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Abstract

Next generation networks need to support a broad range of services and functional-
ities with capabilities such as autonomy, scalability, and adaptability for managing
networks complexity. In present days, network infrastructures are becoming increas-
ingly complex and challenging to administer due to scale and heterogeneous nature
of the infrastructures. Furthermore, among various vendors, services, and platforms,
managing networks require expert operators who have expertise in all different fields.

This research relied on distributed active information model (DAIM) to establish a
foundation which will meet future network management requirements. The DAIM
is an information model for network solutions which considers challenges of auto-
nomic functionalities, where the network devices can make local and overall net-
work decisions by collected information. The DAIM model can facilitate networks
management by introducing autonomic behaviours. The autonomic behaviours for
communication networks lead networks to be self-managed and emerge as promising
solutions to manage networks complexity.

Autonomic networks management aims at reducing the workload on network op-
erators from low-level tasks. Over the years, researchers have proposed a number
of models for developing self-managed network solutions. One such example is the
common information model (CIM), which is described as the managed environment
that attempts to merge and extend the existing conventional management and also
uses object-oriented constructs for overall network representation. However, the
CIM has limitations coping in complex distributed electronic environments with
multiple disciplines.

The goal of this research is defined as development of a network architecture or a
solution based on the DAIM model, which is effectively distribute and automate
network’s functions to various network devices. The research first looks into the
possibilities of local decision-making and programmability of network elements for
distributed electronic environments with an intention to simplify network manage-
ment by providing abstracted network infrastructures. After investigating and im-
plementing different elements of the DAIM model in network forwarding devices by
utilising virtual network switches, it discovers that a common high-level interface
and framework for network devices are essential for the development of network
solutions which will meet future network requirements.

The outcome of this research is the development of (DAIM OS) specification. The
DAIM OS is a network forwarding device operating system which is compliant with



the DAIM model when it comes to network infrastructure management and provides
a high-level abstracted application programming interface (DAIM OS API) for cre-
ating network service applications. Through the DAIM OS, network elements will
be able to adapt to ever changing environments to meet the goals of service pro-
viders, vendors, and end users. Furthermore, the DAIM OS API aims to reduce
complexity and time of network service applications development.

If the developed DAIM OS specification is implemented and if it functions as pre-
dicted in the design analyses; that will result in a significant milestone in the devel-
opment of distributed network management.

This dissertation has an introduction in chapter 1 followed by five parts in order
to draw a blueprint for information model as a distributed independent computing
environment for autonomic network management. The five parts include lending
weight to the proposition, gaining confidence in the proposition, drawing conclusions,
supporting work and lastly is appendices.

The introduction in chapter 1 includes motivations for the research, main chal-
lenges of the research, overall objectives, and review of research contributions. After
that, to lend weight to the proposition as the first part of the dissertation, there
is chapter 2 which presents the background and literature review, and chapter 3
which has a theoretical foundation for the proposed model. The foundation consists
of a generic architecture for complex network management and agents to aggreg-
ate distributed network information. Moreover, chapter 3 is probably more about a
state of the art in software engineering than about real implementation to engineer
autonomic network management.

The second part of the dissertation is to gain confidence in the proposition which
includes attempting to implement the DAIM model in chapter 4 with some tests to
report good performance regarding convergence and robustness for the service con-
figuration process of network management. Also, the second part has a specification
of true abstraction layers in chapter 5. The specification of true abstraction layers
proposes a high-level abstraction for forwarding networking devices and provides
an application program interface for network service applications developed by net-
work operators and service providers. The implementation in chapter 4 is supported
by the fourth part of the dissertation in chapter 10 which supports the theoretical
foundation, designing, modelling, and developing the distributed active information
model via simulation, emulation and real environments.

The third part of this dissertation provides the way to draw conclusions as shown
in chapter 7 which has the overall research summary, validation of the propositions,
contributions and discussion, limitations and finally recommendations for future
works.

Finally are the appendices in Appendix A, Appendix B, Appendix C and Appendix D
which provide a developing code of the core DAIM model and show different setting
up for testbed environments.
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