A Dissertation submitted in fulfilment of the
requirements for the degree of Doctor of
Philosophy

Autonomic Management of Software
Defined Networks

DAIM can provide the environment for building autonomy in
distributed electronic environments - using OpenFlow networks
as the case study

Ameen Reda Banjar

Spring 2016

University of Technology, Sydney,
Faculty of Engineering and Information Technology
Centre for Real Time Information Networks

Supervisor

Professor Robin Braun

Co-supervisor(s)
Dr. Bruce Moulton

Certificate of Original Authorship

I certify that the work in this dissertation has not previously been submitted for a
degree nor has it been submitted as part of requirements for a degree except as
fully acknowledged within the text.

I also certify that the dissertation has been written by me. Any help that I have
received in my research work and the preparation of the thesis it self has been
acknowledged. In addition, I certify that all information sources and literature

used are indicated in the dissertation.

Signature of Candidate

day of —————— 2016

Acknowledgments

I would like to express my sincere gratitude to my supervisor Professor Robin Braun,
who guided me through this research, was a great source of encouragement, and
always made me go that extra mile to resolve the various dilemmas that lead to
this dissertation. I learned a lot from his mature view on topics from a high level
and excellent computer and networking skills. I am gratefully thanking him for
his guidance to me throughout the years. Also, his patience with me is always
acknowledged and appreciated. 1 would also thank my Co-supervisor, Dr Bruce
Moulton, for supporting me throughout this research work.

[am grateful to Dr Zenon Chaczko from the School of Computing and Commu-
nications for assistance in the publication of Springer book chapters, Chairing AP-
CASE’14 in Bali and being a member of my CA panel. Also, for the very helpful
technical chats and continuous support in the past years.

[am pleased to work in close collaboration with Pakawat Pupatwibul, my research
collaborator and best friend, and I am gratefully thanking him for his invaluable
contributions and innovative ideas towards this research project. I am so proud of
what we have achieved together, thank you Pakawat.

During the period of this research, I also benefited greatly from interactions and
discussions with my colleagues, namely Dr Abdallah AL Sabbagh and to whom I'm
deeply indebted. A special mention also goes to Md Imam Hossain from the School
of Electrical and Mechanical Engineering of ongoing solutions to the problems in
C/C++ programming and extensive help in setting up the testbed used for this
research. My big thanks also go to the anonymous reviewers for their work in
improving the quality regarding my publications which have been published and
being under review now.

The interactions, technical discussions and conversations with my friends and mem-
bers of the Centre for Real-time Information Networks helped me during the period
of this research, not only regarding resolving quick technical challenges but also with
regards to “lightening up”. I have enjoyed many useful and happy chats with them.
I have been very fortunate to have them around during my Ph.D. research study.

I am honoured to have got government’s scholarship from saudi arabia. Thank for
their generosity, which has allowed me to be able to pursue the degree. Without
this, I would not have been able to do it. I would also like to acknowledge the School
of Computing and Communications at UTS for ongoing travel and infrastructure
support.

il

Last, but by no means the least, [would like to thank my family for their endless
support and all of the sacrifices that they have made on my behalf. Thank you to
my mother, Jamilah Banjar, also to my daughter, Miar. You have provided me with
plenty of love, patience, support, and encouragement over the years and for that I
am incredibly grateful.

Some contents in chapter 1 and chapter 2 have been submitted to UTS subjects
(32144: IT Research Preparation and 32931: Technology Research Methods). These
subjects aim to guide research students to prepare literature reviews also experience
in the design of research studies, in the analysis and interpretation of data, and in
report presentation. As these contents have not been published; they can not be
referenced but they can be searched by some software such as Turnitin.

iv

Abstract

Next generation networks need to support a broad range of services and functional-
ities with capabilities such as autonomy, scalability, and adaptability for managing
networks complexity. In present days, network infrastructures are becoming increas-
ingly complex and challenging to administer due to scale and heterogeneous nature
of the infrastructures. Furthermore, among various vendors, services, and platforms,
managing networks require expert operators who have expertise in all different fields.

This research relied on distributed active information model (DAIM) to establish a
foundation which will meet future network management requirements. The DAIM
is an information model for network solutions which considers challenges of auto-
nomic functionalities, where the network devices can make local and overall net-
work decisions by collected information. The DAIM model can facilitate networks
management by introducing autonomic behaviours. The autonomic behaviours for
communication networks lead networks to be self-managed and emerge as promising
solutions to manage networks complexity.

