level multi-follower 

BLML Bi-level multi-leader 

BLMLMF Bi-level multi-leader and multi-follower 

BLMO Bi-level multi-objective 

BLMOMF Bi-level multi-objective multi-follower 

EIP Eco-industrial park 

GABB Genetic algorithm based on bases 
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MFCQ Manasarian-Fromowitz constraint qualification 

MRP Material requirement planning 

PSO Particle swarm optimization 

PSO-CST Particle swarm optimization with chaos searching technique 

SCM Supply chain management 

TLMF Tri-level multi-follower 

VMI Vendor-managed inventory 
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