Autonomic networks management aims at reducing the workload on network op-
erators from low-level tasks. Over the years, researchers have proposed a number
of models for developing self-managed network solutions. One such example is the
common information model (CIM), which is described as the managed environment
that attempts to merge and extend the existing conventional management and also
uses object-oriented constructs for overall network representation. However, the
CIM has limitations coping in complex distributed electronic environments with
multiple disciplines.

The goal of this research is defined as development of a network architecture or a
solution based on the DAIM model, which is effectively distribute and automate
network’s functions to various network devices. The research first looks into the
possibilities of local decision-making and programmability of network elements for
distributed electronic environments with an intention to simplify network manage-
ment by providing abstracted network infrastructures. After investigating and im-
plementing different elements of the DAIM model in network forwarding devices by
utilising virtual network switches, it discovers that a common high-level interface
and framework for network devices are essential for the development of network
solutions which will meet future network requirements.

The outcome of this research is the development of (DAIM OS) specification. The
DAIM OS is a network forwarding device operating system which is compliant with

the DAIM model when it comes to network infrastructure management and provides
a high-level abstracted application programming interface (DAIM OS API) for cre-
ating network service applications. Through the DAIM OS, network elements will
be able to adapt to ever changing environments to meet the goals of service pro-
viders, vendors, and end users. Furthermore, the DAIM OS API aims to reduce
complexity and time of network service applications development.

If the developed DAIM OS specification is implemented and if it functions as pre-
dicted in the design analyses; that will result in a significant milestone in the devel-
opment of distributed network management.

This dissertation has an introduction in chapter 1 followed by five parts in order
to draw a blueprint for information model as a distributed independent computing
environment for autonomic network management. The five parts include lending
weight to the proposition, gaining confidence in the proposition, drawing conclusions,
supporting work and lastly is appendices.

The introduction in chapter 1 includes motivations for the research, main chal-
lenges of the research, overall objectives, and review of research contributions. After
that, to lend weight to the proposition as the first part of the dissertation, there
is chapter 2 which presents the background and literature review, and chapter 3
which has a theoretical foundation for the proposed model. The foundation consists
of a generic architecture for complex network management and agents to aggreg-
ate distributed network information. Moreover, chapter 3 is probably more about a
state of the art in software engineering than about real implementation to engineer
autonomic network management.

The second part of the dissertation is to gain confidence in the proposition which
includes attempting to implement the DAIM model in chapter 4 with some tests to
report good performance regarding convergence and robustness for the service con-
figuration process of network management. Also, the second part has a specification
of true abstraction layers in chapter 5. The specification of true abstraction layers
proposes a high-level abstraction for forwarding networking devices and provides
an application program interface for network service applications developed by net-
work operators and service providers. The implementation in chapter 4 is supported
by the fourth part of the dissertation in chapter 10 which supports the theoretical
foundation, designing, modelling, and developing the distributed active information
model via simulation, emulation and real environments.

The third part of this dissertation provides the way to draw conclusions as shown
in chapter 7 which has the overall research summary, validation of the propositions,
contributions and discussion, limitations and finally recommendations for future
works.

Finally are the appendices in Appendix A, Appendix B, Appendix C and Appendix D
which provide a developing code of the core DAIM model and show different setting
up for testbed environments.

vi

My Related Publications

Most of the technical discussions, contributions, and theories in this dissertation are
based on the following publications written by the author, and the other three are
co-authored:

A. International Journal Publications:

[J1] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
A comparative review: Accurate OpenFlow simulation tools for prototyping.
Journal of Networks, 10(5):322-327, 2015.

[J2] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Performance eval-
uation of tcp/ip vs. OpenFlow in INET framework using OMNeT++, and
implementation of intelligent computational model to provide autonomous be-
haviour. In Osaka acbpp actis 2014, number 2189-1028, pages 43-56, Osaka,
Japan, 2014. The International Academic Forum (IAFOR), The Asian Con-
ference on Technology, Information & Society 2014.

[J3] BANJAR, A., PUPATWIBUL, P., BRAUN, R. 2014, DAIM: a Mechanism to
Distribute Control Functions within OpenFlow Switches. Journal of Networks,
North America, 9, jan. 2014. Available by: goole shearsh < jnw090119>. Date
accessed: 08 Oct. 2014.

[J4] Banjar, A., Pupatwibul, P., Sabbagh, A.A. & Braun, R. 2014, 'Using an ICN
Approach to Support Multiple Controllers in OpenFlow’, International Journal
of Electrical & Computer Sciences, vol. 14, no. 2.

B. Chapter of Book Publications:

[B1] Banjar, A., Pupatwibul, P., Sabbagh, A. & Braun, R. 2015, 'Comparison
of TCP/IP routing versus OpenFlow table and implementation of intelligent
computational model to provide autonomous behavior’, In Computational In-

telligence and Efficiency in Engineering Systems, pages 121-142. Springer,
2015.

[B2] Pupatwibul, P., Banjar, A., Sabbagh, A. & Braun, R. 2014, "An Intelligent
Model for Distributed Systems in Next Generation Networks’, in R. Klempous,

vii

J. Nikodem, W. Jacak & Z. Chaczko (eds), Advanced Methods and Applica-

tions in Computational Intelligence, vol. 6, Springer International Publishing,
pp- 315-34.

C. International Conference Publications:

[C1] Banjar, A.; Pupatwibul, P.; Braun, R.; Moulton, B., "Analysing the perform-
ance of the OpenFlow standard for software-defined networking using the OM-
NeT++ network simulator," Computer Aided System Engineering (APCASE),
2014 Asia-Pacific Conference on , vol., no., pp.31,37, 10-12 Feb. 2014

[C2] Pupatwibul, P., Banjar, A., Al Sabbagh, A. & Braun, R. 2013, 'Developing an
application based on OpenFlow to enhance mobile IP networks’, Local Com-

puter Networks Workshops (LCN Workshops), 2013 IEEE 38th Conference
on, IEEE, pp. 936-40.

[C3] Al Sabbagh, A., Pupatwibul, P., Banjar, A. & Braun, R. 2013, 'Optimization
of the OpenFlow controller in wireless environments for enhancing mobility’,
Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th
Conference on, IEEE, pp. 930-5.

[C4] Pupatwibul, P., Banjar, A. & Braun, R. 2013, "Using DAIM as a reactive inter-
preter for OpenFlow networks to enable autonomic functionality’, Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, ACM, pp. 523-4.

[C5] Pupatwibul, P., Sabbagh, A.A., Banjar, A. & Braun, R. 2012, "Distributed
Systems in Next Generation Networks’, 1st Australian Conference on the Ap-
plications of Systems Engineering ACASE’12, p. 32.

viil

List of Figures

1.1.
1.2.
1.3.
1.4.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

2.7.
2.8.

2.9.

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.

2.21

2.22.
2.23.
2.24.

3.1.
3.2.
3.3.

Conventional Networks Vs. Programable Networks 9
SDN architecture Vs. SDN with DAIM architecture 14
Overview of research structure 16
Dissertation plano oo 19
Centralised Management Paradigm 28
Distributed Management Paradigm 29
Autonomic Network Management 36
Increasing complexity to manage complicated system 38
Computer hardware architecture with GPU 39
Comparison between OpenGL and Vulkan with increasing complexity
of computer application 0L 40
Drawing Triangle by using OpenGL 43
Components of Smart Packets project, including ANEP Daemon and
VM within each device L. 44
Software-Defined Networks (SDN) architecture 46
Routing Control Platform RCP 48
Distributed Routing Control Platform RCP 48
Ethane architecture decoupling control logic 50
OpenFlow architecture, theoretically similar to Ethane 52
OpenFlow packet processing flowchart 54
Actions associated with Flow entry of the flow table within switch . . 55
Flow table entry includes matching, status and action 55
Header fields in the flow entry for (wildcard and exact fields) 56
OpenFlow stack layers and TLS/SSL channel to controller 58
NOX structure and components 64
Overview of Beacon Architecture [59] 65
. Project Floodlight Infographic [72] 66
Kandoo architecture L L 67
HyperFlow architecture 68
Onix architecture 69
Software-Defined Networking Architecture 75
OpenFlow networks structure 75
DAIM model structure 7

X

3.4. (A) Computer architecture, (B) SDN architecture, (C) DAIM archi-
tectureo Lo
3.5. Left side shows the northbound (NBI) and southbound interface (SBI)
of SDN architecture compared to right side which presents DAIM
module architecture with super southbound interface (SSBI)
3.6. DAIM module structure supported by agents
3.7. DAIM agents provider and components
3.8. Packet processing within OpenFlow switch integrated with DAIM
model . ..o
3.9. DAIM agent owns flow entries in DAIM model

4.1. Integrating DAIM model to OpenFlow switch
4.2. Establish the connection to DAIM
4.3. DAIM exchanging information with OpenFlow switch
4.4. Simple setup of DAIM model with simple controllers and system re-
quirement databaseo
4.5. Hello message structure for local links discovery
4.6. Activity diagram of hello message (sending/receiving) sides
4.7. Links share message structure for linear topology
4.8. Links share message structure for tree topology
4.9. Links share message structure for ring topology
4.10. Links share message structure for mesh topology
4.11. Activity diagram of links share message (sending/receiving) sides
4.12. Activity diagram of switch alive message (sending/receiving) sides . .
4.13. Shortest path calculated by each DAIM and setting no flooding ports
4.14. Flow entries installation
4.15. Mininet emulator shows empty flow entries tables
4.16. DAIM shows ARP broadcast flood (Mininet emulator)
4.17. flow-mod packet for matching and packet comes to SW_1
4.18. flow-mod sent by the DAIM model (Wireshark captured)
4.19. Flow tables after the first ping (Mininet emulator)
4.20. Flowchart of packet-in to the DAIM model
4.21. Ping traffic of DAIM model vs Legacy switch in linear topology
4.22. Ping traffic of DAIM model vs Legacy switch in tree topology -
4.23. Ping traffic of DAIM model vs OpenFlow-NOX in ring topology . . .
4.24. Ping traffic of DAIM model vs OpenFlow-NOX in mesh topology . .
4.25. Average RTT of different DAIM model topologies
4.26. Latency of DAIM vs. Latency of NOX vs. Latency of POX
4.27. Latency responses of DAIM, NOX and POX

5.1. DAIM OS network architecture
5.2. Different components in the DAIM switch platform
5.3. Interfaces between different DAIM switch platform components

136
139

. 140

5.4. The DAIM OS is kept compatible across different hardware and soft-

ware configurations via different middleware 141
5.5. DAIM OS modules interconnectivity 143
5.6. Entries indicators in a switch port for a table configuration 144
5.7. The DAIM OS means of information retrieval 145
5.8. Link connecting two adjacent DAIM switch devices 157
5.9. Packet flow in a DAIM switch 170
5.10. Retaining of incoming packets by the DAIM OS 175
5.11. DAIM cloud fetching DAIM switch id using DAIM OS cloud messages 184
5.12. DAIM OS cloud message structure for data ordering 185
5.13. DAIM OS packet forwarding pipeline 187
5.14. Forwarding of matching packets by the DAIM OS 188
5.15. Swapping internet access to hosts under two DAIM switches 189
10.1. The DAIM model uses simulation, real network, and emulation based

for implementation to draw the conclusion 240
10.2. Traditional network topology in OMNeT++ 241
10.3. OpenFlow network topology in OMNeT++ 241
10.4. Data Transfer Rate DTR of traditional and OpenFlow networks . . . 242
10.5. Round Trip Time RTT of traditional and OpenFlow networks 243
10.6. OpenFlow network topology for Australian cities 245
10.7. Performance of OpenFlow networks based on controller location . . . 246
10.8. RTT for controller location near to (Sydney/Perth) 247

10.9. Controller near Sydney (RTT of traditional vs. OpenFlow networks) 248
10.10Controller near Perth (RTT of traditional vs. OpenFlow networks) . 248

10.11Connection Establishment and Termination of TCP 250
10.12Connection Establishment and Termination of OpenFlow Networks . 251
10.13Architecture of the DAIM model for Basic carrier functionality . . . 252
10.14Basic carrier topology testbed connected with one controller 252
10.15Latency of NOX vs. Latency of DAIM with NOX 253
10.16Latency of POX vs. Latency of DAIM with POX 254
10.17RTT of POX vs. RTT of DAIM with POX 255
10.18 Average Response for Latency of NOX and DAIM with NOX,/ POX

and DAIM with POX 256
10.19Throughput of NOX vs. Throughput of DAIM with NOX 256
10.20Throughput of POX vs. Throughput of DAIM with POX 258
10.21Average Response for Throughput of POX, NOX and DAIM with

NOX/ POX 258
10.22Semi-Autonomous functionality of DAIM model 259
10.23Semi-Autonomous DAIM model testbed 260
10.24Semi-Autonomous of DAIM model with packet size increasing 261
10.25RTT for NOX, POX and Semi-Autonomous DAIM 262
10.26RTT for NOX and Semi-Autonomous-of-DAIM with packet size in-

Creasing 263

X1

xii

10.27Fully Autonomous functionality of DAIM model 264

10.28Integrating the DAIM model to Raspberry Pi 264
10.29Topology of DAIM model integrated to Raspberry Piin Lab 265
10.30RTT for DAIM vs. POX 266
A.1. GitHub page for DAIM model 288
A.2. Memory Block for storage module 315
C.1. Mininet structure and components [77] 332
C.2. GUI for NOX controller with log view and topology view 334
D.1. Raspberry Pi hardware components of model (B) 339
D.2. OpenFlow networks using Raspberry Pi integrated with DAIM model 340
D.3. Verifying OpenFlow dissector in Wireshark 345
D.4. Captured packets in Wireshark for OpenFlow 346

List

1.1.

2.1.
2.2.

2.3.
2.4.
2.5.
2.6.
2.7.

2.8.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.

of Tables

Decomposition of the knowledge

IBM autonomic computing Self-CHOP concepts [40]
Autonomic network management and traditional network manage-

ment L e e e e
Comparing between OpenGL and Vulkan [145, 127]
Controller to switch messages
Symmetric messagesl
Asynchronous messages
Comparison of network layers and functionality between TCP/IP,

OpenFlow, and traditional telephone
Distributed controllers approaches

Comparison of DAIM Protocol and DAIM API
Comparison of OpenFlow and DAIM model processes

Discovery of Topology by DAIM model as steps
packet-in for ARP request in Wireshark
packet-in for ARP reply in Wireshark
packet-in for ICMP request in Wireshark
Testing TCP bandwidth between h1l and h2 of Linear topology
Testing UDP bandwidth between h1l and h2 of Linear topology
Testing TCP bandwidth between h1l and h2 of Tree topology
Testing UDP bandwidth between h1l and h2 of Tree topology
Testing TCP bandwidth between hl and h2 of Ring topology
Testing UDP bandwidth between h1l and h2 of Ring topology
Testing TCP bandwidth between hl and h2 of Mesh topology .
Testing UDP bandwidth between h1l and h2 of Mesh topology

DAIM OS modules tasks
The DAIM switch state flags and their meaning of setting
The DAIM switch port flags and their meaning of setting
Entity state flags and their meaning of setting
Switch link state flags and their meaning of setting
Port state flags and their operating mode

Entry identification variables for configuration tables
DAIM tables configuration in DAIM switch 1 by DAIM application

xiil

Xiv

5.9. DAIM tables configuration in DAIM switch 2 by DAIM application . 190

6.1. DAIM OS actions on DAIM information table fields 194
6.2. DAIM OS actions on Switch table fields 195
6.3. DAIM OS actions on Switch port table fields 196
6.4. DAIM OS actions on Entity table fields 197
6.5. DAIM OS actions on Entity port table fields 198
6.6. DAIM OS actions on Entity ARP table fields 198
6.7. DAIM OS actions on Link table fields 199
6.8. DAIM OS actions on Packet forwarding table fields 200
6.9. DAIM OS actions on Switch configuration table fields 201
6.10. DAIM OS actions on Switch port configuration table fields 201
6.11. DAIM OS actions on Entity configuration table fields 202
6.12. DAIM OS actions on Link configuration table fields 203
6.13. Flow rules by different entries in Packet forwarding table 204
10.1. OMNeT++ channel types 244
10.2. Distance between Australian cities 244
A.1. Actions of public functions in the object list class 317
A.2. API dependencies for DAIM modules 318
B.1. Real network vs. network simulation [5] 326
D.1. Open vSwitch configuration Summary 341

Nomenclature

AC
ACS
Al
ANM
ANS
API
AS
CIM
CLI
CMIP
CMIS
CPU
DAIM
DAIM OS
DMTF
DTR
GPU
HD
iBGP
ICN

10S

Autonomic Computing

Autonomic Computing System

Artificial Intelligence

Autonomic Network Management
Autonomic Nervous System

Application Programming Interface
Autonomous System

Common Information Model

Command Line Interface

Common Management Information Protocol
Common Management Information Service
Central Processing Unit

Distributed Active Information Model
DAIM Operating System

Distributed Management Task Force

Data Transmission Rate

Graphics Processing Unit

Hard Drive

interior Border Gateway Protocol
Information-Centric Networking

International Organisation for Standardisation

XV

P
LLDP
MAC
MIB
MTU
NE
NETCONF
NGN
NIB
NM
NMS
NOS
NSOS
OS
0SS
pP2pP
POSIX
POX
QoS
RAM
RCP
SDN
SID
SNMP

SRD

XVvi

Internet Protocol

Link Layer Discovery Protocol
Media Access Control

Management Information Base
Maximum Transmission Unit
Network Elements

Network Configuration Protocol
Next Generation Network

Network Information Base

Network Management

Network Management System
Network Operating System

Network Switch Operating Systems
Operating System

Operating Support System
Peer-to-Peer

Portable Operating System Interface
Python based controller

Quality of Service

Random-access memory

Routing Control Platform
Software-Defined Networking
Shared Information and Data Model
Simple Network Management Protocol

System Requirement Database

TCP Transmission Control Protocol

TLS Transport Layer Security
TMF TeleManagement Forum
UML Unified Modelling Language
XML Extensible Markup Language

XML-RPC XML-encode Remote Procedure Call

xvii

Contents

Acknowledgments

Abstract

Nomenclature

1.

Introduction

1.1.

1.2.

1.3.

1.4.

1.5.
1.6.
1.7.

Motivations

1.1.1. The Swinging Pendulum of Network Structure

1.1.2. Evolve Networks Regularly .

1.1.3. Limitation of Current Networking

Autonomic Communication

1.2.1. Objective of Autonomic Network Management
1.2.2. Challenges of Fully Freedom Management

1.2.3. Autonomics Abstraction Layers

1.2.4. Possible Development Environments

1.2.5. Network management issues .
1.2.6. Using OpenFlow networks as a
Research Objectives and Scope . . .
1.3.1. Objective
1.3.2. Scope
Research Proposition
1.4.1. Core Proposition
1.4.2. Attendant Propositions

case study

Overview of Methodological Framework

Statement of Contributions
Overview of Dissertation Structure .

Lending Weight to the Thesis

Background and Literature Review

2.1.
2.2.

High level background
Network Management

2.2.1. Network management functions and protocols

2.2.2. Network Managing Paradigms

XV

21

23
23
24
25
27

i

2.3. Automatic and Autonomic Systemso 31
2.4. Autonomic Computing Concepts 32
2.5. Introducing Autonomic Communication 32
2.5.1. Lesson Learnt from Similar Fields 34
2.5.2. Human Biological Mechanisms 34
2.5.3. Possibility of Autonomic Network Management 35

2.6. Managing Complicated System by Increasing Complexity 38
2.6.1. Understanding Complex and Complicated system 39
2.6.2. Possibility of Implementing Complexity to Complicated System 42

2.7. Introducing a New Norm of Networking (SDN) 45
2.7.1. Major contributions toward SDN paradigm 47
2.7.2. Centralised and Distributed SDN Controllers 59

2.8. Information Models for network management 69
28.1. CIM from (DMTF) 71
2.82. SID from (TMF) 71
2.83. Issuesof CIMand SID 71

2.9. Summary 72
. Theory of The Proposed Model 73
3.1. Restatement of the Thesis 74
3.1.1. Uniqueness of DAIM model 76
3.1.2. DAIM model Vs. current Information Models 7
3.1.3. Objectives of the DAIM model 78

3.2. DAIM model Architecture 79
3.2.1. Describing the DAIM model 82
3.2.2. Packet processing within DAIM model 85
3.2.3. Risk Scenarios of DAIM model 87
Gaining Confidence in the Thesis 89
Attempting to Implement DAIM Model 91
4.1. Introduction 91
4.2. Setting up the Demonstration 91
4.2.1. Integrating DAIM model to OpenFlow Switch 92

4.3. Simple Reference Implementation: 94
4.3.1. DAIM model components 94
4.3.2. Discover Networks Topology 95
4.3.3. Calculating the Shortest Path with DAIM model 106
4.3.4. Flow Table in DAIM model with Example of Ping 107
4.3.5. Verifying DAIM model Functionalities 114
4.3.6. DAIM model Recovery 127

4.3.7. Discrepancy of the DAIM model implementation 128

5. Specification of DAIM OS

5.1.

5.2.

5.3.

5.4.
9.5.
5.6.
5.7.

5.8.

5.9.
5.10.
5.11.

5.12.
5.13.

5.14.

Introduction

5.1.1.
5.1.2.

Scope
Terms and definitions . .

DAIM Operating System (OS) overview
5.2.1. DAIM operating system (DAIM OS)
5.2.2. Network flow management by DAIM OS

5.2.3.

5.3.1.
5.3.2.
5.3.3.
5.3.4.

Tables in DAIM OS . . .
DAIM switch overview
DAIM switch
DAIM application
DAIM switch platform . .
DAIM switch stack
DAIM OS model
DAIM OS table model

DAIM OS information retrieval model

DAIM OS tables description

5.7.1.

Information tables

5.7.2. Network management tables

DAIM OS API description

5.8.1.

DAIM Cloud
DAIM OS System API
DAIM OS cloud protocol

Reading of DAIM tables data
5.8.2. Writing data to DAIM tables
5.8.3. Catching signals from the DAIM OS

5.11.1. DAIM OS cloud message header
5.11.2. DAIM OS cloud messages
DAIM OS packet forwarding pipeline

DAIM Switch network design scenario

5.13.1. Scenario A: a simple enterprise network

Conclusion

6. Extra Details for DAIM OS Specification

6.1. DAIM OS API description

6.2.

6.1.1.

DAIM OS cloud protocol

6.2.1.

Reading of DAIM tables data
6.1.2. Writing data to DAIM tables
6.1.3. Catching signals from the DAIM OS

DAIM OS cloud messages

131
131
132
132
135
137
137
137
138
138
138
138
138
141
143
144
146
146
158
166
167
169
176
179
180
181
181
181
187
188
188
190

191
191
191
194
215
218
218

iii

I1l. Drawing Conclusions

7.

Conclusion

7.1. Research Summary
7.2. Validation of Research Propositions
7.3. Research Limitation

. Research Contribution and Discussion of Findings

. Direction for Future Works and Recommendations

IV. Supporting Work

10.Supporting the Proposed Model Implementation

iv

10.1. Exercise OpenFlow Networks in OMNeT++
10.1.1. Performance of OpenFlow Vs. Traditional Networks
10.1.2. Implement OpenFlow to Australian cities

10.2. Exercise the DAIM model via Mininet
10.2.1. Integrating DAIM model to OpenFlow Switch

10.3. Integrating DAIM model with Raspberry Pi

. Appendices

. DAIM model with a Simple Controller

A.1. DAIM model Header Files
A.1.1. Controller Header
A.1.2. ARP Header,
A.1.3. Ethernet Header
A.1.4. Communication Header
A.1.5. OpenFlow Header

A.2. Code of DAIM model and Controller
A21. MainCpp
A.2.2. Controller Cpp
A.2.3. Communication Cpp

A.3. Storage module of the DAIM model

A.4. API dependencies for DAIM modules

A.5. Basic carrier for OF messages

. OMNeT++ (Simulation Environment)

B.1. Installing OMNeT++ in Linux OS
B.2. Import INET framework to OMNeT++
B.3. Import OpenFlow in OMNeT++:
B.4. OMNeT++ components:

221

223
223
224
229

231
235

237

239
239
239
243
249
249
264

B.5. Establish / Terminate Connection 329

B.5.1. Traditional Networks 329
B.5.2. OpenFlow Networks 330

. Mininet (Emulation Environment) 331
C.1. Building SDN lab environment 331
C.1.1. Installing SDN Controller (NOX) 331

C.1.2. Imstalling Mininet L. 333

C.2. Basic DAIM model with OpenFlow 336
C.2.1. Introducing controller benchmarker 337

. Raspberry Pi (Real Environment) 339
D.1. Setting up OpenFlow on Lab 340
D.2. Configuration summaryo 340
D.2.1. Assign static IP for network interfaces 341

D.2.2. Setting up OpenFlow and DAIM 341

D.2.3. Setting OpenVswitch for Raspberry Pi 342

D.2.4. General configuration for Open vSwitch 343

D.2.5. Running DAIM model in Raspberry Pi 344

D.3. Installing Wireshark Dissector for OpenFlow 344

	Title Page
	Certificate of Original Authorship
	Acknowledgments
	Abstract
	My Related Publications
	List of Figures
	List of Tables
	Nomenclature
	Contents

